Combustion Methods and Systems

Solid-Fired System
Liquid-Fired System
Gas-Fired System

Power Station Boilers Solid Fuel

Mechanical Stoker; Grate

Boiler

Air-feed: either cross flow or counter current

Pulverized-fuel Boiler

Pulverized means powder

Large Capacity;
high efficiency; low
excess air; low
labors; high cost
due crushing

A cyclone Furnace

Some points for cyclone furnace

- 1. Horizontal inclined, water cooled, tubular unit.
- 2. Max temp: 2000K
- 3. Crushed Coal enters tangentially. Coal fines burn in suspension
- 4. Low dust emission
- 5. Heat rate > pulverized sy. 50 times
- 6. High slag formation (molten ash)
- 7. Required high energy to create a high velocity tangent to the walls.

Fluidized-bed Boiler

Fluidized Bed Combustor main components

Mechanism of sorbent in a fluid bed

:. Limestone is commonly used to capture the sulfur.

Feed point

For fluidized bed

Overfeed

Solid fuel is fed Over the bed

Underfeed

Solid fuel is fed Under the bed

Spreader feed

Fuel is fed into the gas space above the bed

Atmospheric gas burner

Refractory gas burner

Fan-mix burner

Oil-Fired System

Internal-mixing
Steam-atomizing
burner

Rotary cup burner

Steam-atomizing burner

Rotary cup burner

Boilers

Design & operation

Boiler components

- 1. Air handling equipment
- 2. Fuel handling equipment.
- Duct and Combustion Chamber
- 4. Water supply system.
- 5. Steam drums and piping
- Exhaust-gas system and pollution-control system

Heat Transfer sections

1ry Heat T. surfaces

- 1. Evaporator
- 2. Super heater
 - 3. Reheater

2ry Heat T. surfaces

- 1. Air preheater
- 2. Economizer

Types of boilers

Fired-tube Boilers

Water-tube boilers

Fired-tube boilers

Serious explosion may take place in case of tube rapture or failure.

Water-tube boilers

In general;

- Natural circulation boilers
- Forced-circulation boilers

Fired-tube steam boiler 2-passes

Natural-circulating boiler

Forced-circulating Boiler

Forced Draft System

Min mass flow rate = fuel rate (A/F)_{act, mass, w.}

To account leakage the flow must be increased by 20 – 40 %.

Most f-d fans are high-speed centrifugal fans.

Induced draft Fan

min mass flow rate,
$$m_{I-d} = m_{fuel} \left[\left(\frac{A}{F} \right)_{act} + 1.0 - R \right) //$$

The flow rate which is given by this equation must be increased by 20 % to account for losses or leakage into the furnace and duct work.

Balanced-draft System

The system operates at or slightly below atmospheric pressure