CERAMIC INDUSTRIES

Part 1:

Raw Materials and Reactions

Reference:

Shreve's Book, Chapter 9 (pp. 149 – 155)

Introduction

- Ceramic Industries (also referred to as *clay products* or *silicate industries*) are providing markets with a variety of products that are essentially *silicates*.
- Ceramic products are known to withstand high temperature, resist high pressures, have superior mechanical properties, posses special electric characteristics, and can protect against corrosion.

Introduction

- **☐** Examples of ceramic products are:
 - Whitewares (pottery, porcelain, stoneware, etc.)
 - Structural Clay Products (Building brick, sewer pipes, etc.)
 - **Refractories** (Firebricks, silicon carbide refractories, etc.)
 - Glasses
 - Enamels and enameled metals
 - Ceramic composites
 - Abrasives

Basic Raw Materials of Ceramics

Some additives can be added to improve the properties or facilitate processing of ceramics such as **fluxing agents**, and **refractory ingredients**.

Clay

- Impure hydrated aluminum-silicates originating from feldspar mineral by weathering of igneous rocks
- There are many clay minerals, which contains mixtures of kaolinite, montmorillonite (bentonite), and illite.
- Clays are plastics and moldable when sufficiently pulverized and wet
- Clays are rigid when dry, vitreous when fired at suitable temperature

Feldspar

- A common mineral composed of silica alumina.
- There are 3 major types of feldspars: Potash feldspar, soda feldspar, and lime feldspar.
- Feldspar is an important fluxing constituent in ceramics

Sand

- Also called flint, a natural material composed of granular minerals
- It is composed mainly of silica (in the form of quartz) and calcium carbonate (argonite).

Clays Beneficiation

- Clays vary so much in their physical properties, and in the impurities present (feldspar, quartz, oxides of iron, etc.)
- Thus, it is frequently necessary to upgrade the clay by beneficiation process, which includes:
 - Sand and mica removal
 - Size separation by screening or selective settling
 - Filtration
 - Drying
 - Froth flotation

Additives

Besides the three principal raw materials, different minerals, salts and oxides are used in ceramic production.

Fluxing agents

Lower the vitrification, melting or reaction temperatures

Refractory agents

Increase the heat resistance of the product

Some Common Fluxing Agents

Borax ($Na_2B_4O_7 \cdot 10H_2O$)

Boric acid (H_3BO_3)

Soda ash (Na₂CO₃)

Sodium nitrate (NaNO₃)

Pearl ash (K₂CO₃)

Nepheline syenite [(Na,K)₂Al₂Si₂O₈]

Calcined bones

Apatite $[Ca_5(F,Cl,OH)(PO_4)_3]$

Fluorspar (CaF₂)

Cryolite (Na₃AlF₆)

Iron oxides

Antimony oxides

Lead oxides

Lithium minerals

Barium minerals

Some Common Refractory Agents

Alumina (Al_2O_3)

Olivine [(FeO,MgO)₂SiO₂]

Chromite (FeO·Cr₂O₃)

Magnesite (MgCO₃)

Lime (CaO) and limestone (CaCO₃)

Zirconia (ZrO₂)

Titania (TiO₂)

Hydrous magnesium silicates, e.g., talc (3MgO·4SiO₂·H₂O)

Aluminum silicates (Al₂O₃·SiO₂) (kyanite, sillimanite, andalusite)

Dumortierite $(8Al_2O_3 \cdot B_2O_3 \cdot 6SiO_2 \cdot H_2O)$

Carborundum (SiC)

Mullite $(3Al_2O_3 \cdot 2SiO_2)$

Dolomite $[CaMg(CO_3)_2]$

Thoria (ThO₂)

Chemical Conversion in Ceramics

Ceramic processing consist of these general steps:

Mixing \rightarrow Shaping \rightarrow Firing (700 – 2000°C)

- Such temperatures cause a number of reactions which are the bases of chemical conversion:
 - 1. **Dehydration:** Chemical water smoking at 150 650°C
 - 2. Calcination; e.g., of $CaCO_3$ at $600 900^{\circ}C$
 - 3. Oxidation of ferrous and organic matter at $350 900^{\circ}$ C
 - **4. Silicate formation** at 900°C and higher (phase change according to phase diagram)

Chemical Reactions on Clay (Kaolinite) Heating

- Driving off water of hydration
 - occurs at 600 650 °C and absorbs much heat
 - leaves an amorphous mixture of alumina and silica $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O \rightarrow Al_2O_3 + 2SiO_2 + 2H_2O$
- Amorphous alumina changes sharply at 940 °C to crystalline form, γ -alumina, with the evolution of considerable heat.
- At about 1000 °C, alumina and silica combine to form **mullite** $(3Al_2O_3 \cdot 2SiO_2)$
- At higher temperature, remaining silica is converted to crystalline **cristobalite**.
- Overall reaction:

$$3(Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O) \rightarrow 3Al_2O_3 \cdot 2SiO_2 + 4SiO_2 + 6H_2O$$
Kaolinite Mullite Cristobalite

Fig. 6.2. Phase diagram of the system $\alpha Al_2O_3 \cdot SiO_2$. Mullite is $3Al_2O_3 \cdot 2SiO_2$, cristobalite is SiO_2 , and corundum is Al_2O_3 .

Other Ingredients

- Actual ceramic body contains more ingredients than clay, thus there will be other chemical species beside mullite and cristobalite in the final product.
- Various silicates and aluminates of Ca, Mg, and alkali metals may present.
- The alkali portion of feldspar and most of the fluxing agents become part of the glassy (vitreous) phase of the ceramic body.

Vitrification

- All ceramics undergo certain amount of vitrification (glass formation) during heating.
- Vitrification means progressive reduction in porosity
- Degree of vitrification depends upon:
 - Relative amounts of refractory and fluxing oxides
 - Temperature
 - Time of heating
- Vitreous phase imparts desirable properties to ceramic body:
 - Act as a bond
 - Impart translucency in chinaware
 - etc.

Vitrification

- The degree of vitrification provides the basis of a useful classification of ceramic products as follows:
 - 1. Whitewares: varying amounts of fluxes, heat at moderately high temperatures, varying vitrification.
 - 2. Heavy-clay products: abundant fluxes, heat at low temperatures, little vitrification.
 - **3. Refractories:** few fluxes, heat at high temperatures, little vitrification.
 - **4. Enamels:** very abundant fluxes, heat at moderate temperatures, complete vitrification.
 - **5. Glass:** moderate fluxes, heat at high temperatures, complete vitrification.