

University of Jordan Dept. of Chemical Engineering

0935474 Wastewater Treatment

Chapter-1

Introduction & Overview

INTRODUCTION

Wastewater

Discarded or previously used water from a municipality, industry or other activity.

Types:

- 1. Domestic (household)
- 2. Industrial effluents
- 3. Other (storm runoff, agricultural runoff, mine drainage)

Sources:

- 1. Urban areas (Residential & commercial)
- 2. Industrial parks
- 3. Agricultural lands (Farms)

Characteristics of Wastewater

Quantity

- 1. Minimum, maximum and average
- 2. Production variability pattern

Quality (composition):

- 1. Physical
- 2. Chemical
- 3. Biological
- 4. Priority pollutants

Combination wastewaters:

Domestic + Industrial = Municipal

Wastewater Treatment Systems

1. Centralized:

Municipal wastewater treatment plant (facility)

Sludge Management:

Solids are produced during wastewater treatment

 Biosolids and /or chemical sludge need to be handled, treated and utilized, or properly disposed

2. Centralized: Industrial effluents treatment plants-1

2. Centralized: Industrial effluents treatment plants-2

Wastewater Treatment Systems

2. Decentralized:

- a) Septic tanks
- b) Land application
- c) Constructed wetland
- d) Packaged /mobile units

Packaged / Mobile WWT Units

<u>Used in the following applications</u>: Electrochemical metals removal process, pH adjustment, multi-media filtration, air stripping, activated carbon adsorption, sludge dewatering units.

WWT Technologies

1) Physical methods

- Settling, Flotation, filtration
- Membrane filtration, e.g. ultra-filtration, reverse osmosis, electrodialysis
- Adsorption

2) Chemical methods

- Coagulation and flocculation
- Chemical precipitation (using hydroxides, carbonates, phosphates, etc...)
- Chemical oxidation (using e.g. O2 at high T & P, O3, H2O2, Cl2, chlorate, perchlorate, Hypochlorite, dichromate, permanganate, ...)
- Ion exchange.

3) Biological methods

 Microbial biodegradation using mixed culture (mainly bacteria plus fungi and other microbes); both <u>aerobic and anaerobic.</u>

Physical Methods

Advantages:

1) No consumption of chemicals and thus no chemicals

handling hazards.

2) Simple operation.

settling

Disadvantages:

- 1) May be slow (flocculation and settling)
- 2) Requires large space (volume or area)
- 3) Some are expensive (membrane separation), both in capital and operating costs.

Chemical Methods

Untreated Influent Discharge Valve Treated Effluent

<u>Advantages:</u>

- 1) Rapid and efficient process.
- Possible to remove <u>all pollutant types</u> to produce a highquality treated effluent.

<u>Disadvantages:</u>

- 1) Handling and cost of required chemicals.
- 2) High energy cost.
- 3) Although the pollutants are removed, accumulation of concentrated <u>sludge</u> creates a solids disposal problem.
- Many chemicals are hazardous thus causing safety problems.

Biological Methods

Advantages:

- 1) Economically attractive for large amounts of wastewater.
- 2) Acceptable quality of effluent (within the standards).

<u>Disadvantages:</u>

- Slow process.
- 2) Requires extensive land area.
- 3) Needs continuous maintenance.
- 4) Necessary to create an optimal favorable "reactor" environment including nutrition requirements.
- 5) Weather and climate affected.

Main Reasons for WW Treatment

- 1. Adverse Impacts of Wastewaters:
 - a) Health risk
 - b) Environmental pollution
- 2. Water scarcity Reuse potential

Impacts of Wastewater Discharge

Impacts on Human Health

- 1. Contamination of drinking water and food causes spread of infectious diseases that endangers public health.
- 2. Toxic priority pollutants may be lethal poisons or carcinogens.

Impacts on Environment

- 1. Depletion of dissolved oxygen in natural aquatic systems causes deterioration of aquatic ecosystems.
- 2. Adversely affects biodiversity.
- 3. May cause odor and air other pollution problems.

Loss in economic assets

- 1. Soil pollution lead to agricultural degradation and crop loss.
- 2. Stream/ lake/ coast pollution leads to loss in tourism.

التشريعات Regulations

Environmental Legislation in Jordan:

- 1. Laws: القوانين issued by Parliament.
- 2. Regulations (or By-Laws):الانظمة issued by Government (Council of Ministers).
- 3. Instructions: التعليمات issued by Ministers or Heads of Govt. Institutions
- 4. Standards (or Specifications): المواصفات "Technical Regulations" issued by Jordan Institution for Standards and Metrology (JISM).

* القوانين Relevant Jordanian Laws

- 1. Environ Protection Law # 6, 2017
- 2. Public Health Law,
- 3. Agriculture Law,
- 4. Water Authority Law,
- 5. Municipalities Law,
- 6. Standards and Metrology Law,
- 7. Other laws:
 - Development Zones , Industrial Real Estates
 Corporation , Aqaba Special Economic Zone.

الانظمة Environmental Regulations

- Groundwater Control Regulation (No. 85, 2002), Issued pursuant to Articles 6 and 32 of Water Authority Law No. 18 for the year 1988.
- Regulation of Harmful and Hazardous Waste Management, Transfer & Handling (No. 24, 2005)
- Soil Protection Regulation (No. 25,2005)
- Regulation for the Protection of the Environment from Pollution in Emergency Situations (No. 26, 2005)
- Regulation of Solid Waste Management (No. 27, 2005)
- Air Protection Regulation (No. 28, 2005)
- The Environmental Impact Assessment Regulation (No. 37, 2005)
- Land use planning Regulation (No. 6, 2007)
- Regulation No. 66, 1994: Wastewater Collection and Disposal (Based on WAJ, No. 18, 1988)
- Regulation No. 21, 2001: Protection of Environment in Agaba Special Economic Zone (Based on ASEZ Law No. 32, 2000)

Key Instructions

التعليمات

- 1. Instruction of management and handling of hazardous wastes, 2003.
- 2. Instructions of *site selection for development activities*, 2007.
- 3. Instructions of spent oil management and handling, 2003.
- 4. Instructions of spent oil management and handling in ASEZ No. 68, 2005.
- 5. Instructions of classification of various establishments according to their *threat to environment*, 2010.
- 6. Instructions of use of waste, treated, saline and brackish water in agriculture, 2004.
- 7. Instructions for disposal of industrial wastewater to sewers public sewer of the year 1998 / Water Authority of Jordan (WAJ)

Jordanian Standards

المواصفات القياسية

- 1. Jordanian Standard JS893/2006: Water- Reclaimed domestic wastewater.
- 2. Jordanian Standard JS202/2007: Water- Industrial reclaimed wastewater.
- 3. Jordanian Standards JS1145/2006: Sludge- Reuse of treated sludge in agriculture.
- 4. Jordanian Standard JS 1176/2008 Water- Reclaimed gray water in rural areas.

Standards are important as they are the reference for:

- > The basic goal for design of new WWTPs
- Monitoring & performance evaluation for existing WWTPs for necessary maintenance and upgrading.
- Enforcement of water (environment) protection regulation to ensure compliance and handle illegal wastewater discharge and violations.

JS 893/2006 Reclaimed Domestic Wastewater Standard

- This standard was first published by JISM in 1995; then amended in 2002 & 2006 to widen the reuse activities and is currently applied to all municipal wastewater treatment systems.
 - The Reclaimed Domestic Wastewater standard has two primary components:
 - A) Reclaimed water discharged to streams, wadis or water bodies.
 - B) Reclaimed water for reuse.
 - Reclaimed water must comply with the conditions stated in this standard for each of its planned end uses.
 - It is not permitted to dilute by mixing reclaimed water before being discharged from wastewater treatment plants with pure water intentionally to comply with the requirements set in this standard.

JS 893/2006 Reclaimed Domestic Wastewater Standard

- The 2006 Standard #JS 893 includes the following <u>categories of</u> <u>wastewater reuse standards</u> depending on the fate of domestic wastewater after it is released from the wastewater treatment facility:
 - 1. Recycling of water for irrigation of vegetables that are normally cooked,
 - Recycling of water used for tree crops, forestry and industrial processes,
 - 3. Discharges to receiving water such as wadis and catchments areas,
 - 4. Use in artificial recharge to aquifers not used for drinking purposes,
 - 5. Discharge to public parks or recreational areas,
 - 6. Use in irrigation of animal fodder.
 - 7. Use of reclaimed water for cut flowers.

JS 893/2006

Allowable limits for the reuse of treated wastewater in Jordan (MWI 2006)

الحدود المسموح بها لإعادة استخدام المياه العادمة المعالجة في الأردن (وزارة المياه والري 2006)

Parameter	Unit	Cooked Vegetables, Parks, Playgrounds and Sides of Roads within city limits	Fruit Trees, Sides of Roads outside city Iimits, and Iandscape	Field Crops, Industrial Crops and Forest Trees	Water discharge to wadies, streams and water bodies	Artificial recharge of groundwater aquifers
		Α	В	С		
Biological						
Oxygen Demand	mg/l	30	200	300	60	15
Chemical						
Oxygen Demand	mg/l	100	500	500	150	50
Dissolved						
Oxygen	mg/l	>2	-	-	>1	>2
Total						
suspended	mg/l	50	150	150	60	50
solids						
pН	unit	6-9	6-9	6-9	6-9	6-9
Turbidity	NTU	10	-	-	-	<2
Nitrate	mg/l	30	45	45	45	30
Total Nitrogen	mg/l	45	70	70	70	45
Eschericia	MPN or					
Coli	CFU*/100	100	1000	-	1000	<2.2
	ml					
Intestinal Helminthes Eggs	Egg/l	≤ 1	≤ 1	≤ 1	≤1	≤ 1

^{*}Most probable number or colony forming unit

Category A: Most sensitive use, Category B: Medium sensitive use, Category C: Less sensitive use

Industrial Wastewater Standard Specification No 202/2007.

• This standard defines the quality for final discharge of industrial wastewater to water bodies or irrigation.

• Standard 202 incorporated the standard JS 893/2006 for the reuse of industrial wastewater that included the

following categories:

- 1. Irrigation
- 2. Recycle inside the industrial establishment.
- 3. Discharge to Wadis, Rivers and Catchments Areas.

JS 202/2007 Water – Reclaimed Industrial Wastewater

Characteristic	Unit	Limit, according to crop irrigated		
		A *	B**	C***
BOD	mg/L	30	200	300
COD	mg/L	100	500	500
DO	mg/L	> 2		
TSS	mg/L	50	100	150
PH	pH units	6-9	6-9	6-9
Turbidity	turbidity units	10		
NO ₃	mg/L	30	45	45
Total nitrogen	mg/L	45	70	70
E. coli	MPN/100mL	100	1,000	
Helminth	eggs/L	1	1	1

^{*}Cooked vegetables, parks, playgrounds, urban landscaping

^{**} Fruit trees, highway

landscaping *** Field crops, industrial crops and timber trees

JS 202/2007: Water – Reclaimed Industrial Wastewater

Trace and Heavy Metals				
Constituent	Irrigation Limits			
Aluminum	5.0			
Arsenic	0.1			
Beryllium	0.1			
Copper	0.2			
Fluoride	1.5			
Iron	5.0			
Lithium (in acidic soils)	2.5 (0.075*)			
Manganese	0.2			
Molybdenum	0.01			
Nickel	0.2			
Lead	5.0			
Selenium	0.05			
Cadmium	0.01			
Zinc	5.0			
Total Chromium	0.1			
Mercury	0.002			
Vanadium	0.1			
Cobalt	0.05			
Boron	1.0			

Constituent	Irrigation Limits	
Phenol (mg/L)	0.002	
Detergents (mg/L)	100	
Total Dissolved Solids	2,000	
Total phosphate (mg/L)	30	
Chloride (mg/L)	400	
Sulfur (mg/L)	500	
Bicarbonate (mg/L)	400	
Sodium (mg/L)	230	
Magnesium (mg/L)	100	
Calcium (mg/L)	230	
Sodium Adsorption Ratio (mg/L)	9.0	

0.1

Cyanide

REFERENCES

- 1. Davis, M.L. Water and Wastewater Treatment Engineering, McGraw-Hill, 2010.
- 2. Davis, M.L. and Cornwell, D.A. Introduction to Environmental Engineering, McGraw-Hill, 5th Edition, 2013.
- 3. Peavy, H.S.; D.R. Rowe and G. Tchobanoglous. Environmental Engineering, McGraw-Hill, 1985.
- George Tchobanoglous and Frank Kreith. Handbook of Solid Waste Management, Second Edition, McGraw-Hill, 2nd Edtion, 2002.
- 5. Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Reuse, 4th Edition, McGraw-Hill, 2003.
- Tom D. Reynolds and Paul A. Richards, Unit Operations and Processes in Environmental Engineering, 2nd Edition, PWS Publishing, 1996.
- 7. Hammer, M.J. Water and Wastewater Technology, 7th edition, Prentice Hall, 2011.
- 8. Ministry of Environment Website: www.moenv.gov.jo