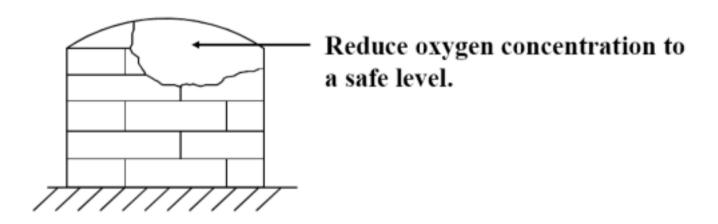
Prevention of Fires & Explosions

Dr. Motasem Saidan

m.saidan@gmail.com

Design Criteria

- 1. Prevent flammable mixtures.
- 2. Reduce ignition sources.


➤ Need to remember inherently safer design, that is, to reduce inventories, substitute with less dangerous materials, and reduce operating T and P.

Inerting and Purging

Inerting is the process of adding an inert gas to a combustible mixture to reduce the concentration of oxygen below the limiting oxygen concentration (LOC).

Purpose:

To reduce the oxygen or fuel concentration to below a target value using an inert gas. Can use nitrogen, carbon dioxide, others. Nitrogen is the most common.

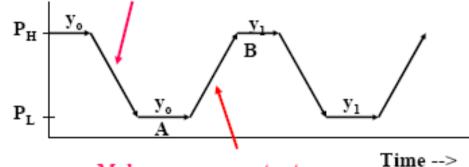
Inerting Procedures

- 1. Vacuum Purge evacuate and replace with inert.
- 2. Pressure Purge pressurize with inert, then relieve pressure.
- 3. Sweep Purge continuous flow of inert.
- 4. Siphon Purge fill with liquid, then drain and replace liquid with inert.
- 5. Combined: pressure and vacuum purge, others.

Vacuum Purge

Inerting – Vacuum Purging

Most common procedure for inerting reactors Steps


- 1. Draw a vacuum
- 2. Relieve the vacuum with an inert gas
- 3. Repeat Steps 1 and 2 until the desired oxidant level is

$$\begin{aligned} \mathbf{At} \ \mathbf{A:} \quad & n_{OXY} = y_o \bigg(\frac{P_L V}{R_g T} \bigg) \\ \mathbf{At} \ \mathbf{B:} \quad & n_{TOT} = \frac{P_H V}{R_g T} \end{aligned} \qquad y_1 = \frac{n_{OXY}}{n_{TOT}} = \frac{y_o \bigg(\frac{P_L V}{R_g T} \bigg)}{\frac{P_H V}{R_g T}} = y_o \bigg(\frac{P_L}{P_H} \bigg) \end{aligned}$$

At end of jth cycle: $y_j = y_o \left(\frac{P_L}{P_H} \right)^j$ Eq. (7-6)

Total nitrogen used: $\Delta n_{N_2} = f(P_H - P_L) \frac{V}{R_g T}$ Eq. (7-7)

Concentration is constant.

Moles oxygen constant

- 1. Pure nitrogen used.
- 2. Vessel is well mixed (not a bad assumption for gases).

5

3. Ideal gas law.

Example 7-1

Use a vacuum purging technique to reduce the oxygen concentration within a 1000-gal vessel to 1 ppm. Determine the number of purges required and the total nitrogen used. The temperature is 75°F, and the vessel is originally charged with air under ambient conditions. A vacuum pump is used that reaches 20 mm Hg absolute, and the vacuum is subsequently relieved with pure nitrogen until the pressure returns to 1 atm absolute.

Solution

The concentration of oxygen at the initial and final states is

$$y_0 = 0.21$$
 lb-mol O_2 /total mol,

$$y_t = 1 \text{ ppm} = 1 \times 10^{-6} \text{ lb-mol O}_2/\text{total mol}.$$

The required number of cycles is computed using Equation 7-6:

$$y_j = y_o \left(\frac{P_L}{P_H}\right)^j,$$

$$\ln\left(\frac{y_j}{y_o}\right) = j \ln\left(\frac{P_L}{P_H}\right),$$

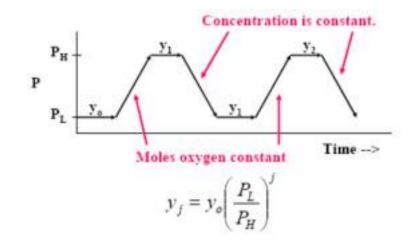
$$j = \frac{\ln(10^{-6}/0.21)}{\ln(20 \text{ mm Hg}/760 \text{ mm Hg})} = 3.37.$$

The total nitrogen used is determined from Equation 7-7. The low pressure P_L is

$$P_{L} = \left(\frac{20 \text{ mm Hg}}{760 \text{ mm Hg}}\right) (14.7 \text{ psia}) = 0.387 \text{ psia},$$

$$\Delta n_{N_{2}} = j(P_{H} - P_{L}) \frac{V}{R_{g}T}$$

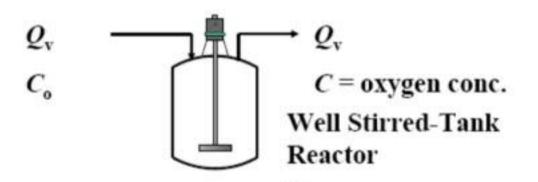
$$= 4(14.7 - 0.387) \text{ psia} \frac{(1000 \text{ gal})(1 \text{ ft}^{3}/7.48 \text{ gal})}{(10.73 \text{ psia ft}^{3}/\text{lb-mol}^{\circ}R)(75 + 460)^{\circ}R}$$


$$= 1.33 \text{ lb-mol} = 37.2 \text{ lb of nitrogen}.$$

M.Sai

Inerting – Pressure Purging

Most common procedure for inerting reactors Steps


- 1. Add inert gas under pressure
- 2. Vent down to atmospheric pressure
- 3. Repeat Steps 1 and 2 until the desired oxidant level is reached

✓ Faster than vacuum purge, but uses more nitrogen.

Sweep Purging

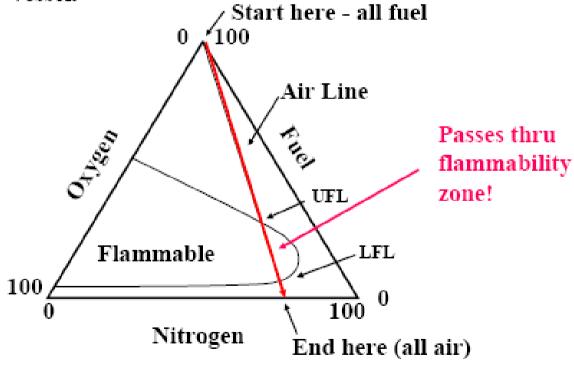
- 'In one end, and out the other'
- For equipment not rated for pressure, vacuum
- Requires large quantities of inert gas

Mass Balance on Oxygen:
$$V \frac{dC}{dt} = C_o Q_v - CQ_v$$

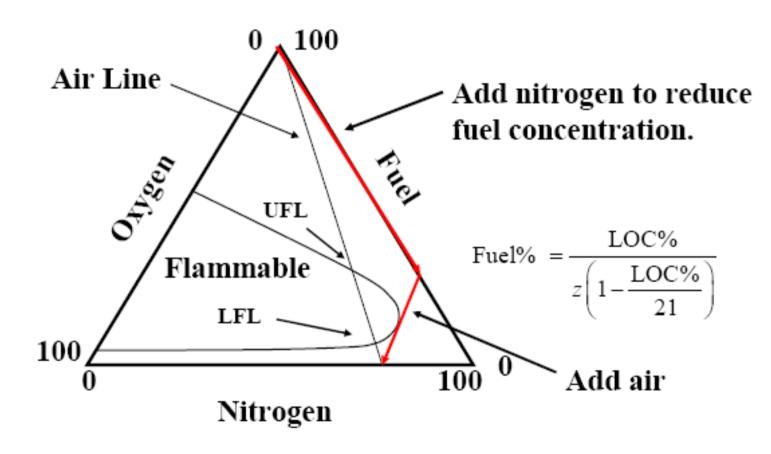
Mass Balance on Oxygen:
$$V \frac{dC}{dt} = C_o Q_v - C Q_v$$

Solution is: $Q_v t = V \ln \left[\frac{C_1 - C_o}{C_2 - C_o} \right] = \text{Total Nitrogen Volume}$

If
$$C_0 = 0$$
: $Q_v t = V \ln \left[\frac{C_1}{C_2} \right]$ Uses lots if inert!!

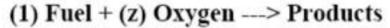

Assumes well-stirred

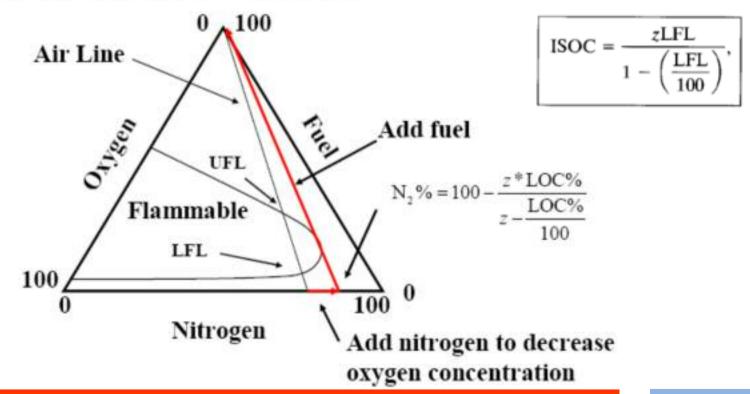
Using the Flammability Diagram


Taking a Vessel Out of Service

Out-Of-Service Fuel Concentrations (OSFCs)

Depressurize vessel to atmospheric, then blow air into vessel.




(1) Fuel + (z) Oxygen ---> Products

Placing a vessel into service

The in-service oxygen concentration (ISOC) represents the maximum oxygen concentration that just avoids the flammability zone, with a small margin of safety.

M.Saidan

11

HW

7.5

7.7