# **Process Safety Engineering:**

### Toxic Release and Dispersion Models

Dr. Motasem Saidan

m.saidan@gmail.com

#### Practical and Potential Releases

During an accident process equipment can release toxic materials very quickly

- Explosive rupture of a process vessel due to excess pressure
- Rupture of a pipeline with material under high pressure
- Rupture of tank with material above boiling point
- Rupture of a train or truck following an accident.

#### ✓ Identify the Design basis

What process situations can lead to a release, and which are the worst situations

#### ✓ Source Model

What are the process conditions and hence what will be the state of the release and rate of release

#### ✓ Dispersion Model

Using prevailing conditions (or worst case) determine how far the materials could spread

# Dispersion Models

#### What?

- Describe how vapors are transported downwind of a release.
   Valid between 100 m to 10 km.
- Below 100 m use ventilation equations Chapt. 3.
- Above 10 km: almost unpredictable.

#### Why?

To determine the consequences.

#### **Results:**

- $\checkmark$  Downwind concentrations (x, y, z)
- ✓ Area affected
- ✓ Downwind evacuation distances

### Dispersion



#### DOWNWIND DILUTION BY MIXING WITH FRESH AIR

#### ATMOSPHERIC DISPERSION

- Wind speed
- Atmospheric stability: vertical temp. profile
- Roughness ground: buildings, structures, trees, water
- Height of release above ground level
- Momentum and buoyancy: effective height

- Plume models were originally developed for dispersion from a smoke stack.
- In an emergency if there is a leak in a large tank then a plume can develop.



- Puff models are used when you have essentially an instantaneous release and the cloud is swept downwind.
- No significant plume develops



# Atmospheric stability

#### MAINLY DETERMINED BY VERTICAL TEMPERATURE GRADIENT

- Unstable atmospheric conditions: Sun heats ground faster than heat can be removed so that air temperature near the ground is higher than the air temperature at higher elevations.
- Neutral: The air above the ground warms and the wind speed increases, reducing the effect of solar input.
- Stable: The sun cannot heat the ground as fast as the ground cools temperature at ground is lower.



# Atmospheric stability

#### STABILITY CLASSES A - F

- A Extremely unstable
- B Moderately unstable
- C Slightly unstable
- D Neutral
- E Slightly stable
- F Moderately stable

Table 5-1

Table 5-1 Atmospheric Stability Classes for Use with the Pasquill-Gifford Dispersion Model 1.2

|                                |                                 |          |        | Nighttime conditions |            |
|--------------------------------|---------------------------------|----------|--------|----------------------|------------|
| Surface<br>wind speed<br>(m/s) | Daytime insolation <sup>3</sup> |          |        | Thin overcast        | ≤3/8       |
|                                | Strong                          | Moderate | Slight | low cloud            | cloudiness |
| <2                             | A                               | A-B      | В      | F5                   | F5         |
| 2-3                            | A-B                             | В        | C      | E                    | F          |
| 3-4                            | В                               | B-C      | C      | D*                   | E          |
| 4-6                            | С                               | C-D      | D۴     | D6                   | Do         |
| >6                             | С                               | D6       | D6     | D 6                  | $D_6$      |

### Ground conditions

- Ground conditions affect the mechanical mixing at the surface and the wind profile with height.
- Trees and buildings increase mixing, whereas lakes and open areas decrease it











# Release Height Effect

- The release height significantly affects ground-level concentrations.
- As the release height increases, ground-level concentrations are reduced because the plume must disperse a greater distance vertically.



# Release Momentum and Buoyancy



**Jet Release** 

MW>29 --> Most hydrocarbons



Heavier than air. Gas becomes neutral downwind as it mixes with air.

# Gaussian form of plume equation

$$\langle C \rangle (x, y, z) = \frac{Q_m}{2\pi\sigma_y \sigma_z u} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \times \left\{ \exp\left[-\frac{(z - H_r)^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(z + H_r)^2}{2\sigma_z^2}\right] \right\}$$

#### Top View of plume

#### --> Wind

 $\langle C \rangle(x, y, z) = \text{Ave. conc. (20-30 min ave)}$ 

 $Q_m$  = Release rate (mass/time)

 $\sigma_{\rm v}$ ,  $\sigma_{\rm z}$  = Dispersion coefficients = f(stability class, downwind distance)

u = Wind speed (length/time)

y, z =Coordinates (length)

 $H_r$  = Release height (length)



Dispersion coefficients for plume model for rural releases.



Dispersion coefficients for plume model for urban releases.

**Table 5-2** Recommended Equations for Pasquill-Gifford Dispersion Coefficients for Plume Dispersion <sup>1,2</sup> (the downwind distance *x* has units of meters)

| Pasquill-Gifford stability class | $\sigma_y$ (m)            | $\sigma_z$ (m)            |
|----------------------------------|---------------------------|---------------------------|
| Rural conditions                 |                           |                           |
| A                                | $0.22x(1+0.0001x)^{-1/2}$ | 0.20x                     |
| В                                | $0.16x(1+0.0001x)^{-1/2}$ | 0.12x                     |
| C                                | $0.11x(1+0.0001x)^{-1/2}$ | $0.08x(1+0.0002x)^{-1/2}$ |
| D                                | $0.08x(1+0.0001x)^{-1/2}$ | $0.06x(1+0.0015x)^{-1/2}$ |
| Е                                | $0.06x(1+0.0001x)^{-1/2}$ | $0.03x(1+0.0003x)^{-1}$   |
| F                                | $0.04x(1+0.0001x)^{-1/2}$ | $0.016x(1+0.0003x)^{-1}$  |
| Urban conditions                 |                           |                           |
| A-B                              | $0.32x(1+0.0004x)^{-1/2}$ | $0.24x(1+0.0001x)^{+1/2}$ |
| D                                | $0.22x(1+0.0004x)^{-1/2}$ | 0.20x                     |
| D                                | $0.16x(1+0.0004x)^{-1/2}$ | $0.14x(1+0.0003x)^{-1/2}$ |
| E-F                              | $0.11x(1+0.0004x)^{-1/2}$ | $0.08x(1+0.0015x)^{-1/2}$ |

A-F are defined in Table 5-1.

**Table 5-1** Atmospheric Stability Classes for Use with the Pasquill-Gifford Dispersion Model 1,2

|                                |                                 |              |                  | Nighttime conditions <sup>4</sup> |            |
|--------------------------------|---------------------------------|--------------|------------------|-----------------------------------|------------|
| Surface<br>wind speed<br>(m/s) | Daytime insolation <sup>3</sup> |              |                  | Thin overcast or >4/8             | ≤3/8       |
|                                | Strong                          | Moderate     | Slight           | low cloud                         | cloudiness |
| <2                             | A                               | A-B          | В                | F <sup>5</sup>                    | F5         |
| 2-3                            | A-B                             | В            | C                | E                                 | F          |
| 3-4                            | В                               | B-C          | С                | $D_e$                             | E          |
| 4-6                            | C                               | C-D          | $\mathbf{D}^{6}$ | D6                                | D 6        |
| >6                             | C                               | $D_{\theta}$ | $D^6$            | $D_{e}$                           | D6         |

#### Stability classes:

- A, extremely unstable
- B, moderately unstable
- C, slightly stable
- D, neutrally stable
- E, slightly stable
- F, moderately stable

<sup>&</sup>lt;sup>3</sup>Strong insolation corresponds to a sunny midday in midsummer in England. Slight insolation to similar conditions in midwinter.

<sup>&</sup>lt;sup>4</sup>Night refers to the period 1 hour before sunset and 1 hour after dawn.



Dispersion coefficients for Pasquill-Gifford puff model.

**Table 5-3** Recommended Equations for Pasquill-Gifford Dispersion Coefficients for Puff Dispersion <sup>1,2</sup> (the downwind distance *x* has units of meters)

| Pasquill-Gifford stability class | $\sigma_y$ (m) or $\sigma_x$ (m) | $\sigma_z$ (m) |
|----------------------------------|----------------------------------|----------------|
| A                                | $0.18x^{0.92}$                   | $0.60x^{0.75}$ |
| В                                | $0.14x^{0.92}$                   | $0.53x^{0.73}$ |
| C                                | $0.10x^{0.92}$                   | $0.34x^{0.71}$ |
| D                                | $0.06x^{0.92}$                   | $0.15x^{0.70}$ |
| E                                | $0.04x^{0.92}$                   | $0.10x^{0.65}$ |
| F                                | $0.02x^{0.89}$                   | $0.05x^{0.61}$ |

A-F are defined in Table 5-1.

<sup>&</sup>lt;sup>1</sup>R. F. Griffiths, "Errors in the Use of the Briggs Parameterization for Atmospheric Dispersion Coefficients," *Atmospheric Environment* (1994), 28(17): 2861–2865.

<sup>&</sup>lt;sup>2</sup>G. A. Briggs, *Diffusion Estimation for Small Emissions*, Report ATDL-106 (Washington, DC: Air Resources, Atmospheric Turbulence, and Diffusion Laboratory, Environmental Research Laboratories, 1974).

# Simplified Cases - Plume

The ground-level concentration is found by setting z = 0:

$$\langle C \rangle(x, y, 0) = \frac{Q_{\rm m}}{\pi \sigma_{y} \sigma_{z} u} \exp \left[ -\frac{1}{2} \left( \frac{y}{\sigma_{y}} \right)^{2} - \frac{1}{2} \left( \frac{H_{\rm r}}{\sigma_{z}} \right)^{2} \right].$$

**Ground Centerline Concentration:** 



$$< C > (x,0,0) = \frac{Q_m}{\pi \sigma_y \sigma_z u} \exp \left[ -\frac{1}{2} \left( \frac{H_r}{\sigma_z} \right)^2 \right]$$

Ground, centerline, release height  $H_r = 0$ 

$$< C > (x,0,0) = \frac{Q_m}{\pi \sigma_y \sigma_z u}$$

Coordinate system  $H_r = \text{Release Height} \qquad \begin{array}{c} Z \\ Y \\ \downarrow \\ Origin \ \text{at ground level:} \\ (x,y,z) = (0,0,0) \end{array}$ 

X is implicit in the dispersion coefficients!

### Maximum Concentrations - Plume

- Always occurs at release point.
- The distance downwind at which the maximum ground-level concentration occurs:  $\left(\sigma_z\right)_{x,\text{max}} = \frac{H_r}{\sqrt{2}}$
- For releases above ground, max. concentration on ground occurs downwind:  $\langle C \rangle_{\text{max}} = \frac{2Q_m}{e\pi u H_z^2} \left( \frac{\sigma_z}{\sigma_z} \right)$

$$\left(\sigma_{z}\right)_{x,\text{max}} = \frac{H_{r}}{\sqrt{2}}$$
 $< C>_{\text{max}} = \frac{2Q_{m}}{e\pi u H_{r}^{2}} \left(\frac{\sigma_{z}}{\sigma_{y}}\right)$ 

- 1. Use left equation to determine  $\sigma_z$
- 2. Use Figures 5-10 or 5-11 to get x.
- 3. Determine  $\sigma_y$  from Figures 5-10 or 5-11.
- 4. Calculate <*C*> from right equation.

### Example 1:

10 kg/s of H<sub>2</sub>S is released 100 m off of ground. Estimate the concentration 1 km downwind on ground? It is a clear, sunny day, 1 PM, wind speed = 3.5 m/s. Assume rural conditions.

Plume, due to continuous nature of release!

From Table 5-1, Stability Class B.

From Figure 5-10,  $\sigma_v = 130 \text{ m}$ 

From Figure 5-10,  $\sigma_z = 120 \text{ m}$ 

Use Equation 5-51 for a plume.

# Example: Apply Equation 5-51

#### Applies to ground concentration directly downwind of release:

$$\langle C \rangle (x, 0, 0) = \frac{Q_m}{\pi \sigma_y \sigma_z u} \times \exp \left[ -\frac{1}{2} \left( \frac{H_r}{\sigma_z} \right)^2 \right]$$

$$\langle C \rangle (x, 0, 0) = \frac{10.0 \text{ kg/s}}{(3.14)(130 \text{ m})(120 \text{ m})(3.5 \text{ m/s})} \times \exp \left[ -\frac{1}{2} \left( \frac{100 \text{ m}}{120 \text{ m}} \right)^2 \right]$$

$$\langle C \rangle (x, 0, 0) = 41.2 \times 10^{-6} \text{ kg/m}^3 = 41.2 \text{ mg/m}^3$$

Use Equation 2-7 to get 29.7 ppm. TLV-TWA is 10 ppm.

# Example: Where is max. concentration?

Use Equation 5-53:

$$(\sigma_z)_{x,\text{max}} = \frac{H_r}{\sqrt{2}} = \frac{100 \text{ m}}{1.414} = 70.7 \text{ m}$$

Use equation in Table 5-3 to determine downwind distance:

$$\sigma_Z = 0.12x$$
 $70.7 \text{ m} = 0.12x$ 
 $x = 590 \text{ m}$ 

At this location, from Figure 5-10:

$$\sigma_v = 92 \text{ m}$$

#### Use Equation 5-52 to calculate max. concentration:

$$< C>_{\text{max}} = \frac{2Q_m}{e\pi u H_r^2} \left(\frac{\sigma_z}{\sigma_v}\right) = \frac{(2)(100 \text{ kg/s})}{(2.718)(3.14)(3.5 \text{ m/s})(100 \text{ m})^2} \left(\frac{70.7 \text{ m}}{92 \text{ m}}\right)$$

$$< C >_{\text{max}} = 5.14 \times 10^{-4} \text{ kg/m}^3 = 514 \text{ mg/m}^3 = 370 \text{ ppm}$$

### Example: What is max. discharge to result in 10 ppm?

Maximum will occur at same location: 
$$(\sigma_z)_{x,\text{max}} = \frac{H_r}{\sqrt{2}}$$

10 ppm =  $13.9 \text{ mg/m}^3$  (Equation 2-7)

**Substitute into Equation 5-52:** 

$$< C>_{\max} = \frac{2Q_m}{e\pi u H_r^2} \left( \frac{\sigma_z}{\sigma_y} \right)$$

13.9 × 10<sup>-6</sup> kg/m<sup>3</sup> = 
$$\frac{2Q_m}{(2.71)(3.14)(3.5 \text{ m/s})(100 \text{ m})^2} \left(\frac{70.71 \text{ m}}{92 \text{ m}}\right)$$

$$Q_m = 2.7 \text{ kg/s}$$
 Not very much!

### Example 2:

10 kg of H<sub>2</sub>S is released instantly on the ground. What is concentration at fenceline 100 m away? Same conditions as before.

From Table 5-1, stability class is B.

At x = 0.1 km, from Figure 5-12: 
$$\sigma_y = 10 \text{ m}$$
  $\sigma_z = 16 \text{ m}$ 

Use Equation 5-41 for a ground release, centerline conc.:

$$< C > (0, 0, 0) = \frac{Q_m^*}{\sqrt{2\pi^{3/2}\sigma_x\sigma_y\sigma_z}}$$

Assume 
$$\sigma_x = \sigma_y$$

$$Q_m^* = 10 \text{ kg} = 10 \times 10^6 \text{ mg}$$

$$<$$
C $> = 79.4 mg/m3 = 571 ppm$ 

#### How long does it take for puff to reach fenceline?

$$x = ut$$

$$t = \frac{x}{u} = \frac{100 \text{ m}}{3.5 \text{ m/s}} = 28.6 \text{ s after release.}$$

Very little time for an emergency response!

28

What size release will result in 10 ppm at fenceline?

Same procedure as for plume. Answer is 0.175 kg = 175 gm.

Not very much! Better to contain chemicals than to mitigate after a release!

# ! Exercises & HW

Examples

5.1

5.2

HW:

5.4

5.9

5.12