

Chemical Reaction Engineering

Multiple Reactions

Dr.-Eng. Zayed Al-Hamamre

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Content

- > Types of Reactions
- > Selectivity
- **➤** Reaction Yield
- **▶** Parallel Reactions
- > Series Reactions
- **➤ Net Rates of Reaction**
- **➤ Complex Reactions in PFR and CSTR**

Types of Reactions

Parallel reactions

Are reactions where the reactant is consumed by **two** different reaction pathways to form different products

2CO₂ + 2H₂O carbon dioxide and water.

ethylene ethylene oxide

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Types of Reactions

Series reactions

Are reactions where the reactant forms an intermediate product, which reacts further to form another product

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

$$CH_2$$
 CH_2 + NH_3 \longrightarrow $HOCH_2CH_2NH_2$ \xrightarrow{EO} $(HOCH_2CH_2)_2NH$ \xrightarrow{EO} $(HOCH_2CH_2)_3N$

ethylene oxide ammonia mono-, di-, and triethanolamine

Types of Reactions

Complex reactions

Are multiple reactions that involve a combination of both series and parallel reaction

$$A+B \longrightarrow C+D$$

 $A+C \longrightarrow E$

$$C_2H_5OH \longrightarrow C_2H_4+H_2O$$

 $C_2H_5OH \longrightarrow CH_3CHO+H_2$
 $C_2H_4+CH_3CHO \longrightarrow C_4H_6+H_2O$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Types of Reactions

Independent reactions

Are reactions that occur at the same time but neither products nor reactants react with themselves or one another

$$\begin{array}{ccc} A & \longrightarrow & B+C \\ D & \longrightarrow & E+F \end{array}$$

crude oil
$$C_{15}H_{32} \longrightarrow C_{12}C_{26}+C_3H_6$$

 $C_8H_{18} \longrightarrow C_6H_{14}+C_2H_4$

Types of Reactions

Desired and Undesired Reactions

> Of particular interest are reactants that are consumed in the formation of a *desired product*, D, and the formation of an *undesired product*, U, in a competing or side reaction.

In the parallel reaction sequence

$$\begin{array}{c} A \xrightarrow{k_D} D \\ A \xrightarrow{k_U} U \end{array}$$

Or in the series sequence

$$A \xrightarrow{k_D} D \xrightarrow{k_U} U$$

➤ In such reactions, the target is to minimize the formation of U and maximize *the* formation of D.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Selectivity

- ➤ Tells us how one product is favored over another when we have multiple reactions.
- ➤ The instantaneous selectivity of D with respect to U

$$S_{\text{D/U}} = \frac{r_{\text{D}}}{r_{\text{U}}} = \frac{\text{rate of formation of D}}{\text{rate of formation of U}}$$

- $ightharpoonup S_{D/U}$ is an important parameter for the design and selection of our reaction system to maximize the selectivity.
- ➤ In terms of the flow rates leaving the reactor, overall selectivity is

Efficiency of a reactor system.

$$\tilde{S}_{D/U} = \frac{F_D}{F_U} = \frac{\text{Exit molar flow rate of desired product}}{\text{Exit molar flow rate of undesired product}}$$

Selectivity

➤ For a batch reactor, the overall selectivity is given in terms of moles of D and U at the end of the reaction time

$$\tilde{S}_{\text{D/U}} = \frac{N_{\text{D}}}{N_{\text{U}}}$$

Example

Develop a relationship between $S_{D/U}$ and $\tilde{S}_{D/U}$ for a CSTR.

$$\begin{array}{c}
A \xrightarrow{k_{D}} D \\
A \xrightarrow{k_{U}} U
\end{array}$$

$$S_{\rm D/U} = \frac{r_{\rm D}}{r_{\rm U}}$$

$$\tilde{S}_{DU} = \frac{F_D}{F_U}$$

A mole balance on D for a CSTR yields

$$F_{\rm D} = r_{\rm D} V$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example cont.

a mole balance on U yields $F_U = r_U V$

$$\tilde{S}_{D|U} = \frac{F_{D}}{F_{U}} = \frac{r_{D}V}{r_{U}V} = \frac{r_{D}}{r_{U}} = S_{D|U}$$

for a CSTR the overall and instantaneous selectivities are equal:

Reaction Yield

➤ The yield at a point can be defined as the ratio of the reaction rate of a given product to the reaction rate of the key reactant

$$Y_{\rm D} = \frac{r_{\rm D}}{-r_{\rm A}}$$

> The overall yield, is defined as the ratio of moles of product formed at the end of the reaction to the number of moles of the key reactant

For a batch system
$$\tilde{Y}_D = \frac{N_D}{N_{A0} - N_A}$$

For a flow system
$$\tilde{Y}_D = \frac{F_D}{F_{A0} - F_A}$$

As with selectivity, the instantaneous yield and the overall yield are identical for a CSTR

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Parallel Reactions

In such system, targets are

- ➤ Minimizing the undesired product, U, through the selection of reactor type and conditions.
- > Development of efficient reactor schemes

For the competing reactions

$$A \xrightarrow{k_D} D$$
 (desired) $r_D = k_D C_A^{\alpha_1}$
 $A \xrightarrow{k_U} U$ (undesired) $r_U = k_U C_A^{\alpha_2}$

where α_1 and α_2 are positive reaction orders.

The rate of disappearance of **A** for this reaction sequence is the sum of the rates of formation of U and D: $-r_{A} = r_{D} + r_{U}$

Parallel Reactions

$$-r_{\mathbf{A}} = k_{\mathbf{D}} C_{\mathbf{A}}^{\alpha_1} + k_{\mathbf{U}} C_{\mathbf{A}}^{\alpha_2}$$

$$S_{\rm DU} = \frac{r_{\rm D}}{r_{\rm U}} = \frac{k_{\rm D}}{k_{\rm U}} C^{\alpha_1 - \alpha_2},$$

Maximizing the Desired Product for One Reactant

Case 1: $\alpha_1 > \alpha_2$

$$\alpha_1 - \alpha_2 = a > 0$$

$$S_{\rm D/U} = \frac{r_{\rm D}}{r_{\rm U}} = \frac{k_{\rm D}}{k_{\rm U}} \ C_{\rm A}^a$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Parallel Reactions

- To make this ratio as large as possible. we want to *carry* out the reaction in a manner that will keep the concentration of reactant A as high as possible, during the reaction.
 - o If the reaction is carried out in the gas phase run it without inserts and at high pressures.
 - \circ If the reaction is in the liquid phase, the use of diluents should be kept to a minimum
 - A batch or plug-flow reactor should be used in this case because, in these two reactors, the concentration of A starts at a high value and drops progressively during the course of the reaction.
 - o In a CSTR, the concentration of reactant within the reactor is always at its lowest value

Case 2:
$$\alpha_2 > \alpha_1$$

$$A \xrightarrow{k_D} D$$
 (desired) $r_D = k_D C_A^{\alpha_1}$

$$A \xrightarrow{k_U} U$$
 (undesired) $r_U = k_U C_A^{\alpha_2}$

Parallel Reactions

Let $b = \alpha_2 - \alpha_1$, where b is a positive number.

$$S_{\text{D/U}} = \frac{r_{\text{D}}}{r_{\text{U}}} = \frac{k_{\text{D}}C_{\text{A}}^{\alpha_1}}{k_{\text{U}}C_{\text{A}}^{\alpha_2}} = \frac{k_{\text{D}}}{k_{\text{U}}C_{\text{A}}^{\alpha_2-\alpha_1}} = \frac{k_{\text{D}}}{k_{\text{U}}C_{\text{A}}^{b}}$$

For the ratio r_D/r_U to be high, the concentration of A should be as low as possible.

- o Diluting the feed with inserts and running the reactor at low concentration of A
- o A CSTR should *be* used because the concentrations of reactants are maintained at a low level
- o A recycle reactor in which the product stream acts as a diluent could be used to maintain the entering concentrations of A at a low value.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Parallel Reactions

Case 3: $E_D > E_U$

- o In this case the specific reaction rate of the desired reaction k_D (and therefore the overall rate r_D) increases more rapidly with increasing temperature than does the specific rate of the undesired reaction k_U .
- \circ Consequently, the reaction system should be operated at the highest possible temperature to maximize $S_{\rm DU}$

Case 4:
$$E_U > E_D$$

 \triangleright In this case the reaction should be carried out at a low temperature to maximize S_{DU} but not so low that the desired reaction does not proceed to any significant extent

Example

Reactant A decomposes by three simultaneous reactions to form three productions one that is desired, B, and two that are undesired, X and Y. These gas-phareactions, along with the appropriate rate laws, are called the Trambouze reactions [AIChE J. 5, 384 (1959)].

1) A
$$\xrightarrow{k_1}$$
 X $-r_{1A} = r_X = k_1 = 0.0001 \frac{\text{mol}}{\text{dm}^3 \cdot \text{s}}$

2) A
$$\xrightarrow{k_1}$$
 B $-r_{2A} = r_B = k_2 C_A = (0.0015 \text{ s}^{-1}) C_A$

3) A
$$\xrightarrow{k_3}$$
 Y $-r_{3A} = r_Y = k_3 C_A^2 = 0.008 \frac{\text{dm}^3}{\text{mol} \cdot \text{s}} C_A^2$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example Cont.

The specific reaction rates are given at 300 K and the activation energies for reaction (1), (2), and (3) are $E_1 = 10,000$ kcal/mole, $E_2 = 15,000$ kcal/mole, and $E_3 = 20,00$ kcal/mole. How and under what conditions (e.g., reactor type(s), temperature, concurrations) should the reaction be carried out to maximize the selectivity of B for entering concentration of A of 0.4M and a volumetic flow rate of 2.0 dm³/s.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Annhan 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Reactor Selection and Operating Conditions

> Considering the two simultaneous reactions

$$A+B \xrightarrow{k_1} D$$

$$r_{\rm D} = k_1 C_{\rm A}^{\alpha_1} C_{\rm B}^{\beta_1}$$

$$A+B \xrightarrow{k_2} U$$

$$r_{\rm U} = k_2 C_{\rm A}^{\alpha_2} C_{\rm B}^{\beta_2}$$

The rate selectivity parameter

$$S_{\text{D/U}} = \frac{r_{\text{D}}}{r_{\text{U}}} = \frac{k_1}{k_2} C_{\text{A}}^{\alpha_1 - \alpha_2} C_{\text{B}}^{\beta_1 - \beta_2}$$

> Reactor Selection Criteria are: Selectivity, Yield, Temperature, control, Safety and Cost

Reactor Selection and Operating Conditions

Case 1: $\alpha_1 > \alpha_2$, $\beta_1 > \beta_2$. Let $a = \alpha_1 - \alpha_2$ and $b = \beta_1 - \beta_2$.

where a and b are positive constants

$$S_{\text{D/U}} = \frac{r_{\text{D}}}{r_{\text{U}}} = \frac{k_1}{k_2} C_{\text{A}}^a C_{\text{B}}^b$$

To maximize the ratio r_D/r_U , maintain the concentrations of both A and B as high as possible.

A batch reactor

High pressures (if gas phase), and reduce inerts

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Reactor Selection and Operating Conditions

Case II: $\alpha_1 > \alpha_2$, $\beta_1 < \beta_2$. Let $a = \alpha_1 - \alpha_2$ and $b = \beta_2 - \beta_1$.

where a and b are positive constants

$$S_{\rm D/U} = \frac{r_{\rm D}}{r_{\rm U}} = \frac{k_1 C_{\rm A}^a}{k_2 C_{\rm B}^b}$$

Make the concentration of A high and the concentration of B low, thus use

i. A semi-batch reactor in which B is fed slowly into a large amount of A

(d) Semibatch

Reactor Selection and Operating Conditions

ii. A membrane reactor or a tubular reactor with side streams of B continuously fed to the

iii. A series of small CSTRs with A fed only to the first reactor and small amounts of *B* fed to each reactor. In this way B is mostly consumed before the CSTR exit stream flows into the next reactor

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Reactor Selection and Operating Conditions

Case III: $\alpha_1 < \alpha_2$, $\beta_1 < \beta_2$. Let $a = \alpha_2 - \alpha_1$ and $b = \beta_2 - \beta_1$,

where a and b are positive constants

$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_1}{k_2 C_A^a C_B^b}$$

To make $S_{\rm D/U}$ as large as possible, the reaction should be carried out at low centrations of A and of B. Use

i. A CSTR

ii. A tubular reactor in which there is a large recycle ratio

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Reactor Selection and Operating Conditions

iii. A feed diluted with inserts

iv. Low pressure (if gas phase)

Case IV: $\alpha_1 < \alpha_2$, $\beta_1 > \beta_2$. Let $a = \alpha_2 - \alpha_1$ and $b = \beta_1 - \beta_2$,

$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_1 C_B^b}{k_2 C_A^a}$$

To maximize $S_{\mathrm{D/U}}$, run the reaction at high concentrations of B and low conce

trations of A. Use

i. A semi-batch reactor with A slowly fed to a large amount of B

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Reactor Selection and Operating Conditions

ii. A membrane reactor or a tubular reactor with side streams of A

iii. A series of small CSTRs with fresh A fed to each reactor

Series Reactions

➤ For series of consecutive reactions, the most important variable is time: space-time: for a flow reactor and real-time for a batch reactor

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

Assuming species B is the desired product

- ➤ If the first reaction is slow and the second reaction is Fast, it will be extremely difficult to produce species B.
- ➤ If the first reaction (formation of B) is fast and the reaction to form C is slow, a large yield of B can be achieved.
- ➤ If the reaction is allowed to proceed for a long time in a batch reactor, or if the tubular reactor is too long, the desired product B will be converted to the undesired product C.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example

The oxidation of ethanol to form acetaldehyde is carried out on a catalyst of 4 wt % Cu-2 wt % Cr on Al_2O_3 . Unfortunately, acetaldehyde is also oxidized on this catalyst to form carbon dioxide. The reaction is carried out in a threefold excess of oxygen and in dilute concentrations (ca. 0.1% ethanol, 1% O_2 , and 98.9% N_2). Consequently, the volume change with the reaction can be neglected. Determine the concentration of acetaldehyde as a function of space-time,

$$\text{CH}_3\text{CH}_2\text{OH}(g) \xrightarrow{+\frac{1}{2}\text{O}_2} \text{CH}_3\text{CHO} \xrightarrow{+\frac{5}{2}\text{O}_2} \text{2CO}_2$$

The reactions are irreversible and first order in ethanol and acetaldehyde, respectively.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Net Rates of Reaction

> To sum up the rates of formation for each reaction in order to obtain the net rate of formation

Reaction 1:
$$A+B \xrightarrow{k_{1A}} 3C+D$$

Reaction 2:
$$A+2C \xrightarrow{k_{2A}} 3E$$

Reaction 3:
$$2B+3E \xrightarrow{k_{1B}} 4F$$

:

Reaction
$$q: E+2F \xrightarrow{k_{yE}} G$$

$$r_{A} = r_{1A} + r_{2A} + r_{3A} + \dots + r_{qA} = \sum_{i=1}^{q} r_{iA}$$

$$r_{\rm B} = r_{1\rm B} + r_{2\rm B} + r_{3\rm B} + \dots + r_{q\rm B} = \sum_{i=1}^{q} r_{i\rm B}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Net Rates of Reaction

In general the net rate of reaction for species j is the sum of all rates of the reactions in which species j appears.

For q reactions taking place,

$$r_{j} = \sum_{i=1}^{q} r_{ij}$$

$$r_{ij} = k_{ij} f_{i}(C_{A}, C_{B} \cdots C_{j} \cdots C_{n})$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Net Rates of Reaction

$$A + B \xrightarrow{k_{1A}} 3C + D \qquad -r_{1A} = k_{1A}C_AC_B$$

$$-r_{1A} = k_{1A}C_AC_B$$

$$A + 2C \xrightarrow{k_{2A}} 3E \qquad -r_{2A} = k_{2A}C_AC_C^2$$

$$-r_{2A} = k_{2A}C_AC_C^2$$

or in terms of the rates of formation of A

$$r_{1A} = -k_{1A}C_AC_B$$

$$r_{2A} = -k_{2A}C_AC_C^2$$

the net rate of formation of A

$$r_A = r_{1A} + r_{2A} = -k_{1A}C_AC_B - k_{2A}C_AC_C^2$$

Stoichiometry: Relative Rates of Reaction

> For the reaction

$$aA+bB \longrightarrow cC+dD$$

$$\frac{-r_{A}}{a} = \frac{-r_{B}}{b} = \frac{r_{C}}{c} = \frac{r_{D}}{d}$$

➤ In working with multiple reactions, it is usually more advantageous to relate the rates *of* formation of each species to one another

for reaction i

$$\frac{r_{iA}}{-a_i} = \frac{r_{iB}}{-b_i} = \frac{r_{iC}}{c_i} = \frac{r_{iD}}{d_i}$$

Reaction (1): A + B $\xrightarrow{k_{1A}}$ 3C + D Given: $r_{1A} = -k_{1A}C_{A}C_{B}$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Stoichiometry: Relative Rates of Reaction

$$\frac{r_{1A}}{-1} = \frac{r_{1B}}{-1} = \frac{r_{1C}}{3} = \frac{r_{1D}}{1}$$

$$r_{1B} = r_{1A} = -k_{1A}C_{A}C_{B}$$

$$r_{1C} = 3(-r_{1A}) = 3k_{1A}C_AC_B$$

$$r_{1D} = -r_{1A} = k_{1A}C_{A}C_{B}$$

for Reaction 2.

Reaction (2):
$$A + 2C \xrightarrow{k_{2A}} 3E$$
 Given: $r_{2A} = -k_{2A}C_AC_C^2$

$$\frac{r_{2A}}{-1} = \frac{r_{2C}}{-2} = \frac{r_{2E}}{3}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Stoichiometry: Relative Rates of Reaction

the rate of formation of species E in reaction 2, r_{2E} , is

$$r_{2E} = \frac{3}{-1} (r_{2A}) = -3 (-k_{2A}C_AC_C^2) = 3k_{2A}C_AC_C^2$$

and the rate of formation of C in reaction 2 is

$$r_{2C} = \frac{-2}{-1} r_{2A} = -2k_{2A}C_AC_C^2$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Stoichiometry: Net Rates of Reaction

> For the reactions

$$(1) A + B \xrightarrow{k_{1A}} 3C + D$$

(2)
$$A + 2C \xrightarrow{k_{2A}} 3E$$

the net rates of reaction for species A, B, C, D, and E are

$$r_{A} = r_{1A} + r_{2A} = -k_{1A}C_{A}C_{B} - k_{2A}C_{A}C_{C}^{2}$$

$$r_{B} = r_{1B} = -k_{1A}C_{A}C_{B}$$

$$r_{C} = r_{1C} + r_{2C} = 3k_{1A}C_{A}C_{B} - 2k_{2A}C_{A}C_{C}^{2}$$

$$r_{D} = r_{1D} = k_{1A}C_{A}C_{B}$$

$$r_{E} = r_{2E} = 3k_{2A}C_{A}C_{C}^{2}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example

Reaction 1:
$$4NH_3 + 6NO \longrightarrow 5N_2 + 6H_2O -r_{1NO} = k_{1NO}C_{NH_3}C_{NO}^{1.5}$$

Reaction 2: 2NO
$$\longrightarrow$$
 N₂+O₂ $r_{2N_2} = k_{2N_2} C_{NO}^2$

Reaction 3:
$$N_2 + 2O_2 \longrightarrow 2NO_2 \qquad -r_{3O_2} = k_{3O_2}C_{N_2}C_{O_2}^2$$

Write the rate law for each species in each reaction and then write the net rates formation of NO, O_2 , and N_2 .

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Tel. +962 6 535 5000 | 22888

Stoichiometry: Concentrations

$$C_j = \frac{F_i}{v_0}$$

For ideal gases

$$C_{j} = \frac{F_{T0}}{v_{0}} \left(\frac{F_{j}}{F_{T}} \right) \frac{P}{P_{0}} \frac{T_{0}}{T} = C_{T0} \left(\frac{F_{j}}{F_{T}} \right) \frac{P}{P_{0}} \frac{T_{0}}{T}$$

where

$$F_T = \sum_{j=1}^n F_j \qquad \text{and} \qquad C_{T0} = \frac{P_0}{RT_0}$$

For isothermal systems $(T = T_0)$ with no pressure drop $(P = P_0)$

$$C_j = C_{T0} \left(\frac{F_j}{F_T} \right)$$

Multiple Reactions in a PFR/PBR

$$\frac{dF_1}{dV} = r_1 = \sum_{i=1}^{m} r_{i1} = \operatorname{fn}_1 \left(C_{T0} \frac{F_1}{F_T}, \dots, C_{T0} \frac{F_j}{F_T} \right)$$

$$\frac{dF_j}{dV} = r_j = \sum_{i=1}^{q} r_{ij} = \text{fn}_j \left(C_{T0} \frac{F_1}{F_T}, \dots, C_{T0} \frac{F_j}{F_T} \right)$$

Example

Write the mole balances on a PFR in terms of molar flow rates for each species.

Reaction 1: $4NH_3 + 6NO \longrightarrow 5N_2 + 6H_2O -r_{1NO} = k_{1NO}C_{NH_3}C_{NO}^{1.5}$

Reaction 2: 2NO \longrightarrow N₂+O₂ $r_{2N_2} = k_{2N_2} C_{NO}^2$

Reaction 3: $N_2 + 2O_2 \longrightarrow 2NO_2$ $-r_{3O_2} = k_{3O_2}C_{N_2}C_{O_2}^2$

57

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Tel. +962 6 535 5000 | 22888

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example

The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol catalyst⁵ involves the following reactions:

$$CH_3 + H_2 \longrightarrow CH_3 + CH_4 - r_{1M} = k_1 C_M C_H^{0.5}$$

m-Xylene can also undergo hydrodealkylation to form toluene:

$$CH_3 + H_2 \longrightarrow CH_3 + CH_4 \qquad r_{2T} = k_2 C_X C_H^{0.5}$$

where the subscripts are: M = mesitylene, X = m-xylene, T = toluene, Me = methane, and $H = \text{hydrogen}(H_2)$.

The second reaction is undesirable, because m-xylene sells for a higher price than toluene (65 cents/lb vs. 11.4 cents/lb). Thus we see that there is a significant incentive to maximize the production of m-xylene..

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

The hydrodealkylation of mesitylene is to be carried out isothermally at 1500°R and 35 atm in a packed-bed reactor in which the feed is 66.7 mol% hydrogen and 33.3 mol% mesitylene. The volumetric feed rate is 476 ft³/h and the reactor volume (i.e., $V = W/\rho_b$) is 238 ft³.

At 1500°R the specific reaction rates are:

Reaction 1:
$$k_1 = 55.20 \, (\text{ft}^3/\text{lb mol})^{0.5}/\text{h}$$

Reaction 2 k, =
$$30.20 \, (ft^3/lb \, mol)^{0.5}/h$$

The bulk density of the catalyst has been included in the specific reaction rate (i.e., $k_1 = k'_1 \rho_b$).

Plot the concentrations of hydrogen, mesitylene, and xylene as a function of space-time. Calculate the space-time where the production of xylene is a maximum (i.e., τ_{opt}).

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example Cont.

Mole Balances:

$$\frac{dF_{\rm H}}{dV} = r_{\rm H} \qquad \frac{dF_{\rm M}}{dV} = r_{\rm M} \qquad \frac{dF_{\rm X}}{dV} = r_{\rm X} \qquad \frac{dF_{\rm T}}{dV} = r_{\rm T}$$

$$\frac{dF_{\rm Me}}{dV} = r_{\rm Me}$$

Reaction 1:
$$M+H \longrightarrow X+Me$$
 $-r_{1M} = k_1 C_H^{1/2} C_M$

Reaction 2:
$$X+H \longrightarrow T+Me$$
 $r_{2T}=k_2C_H^{1/2}C_X$

$$-r_{1H} = -r_{1M} = r_{1Me} = r_{1X}$$

$$r_{2T} = r_{2Me} = -r_{2H} = -r_{2X}$$

Net rates:

$$\begin{split} r_{\rm M} &= r_{\rm 1M} = -k_{\rm 1} C_{\rm H}^{1/2} C_{\rm M} \\ r_{\rm H} &= r_{\rm 1H} + r_{\rm 2H} = r_{\rm 1H} - r_{\rm 2T} = -k_{\rm 1} C_{\rm H}^{1/2} C_{\rm M} - k_{\rm 2} C_{\rm H}^{1/2} C_{\rm X} \\ r_{\rm X} &= r_{\rm 1X} + r_{\rm 2X} = -r_{\rm 1H} - r_{\rm 2T} = k_{\rm 1} C_{\rm H}^{1/2} C_{\rm M} - k_{\rm 2} C_{\rm H}^{1/2} C_{\rm X} \\ r_{\rm Me} &= r_{\rm 1Me} + r_{\rm 2Me} = -r_{\rm 1H} + r_{\rm 2T} = k_{\rm 1} C_{\rm H}^{1/2} C_{\rm M} + k_{\rm 2} C_{\rm H}^{1/2} C_{\rm X} \\ r_{\rm T} &= r_{\rm 2T} = k_{\rm 2} C_{\rm H}^{1/2} C_{\rm X} \end{split}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example Cont.

$$v = v_0 \frac{F_T P_0}{F_{T0} P} \frac{T}{T_0}$$

 $P = P_0$ (i.e., y = 1), $T = T_0$, and there is no change in the total number of moles;

Flow rates:

$$F_{\rm H} = v_0 C_{\rm H}$$
 $F_{\rm M} = v_0 C_{\rm M}$ $F_{\rm X} = v_0 C_{\rm X}$ $F_{\rm Me} = v_0 C_{\rm Me} = F_{\rm H0} - F_{\rm H} = v_0 (C_{\rm H0} - C_{\rm H})$ $F_{\rm T} = F_{\rm M0} - F_{\rm M} - F_{\rm X} = v_0 (C_{\rm M0} - C_{\rm M} - C_{\rm X})$

Combining and substituting in terms of the space-time

$$\tau = \frac{V}{v_0}$$

$$\frac{dC_{\rm H}}{d\tau} = -k_1 C_{\rm H}^{1/2} C_{\rm M} - k_2 C_{\rm X} C_{\rm H}^{1/2}$$

$$\frac{dC_{\rm X}}{d\tau} = k_1 C_{\rm M} C_{\rm H}^{1/2} - k_2 C_{\rm X} C_{\rm H}^{1/2}$$

$$\frac{dC_{\rm M}}{d\tau} = -k_1 C_{\rm M} C_{\rm H}^{1/2}$$

Parameter evaluation:

At $T_0 = 1,500^{\circ}$ R and $P_0 = 35$ atm, the total concentration is

$$C_{T0} = \frac{P_0}{RT_0} = \frac{35 \text{ atm}}{\left(0.73 \frac{\text{atm ft}^3}{\text{lb mol} \cdot {}^{\circ}\text{R}}\right) (1,500 {}^{\circ}\text{R})} = 0.032 \text{ lb mol/ft}^3$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

$$C_{X0} = 0$$

$$F_{T0} = C_{T0}v_0 = \left(0.032 \frac{\text{lb mol}}{\text{ft}^3}\right) \left(476 \frac{\text{ft}^3}{\text{h}}\right)$$

 $F_{T0} = 15.23 \text{ mol/h}$

$$C_{\text{M0}} = \frac{1}{2} C_{\text{H0}} = 0.0105 \text{ lb mol/ft}^3$$

$$\tau = \frac{V}{v_0} = \frac{238 \text{ ft}^3}{476 \text{ ft}^3/\text{h}} = 0.5 \text{ h}$$

Multiple Reactions in a CSTR

$$V = \frac{F_{j0} - F_j}{-r_j}$$

Rearranging

$$F_{j0} - F_j = -r_j V$$

$$r_j = \sum_{i=1}^q r_{ij} = f_j(C_1, C_2, \dots, C_N)$$

For a CSTR, a coupled set of algebraic equations analogous to PFR differential equations must be solved.

The total molar flow rate for n species is

$$F_T = \sum_{j=1}^n F_j$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Multiple Reactions in a CSTR

For q reactions occurring in the gas phase, where N different species

$$F_{10} - F_1 = -r_1 V = V \sum_{i=1}^{q} -r_{i1} = V \cdot f_1 \left(\frac{F_1}{F_T} C_{T0}, \dots, \frac{F_N}{F_T} C_{T0} \right)$$

$$F_{j0} - F_j = -r_j V = V \cdot f_j \left(\frac{F_1}{F_T} C_{T0}, \dots, \frac{F_N}{F_T} C_{T0} \right)$$

$$F_{N0} - F_N = -r_N V = V \cdot f_N \left(\frac{F_1}{F_T} C_{T0}, \dots, \frac{F_N}{F_T} C_{T0} \right)$$

Example

For the multiple reactions and conditions described in Example 6-7, calculate conversion of hydrogen and mesitylene along with the exiting concentrations mesitylene, hydrogen, and xylene in a CSTR.

$$F_A = vC_A = v_0C_A$$
, etc.

CSTR Mole Balances:

$$v_0 C_{H0} - v_0 C_H = r_H V$$
 $v_0 C_{M0} - v_0 C_M = r_M V$

$$v_0 C_{M0} - v_0 C_M = r_M V$$

$$v_0C_X = r_XV$$

$$v_0C_T = r_TV$$

$$v_0 C_{\text{Me}} = r_{\text{Me}} V$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Example Cont.

Combining Equations

$$C_{\text{H0}} - C_{\text{H}} = (k_1 C_{\text{H}}^{1/2} C_{\text{M}} + k_2 C_{\text{H}}^{1/2} C_{\text{X}}) \tau$$

$$C_{M0} - C_{M} = (k_{1}C_{H}^{1/2}C_{M})\tau$$

$$C_{\rm X} = (k_1 C_{\rm H}^{1/2} C_{\rm M} - k_2 C_{\rm H}^{1/2} C_{\rm X}) \tau$$

$$f(C_{\rm H}) = 0 = C_{\rm H} - C_{\rm H0} + (k_1 C_{\rm H}^{1/2} C_{\rm M} + k_2 C_{\rm H}^{1/2} C_{\rm X}) \tau$$

$$f(C_{\rm M}) = 0 = C_{\rm M} - C_{\rm M0} + k_1 C_{\rm H}^{1/2} C_{\rm M} \tau$$

$$f(C_X) = 0 = (k_1 C_H^{1/2} C_M - k_2 C_H^{1/2} C_X) \tau - C_X$$

For a space time of $\tau = 0.5$, the exiting concentrations are $C_{\rm H} = 0.0089$, $C_{\rm M} = 0.0029$, and $C_{\rm X} = 0.0033$. The overall conversion is

Hydrogen:
$$X_{\rm H} = \frac{F_{\rm H0} - F_{\rm H}}{F_{\rm H0}} = \frac{C_{\rm H0} - C_{\rm H}}{C_{\rm H0}} = \frac{0.021 - 0.0089}{0.021} = 0.58$$

Mesitylene:
$$X_{\rm M} = \frac{F_{\rm M0} - F_{\rm M}}{F_{\rm M0}} = \frac{C_{\rm M0} - C_{\rm M}}{C_{\rm M0}} = \frac{0.0105 - 0.0029}{0.0105} = 0.72$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

