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CHAPTER 2 –CONVERSION AND 
REACTOR SIZING
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Be more concerned with your 
character than with your reputation, 
because character is what you really 
are, while reputation is merely what 
others think you are.

John Wooden, coach, UCLA Bruins
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Learning Outcomes

• After completing Chapter 2, you should be able to:

• Define conversion and space time. 

• Write the mole balances in terms of conversion for 

a batch reactor, CSTR, PFR, and PBR. 

• Size reactors either alone or in series once given 

the molar flow rate of A, and the rate of reaction, 

−𝑟𝐴, as a function of conversion, 𝑋. 4



Mole Balance

Rate Laws

Stoichiometry

Isothermal Design

Heat Effects
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CRE Algorithm



Mole Balance
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Be careful not to cut corners on any of the CRE 
building blocks while learning this material!

Rate Laws



Mole Balance

Rate Laws

Stoichiometry

Isothermal Design

Heat Effects
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Otherwise, your Algorithm becomes unstable.



Reactor Mole Balances Summary
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Reactor Differential Algebric Integral

The GMBE applied to the four major reactor types 
(and the general reaction A→B)
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• Consider the generic reaction:
𝑎𝐴 + 𝑏𝐵 𝑐𝐶 + 𝑑𝐷

• Choose limiting reactant A as basis of calculation:

𝐴 +
𝑏

𝑎
𝐵

𝑐

𝑎
𝐶 +

𝑑

𝑎
𝐷

• Define conversion, 𝑋𝐴: the number of moles of A 
that have reacted per mole of A fed to the system

𝑿𝑨 =
𝒎𝒐𝒍𝒆𝒔 𝑨 𝒓𝒆𝒂𝒄𝒕𝒆𝒅

𝒎𝒐𝒍𝒆𝒔 𝑨 𝒇𝒆𝒅
• For Batch System: “Moles A fed” is the amount of 

A at the start of the reactor (at 𝑡 = 0)
• For Flow System: “Moles A fed” is the amount of 

A entering the reactor

Definition of Conversion
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Conversion Example

𝐴 + 2𝐵 → 2𝐶

• Start with 1 mole of A and 1 mole of B

• What is the limiting reactant?
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Conversion Example
𝐴 + 2𝐵 → 2𝐶

• Start with 1 mole of A and 1 mole of B

• If A is the basis and at the end we have:
1 mole A, 1 mole B ↔ XA = 0/1 = 0 (no reaction)

½ mole A, 0 mole B ↔ XA = 0.5/1 = ½

0 mole A, -1 mole B ↔ XA = 1/1 = 1 (complete reaction)

• The correct approach is to take B as the basis 
because B is the limiting reagent

• At the end we have:
1 mole A, 1 mole B ↔ XB = 0/1 = 0 (no reaction)

½ mole A, 0 mole B ↔ XB = 1/1 = 1 (complete reaction)

Not possible!
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Expressing other Components 
Conversion in Terms of  𝑋𝐴
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BATCH
SYSTEM:

Longer reactant is in reactor, more reactant is converted to product 
(until reactant is consumed or the reaction reaches equilibrium)
∴ Conversion (Xj) is a function of time (t) in the batch reactor
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Batch Reactor
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Batch Reactor
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The necessary 𝑡 to achieve conversion 𝑋.
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CSTR
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D d  C c B b A  a +⎯→⎯+

Consider the generic reaction:
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Define conversion, 𝑋



CSTR
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CSTR
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CSTR volume necessary to achieve conversion X.
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PFR
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PFR
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Reactor Mole Balances Summary
in terms of conversion, X
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Reactor Differential Algebraic Integral
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Applications of the Design 
Equations for Continuous-
Flow Reactors
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Levenspiel Plots
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Reactor Sizing

• Given – 𝑟𝐴 as a function of conversion,
– 𝒓𝑨 = 𝒇(𝑿), one can size any isothermal 
reaction system. 

• We do this by constructing Levenspiel plot. 
Here we plot either (𝐹𝐴0/−𝑟𝐴) or (1/−𝑟𝐴) as a 
function of 𝑋. 

• For (𝐹𝐴0/−𝑟𝐴) vs. 𝑋, the volume of a CSTR and 
the volume of a PFR can be represented as 
the shaded areas in the Levenspiel Plot
shown as:
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Levenspiel Plots

• For all irreversible reactions of order > zero, 
as we approach complete conversion where all 
the limiting reactant is used up, i.e. 𝑋 = 1,
the reciprocal rate approaches infinity as does 
the reactor volume, i.e.

• As 𝑋 → 1, −𝑟𝐴 → 0, 

thus 
1

−𝑟𝐴
→ ∞, 

therefore 𝑉 → ∞.
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Levenspiel Plots

• For reversible reactions, the maximum 

conversion is the equilibrium conversion 𝑋𝑒 .

• At equilibrium, the reaction rate is zero 

(−𝒓𝑨≡ 𝟎). 

Therefore:

As 𝑋 → 𝑋𝑒, −𝑟𝐴 → 0, 

thus 
1

−𝑟𝐴
→ ∞, and therefore 𝑉 → ∞. 26



FA0
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Area = Volume of CSTR
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PFR
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Levenspiel Plots
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Numerical Evaluations of Integrals

• The integral to calculate the PFR volume can be 
evaluated using numerical method as Simpson’s 
One-Third Rule: (See Appendix A.4)
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Other numerical methods are:

 Trapezoidal Rule 
(uses two data points)

 Simpson’s Three-Eight’s Rule 
(uses four data points)

 Five-Point Quadrature 
Formula
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Reactors in Series
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Reactors in Series

• Given: −𝑟𝐴 as a function of conversion, one can 
also design any sequence of reactors in series by 
defining 𝑋𝑖:

Only valid if there are NO side streams.

• Molar Flow rate of species A at point i:
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Reactors in Series
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Reactor 2:
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Reactors in Series
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 

V3 =
FA 0 X 3 − X 2( )

−rA 3

Reactors in Series
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Reactors in Series



Space time, 𝝉, is the time necessary to process one 
reactor volume of fluid at entrance conditions.

 

 =
V

0

Space Time, 
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Space Velocity

• Defined as:

𝑆𝑉 ≡
𝑣0

𝑉
𝑆𝑉 =

1

𝜏
• Two space velocities commonly used in industry 

are:

• liquid-hourly space velocity, LHSV 

𝐿𝐻𝑆𝑉 =
𝑣0|𝑙𝑖𝑞𝑢𝑖𝑑

𝑉
• gas-hourly space velocity, GHSV

𝐺𝐻𝑆𝑉 =
𝑣0|𝑆𝑇𝑃

𝑉
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