Steady-State Nonisothermal Reactor Design

2

THE UNIVERSITY OF JORDAN

If you can't stand the heat, get out of the kitchen.

Harry S Truman

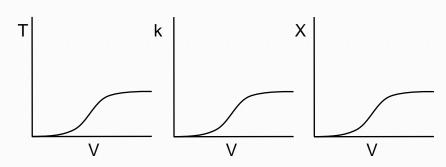
Learning Outcomes

- After completing chapters 11 and 12, you will be able to
 - Describe the algorithm for CSTRs, PFRs, and PBRs that are not operated isothermally.
 - Size adiabatic and nonadiabatic CSTRs, PFRs, and PBRs.
 - Use reactor staging to obtain high conversions for highly exothermic reversible reactions.
 - Carry out an analysis to determine the Multiple Steady States (MSS) in a CSTR along with the ignition and extinction temperatures.

Energy Balance, Rationale and Overview

Let's calculate the volume necessary to achieve a conversion, X, in a PFR for a first-order, **exothermic** and **adiabatic** reaction.

The temperature profile might look something like this:



Energy Balance, Rationale and Overview

Mole Balance:
$$\frac{dX}{dV} = \frac{-r_A}{F_{AB}}$$

Rate Law:
$$r_A = -k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right] C_A$$

Stoichiometry:
$$C_A = C_{A0}(1-X)$$

Combine:
$$\frac{dX}{dV} = \frac{k_1 \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]}{E} C_{A0}(1 - X)$$

Energy Balance, Rationale and Overview

$$\frac{dX}{dV} = \frac{k_1 \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]}{F_{A0}} C_{A0} (1 - X)$$

We cannot solve this equation because we don't have X either as a function of V or T.

We need another equation. That equation is:

The Energy Balance

1. Adiabatic CSTR, PFR, Batch or PBR

$$\dot{W}_{S} = 0 \qquad \Delta \hat{C}_{P} = 0$$

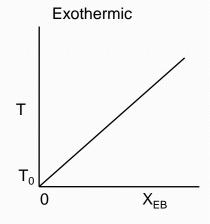
$$X_{EB} = \frac{\sum \Theta_{i} C_{P_{i}} (T - T_{0})}{-\Delta H^{o}_{Rx}}$$

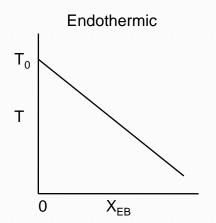
$$X = \frac{\sum \Theta_{i} C_{P_{i}} (T - T_{0})}{-\Delta H_{Rx}}$$

$$T = T_{0} + \frac{(-\Delta H^{o}_{Rx}) X_{EB}}{\sum \Theta_{i} C_{P_{i}}}$$

THE UNIVERSITY OF JORDAN

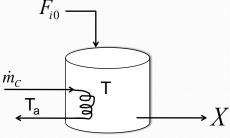
Adiabatic





2. CSTR with heat exchange: UA(T_a-T) and a large coolant flow rate

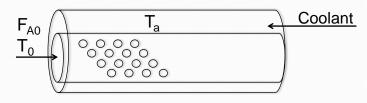
$$X_{EB} = \frac{\left(\frac{UA}{F_{A0}}(T - T_a)\right) + \sum_{i} \Theta_{i} C_{P_{i}}(T - T_0)}{-\Delta H^{o}_{Rx}}$$



10

User Friendly Equations Relate T and X or Fi

3. PFR/PBR with heat exchange



3A. PFR in terms of conversion Q_g Q_r

$$\frac{dT}{dV} = \frac{\overbrace{r_{A}\Delta H_{Rx}\left(T\right) - Ua\left(T - T_{a}\right)}^{Q_{g}}}{F_{A0}\left(\sum\Theta_{i}C_{Pi} + \Delta C_{p}X\right)} = \frac{Q_{g} - Q_{r}}{F_{A0}\left(\sum\Theta_{i}C_{Pi} + \Delta C_{p}X\right)}$$

3B. PBR in terms of conversion

$$\frac{dT}{dW} = \frac{r_A' \Delta H_{Rx}(T) - \frac{Ua}{\rho_b} (T - T_a)}{F_{A0} \left(\sum \Theta_i C_{Pi} + \Delta C_p X \right)}$$

3C. PBR in terms of molar flow rates

$$\frac{dT}{dW} = \frac{r_A' \Delta H_{Rx}(T) - \frac{Ua}{\rho_b} (T - T_a)}{\sum_{i} F_i C_{P_i}}$$

User Friendly Equations Relate T and X or Fi

3D. PFR in terms of molar flow rates

$$\frac{dT}{dV} = \frac{r_A \Delta H_{Rx}(T) - Ua(T - T_a)}{\sum_{i} F_i C_{P_i}} = \frac{Q_g - Q_r}{\sum_{i} F_i C_{P_i}}$$

4. Batch reactor

$$\frac{dT}{dt} = \frac{(r_A V)(\Delta H_{Rx}) - UA(T - T_a)}{\sum_{i} N_i C_{P_i}}$$

5. For Semibatch or unsteady CSTR

$$\frac{dT}{dt} = \frac{\dot{Q} - \dot{W}_{S} - \sum_{i=1}^{n} F_{i0} \left(C_{P_{i}} \left(T - T_{i0} \right) + \left[-\Delta H_{Rx} \left(T \right) \right] \left(-r_{A} V \right) \right)}{\sum_{i=1}^{n} N_{i} C_{P_{i}}}$$

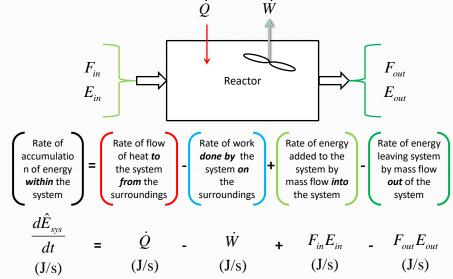
6. For multiple reactions in a PFR

$$\frac{dT}{dV} = \frac{\sum_{i=1}^{q} r_{ij} \Delta H_{Rx_{ij}} - Ua(T - T_a)}{\sum_{j=1}^{m} F_i C_{Pj}}$$
 (q reactions and m species)

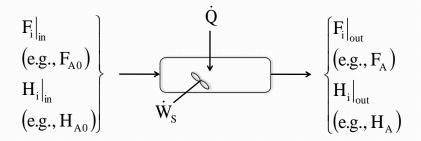
Let's look where these User Friendly Equations came from.

THE UNIVERSITY OF JORDAN

Energy Balance Reactor with no Spatial Variations



Energy Balance



Energy Balance on an open system: schematic.

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0} E_{i0} \Big|_{in} - \sum F_{i} E_{i} \Big|_{out} = \frac{dE_{system}}{dt} (1)$$

NOW, we are going to do to put the above equation into a usable form.

- 1. Replace U_i by U_i=H_i-PV_i
- 2. Express H_i in terms of heat capacities
- 3. Express F_i in terms of either conversion or rates of reaction
- 4. Define ΔH_{Rx}
- 5. Define ΔC_P
- 6. Manipulate so that the overall energy balance is in terms of the User Friendly Equations.

Introduction to Heat Effects

•Assumptions:

$$E_i = U_i + PE_i + KE_i$$
 Other energies small compared to internal $\dot{W} = flow \ work + shaft \ work$

flow work =
$$-\sum F_{i0}P_{0}\widetilde{V}_{i0} + \sum F_{i}P\widetilde{V}_{i}$$
 $\left(\widetilde{V} = \frac{m^{3}}{mol}\right)$

Recall:

$$H_i = U_i + P\tilde{V}_i$$

Introduction to Heat Effects

Substituting for \dot{W}

$$\sum F_{i0}U_{i0} - \sum F_{i}U_{i} + \dot{Q} - \left[-\sum F_{i0}P_{0}\tilde{V}_{i0} + \sum F_{i}P\tilde{V}_{i} + \dot{W}_{S} \right] = \frac{dE_{sys}}{dt}$$

$$\sum F_{i0} \left[U_{i0} + P_0 \tilde{V}_{i0} \right] - \sum F_i \left[U_i + P \tilde{V}_i \right] + \dot{Q} - \dot{W}_S = \frac{dE_{sys}}{dt}$$

$$\sum F_{i0}H_{i0} - \sum F_{i}H_{i} + \dot{Q} - \dot{W}_{S} = \frac{dE_{sys}}{dt}$$

Steady State:
$$\dot{Q} - \dot{W}_{S} + \sum F_{i0} H_{i0} - \sum F_{i} H_{i} = 0$$

Introduction to Heat Effects

General Energy Balance:

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0} H_{i0} - \sum F_{i} H_{i} = \frac{dE_{system}}{dt}$$

For Steady State Operation:

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0} H_{i0} - \sum F_{i} H_{i} = 0$$

Introduction to Heat Effects

$$\sum F_{i0}H_{i0}=F_{A0}\sum\Theta_{i}H_{i0}$$

$$\sum F_i H_i = F_{A0} \sum (\Theta_i + \upsilon_i X) H_i = F_{A0} \sum \Theta_i H_i + F_{A0} X \sum \upsilon_i H_i$$

$$\dot{Q} - \dot{W}_S + F_{A0} \left(\sum \Theta_i \left(H_{i0} - H_i \right) - X \Delta H_{Rx} \right) = 0$$

Introduction to Heat Effects

For No Phase Changes

$$H_i(T) = H_i^0(T_R) + \int_{T_R}^T C_{P_i} dT$$

Enthalpy of formation at temperature T_R

Constant Heat Capacities

$$\rightarrow H_i(T) = H_i^0(T_R) + C_{Pi}(T - T_R)$$

$$H_i - H_{i0} = C_{Pi} (T - T_0)$$

$$\sum \upsilon_i H_i = \sum \upsilon_i H_i^0 + \sum \upsilon_i C_{Pi} (T - T_R)$$

27

Introduction to Heat Effects

$$\sum v_i H_i = \sum v_i H_i^0 + \sum v_i C_{Pi} (T - T_R)$$

$$DH_R(T) = DH_R^{o}(T_R) + D\hat{C}_P(T - T_R)$$

$$\sum v_i \hat{C}_{Pi} = \Delta \hat{C}_P = \frac{d}{a} \hat{C}_{PD} + \frac{c}{a} \hat{C}_{PC} - \frac{b}{a} \hat{C}_{PB} - \hat{C}_{PA}$$

Substituting back into the Energy Balance

$$\dot{Q} - \dot{W_S} - F_{A0} X \left[\Delta H_R^o \left(T_R \right) + \Delta \hat{C}_P \left(T - T_R \right) \right] - F_{A0} \sum \Theta_i \tilde{C}_{Pi} \left(T - T_{i0} \right) = 0$$

Introduction to Heat Effects

$$aA + bB \rightarrow cC + dD$$

$$\Delta H_{Rx} = \frac{d}{a}H_D + \frac{c}{a}H_C - \frac{b}{a}H_B - H_A$$

$$\Delta C_{\rm P} = \frac{\mathrm{d}}{\mathrm{a}} C_{\rm PD} + \frac{\mathrm{c}}{\mathrm{a}} C_{\rm PC} - \frac{\mathrm{b}}{\mathrm{a}} C_{\rm PB} - C_{\rm PA}$$

29

THE UNIVERSITY OF JORDAN

Adiabatic Energy Balance

$$\dot{Q} - \dot{W}_{S} - F_{A0}X \left[\Delta H_{R}^{o} \left(T_{R}\right) + \Delta \hat{C}_{P} \left(T - T_{R}\right)\right] - F_{A0} \sum \Theta_{i} \tilde{C}_{Pi} \left(T - T_{i0}\right) = 0$$

Adiabatic (Q=0) and no Work $(\mathring{W}_s = 0)$

$$T = \frac{-X\left[\Delta H_R^o(T_R) - \Delta \hat{C}_P T_R\right] + T_0 \sum \Theta_i \tilde{C}_{Pi}}{\sum \Theta_i \tilde{C}_{Pi} + X \Delta \hat{C}_P}$$

$$\rightarrow X = \frac{\sum\limits_{i=1}^{n} \Theta_i \tilde{C}_{pi} (T - T_{i0})}{-\left[\Delta H_{RX}^o(T_R) + \Delta \hat{C}_p (T - T_R)\right]} \qquad T$$

$$if \qquad \Delta C_P = 0$$

$$T = T_0 + \frac{-\Delta H_{Rx}^o X}{\sum \theta_i C_{Pi}} \qquad T_0$$
Exothermic

THE UNIVERSITY OF JORDAN THE UNIVERSITY OF JORDAN

Example 1: Adiabatic PFR

 $A \leftrightarrow B$

1) Mole Balance: $\frac{dX}{dV} = -\frac{r_A}{F_{A0}}$

2) Rate Laws:

$$r_{A} = -k \left[C_{A} - \frac{C_{B}}{k_{C}} \right] \qquad k = k_{1} \exp \left[\frac{E}{R} \left(\frac{1}{T_{1}} - \frac{1}{T} \right) \right]$$

$$\Delta C_{P} = 0 \qquad k_{C} = k_{C2} \exp \left[\frac{\Delta H_{X}^{0}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T} \right) \right]$$

32

Example 1: Adiabatic PFR

 $A \leftrightarrow B$

3) Stoichiometry: $C_A = C_{A0} (1-X) \frac{T_0}{T}$

$$C_B = C_{A0} X \frac{T_0}{T}$$

4) Energy Balance

$$T = T_0 + \frac{-\Delta H_{Rx}^0 X}{\sum \theta_i C_{Pi}}$$

First need to calculate the maximum conversion which is at the *adiabatic equilibrium conversion*.

. 33

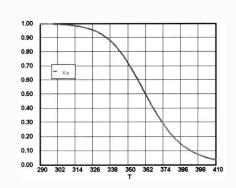
Example 1: Adiabatic PFR

Differential equations

1 d(T)/d(t) = 1

Explicit equations

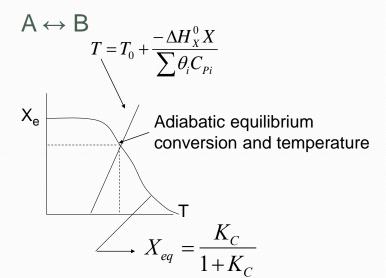
- 1 Kc1 = 1000
- 2 T1 = 290
- 3 R = 1.987
- 4 DeltaH = -20000
- 5 Kc = Kc1*exp((DeltaH/R)*(1/T1-1/T))
- 6 Xe = Kc/(1+Kc)



34

THE UNIVERSITY OF JORDAN

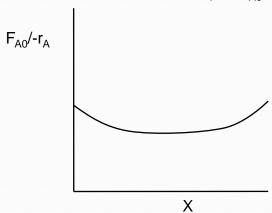
Example 1: Adiabatic PFR



Example 1: Adiabatic PFR

We can now form a table.

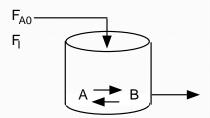
Set X \Rightarrow calculate T \Rightarrow -r_A, and F_{A0}/-r_A, increment X, then plot F_{A0}/-r_A vs. X:



36

THE UNIVERSITY OF JORDAN

Example 2: Adiabatic CSTR



Elementary liquid phase reaction carried out in a CSTR

The feed consists of both – Inert I and Species A with the ratio of inert I to species A being 2 to 1.

Example 2: Adiabatic CSTR

- a) Assuming the reaction is irreversible for CSTR, A \rightarrow B, $(K_C = \infty)$ what reactor volume is necessary to achieve 80% conversion?
- b) If the exiting temperature to the reactor is 360K, what is the corresponding reactor volume?
- c) Make a Levenspiel Plot and then determine the PFR reactor volume for 60% conversion and 95% conversion. Compare with the CSTR volumes at these conversions.
- d) Now assume the reaction is reversible, make a plot of the equilibrium conversion as a function of temperature between 290K and 400K.

38

Example 2: Adiabatic CSTR

$$F_{A0} = 5 \frac{mol}{min}$$

$$T_0 = 300 K$$

$$F_I = 10 \frac{mol}{min}$$

$$A \Rightarrow B$$

$$T = ?$$

$$X = ?$$

1) Mole Balances:
$$V = \frac{F_{A0}X}{-r_A|_{exit}}$$

Example 2: Adiabatic CSTR

2) Rate Laws:

$$-r_{A} = k \left[C_{A} - \frac{C_{B}}{K_{C}} \right]$$

$$k = k_1 e^{\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T}\right)}$$

$$K_{C} = K_{C1} \exp \left[\frac{\Delta H_{Rx}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T} \right) \right]$$

3) Stoichiometry:

$$C_A = C_{A0}(1-X)$$

$$C_B = C_{A0}X$$

40

Example 2: Adiabatic CSTR

4) Energy Balance

Adiabatic, $\Delta C_p = 0$

$$T = T_0 + \frac{(-\Delta H_{Rx})X}{\sum \Theta_i C_{P_i}} = T_0 + \frac{(-\Delta H_{Rx})X}{C_{P_A} + \Theta_I C_{P_I}}$$

$$T = 300 + \left[\frac{-(-20,000)}{164 + (2)(18)} \right] X = 300 + \frac{20,000}{164 + 36} X$$

$$T = 300 + 100 X$$

Example 2: Adiabatic CSTR

Irreversible for Parts (a) through (c)

$$-r_{A} = kC_{A0}(1-X)$$
 (i.e., $K_{C} = \infty$)

(a) Given X = 0.8, find T and V

Given
$$X \xrightarrow{Calc} T \xrightarrow{Calc} k \xrightarrow{Calc} -r_A \xrightarrow{Calc} V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Example 2: Adiabatic CSTR

Given X, Calculate T and V

$$V = \frac{F_{A0}X}{-r_{A}\big|_{exit}} = \frac{F_{A0}X}{kC_{A0}(1-X)}$$

$$T = 300 + 100(0.8) = 380K$$

$$k = 0.1 \exp \frac{10,000}{1.989} \left[\frac{1}{298} - \frac{1}{380} \right] = 3.81$$

$$V = \frac{F_{A0}X}{-r_A} = \frac{(5)(0.8)}{(3.81)(2)(1-0.8)} = 2.82 \,dm^3$$

Example 2: Adiabatic CSTR

(b) Given T = 360 K, Calculate X and V

$$-r_A = kC_{A0}(1-X)$$
 (Irreversible)

$$T = 360K$$

$$X = \frac{T - 300}{100} = 0.6$$

$$k = 1.83 \,\mathrm{min}^{-1}$$

$$V = \frac{(5)(0.6)}{(1.83)(2)(0.4)} = 2.05 \, dm^3$$

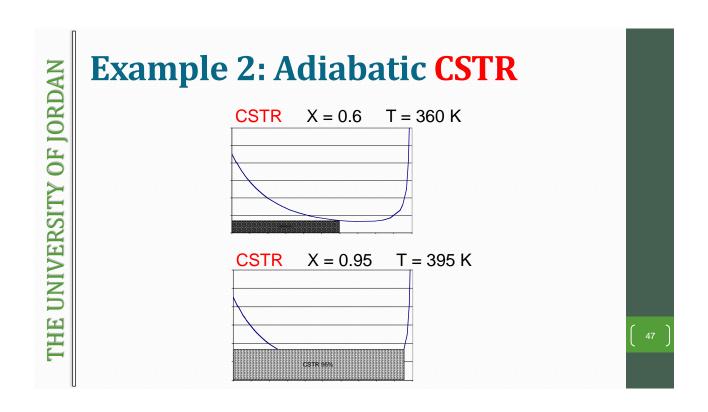
Example 2: Adiabatic CSTR

(c) Levenspiel Plot

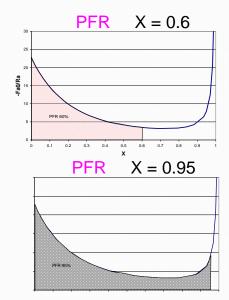
$$\frac{F_{A0}}{-r_{A}} = \frac{F_{A0}}{kC_{A0}(1-X)}$$
$$T = 300 + 100X$$

$$Choose X \xrightarrow{Calc} T \xrightarrow{Calc} k \xrightarrow{Calc} -r_A \xrightarrow{Calc} \xrightarrow{F_{A0}} -r_A$$

Example 2: Adiabatic CSTR THE UNIVERSITY OF JORDAN (c) Levenspiel Plot $\frac{F_{A0}}{-r_A} (dm^3)$ $\underline{\mathbf{X}}$ T(K)300 0.1 310 14.4 0.2 9.95 320 0.4 340 5.15 0.6 360 3.42 3.87 0.8 380 0.9 390 4.16 0.95



Example 2: Adiabatic CSTR



THE UNIVERSITY OF JORDAN

Example 2: Adiabatic CSTR Summary

CSTR	X = 0.6	T = 360	$V = 2.05 \text{ dm}^3$
PFR	X = 0.6	$T_{\text{exit}} = 360$	$V = 5.28 \text{ dm}^3$
CSTR	X = 0.95	T = 395	$V = 7.59 \text{ dm}^3$
PFR	X = 0.95	$T_{\text{exit}} = 395$	$V = 6.62 \text{ dm}^3$

PFR with Heat Effects

Energy Balance in terms of Enthalpy

$$\sum F_i H_i \Big|_V - \sum F_i H_i \Big|_{V + \Delta V} + Ua (T_a - T) \Delta V = 0$$

$$\frac{-d\sum F_i H_i}{dV} + Ua(T_a - T) = 0$$

$$\frac{-d\sum F_i H_i}{dV} = -\left[\sum F_i \frac{dH_i}{dV} + \sum H_i \frac{dF_i}{dV}\right]$$

PFR with Heat Effects

$$\frac{dF_i}{dV} = r_i = \nu_i \left(-r_A\right)$$

$$H_i = H_i^0 + C_{Pi} (T - T_R)$$

$$\frac{dH_{\rm i}}{dV} = C_{\rm Pi}\,\frac{dT}{dV}$$

$$\frac{-d\sum_{i}F_{i}H_{i}}{dV} = -\left[\sum_{i}F_{i}C_{Pi}\frac{dT}{dV} + \sum_{i}H_{i}\upsilon_{i}(-r_{A})\right]$$
$$\sum_{i}\upsilon_{i}H_{i} = \Delta H_{Rx}$$

51

PFR with Heat Effects

$$-\left[\sum_{P_i} C_{P_i} F_i \frac{dT}{dV} + \Delta H_{Rx} \left(-r_A\right)\right] + Ua\left(T_a - T\right) = 0$$

$$\sum F_i C_{Pi} \frac{dT}{dV} = \Delta H_{Rx} r_A - Ua(T - T_a)$$

$$\frac{dT}{dV} = \frac{\left(-\Delta H_{Rx}\right)\left(-r_A\right) - Ua\left(T - T_a\right)}{\sum F_i C_{Pi}}$$

52

$$\frac{dT}{dV} = \frac{\left(-r_A\right)\left(-\Delta H_{Rx}\right) - Ua\left(T - T_a\right)}{\sum F_i C_{P_i}}$$

$$\sum F_i C_{P_i} = F_{A0} \left[\sum \Theta_i C_{P_i} + \Delta C_P X\right], \text{ if } \Delta C_P = 0 \text{ then}$$

$$\frac{dT}{dV} = \frac{\left(-r_A\right)\left(-\Delta H_{Rx}\right) - Ua\left(T - T_a\right)}{F_{A0} \sum \Theta_i C_{P_i}}$$

Need to determine T_a

User Friendly Equations

- A. Constant T_a e.g., Ta = 300K
- B. Variable T_a Co-Current

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}C_{P_{cool}}}, @V = 0 \qquad T_a = T_{ao}$$

C. Variable T_a Counter Current

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}C_{P_{cool}}}, @ V = 0 \quad T_a = ? \text{ Guess}$$

Guess T_a at V=0 to match $T_{a0}=T_{a0}$ at exit, i.e., $V=V_f$

55

Heat Exchanger Energy Balance Variable T_a Co-current

Coolant Balance:

In - Out + Heat Added = 0

$$\begin{split} \dot{m}_C H_C \big|_V - \dot{m}_C H_C \big|_{V + \Delta V} + Ua\Delta V \big(T - T_a \big) &= 0 \\ - \dot{m}_C \frac{dH_C}{dV} + Ua \big(T - T_a \big) &= 0 \\ H_C &= H_C^0 + C_{PC} \big(T_a - T_r \big) \Rightarrow \frac{dH_C}{dV} = C_{PC} \frac{dT_a}{dV} \end{split}$$

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}_C C_{PC}}, @ V = 0 \quad T_a = T_{a0}$$

Heat Exchanger Energy Balance Variable T_a Counter-current

In - Out + Heat Added = 0

$$\dot{m}_C H_C \big|_{V + \Delta V} - \dot{m}_C H_C \big|_V + U a \Delta V (T - T_a) = 0$$

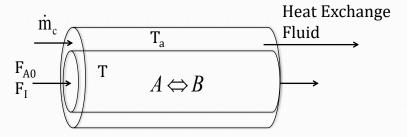
$$\dot{m}_C \frac{dH_C}{dV} + Ua(T - T_a) = 0$$

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}_C C_{PC}}$$

Heat Exchanger

Example – Constant T_a

Elementary liquid phase reaction carried out in a PFR



The feed consists of both inerts I and species A with the ratio of inerts to the species A being 2 to 1.

THE UNIVERSITY OF JORDAN THE UNIVERSITY OF JORDAN

Heat Exchanger

Example – Constant T_a

- 1) Mole Balance: (1) $\frac{dX}{dV} = -r_A/F_{A0}$
- 2) Rate Laws: (2) $r_A = -k \left[C_A \frac{C_B}{K_C} \right]$
 - (3) $k = k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} \frac{1}{T} \right) \right]$
 - (4) $K_C = K_{C2} \exp \left[\frac{\Delta H_{Rx}}{R} \left(\frac{1}{T_2} \frac{1}{T} \right) \right]$

59

Heat Exchanger

Example – Constant T_a

3) Stoichiometry: $C_A = C_{A0}(1-X)$

$$C_{R} = C_{A0}X$$

4) Heat Effects: $\frac{dT}{dV} = \frac{(\Delta H_R)(-r_A) - Ua(T - T_a)}{F_{A0} \sum_{P_i} \theta_i C_{P_i}}$

$$(\Delta C_P = 0)$$

$$X_{eq} = \frac{K_C}{1 + K_C}$$

$$\sum \theta_i C_{Pi} = C_{PA} + \theta_I C_{PI}$$

Heat Exchanger

Example – Constant T_a

Parameters: ΔH_R , E, R, T_1 , T_2 ,

$$k_1$$
, k_{C2} , Ua , T_a , F_{A0} ,

$$C_{A0}, C_{PA}, C_{PI}, \theta_I,$$

$$rate = -r_A$$

61

Derive the user-friendly Energy Balance for a PBR

$$\int_{0}^{W} \frac{Ua}{\rho_{B}} (T_{a} - T) dW + \sum_{i} F_{i0} H_{i0} - \sum_{i} F_{i} H_{i} = 0$$

Differentiating with respect to W:

$$\frac{Ua}{\rho_R}(T_a - T) + 0 - \sum \frac{dF_i}{dW}H_i - \sum F_i \frac{dH_i}{dW} = 0$$

Derive the user-friendly Energy Balance for a PBR

Mole Balance on species i:

$$\frac{dF_{i}}{dW}=r_{i}^{'}=\upsilon_{i}\biggl(-r_{A}^{'}\biggr)$$

Enthalpy for species i:

$$H_{i} = H_{i}^{o}(T_{R}) + \int_{T_{P}}^{T} C_{Pi} dT$$

Derive the user-friendly Energy Balance for a PBR

Differentiating with respect to W:

$$\frac{dH_i}{dW} = 0 + C_{Pi} \frac{dT}{dW}$$

$$\frac{Ua}{\rho_{\scriptscriptstyle B}} \big(T_{\scriptscriptstyle a} - T\big) + r_{\scriptscriptstyle A}{}' \sum \upsilon_{\scriptscriptstyle i} H_{\scriptscriptstyle i} - \sum F_{\scriptscriptstyle i} C_{\scriptscriptstyle Pi} \, \frac{dT}{dW} = 0$$

Derive the user-friendly Energy Balance for a PBR

$$\frac{Ua}{\rho_{R}}(T_{a}-T)+r_{A}'\sum v_{i}H_{i}-\sum F_{i}C_{Pi}\frac{dT}{dW}=0$$

$$\sum \upsilon_{i} H_{i} = \Delta H_{R} (T)$$

$$F_{i} = F_{A0} (\Theta_{i} + \upsilon_{i} X)$$

Final Form of the Differential Equations in Terms of Conversion:

A:
$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_B} (T_a - T) + r_A' \Delta H_R(T)}{F_{A0} [\sum \Theta_i \widetilde{C}_{Pi} + \Delta \hat{C}_P X]} = f(X, T)$$

Derive the user-friendly Energy Balance for a PBR

Final form of terms of Molar Flow Rate:

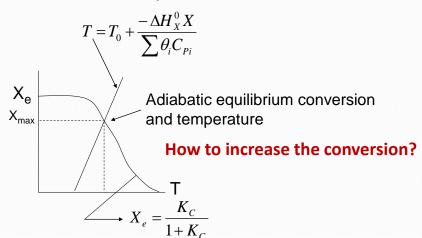
$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_B} \big(T_a - T \big) + {r_A}' \Delta H}{F_i C_{P_i}} \label{eq:delta_total}$$

$$\frac{dX}{dW} = \frac{-r_A'}{F_{A0}} = g(X,T)$$

Reversible Reactions

Gas Phase Heat Effects

Adiabatic and $\Delta C_P = 0$

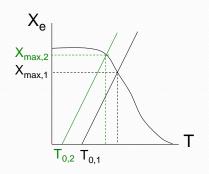


82

THE UNIVERSITY OF JORDAN

How to increase the conversion

 X_{max} ?



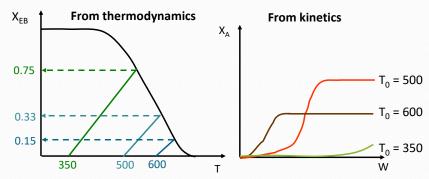
1. By decreasing the feed temperature from $T_{0,1}$ to $T_{0,2}$, the maximum conversion will increase from $X_{max,1}$ to $X_{max,2}$

But, does decreasing T_0 always increase X_{max} ?

Optimum Feed Temperature

For a reversible and exothermic reaction, the feed temperature should be optimized to maximize the conversion

High T₀: reaction reaches equilibrium fast, but X_A is low



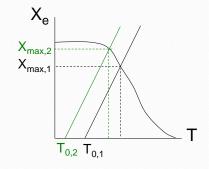
Low T_0 would give high $X_{A,e}$ but the specific reaction rate k is so small that most of the reactant passes through the reactor without reacting (never reach $X_{A,e}$)

There is an optimum inlet temperature!

84

THE UNIVERSITY OF JORDAN

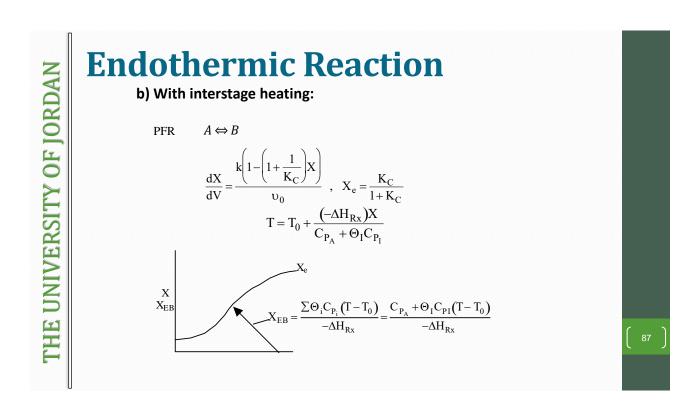
How to increase the conversion X_{max} ?



1. By decreasing the feed temperature from $T_{0,1}$ to $T_{0,2}$, the maximum conversion will increase from $X_{\text{max},1}$ to $X_{\text{max},2}$

What else can we do?

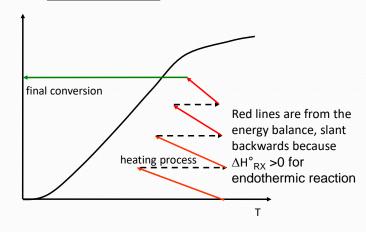
Reactor staging with interstage Cooling/Heating a) With interstage cooling: X_{EB} final conversion Cooling, C1 C2 To Reactor 1 Reactor 2 Reactor 3 Reactor 4 Endothermic reactions are similar, but with heating instead of cooling



 X_{EB}

Endothermic Reactions with interstage heating

The equilibrium conversion increases with increasing temperature, so use interstage heating to increase the conversion



88

Application to CSTR

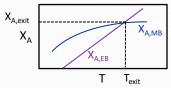
Case 1: Given F_{A0,} C_{A0}, A, E, C_{pi}, H°_i, and X (or T), calculate T (or X) & V

- a) Solve EB for T at the exit $(T_{exit} = T_{inside \ reactor})$
- b) Calculate $k = Ae^{-E/RT}$ where T was calculated in step a
- c) Plug the k calculated in step b into the design equation to calculate V_{CSTR}

Case 2: Given F_{A0,} C_{A0}, A, E, C_{pi}, H°_i, and V, calculate T & X

- a) Solve EB for T as a function of X
- b) Solve CSTR design equation for X as a function of T (plug in $k = Ae^{-E/RT}$)
- c) Plot X_{EB} vs. T & X_{MB} vs. T on the same graph. The intersection of these 2 lines is the conditions (T and X) that satisfies the energy & mass balance

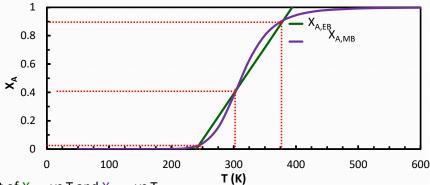
X_{EB} = conversion determined from the EB equation X_{MB} = conversion determined using the design equation



Intersection is T and X that satisfies both equations

THE UNIVERSITY OF IORDAN THE UNIVERSITY OF JORDAN

Multiple Steady States in CSTR



- Plot of X_{A,EB} vs T and X_{A,MB} vs T
- Intersections are the T and X_A that satisfy both the mass balance and energy balance
- Multiple sets of conditions are possible for the same reaction in the same reactor with the same inlet conditions!

 Reactor must operate pear one of these steady states

Reactor must operate near one of these steady statesthis requires knowledge of their stability!

Consider a jacketed CSTR with constant heat capacity, negligible shaft work, ΔC_p =0, first order kinetics, all feeds at the same temperature (T_{i0} = T_0), constant T_a in jacket, and an overall heat transfer coefficient

$$\dot{Q} = UA(T_a - T)$$

$$TEB: 0 = \dot{Q} - F_{A0} \sum_{i=1}^{n} \Theta_i C_{p,i} [T - T_{i0}] - \Delta H_{RX}(T) F_{A0} X_A$$

Substituting for $\dot{Q} = UA(T_a - T)$ and $\Delta H_{RX}(T) = \Delta H_{RX}^{\circ}(T_R)$ since $\Delta C_P = 0$

$$\rightarrow 0 = UA\left(T_a - T\right) - F_{A0} \sum_{i=1}^{n} \Theta_i C_{p,i} \left[T - T_{i0}\right] - \Delta H_{RX}^{\circ}(T_R) F_{A0} X_A$$

Bring terms that remove heat to other side of equation:

$$\rightarrow F_{A0} \sum_{i=1}^{n} \Theta_{i} C_{p,i} [T - T_{i0}] - UA (T_{a} - T) = -\Delta H_{RX}^{\circ} (T_{R}) F_{A0} X_{A}$$

$$\rightarrow \sum_{i=1}^{n} \Theta_{i} C_{p,i} [T - T_{i0}] - \frac{UA (T_{a} - T)}{F_{A0}} = -\Delta H_{RX}^{\circ} (T_{R}) X_{A}$$
Heat removed term = R(T) Heat generated term = G(T)

Heat removed term $\equiv R(T)$ Heat generated term $\equiv G(T)$

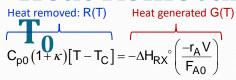
A steady-state occurs when R(T) = G(T)

Even More Terms...

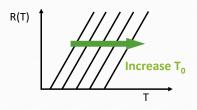
Heat removed term \equiv R(T) Heat generated term \equiv G(T) $\sum_{i=1}^{n} \Theta_{i} C_{p,i} [T - T_{i0}] - \frac{UA(T_{a} - T)}{F_{A0}} = -\Delta H_{RX}^{\circ} (T_{R}) X_{A}$ $C_{P0} = \sum \Theta_{i} C_{Pi} \qquad V = \frac{F_{A0} X_{A}}{-r_{A}} \rightarrow \frac{-r_{A} V}{F_{A0}} = X_{A}$ Substitute $\rightarrow C_{p0} [T - T_{i0}] - \frac{UA(T_{a} - T)}{F_{A0}} = -\Delta H_{RX}^{\circ} (T_{R}) \left(\frac{-r_{A} V}{F_{A0}}\right)$ More substitutions: $\kappa = \frac{UA}{C_{p0} F_{A0}} T_{c} = \frac{T_{0} F_{A0} C_{p0} + UAT_{a}}{UA + C_{p0} F_{A0}} = \frac{\kappa T_{a} + T_{0}}{1 + \kappa}$ $\Delta H_{RX}^{\circ} = \Delta H_{RX}^{\circ} (T_{R})$ $\rightarrow C_{p0} (1 + \kappa) [T - T_{C}] = -\Delta H_{RX}^{\circ} \left(\frac{-r_{A} V}{F_{A0}}\right)$ Heat

Heat removed: $R(T) = C_{p0} (1 + \kappa) [T - T_C]$ generated: $G(T) = -\Delta H_{RX}^{\circ} \left(\frac{-r_A V}{F_{A0}} \right)$

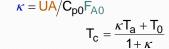
Heat Removal Term and



R(T) line has slope of $C_{P0}(1+\kappa)$



When T₀ increases, slope stays same & line shifts to right



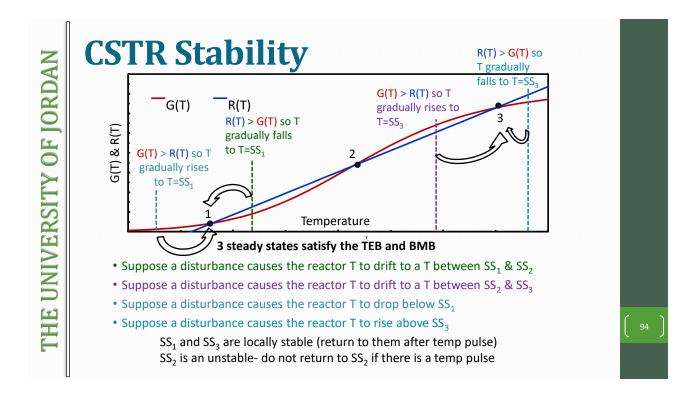
 $\kappa = 0$ Increase κ

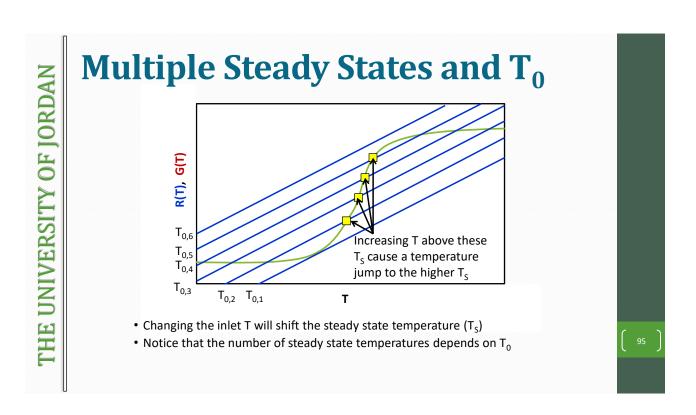
When κ increases from lowering F_{A0} or increasing heat exchange, slope and x-intercept moves

 $T_a < T_0$: x-intercept shifts left as $\kappa \uparrow$

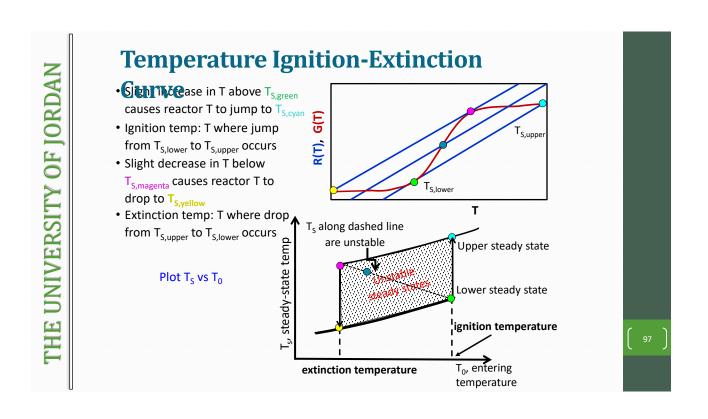
 $T_a > T_0$: x-intercept shifts right as $\kappa \uparrow$

 κ =0, then T_C = T_0 κ = ∞ , then T_C = T_a





Multiple Steady States (MSS) A b c d e f T Finding Multiple Steady States with To varied



Multiple Steady States (MSS) Multiple Steady States (MSS) Temperature ignition-extinction curve

