(0905421) Chemical Reaction Engineering I In-Class Assessment # 6 (Chapter 2) Partner (1) Name: Sowah Partner (2) Name: _ Identity (1) #: Identity (2) #: _

Self-Test

Q1. Which system is most efficient for an intermediate conversion of (0.3)?

Q2. Which system is most efficient for an intermediate conversion of (0.65)?

Q3. Which system makes the best use of the reactor volume (i.e., least "wasted" volume)?

(0905421) Chemical Reaction Engineering I – ICA # 5 (Chapter 2) – Dr. Linda Al-Hmoud

0905421) Chemical Reaction Engineering I In-Class Assessment # 4 (Cl	hapter 2)
Partner (1) Name: Partner (2) Name:	
dentity (1) #: Identity (2) #:	
the gas-phase reaction $A + B \rightarrow C$ described by the data in the table below is to be carried and 227 °C. The feed contains 41% A, 41% B, and 18% inert, and flows at a rate of 1	d out at 10 mod/s.
$-T_{A}(mol/(1, min))$ 0.2	mol/s/5
X 0.0 0.1 0.4 0.7	0.9
(a) What is the volume of a single back-mix reactor necessary to achieve 70% conve	ersion?
V = FACE(Xout -Xin) -ra (out) Pat	V = FAOX 3
FAO: 0141 (PV) mol victor	V = FA X = -VA = 1468L
FAO = PAO UO PI	40=YA Foor
(b) What is the volume of a single tubular reactor necessary to achieve 60% conver	sion?
PFR	11 X la VIL
X FAO = -	0.08206×500
PFA: XX	
$V = \begin{cases} F_{A \circ \partial X} \\ -r_{A} \end{cases}$ $F_{A \circ A} = 0$	o. 1 mo
0 V=V X = 0.6	
FAU P XX X = 0.6 X = 0.6 X is not constant X of modes For (flowers) is not X = 0.6	a - sactart
FAU 9 dx x is not constant is no exot modests (thousand) is no	A COUPLE
THO) - TA	
-ra des	
-1A OF	
X	
- ra designation of the state o	
TA 2	
- Aua	
V = FAO Acra	
Eurve	Teciela /
(0905421) Chemical Reaction Engineering I – ICA # 4 (Chapter 2) – Dr. Linda Al-Hmou	ıd ×

Scanned by CamScanner

Levenspiel Plots in Terms of Conversion concentration.

[Equation (1)] in terms of the concentration, C_A , rather than in report $-r_A$ as a function of concentration rather than conversion. We can rewrite the design equation for a plug-flow reactor of one species [i.e., $-r_A = f(C_A)$], it is usually convenient to For reactions in which the rate depends only on the concentration

terms of conversion for the special case when
$$v = v_0$$
.

$$V = F_{A0} \int_0^X \frac{dX}{-r_A} e^{-\frac{1}{2} \sqrt{r_0}} \int_0^{x_0} \frac{dx}{r_0} e^{-\frac{1}{2} \sqrt{r_0}} e^{-\frac{1}{2} \sqrt{r_0}} \int_0^{x_0} \frac{dx}{r_0} e^{-\frac{1}{2} \sqrt{r_0}} e^{-\frac{1}{2} \sqrt{r_0$$

 F_{A0} and F_{A} : Now write X in terms of entering and exiting molar flow rate,

X = -

1 - tA

Equation (3), we get For the special case when $v = v_0$, plugging Equation (2) into 3

when X = 0, $C_A = C_A$ when X = X, $C_A = C_A$ Differentiating Equation (4) yields

$$dX = \frac{1}{\sqrt{2}} \frac{1}$$

And substituting in Equation (1):

2x " 540

$$V = F_A \circ \begin{cases} \frac{\epsilon}{V} & \partial C_A = \frac{F_A \circ}{C_A \circ V_A} & \frac{\epsilon}{V_0} &$$

or reactor volume for reaction rates that depend only on the concentration of one species. flow rate v_0 that may prove more useful in determining the space time Equation (7) is a form of the design equation for constant volumetric

constant volume. For reaction orders greater than zero, the rate Figure 1 shows a typical curve of the reciprocal reaction rate as a decreases as concentration decreases. The area under the curve gives function of concentration for an isothermal reaction carried out at the space time necessary to reduce the concentration of A from C_{A0} to

Scanned by CamScanner

Partner (1) Name: Sarah	Partner (2) Name:
Identity (1) #:	Identity (2) #:
Data on the tenebrionid beetle whose body mass is push a 35-g ball of dung at (6.5 cm/s) at $27 ^{\circ}\text{C}$, $13 ^{\circ}\text{C}$ at $40 ^{\circ}\text{C}$. How fast can it push dung at $41.5 ^{\circ}\text{C}$? Hint: the behavior of the beetle can be modeled by $27 ^{\circ}\text{C}$ 30° $37 ^{\circ}\text{C}$ 31° $40 ^{\circ}\text{C}$ $37 ^{\circ}$	s 3.3 g show that it can n/s at 37 °C, and 18 cm/s the Arrhenius equation. 3.3 41.50° 314.5 2.7 2.4 cm /S
E = 2.74 x 103	600 K

(0905421) Chemical Reaction Engineering I – ICA # 7 (Chapter 3) – Dr. Linda Al-Hmoud

P3-16_B Calculate the equilibrium conversion and concentrations for each of the following reactions. (a) The liquid-phase reaction BB = (B0 = 2=1 $A + B \leftrightarrow C$ with $C_{A0} = C_{B0} = 2 \text{ mol/dm}^3$ and $K_C = 10 \text{ dm}^3/\text{mol}$. - PA = K (CACB - Cc) equilibre $CA = (A_0 (1-X)) \begin{cases} 0 = 12 \left((A_0^2 (1-X_0)^2 - (A_0 X_0) \right) \\ (A_0 (1-X_0)^2 = X_0 \right) \end{cases}$ $CA_0 (1-X_0)^2 = X_0$ Cc = (Ao(O+X) 2 (1 - Xe)2 = Xe Xes 0.95 (b) The gas-phase reaction P=Po (Isoparc), yAO= of 400 K and 10 atm. At this temperature, $K_C = 0.25 (dm^3/mol)^2$. carried out in a flow reactor with no pressure drop. Pure A enters at a temperature CA0 = 10 x1 = 0.305 mol Assume -MA = K (CA - Ccs) 8 = 4 A 0 8 = 2 CA = (A0 (1-X) C: (Ao (0+3x) 0 = K (CAO(1-X) - (3 CAOX) / K) 1 - Xe = 3 SAO Xe3 0.305 (1+2x)2 (0.25)

The University of Jordan (a) (a) (a) (b) School of Engineering Chemical Engineering Department
(0905421) Chemical Reaction Engineering I In-Class Assessment # 11 (Chapter 3)
Partner (1) Name: Partner (2) Name:
Identity (1) #: $\frac{-6a = k \cdot (4a^{3/2} \cdot (1-k)^{3/2})}{(1-k)^{3/2}}$ [Identity (2) #:
P3-11 _A Set up a stoichiometric table for the each of the following reactions and express the concentration of each species in the reaction as a function of conversion evaluating all constants (e.g. ϵ . Θ). Then, assume the reaction follows an elementary rate law, and write the reaction rate solely as a function of conversion, i.e., $-r_A = f(X)$.
(c) For the isothermal, isobaric, catalytic gas-phase oxidation
Fred: Incol At 0.5 not B
Plansystem C2H4+102 CH2-CH: Read and
the reaction rate solely as a function of conversion, i.e., $-r_A = f(X)$. (c) For the isothermal, isobaric, catalytic gas-phase oxidation Free : [mol A + 0.5 nol B] Plow system C ₂ H ₄ + O ₂ \longrightarrow CH ₂ -CH: [mining mixture of only oxygen] the feed enters a PBR at 6 atm and 260°C and is a stoichiometric mixture of only oxygen and ethylene. A + $\frac{1}{2}$ B \longrightarrow C Charge (early)
species symbols that FAO (1-X) C2Hy B 1 FAO FAO X FAO X FAO X FAO X FAO X
Total Fig = FAO + Efa. Fig = FAO + Efa. Fig = FAO - FAOX Fig = FAOX
$(A = \frac{C_{AO}(1-X)}{1+\Sigma X} = \frac{1}{P_{O}} =$
5= 1= (1-1-1) 3(2)
$(n_0 = \frac{PA_0}{RT} = \frac{9A_0P}{RT} = \frac{3}{3} \times 6$
$CA = 0.0914 (1-X)$ $1-\frac{X}{3}$ $(0905421) \text{ Chemical Reaction Engineering I - ICA # 11 (Chapter 3) - Dr. Linda Al-Hmoud}$
$= \frac{(A_0(0+X))}{1-\frac{1}{3}}$ $= \frac{(A_0(0+X))}{1-\frac{1}{3}}$ $= \frac{(A_0(0+X))}{1-\frac{1}{3}}$ ask recieve

6.15
$$\Rightarrow$$
 0.15 $\frac{\sqrt{x}}{4}$ 0? = 0.18 $\frac{75}{45}$
 $\frac{\sqrt{x}}{4}$
 $\frac{\sqrt{x}}{4}$

0.21 $\frac{\sqrt{x}}{5}$

0.35 $\frac{\sqrt{x}}{5}$

0.37 $\frac{\sqrt{x}}{5}$

0.38 $\frac{\sqrt{x}}{5}$

0.38 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.31 $\frac{\sqrt{x}}{5}$

0.31 $\frac{\sqrt{x}}{5}$

0.32 $\frac{\sqrt{x}}{5}$

0.32 $\frac{\sqrt{x}}{5}$

0.33 $\frac{\sqrt{x}}{5}$

0.34 $\frac{\sqrt{x}}{5}$

0.35 $\frac{\sqrt{x}}{5}$

0.36 $\frac{\sqrt{x}}{5}$

0.37 $\frac{\sqrt{x}}{5}$

0.38 $\frac{\sqrt{x}}{5}$

0.38 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{x}}{5}$

0.30 $\frac{\sqrt{x}}{5}$

0.31 $\frac{\sqrt{x}}{5}$

0.32 $\frac{\sqrt{x}}{5}$

0.33 $\frac{\sqrt{x}}{5}$

0.34 $\frac{\sqrt{x}}{5}$

0.35 $\frac{\sqrt{x}}{5}$

0.35 $\frac{\sqrt{x}}{5}$

0.37 $\frac{\sqrt{x}}{5}$

0.38 $\frac{\sqrt{x}}{5}$

0.38 $\frac{\sqrt{x}}{5}$

0.39 $\frac{\sqrt{$

Scanned by CamScanner

Chemical Reaction Engine	of Engineering ineering Department - (A 5 K CAO(1-X) CAO (0.94-0.8X)
Partner (1) Name:	n-Class Ass
Saran.	Partner (2) N
Identity (1) #:	Partner (2) Name: = 5000 (0.036) 2 (1.14)
Prod	Identity (2) #:
Production of Nitric acid	
acid is made commercially from	(, , p, o) (x)
Nitric acid is made commercially from nitric oxioxidation of ammonia. The feed consists of 15 mol% ammonia in air extensions.	Xo. 35 S. C.
The feed consists of 15 $\frac{4NH_3 + 50_2}{4}$	ANO LOUG
What is the total entering	8.2 atm and 227 °C
The feed consists of 15 mol% ammonia in air at 1. What is the total entering concentration? What is the entering concentration of ammon 3. Set up a stoichiometric at 11.	8.2 atm and 227 °C. $4A + 5B \rightarrow 4C + 6D$
5. Set up a stoichiometric table with amount	na?
a. Express C _i for all species as functions	as your basis of calculation. s of conversion for a constant-volume batch reactor.
Express P _T as a function of X.	torial constant-volume batch reactor.
b. Express P _i and C _i for all species as fur 4. Write the combined rate law solely in terms of	nctions of conversion for a flow reactor.
3(a) and 3(b) above. Assume the reaction is 6	of the molar flow rates and rate law parameters for
rate at the given condition is $5000 L/(mol. min)$.	non elembly Realth ()
1. CTO = PT = 8.2 atm	(027+272) k = 0.2 mol
mol.,	1 X (ZZATELS) K
	2 244
2. CNH30 = 0.15 PT =	0.15 x 0.2 = 0.03 mol
CT SO PT	x(0.2) = 0.21 x0-85 x8.7
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	y chang leving 227+271)
3. Species Symbol Entri	3
NIAS	
BA DANA	10 - NAOX NAO(1-X)
62	
C	+ \$ NA. Y 0. 8 NA. X
NO	6 NAOX 1.2 NAOX
0	& NAOX 1.2 NAOX
420	3.76NA
N2 I 45 NA	40 —
3.76	5)
417	4 - TA = KCA CB COOCO
NID all re	
Min of or Long	-ra: 12 chockers shot
	I – ICA # 9 (Chapter 3) – Dr. Linda Al-Hmoud
(0905421) Chemical Reaction Engineering I	I – ICA # 9 (Chapter 3) – Dr. Linda Al-Hmoud
(0905421) Chemical Reaction Engineering I	I – ICA # 9 (Chapter 3) – Dr. Linda Al-Hmoud
	1-ICA#9 (Chapter 3) - Dr. Linda Al-Hmoud 1.2-1 = coret = 5000 x (0.036) 2 CI-X rect = 30.8

School of Engineering Chemical Engineering Department

(0905421) Chemical Reaction Engineering I	In-Class Assessment # 10 (Chapter 3)
partner (1) Name: _Savach.	Partner (2) Name:
Identity (1) #:	Identity (2) #

Using the data in the table below, calculate the activation energy for the first order decomposition of benzene diazonium chloride to give chlorobenzene and nitrogen:

k(s ⁻¹)	0.00043	0.00103	0.00180	0.00355	0.00717
T(K)	313.0	319.0	323.0	328.0	333.0

Partner (1) Name: ___

Partner (2) Name:

Identity (1) #: _____ | Identity (2) #: __

4.4 Tubular Reactors

The differential form of the PFR design equation

$$F_{A0}\frac{dX}{dV} = -r_{A}$$

As an example, consider the reaction

A ----- Products

for which the rate law is

$$-r_A = kC_A^2$$

Gas Phase

For constant-temperature $(T = T_0)$ and constant-pressure $(P = P_0)$ gas-phase reactions, the concentration is expressed as a function of conversion:

$$C_A = \frac{F_A}{v} = \frac{F_A}{v_0(1 + \varepsilon X)} = \frac{F_{A0}(1 - X)}{v_0(1 + \varepsilon X)} = C_{A0}\frac{(1 - X)}{(1 + \varepsilon X)}$$

and then combining the PFR mole balance, rate law, and stoichiometry

$$V = F_{A0} \int_{0}^{X} \frac{(1 + \varepsilon X)^{2}}{kC_{A0}^{2}(1 - X)^{2}} dX$$

From the integral equations in Appendix A.I. we find that

$$V = \frac{v_0}{kC_{\Lambda^0}} \left[2\varepsilon (1+\varepsilon) \ln(1-X) + \varepsilon^2 X + \frac{(1+\varepsilon)^2 X}{1-X} \right]$$
 (4-17)

Using Equation (4-17), a plot of conversion along the length (i.e., volume) of the reactor is shown for four different reactions, and values of E are given in Figure 4-7 for the same value of [vo/kCA0] to illustrate the effect of volume change with reaction.

Figure 4-7 Conversion as a function of distance down the reactor. We now look at the effect of the change in the number of moles in the gas phase on the relationship between conversion and volume. For constant temperature and pressure, Equation (3-45) becomes

$$v = v_0 \left(1 + \varepsilon X \right) \tag{3-45}$$

Question 1

pure A.

Find ϵ in each of the 4

cases shown in Figure 4-7,

where the feed consists of

\$ = 40 8

Let's now consider three types of reactions, one in which $\varepsilon = 0$ ($\delta = 0$), one in which $\varepsilon < 0$ ($\delta < 0$), and one in which $\varepsilon > 0$ ($\delta > 0$). When there is no change in the number of moles with reaction, (e.g., $A \rightarrow B$) $\delta = 0$ and $\varepsilon = 0$: then the fluid moves through the reactor at a constant volumetric flow rate ($v = v_0$) as

When there is a decrease in the number of moles ($\delta < 0$, $\epsilon < 0$) in the gas phase (e.g., $2A \rightarrow B$), the volumetric gas flow rate decreases as the conversion increases; for example,

$$v=v_0(1-0.5X)$$

Consequently, the gas molecules will spend longer in the reactor than they would if the flow rate were constant, $v = v_0$. As a result, this longer residence time would result in a higher conversion than if the flow were constant at uo.

On the other hand, if there is an increase in the total number of moles $(\delta > 0, \varepsilon > 0)$ in the gas phase (e.g., A \rightarrow 2B), then the volumetric flow rate will increase as the conversion increases; for example,

$$v = v_0 (1 + X)$$

and the molecules will spend less time in the reactor than they would if the volumetric flow rate were constant. As a result of this smaller residence time in the reactor the conversion will be less than what would result if the volumetric flow rate were constant at vo. converior Recidor tim

Question 2 - After reading the previous 2 pages:

(a) What is the relation between ε and the conversion X?

(b) In your own words, explain the reason behind this relation.

molini Real

5: 50 (1+2x)

 $\sum \uparrow \Rightarrow \cup \uparrow$ => T = less time iswarlable for moleules

(0905421) Chemical Reaction Engineering I – ICA # 14 (Chapter 4) – Dr. Linda Al-Hmoud

to reat. inside the reactor => X+

(0905421) Chemical Reaction Engineering I	In-Class Assessment # 15 (Chapter 4)
Partner (1) Name:	_ Partner (2) Name:
Identity (1) #:	Identity (2) #:
The elementary liquid-phase reaction $A + B \rightarrow C$ impellers. The mixing patterns in the CSTR are CSTRs in series. Species A and B are fed in sepwith inert material. Each CSTR is 200 dm ³ and	such that it is modeled as three equal sizes
dm ³ /min of A and 10 dm ³ /min of B.	iv 0
B 1	Concentra (C You so service of the
(A0 = 2 00 100)	X = 0.488
A. What is the conversion of A? $A = \frac{F_{A0}}{10 + 10} = \frac{2 \times 10}{10 + 10}$	allel with A and B split equally among the three
Additional Information $C_{A0} = C_{B0} = 2.0 \text{ mol/dm}^3$ $k = 0.025 \text{ dm}^3/\text{mol/min}$ $= 1 \text{ C}$	$x = 1 - \frac{1}{(1 + p_a)^3}$
(x-x)	N. KTCO.
$CA = CAO (C-X) = CA$ $CB = CAO (C-X) = CA$ $CBO = \frac{2}{2} = 1$	Da: KTCAO = 0.025 x lox1
C80 = 2 "	
20/3 med. 1	= 0.25
20/3 ned 30 L 8	
= 20md 20 120.33	3 X = 1- (1+0.25)3
Vo= 20101 1 1301	X = 0.49
$V_1 = \frac{F_{A_0} \kappa_i}{-r_{A_1}}$	
$200 = \frac{20/3}{(0.025)} \frac{\chi_1}{(1)^2 (1-\chi)^2}$	x=0.333
(0905421) Chemical Reaction Engineering I	- ICA # 15 (Chapter 4) - Dr. Linda Al-Hmoud

Concertration

(0905421) Chemical Reaction Engineering I	In-Class Assessment # 13 (Chapter 4)
Partner (1) Name:	Partner (2) Name:
Identity (1) #:	Identity (2) #:

P4-13 Compound A undergoes a reversible isomerization reaction, A \(\to B\), over a supported metal catalyst. Under pertinent conditions, A and B are liquid, miscible, and of nearly identical density; the equilibrium constant for the reaction (in concentration units) is 5.8. In a fixed-bed isothermal flow reactor in which back mixing is negligible (i.e. plug flow), a feed of pure A undergoes a net conversion to B of 55%. The reaction is elementary. If a second, identical flow reactor at the same temperature is placed downstream from the first, what overall conversion of A would you expect if:

- (a) The reactors are directly connected in series? (Ans.: X = 0.745.)
- (b) The products from the first reactor are separated by appropriate processing and only the unconverted A is fed to the second reactor?

Solution (a): Follow the algorithm step-by-step:

0- Draw a sketch of the problem and write down all given information: Kc, X1 and any others.

1- Write the mole balance equation. Remember, the mole balance depends on the reactor type.

$$\frac{\partial x}{\partial w} = \frac{-ya'}{Fa}$$

2- Write the rate law. Ask yourself: is it elementary or does it follow elementary rate law?

3- Do the stoichiometry (i.e. write the concentration of species appearing in the rate law in terms of conversion). Ask yourself again: Is it liquid or gas phase? Constant volume or not?

Scanned by CamScanner

Now the last step: COMBINE. This means putting the concentrations in step (3) back in the rate law (2), and substituting this rate law, which is now in terms of conversion, in the mole balance you wrote in (1).

5- Finally, solve the equation you got in (4) and find X_2 .

(0905421) Chemical Reaction Engineering I

In-Class Assessment # 12 (Chapter 4)

Name: Just die indu one

Identity #: 01540 89

Q1: The elementary liquid phase reaction $A + B \rightarrow C$ is carried out in a CSTR. The initial concentrations of A and B in the entering stream are both 2M, and the specific reaction rate is 0.01 dm³/(mol.min). Assuming a stoichiometric feed (10 mol $\overline{A/min}$) to the reactor: Calculate the reactor volume to achieve 90% conversion.

Solution: Follow the algorithm step-by-step:

0- Write down all given information: C_{A0} , C_{B0} , k, F_{A0} , F_{B0} , v_0 , and X.

1- Write the mole balance equation. Remember, the mole balance depends on the reactor type.

2- Write the rate law. Ask yourself: is it elementary or does it follow elementary rate law?

3- Do the stoichiometry (i.e. write the concentration of species appearing in the rate la terms of conversion). Ask yourself again: Is it liquid or gas phase? Constant volume

(0905421) Chemical Reaction Engineering I

In-Class Assessment # 12 (Chapter 4)

Name: کوکی دافس

Identity #: 0145594

Q1: The elementary liquid phase reaction $A + B \rightarrow C$ is carried out in a CSTR. The initial concentrations of A and B in the entering stream are both 2M, and the specific reaction rate is 0.01 dm³/(mol.min). Assuming a stoichiometric feed (10 mol A/min) to the reactor: Calculate the reactor volume to achieve 90% conversion.

Solution: Follow the algorithm step-by-step:

0- Write down all given information: CAO, CBO, k, FAO, FBO, VO, and X.

1- Write the mole balance equation. Remember, the mole balance depends on the reactor type.

$$V = \frac{F_{A \cdot X}}{-f_{A}} = \frac{F_{A} - F_{A \cdot Y_{A} \cdot V} = \emptyset}{-f_{A} \cdot X}$$

$$\Rightarrow V = \frac{F_{A} - F_{A \cdot Y_{A} \cdot V}}{-f_{A} \cdot X} \Rightarrow \frac{F_{A \cdot X}}{-f_{A} \cdot X}$$

2- Write the rate law. Ask yourself: is it elementary or does it follow elementary rate law?

3- Do the stoichiometry (i.e. write the concentration of species appearing in the rate law in terms of conversion). Ask yourself again: Is it liquid or gas phase? Constant volume or not?

$$C_{A} = C_{A} \cdot (1-x)$$
 $C_{B} = C_{A} \cdot (0 - \frac{b}{a} \cdot x) \Rightarrow C_{A} \cdot (1-x)$
 $C_{B} = C_{A} \cdot (0 - \frac{b}{a} \cdot x) \Rightarrow C_{A} \cdot (1-x)$
(Liquid phase, constant Volume)

4- Now the last step: COMBINE. This means putting the concentrations in step (3) back in the rate law (2), and substituting this rate law, which is now in terms of conversion, in the mole balance you wrote in (1).

$$V = \frac{f_{A} \cdot (A^{2} \cdot (1-x)^{2})}{K \cdot C_{A^{2}} \cdot (1-x)^{2}}, \quad V = \frac{V_{a} \cdot x}{K \cdot C_{A^{2}} \cdot (1-x)^{2}}$$

(0905421) Chemical Reaction Engineering I – ICA # 12 (Chapter 4) – Dr. Linda Al-Hmoud – P a g e | 1

5- Now, solve the equation you got in (4) and find V that will give 90% conversion. V = V. . x = 5 x 0.9 = 22,500 L K, CA. (1-x)2 = 0.01 x Zx (1-0.9)2 Q2: The following gas phase reaction is first-order in A and zero-order in B;

$$A + B \rightarrow C$$

The reaction is carried out isothermally and isobarically in a PFR. The initial concentrations of A and B in the entering stream are both 2M, and the specific reaction rate is <u>0.01/min</u>. Assuming a stoichiometric feed (10 mol A/min) to the reactor, calculate the reactor volume needed to achieve 90% conversion.

Solution: Follow the algorithm step-by-step:

0- Write down all given information: C_{A0} , C_{B0} , k, F_{A0} , F_{B0} , v_0 , and X.

1- Write the mole balance equation. Remember, the mole balance depends on the reactor type.

2- Write the rate law. Ask yourself: is it elementary or does it follow elementary rate law? If not, find the information that allows you to write the correct rate law.

3- Do the stoichiometry (i.e. write the concentration of species appearing in the rate law in terms of conversion). Ask yourself again: Is it liquid or gas phase? Constant volume or not? Which species is the limiting reactant? If it's gas phase, is there a temperature change? Is there a pressure drop? What is the value of y_{A0} ? δ ? ϵ ?

4- Now the last step: COMBINE. This means putting the concentrations in step (3) back in the rate law (2), and substituting this rate law, which is now in terms of conversion, in the mole balance you wrote in (1).

$$V = \frac{V_0}{K_A} \cdot \frac{(1-x)}{(1-o.5x)}, \quad V = \frac{1}{A} \cdot \frac{dx}{-(A)} = V = \frac{1}{A} \cdot \frac{dx}{(1-o.5x)}$$

$$V = \frac{V_0}{K_A} \cdot \frac{(1-o.5x)}{(1-o.5x)} \cdot \frac{dx}{(1-o.5x)}$$

$$V = \frac{V_0}{K_A} \cdot \frac{(1-o.5x)}{(1-o.5x)} \cdot \frac{dx}{(1-o.5x)}$$

$$V = \frac{V_0}{K_A} \cdot \frac{dx}{(1-o.5x)} \cdot \frac{dx}{(1-o.5x)}$$

$$V = \frac{V_0}{V_0} \cdot \frac{dx}{(1-o.5x)} \cdot \frac{dx}{(1-o.5x)}$$

$$V = \frac{V_0}{V_0} \cdot \frac{dx}{(1-o.5x)} \cdot \frac{dx}{(1-o.5x)}$$

$$V = \frac{V_0}{V_0} \cdot \frac{dx}{(1-o.5x)} \cdot \frac{dx}{(1-o.5x)}$$

5- Now, solve the equation you got in (4) and find V that will give 90% conversion. If you are integrating, make sure to correctly define the boundary conditions (i.e. @ V=0, X=0). Useful integrals are available in Appendix A in your textbook. An example of those integrals is shown below. You may need this one to solve your problem!

shown below. You may need this one to solve your
$$\int_{0}^{x} \frac{(1+ex)dx}{1-x} = (1+ex) \ln \frac{1}{1-x} - ex$$

$$V = \frac{\sqrt{2}}{k} \cdot \int_{0}^{x} \frac{(1-o.5x)dy}{(1-x)} dy = (1+ex) \ln \frac{1}{1-x} - ex$$

$$= \left(\frac{1-o.5}{k}\right) \ln \left(\frac{1}{1-o.9}\right) + \left(\frac{1}{0.5} + \frac{1}{0.5} + \frac{1}{0.5}$$

Differential Method

2. Numerical differentiation formulas

Time (min)	t _O	tj	12	13	<i>t</i> ₄	15
Concentration (mol/dm3)	CAD	CAI	CAZ	C_{A3}	C_{A4}	C_{A5}

The three-point differentiation formulas

Initial point:

entiation formulas,
$$\left(\frac{dC_{A}}{dt}\right)_{t_{0}} = \frac{-3C_{A0} + 4C_{A1} - C_{A2}}{2\Delta t}$$

Interior points:

$$\frac{dC_{A}}{dt}\Big|_{t_{1}} = \frac{1}{2\Delta t} \left[\left(C_{A(i+1)} - C_{A(i-1)} \right) \right]$$

$$\frac{dC_{A}}{dt}\Big|_{t_{2}} = \frac{1}{2\Delta t} \left[\left(C_{A3} - 4C_{A4} + 3C_{A5} \right) \right]$$

$$\frac{3 \times 6.5 - 4 \times 6.4 + 6.4}{2 \times 6.9}$$

Last point:

$$\frac{\left(\frac{dC_{A}}{dt}\right)_{t_{5}}}{\left(\frac{3 \times 6.5 - 4 \times 6.4 + 3C_{A5}}{2 \times 6.5}\right)}$$

(1) //	iame: _		n Engineering	:1		In-Cla	ss Asses	sment #	18 (Cha	oter 5
rtner (1) I[)#:			_			2) Name:			
reaction A	→ B is ca	- i - d					(2) ID #:			
ction order	and specif	fic re	out in a constaction rate from	tant v	olume e follow	batch i	reactor. Do	etermine	the	
	homenal	٢	- 9cv	0.05	0.03	0.019	ده. <u>۲ ه. د</u> وځ			•
			t (min)	0	10	20	30	- 3	CA :	15 60
			C _A (mol/dm³)	1	0.6	0.4	0.3		(A) (A) (A)	= (n K
			- DCA Dt	-	42104	10:02	to.01		10 1	
- DCA			-dca	0.052	0.028	0.015	0.007			`
Dt	×		IN CA 1	0	-0,21	-0.451			(~ (- 9 &	ار) د
	y	5	J 35%	-2.9	-3-6	1-4.2	- 4.0			P
				-	5	14_	-3	- 1 	1.)	40
										o. L
			=-3 exp(2)						ور
	\		= -3 N = 0 XQL	· 3/		1	Slop	1.5		0.0
		1	7 ,0.0	7		/x- \	5101		,	ا ، ه
				\neg						
2										گ. د
					4/ ,			_	-	ا س
1 +	- 4-				/		+			
										. • ti
. —	1									
			-				7			
			-							
		\neg	2,3,3		\(1	4		
					1	-			ares	t

The oxidation of propene (P) to acrolein (A) was carried out over a Mo-Pr-Bi catalyst [Ind. Eng. Chem. Res., 26, 1419 (1987)].

CH3CH=CH2+O2 → CH2=CHCHO+H2O

It has been proposed to correlate the data using the power law model for the rate law:

$$r_{\text{acrolein}}^{\sharp} = k P_p^{\alpha} P_{o_2}^{\beta}$$

The reaction was carried out in a differential reactor with 0.5 g of catalyst at $\underline{623}$ K. From the data below, determine the reaction orders with respect to propene (α) and oxygen (β) and the specific reaction rate, k.

		-
· (N)	بذبه	
Dat	المحك	\ \ '
,80	02	`
8	500	بر
٤٠٠٠	wher	e

	F _A (mmol/h)				0.39	0.6	0.14	1.44
_	P _P (atm)	0.1	0.2	0.05	0.3	0.4	0.05	0.5
	P ₀₂	0.1	0.2	0.05	0.01	0.02	0.4	0.5

K, OK, B P!

 F_A = exiting molar flow rate of acrolein, mmol/h P_P = entering partial pressure of propene, atm P_{CC} = entering partial pressure of oxygen, atm

(0905421) Chemical Reaction Engineering I – ICA # 9 (Chapter 4) – Dr. Linda Al-Hmoud

(0905421) Chemical Reaction Engineering I	In-Class Assessment # 19 (Chapter 5			
Partner (1) Name:	Partner (2) Name:			
Partner (1) ID #:	Partner (2) ID #:			

P5-10 The gas-phase decomposition $A \rightarrow B + 2C$ is carried out in a constant-volume batch reactor. Runs I through 5 were carried out at 100 °C, while run 6 was carried out at 110 °C.

		• • • • • • • • • • • • • • • • • • • •	, 0		\neg	110.
Run	1	2	3	4	5	6
Initial Concentration, CAO (mol/L)	0.025	0.0133	0.010	0.05	0.075	0.025
Half-life, t _{1/2} (min)	4.1	7.7	9.8	1.96	1.3	2.0

- (a) From the data in the table, determine the reaction order and specific reaction rate.
- (b) What is the activation energy for this reaction?

(0905421) Chemical Reaction Engineering I – ICA # 19 (Chapter 5) – Dr. Linda Al-Hmoud