The University of Jordan Faculty of Engineering & Technology **Chemical Engineering Department**

(0905421) Chemical Reaction Engineering I	First Semester – 2014/2015
Quiz # 7 (Chap	ter 8)
Name:	ID#

a) Calculate ΔH_{Rx}^o , ΔC_P , and $\Delta H_{Rx}(400~K)$ for the reaction $A+B\to 2C$ from the information provided in the following table:

Compound (i)	Heat of formation $(H_i^o$ (298 K)) kcal/mol	Specific heat capacity (C_{Pi}) cal/(mol.°C)
Α	-100	80
В	-40	20
С	-30	30

b) The reaction in part (a) was run adiabatically in a CSTR. An equimolar feed in A and B enters at 400 K. Calculate the steady-state reactor temperature if it reached 60% conversion.

Info: For constant heat capacities, the general adiabatic energy balance for any reaction is

$$T = T_o - \frac{X[\Delta H_{RX}(T_o)]}{\sum \theta_i C_{Pi} + X \Delta C_P}$$

c) If the feed was changed to an equimolar feed in A, B and an inert E ($C_{PE} = 190 \text{ cal/(mol.}^{\circ}\text{C})$, will the reactor steady-state temperature change? If yes, why? And what is the new temperature?