Analytical Chemistry Second Exam 8/15

	Nam	e:					-		Date: 1	9/12/2	011	
	Reg.	No.:	010	1041	Se	at no.:		•••••				
	Section	on:	(1		2		4	u_	ا، بمب	مد ۵ ثلاث	· î
				** **	*****	* * * *	****	***	***	* ** **	****	****
,	1.	×	4	c	d	e	9.	*	b	c	d	e
,	2.	a	b	(F	ď	×	10.	×	b	c	d	e
,	3.	À	b	c	d	*	11.	a	b	×	Ød-	e
,	4.	a	*	c	d	e	$\overbrace{12.}$	¥	b	c	d	e
	5.	a	b	×	d	е	13.	a	b	c	×	e
E	6.	a	B	c	X	e	14.	∂ a	*	c	d	_ e
1	7.	a	¥	c	d	e °	15.	a	b ,	c	d	×
	8.	a	*	c	d	e						

GOOD LUCK

```
ZH10 = 430+ + OH
                                                                          Fe (OH)3 = Fe+3 + SOH
                                                                                   [047 = 3 February + [0467]
1. Calculate the molar solubility of Fe(OH)_3 (Ksp = 5 \times 10^{-39}) in water
                                                                                      13 E Fe+33 KK CH30-7
 (a) 2.0 \times 10^{-18} M
                      (b) 5.0 \times 10^{-18} \text{ M}
                                         c) 6.5 ×10<sup>-18</sup> M d) 9.0 ×10<sup>-18</sup> M
                                                                                      [ 547] = [ 410 H
  e) 8.0 ×10<sup>-18</sup> M
                                                                                        [430+] << 3[Fe+2]
  2. Calculate the pH of a solution that is 0.1 M of each Fe(III) and Mg(II), in = [Fe+3] (3 Fe+3] 3
   which Fe(III) is needed to be separated quantitatively from the Mg(II)
                                                                            Ig(II)
F2(0H次); = F2+3 +30H
    as hydroxide. Given that
     K_{sp} for Fe(OH)_3 = 5 \times 10^{-39}
                                                                             Ma(oH), = Ng+2 - 2012-
     K_{sp} for Mg(OH)_2 = 7.1 \times 10^{-12}
     Using 1×10-6 M as criterion for quantitative removal of ions
                                                                           5×10-39 = 1×10 6 [30H] 3.
                            c) 3.23
   a) 5.07,
               b) 8.92
                                         d) 10.77
 3. The molar solubility for SrSO4 is highest when dissolved in a solution that
    has [H<sub>3</sub>O<sup>+</sup>] of:
                                                                                           2.4296 x10-10
    a) 2.50M
    б) 1.50 M
    c) 0.10 M
                                                                           [H30+] $\approx 3[Fe+3]

[01+-] = [H30+]

5x10-39 = [Fe+3](3(1x10-7))
    d) 0.20 M
    e) 0.06 M
  4. Which is the mass-balanced equation for a a solution that is 0.10 M in NaOH and saturated
                                                                                             [Fe+]] = 1.85 ×10-19.
  with Zn(OH)2, which undergoes the reaction:
                                           Nach -> Nat +off
  Zn(OH)_2 + 2OH \rightarrow Zn(OH)_4^{2}
                                         2 oH - + Zn (oH), -> Zn (oH) 4
         a) 0.10 = [Na^{+}] = [OH] + [Zn(OH)_{4}^{2}]
                                                            [No+] =
        (b) 0.10 = [Na^{+}] = [OH^{-}] - 2[Zn(OH)_{4}^{2}]
       0.10 = [Na^{+}] = [OH^{-}] - [Zn(OH)_{4}^{2}]

(d) 0.10 = [Na^{+}] = [OH^{-}] + 2[Zn(OH)_{4}^{2}]
         e) None of the above
   5. Which is the correct charge - balance equation of solution containing 1M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
```

a)
$$[AI^{3+}] + [H_3O^+] = 2[SO_4^{2-}] + [OH^-]$$

b) $3[AI^{3+}] + [H_3O^+] = [SO_4^{2-}] + [OH^-]$
c) $3[AI^{3+}] + [H_3O^+] = 2[SO_4^{2-}] + [OH^-]$
d) $[AI^{3+}] + [H_3O^+] = [SO_4^{2-}] + [OH^-]$
e) None of the above
$$3[AL^{+3}] + [H_3O^{+}] = 2[SO_4^{-2}] + [OH^-]$$

= 14257	4.6 ×10	C
	23110 -8 + 2	4
14: = [5-1] [430] [Hs-]		Cos = Co - 2 5- 3 5- 45 = 45 = 45 + 5- 2 5- 2 5- 2 5- 2 5- 2 5- 2 5- 2 5
[Hs-]		145" = 420+ +5-2
L.		
6. Calculate the molar so	dubility of CuS in a solution in	which the [H3O*] is held constant at
20 x 10 ⁻¹ M. K. for C	uS is 8 v 10 ⁻³⁷ and for H-S K.	$_1 = 9.6 \times 10^{-8}$ and $K_2 = 1.3 \times 10^{-14}$
2.0 x 10 111. 14sp 101 C	, and 10 1125 12	1 - 3.5 x 10 and K ₂ - 1.5 x 10
a) $3.5 \times 10^{-12} \mathrm{M}$ (b) $5.1 \pm 10^{-12} \mathrm{M}$	- 10-9n/ - 2 2 - 10-8n/	6 5470 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
a) 3.5 x 10 M (b) 5.1	x 10 M c) 3.2 x 10 M	
22		8 x 15 77 = 0.048
d) $3.4 \times 10^{-23} M$ e) 4×1	0°4M	KSP = -00 - 00
		370.0 FC-
		8 x 13 =
7 Generation of hydroxid		from urea for the purpose of
nuceinitating Fo ³⁺ on Fo(O)	IT is solved.	from area for the purpose of
precipitating Fe ³⁺ as Fe(O	11)3 is called:	
a) peptization		
(b) precipitation from home	ogeneous solution	
c) coagulation	og on o a bound	
		*
d) digestion of the precipit	tate	
e) coprecipitation		
8 An aqueous solution con	tains NoNO and VD. Thak	
	tains NaNO3 and KBr. The b	
separated as AgBr by add	lition of excess precipitating a	agent AgNO3. The charge on the
surface of the coagulated co	olloidal precipitate is:	1- +2" No.
6		(SOUTH) AARL
MA Positive charge due	to the adsorption of potassiu	im ions
	to the adsorption of nitrate i	
	to the adsorption of silver ion	
d) Noutral cinea mairrow	7 7	
u) Neutrai since primar	ry adsorption layer will neutra	alize the counter ions
	ry adsorption layer will neutrate to the adsorption of bromide	
e) Negative charge due	to the adsorption of bromide	
e) Negative charge due to 9. Which of the following st	to the adsorption of bromide tatements is correct:	e ions.
e) Negative charge due to 9. Which of the following standardisperion of colloidal pre	to the adsorption of bromide tatements is correct: ecipitates occurs when washed	d with distilled water.
e) Negative charge due to 9. Which of the following standardisperion of colloidal pre	to the adsorption of bromide tatements is correct: ecipitates occurs when washed	d with distilled water.
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre 10 inclusion means capturing	to the adsorption of bromide tatements is correct: ecipitates occurs when washed of foreign ions into the spa	d with distilled water. ce lattices of the crystal.
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre k b) inclusion means capturin c) occlusion means entrapn	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into	d with distilled water. ce lattices of the crystal. the crystal during precipitation.
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre (b) inclusion means capturin (c) occlusion means entrapn (d) In gravimetric analysis p	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into	d with distilled water. ce lattices of the crystal.
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre (b) inclusion means capturing (c) occlusion means entraphed) In gravimetric analysis pedried to constant weight.	to the adsorption of bromide tatements is correct: ecipitates occurs when washed of foreign ions into the spanent of a solution droplet into positive error occurs if the cru	e ions. d with distilled water. ce lattices of the crystal. o the crystal during precipitation. scuible containing the precipitate is
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre (b) inclusion means capturing (c) occlusion means entraphed) In gravimetric analysis pedried to constant weight.	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre (b) inclusion means capturing (c) occlusion means entraphed) In gravimetric analysis pedried to constant weight.	to the adsorption of bromide tatements is correct: ecipitates occurs when washed of foreign ions into the spanent of a solution droplet into positive error occurs if the cru	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre (b) inclusion means capturing (c) occlusion means entraphed) In gravimetric analysis pedried to constant weight.	to the adsorption of bromide tatements is correct: ecipitates occurs when washed of foreign ions into the spanent of a solution droplet into positive error occurs if the cru	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is supersaturation ratio.
e) Negative charge due to 9. Which of the following st (a) disperion of colloidal pre (b) inclusion means capturin (c) occlusion means entrapn (d) In gravimetric analysis p dried to constant weight. e) the particle size decreases	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the crus by decreasing the relative su	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is supersaturation ratio.
e) Negative charge due to 9. Which of the following st a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crust by decreasing the relative surpling of impure potassium chlorides.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is supersaturation ratio.
e) Negative charge due to 9. Which of the following st a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the fo	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crust by decreasing the relative surpline of impure potassium chloride formation of a 0.2912 g of AgO	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is upersaturation ratio. 2.25026. e with an excess of 143.36 emole
e) Negative charge due to 9. Which of the following st a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the fo	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crust by decreasing the relative surpling of impure potassium chlorides.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is upersaturation ratio. 2.25026. e with an excess of 143.36 emole
e) Negative charge due to a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surpline of impure potassium chloride formation of a 0.2912 g of AgO/mol). Calculate the percent	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is upersaturation ratio. 2.25026. e with an excess of 143.36 emole
e) Negative charge due to 9. Which of the following st a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO3 resulted in the form	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surpline of impure potassium chloride formation of a 0.2912 g of AgO/mol). Calculate the percent	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is upersaturation ratio. 2.25026. e with an excess of 143.36 emole
e) Negative charge due to 9. Which of the following at a disperion of colloidal pre b) inclusion means capturin c) occlusion means entraph d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g/mass = 74.59 g/mol) in the	to the adsorption of bromide tatements is correct: ecipitates occurs when washed not foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surpline of impure potassium chloride formation of a 0.2912 g of AgO (mol). Calculate the percent se sample.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is expersaturation ratio. 2 (KCL) 0.25000 = 20.59 g/mol
e) Negative charge due to 9. Which of the following at a disperion of colloidal pre b) inclusion means capturin c) occlusion means entraph d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g/mass = 74.59 g/mol) in the	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surpline of impure potassium chloride formation of a 0.2912 g of AgO/mol). Calculate the percent	d with distilled water. ce lattices of the crystal. o the crystal during precipitation. icuible containing the precipitate is upersaturation ratio. 2 (KCL) 0.25002 (1999) e with an excess of lage of KCl (molar
e) Negative charge due to 9. Which of the following at a disperion of colloidal pre b) inclusion means capturin c) occlusion means entraph d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g/mass = 74.59 g/mol) in the	to the adsorption of bromide tatements is correct: ecipitates occurs when washed not foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surpline of impure potassium chloride formation of a 0.2912 g of AgO (mol). Calculate the percent se sample.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is expersaturation ratio. 2 (KCL) 0.25000 = 20.59 g/mol
e) Negative charge due to 9. Which of the following st a disperion of colloidal pre b inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g/mass = 74.59 g/mol) in the	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the cruss by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC/mol). Calculate the percent see sample.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is upersaturation ratio.
e) Negative charge due to 9. Which of the following st a disperion of colloidal pre b inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g/mass = 74.59 g/mol) in the	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the cruss by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC/mol). Calculate the percent see sample.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is upersaturation ratio.
e) Negative charge due to a disperion of colloidal pre b) inclusion means capturin c) occlusion means entraph d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the form (molar mass = 143.36 g) mass = 74.59 g/ mol) in the solution of the solution o	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC (mol). Calculate the percentage sample. C) 30.3 % d) 52.0 for the determination of 1 in a	d with distilled water. ce lattices of the crystal. o the crystal during precipitation. icuible containing the precipitate is upersaturation ratio.
e) Negative charge due to a disperion of colloidal pre b) inclusion means capturin c) occlusion means entraph d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the for (molar mass = 143.36 g/mass = 74.59 g/mol) in the colloid of the co	to the adsorption of bromide tatements is correct: ecipitates occurs when washed not foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgC (mol). Calculate the percent the sample. The determination of I in a I of an unknown I solution.	d with distilled water. ce lattices of the crystal. o the crystal during precipitation. icuible containing the precipitate is upersaturation ratio. 2 2012 9 2 400 e with an excess of lage of KCI (molar we have a sample 20.00 mL of 0.10M The unreacted AgNO3 is back titrated
e) Negative charge due to a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g mass = 74.59 g/mol) in the colloidal method for AgNO ₃ is added to 10.00 min with 5.00 mL of 0.10 M KS	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the cruss by decreasing the relative surfament of a 0.2912 g of Ago (mol). Calculate the percent e sample. The determination of I in a L of an unknown I solution. CN using Fe ³⁺ as indicator.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is apersaturation ratio. with an excess of e with an excess of age of KCl (molar """ "" "" "" "" "" "" "" ""
e) Negative charge due to a disperion of colloidal pre b) inclusion means capturin c) occlusion means entrapn d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO ₃ resulted in the formular mass = 143.36 g mass = 74.59 g/mol) in the colloidal method for AgNO ₃ is added to 10.00 min with 5.00 mL of 0.10 M KS	to the adsorption of bromide tatements is correct: ecipitates occurs when washed not foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgC (mol). Calculate the percent the sample. The determination of I in a I of an unknown I solution.	d with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is apersaturation ratio. with an excess of e with an excess of age of KCl (molar """ "" "" "" "" "" "" "" ""
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle analysis provided to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 gray AgNO3 resulted in the formular mass = 143.36 grays = 74.59 gray mol) in the constant method for AgNO3 is added to 10.00 m with 5.00 mL of 0.10 M KS unkown sample given that the	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC (mol). Calculate the percent e sample. The determination of I in a L of an unknown I solution. Cell using Fe ³⁺ as indicator.	with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is appersaturation ratio. with an excess of age of KCI (molar """ """ """ """ """ """ """
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle analysis provided to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 gray AgNO3 resulted in the formular mass = 143.36 grays = 74.59 gray mol) in the constant method for AgNO3 is added to 10.00 m with 5.00 mL of 0.10 M KS unkown sample given that the	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC (mol). Calculate the percent e sample. The determination of I in a L of an unknown I solution. Cell using Fe ³⁺ as indicator.	with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is apersaturation ratio. with an excess of age of KCI (molar e) 26.0 % aqueous sample 20.00 mL of 0.10M The unreacted AgNO ₃ is back titrated Calculate the concentration of Γ in the mol.
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgO (mol). Calculate the percent e sample. The determination of I in a I of an unkown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L (c) 6.35g/L (d)	with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is apersaturation ratio. with an excess of age of KCI (molar """" """ """ """ """ """ """
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgO (mol). Calculate the percent e sample. The determination of I in a I of an unkown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L (c) 6.35g/L (d)	with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is apersaturation ratio. with an excess of age of KCI (molar """" """ """ """ """ """ """
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgO (mol). Calculate the percent e sample. The determination of I in a I of an unkown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L (c) 6.35g/L (d)	with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is apersaturation ratio. with an excess of age of KCI (molar """" """ """ """ """ """ """
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgO (mol). Calculate the percent e sample. The determination of I in a I of an unkown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L (c) 6.35g/L (d)	with distilled water. ce lattices of the crystal. the crystal during precipitation. cuible containing the precipitate is apersaturation ratio. with an excess of age of KCI (molar e) 26.0 % aqueous sample 20.00 mL of 0.10M The unreacted AgNO ₃ is back titrated Calculate the concentration of Γ in the mol.
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the cruss by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC (mol). Calculate the percentage sample. C) 30.3 % d) 52.0 c the determination of I in a I of an unknown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L c) 6.35g/L d	with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is upersaturation ratio. 20.59 3 mole with an excess of age of KCl (molar 43.35 2 mole which are a contained and a contained a
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the cruss by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC (mol). Calculate the percentage sample. C) 30.3 % d) 52.0 c the determination of I in a I of an unknown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L c) 6.35g/L d	with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is upersaturation ratio. 20.59 3 mole with an excess of age of KCl (molar 43.35 2 mole which are a contained and a contained a
e) Negative charge due to a disperion of colloidal pre b) inclusion means capturin c) occlusion means entraph d) In gravimetric analysis p dried to constant weight. e) the particle size decreases 10. Treatment of a 0.2500 g AgNO3 resulted in the formular mass = 143.36 g/mass = 74.59 g/mol) in the analysis p dried to constant weight. a) 60.6% b) 121.2 % 11) In Volhard method for AgNO3 is added to 10.00 m with 5.00 mL of 0.10 M KS unkown sample given that the analysis pd.	to the adsorption of bromide tatements is correct: ecipitates occurs when washeding of foreign ions into the spannent of a solution droplet into positive error occurs if the cruss by decreasing the relative surface of impure potassium chloride formation of a 0.2912 g of AgC (mol). Calculate the percentage sample. C) 30.3 % d) 52.0 c the determination of I in a I of an unknown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L c) 6.35g/L d	with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is upersaturation ratio. 20.59 3 mole with an excess of age of KCl (molar 43.35 2 mole which are a contained and a contained a
e) Negative charge due to a which of the following sto a disperion of colloidal precede b) inclusion means capturing c) occlusion means entraped of the particle size decreases the particle size decreases and the particle s	to the adsorption of bromide tatements is correct: ecipitates occurs when washed ag of foreign ions into the spannent of a solution droplet into positive error occurs if the crusts by decreasing the relative surplement of a 0.2912 g of AgO (mol). Calculate the percent e sample. The determination of I in a I of an unkown I solution. Chusing Fe ³⁺ as indicator. Che atomic mass of I is 127.0 g b) 0.15 g/L (c) 6.35g/L (d)	with distilled water. ce lattices of the crystal. the crystal during precipitation. icuible containing the precipitate is upersaturation ratio. 20.59 3 mole with an excess of age of KCl (molar 43.35 2 mole which are a contained and a contained a

Naz Soy +Pb (Nos) 2 BP SON + BP(NO3) => BP.

12. In the titration of 35.00 ml of 0.40 M of Na2SO4 with 0.20 M Pb(NO3)2, PbSO4 precipitates down. Calculate the P function of Pb2+ (pPb) after adding 50.00 ml of Pb(NO3)2, K_{sp} for PbSO₄ is: 1.6 x 10⁻⁸

b) 7.11

c) 5.08

d) 3.89

e)2.72

13. A solution of HClO4 was standardized by dissolving 0.4125 g of primary standard grade HgO (molar mass = 216.59 g/mol) in a solution of KBr: 0.41259

 $HgO(s) + 4 Br^2 + H_2O \rightarrow HgBr_4^2 + 2 OH$

The liberated OH consumed 46.51 ml of the HClO4 solution. The molarity of the HClO4 is:

a) 0.042 M

b) 0.021 M

0.063 M

d) 0.082 M

0.100 M

14.In the argentometric determination of bromide ion in an aqueous sample using Mohr'smethod for the endpoint detection, the effect of carrying out accidently this titration at pH= 3 will have

positive error b.) negative error

There will be no effect on the reults of the titration.

d. Higher precipitate amount of Ag₂CrO₄ is formed.

Endpoint could not be detected

15. In titration of 50.00 mL of 0.050 M KI with 0.10 M AgNO3, calculate pAg after addition of 25.00 mL of the AgNO₃ solution. Ksp for AgI is 1.7 x 10⁻¹⁷.

a) 3.70

b) 16.77

c) 1.30

d) 6.58 e) 8.38 $P_{Ag} = P_{\overline{1}} = \frac{P_{KSP}}{3}$

(4/15

Analytical Chemistry Second Exam

Nar	ne:		پدِ							Date:	30/4/2	2012
					Se							
Sect	ion:		1		2	3	4	9	-10	¿SZ		
* * ****	* *	* * * ****	* * * ****	* * *	* * * *	* * * * *****	* * * * *****	* * * ****	* * * *	* * * ***	***	
1.	a	b	c	<u>d</u>)	e	9.	a	ь	С	d	(e)	
2.	a	b	c	X	(E)	10.	a	b	c	d	e	
3.	a	b	c	đ		11.	a	b	С	d	е	
4.	a	b	c	d	(e)	12.	a	Ъ	0	d	е	
5.	a	b	C	d	e	13.	a	b	c	<u>d</u>)	e	
6.	a	b	S.	<u>d</u>)	e ~-	14.	a	<u>b</u>	(C)	d	e	
7.	a	b	c	d	e	15.	a	b	c	d	(e)	
Q.		(h	١ ۵	A								

 $GOOD\ LUCK$

2. A correct mass-balance equation for a solution saturated with CaC2O4 is:-

$$\begin{aligned} & \begin{bmatrix} Ca^{2+} \end{bmatrix} = \begin{bmatrix} C_2O_4^{2-} \end{bmatrix} + \begin{bmatrix} HC_2O_4^{-} \end{bmatrix} + \begin{bmatrix} H_2C_2O_4 \end{bmatrix} & Cac_2 & cac_2$$

 $M_{5}(OH_{1}) \rightarrow M_{5}^{+1} + 2 OH^{-1} = [M_{5}] E_{0}$ $M_{5}(OH)_{2} (Ksp = 7.1 \times 10^{-12}) \text{ in water.}$ $M_{5}(OH)_{2} \times 10^{-11} M (d.) 1.2 \times 10^{-4} M$ $M_{5}(S) = \frac{1}{2} \times \frac{1$

3. Calculate the molar solubility of Mg(OH)₂ (Ksp = 7.1×10^{-12}) in water.

b)
$$2.4 \times 10^{-14} \text{ M}$$

c)
$$4.1 \times 10^{-11}$$
 M

a)
$$7.1 \times 10^{-12}$$
 M b) 2.4×10^{-14} M c) 4.1×10^{-11} M d) 1.2×10^{-4} M

e)
$$8.0 \times 10^{-18} \text{ M}$$

- 4. Generation of hydroxide ion as a precipitating agent from urea for the purpose of precipitating Fe³⁺ as Fe(OH)₃ is called:
- a) peptization
- b) coagulation
- precipitation from homogeneous solution.
 - d) digestion of the precipitate
- e) coprecipitation
 - 5. An aqueous solution contains NaNO3 and KBr. The bromide ion was separated as AgBr by addition of excess precipitating agent AgNO3. The charge on the surface of the primary adsorption layer of the colloidal precipitate is
 - a) Positive charge due to the adsorption of potassium ions
 - b) Negative charge due to the adsorption of nitrate ions
 - Positive charge due to the adsorption of silver ions
 - d) Negative charge due to the adsorption of bromide ions.
 - e) Neutral since primary adsorption layer will neutralize the counter ions

6.	Which	of the	following	statements	is	correct:
----	-------	--------	-----------	------------	----	----------

a) Peptization is heating the precipitate in solution to coagulate the precipitate.

b) Inclusion or mixed crystal formation occurs in case of colloidal precipitates.

c) Coprecipitation is bringing down with the precipitate substance which are normally soluble.

(d) Colloidal precipitates are best washed with distilled water.

e) Occlusion is replacing some ions in the crystal by foreign ions.

7. A sample of pure sodium oxalate, Na₂C₂O₄, weighing 0.2856 g (molar mass 134 g/mol) is dissolved in water, sulfuric acid is added, and the solution is titrated at 70 °C, requiring 45.12 mL of a KMnO4 solution. The end point is overrun and back-titration is carried out with 1.78 mL of 0.0516 M solution of oxalic acid. Calculate the molarity of the KMnO₄ solution. Equation is:

 $2MnO_4^2 + 5C_2O_4^{2-} + 16 H^+ \rightarrow Mn^{2+} + 10CO_2 + 8H_2O$

a) 0.048 M b) 0.0197 M c) 0.0394M d) 0.009 M e) 0.018 M

8. In the titration 50.0 mL 0.1 M NaCl with 0.1 M AgNO₃, calculate pClafter. addition of 50.0 mL AgNO₃ $K_{sp} \text{ for AgCl} = 1 \times 10^{-10}$ $N_{sp} \text{ for AgCl} = 1 \times 10^{-10}$ $N_{sp} \text{ for AgCl} = 1 \times 10^{-10}$

a) 6.00 (b) 5.00 (c) 7.5 (d) 7.00 (e) 9.00 (A3) = $\frac{1}{100}$ P -log(o) = 0

Chloride ions are to be determined by titration in a solution of pH 1.5. Which 9. method would give the best results:-

M Mohr's method using K_2CrO_4 indicator.

- b) Fajan's method using dichloroflourescein indicator.
- c) Titration with EDTA.
- d) Titration with HCl.
- (e) Back titration using Volhard's method in which Fe³⁺ indicator is used.

10. Iodide ions are to be separated from chloride ions as silver salts in a solution containing 0.10 M of each ion. Given that K_{sp} for AgCl = 1.8×10^{-10} , K_{sp} for AgI is 7.3×10^{-17} and using 1×10^{-5} M as a criterion for quantitative precipitation, which of the following statements is correct:-

a) separation is not feasible.

- b) I can be separated if $[Ag^{+}]$ is less than 7.3×10^{-12} M.
- c) I can be separated from Cl if [Ag⁺] is held between 7.3x10⁻¹²-1.8x10⁻⁹ M.
- d) AgCl will precipitate if $[Ag^{+}] = 7.3 \times 10^{-10} M$.
- e) Both Cl and I will precipitate at $[Ag^{+}]$ 7.3x10⁻¹² 1.8x10⁻⁹ M.
- 11. Calculate the pH of a solution that is 0.1 M of each Fe(III) and Mg(II), in which Fe(III) is needed to be separated quantitatively from the Mg(II) as hydroxide. Given that

 K for Fe(OH) = 5×10⁻³⁹ = 1 = 130 H = 150 H

as hydroxide. Given that K_{sp} for Fe(OH)₃ = 5×10^{-39} = 5×10^{-12} | 5×10^{-12} | 5×10^{-12} | Using 1×10^{-6} M as criterion for quantitative removal of ions 3×10^{-6} | 3×10^{-6}

- a) 3.23 b) 8.92 c) 5.07 d) 10.77 e) 2.47 3.26x (6)
- 12. 0.10M solution of an acid HC (pKa = 4.30) is titrated with 0.10 M NaOH, which is the most suitable indicator for this titration:

Indicator	pK in
I (acid)	8 1
II (base)	5
III (acid)	10 7

HC + Nach = HNa+ Hx U.A PKa=9.3 HT Not Conjouse

4 indicator => 7-8

- 40.00 mL of 0.0900 M HCl is titrated with 0.1 M NaOH. Calculate the pH after addition of 30.00 mL of NaOH 3×16^3 _ _ _ 0.6 3×16^3
 - a) 1.82

- b) 2.34 c) 1.51 d) 2.07 e) 0.09
- 14. In the titration of 40.00 mL of 0.110 M NQCL $(K_{a \text{ for HOCl}} = \underline{6.25x^{-10}})$ with 0.100 M HCl. Calculate the pH after addition of 44.00 mL HCl.

 - a) 6.38 b) 5.24
- c) 4.00
- e) 8.76

[c1]=2.5×10-5

- 15. Which of the following acids would show the sharpst end point when 50.00 mL of 0.10M of the acid is titrated with 0.10 M NaOH:
 - a) Acid I with Ka = 1×10^{-2} b) Acid II with Ka = 1×10^{-4}

 - c) Acid III with $Ka = 1 \times 10^{-6}$
 - d) Acid IV with $Ka = 1 \times 10^{-8}$
 - e) Acid V: very strong acid

Department of Chemistry Analytical Chemistry Second Exam

Date: Dec. 20, 2005

Na	me:							• • • • • • •			
Sec	tion:	12.	30 -	2	0.0						
Reg	g. No.:	c	046	199.							
* : ***	* * * ****	* * * *****	* * * ****	* * *	 * * * *****	* * * ****	φ L. ***	بر ****	* * * ** ** *	درس: . ****	اسم الم ****
1.	a	b	С	3	е	9.	À	(C	d	e
2.	a	Þ	Ø	d	e	10.		b	c	aL	e
3.	(2)	b	C	d	e	11.	*	b	c	(е
4.	a	b		d	e	12.	Ø	b	c	d	е
5.	a	b	©	d	e	13.	a	b	c	(е
6.	a	b	c	*	(14.	a	b	Ø	d	е
7.	a	*	С	(C)	е	15.	×	b	c	d	Æ)
8.	a	W	4	d	e		y				

GOOD LUCK

6.	Coprecipitation in case of colloidal precipitates occurs by:
	a) mechanical entrapment b) inclusion c) inclusion d) surface adsorption
	all of the above processes occur
	all of the above processes occur A sample of a weak base B is titrated with 0.100 M HCl. 40.0 mL of titrant is
1.7:	A sample of a weak base B is titrated with 0.100 M HCl. 40.0 mL of titrant is required to reach the equivalence point. When 24.0 mL of titrant had been [H30] = 3.
7	added, the pH was 5.84. Calculate p K_b of the weak base.
) = Kb	a) 5.84 b) 7.98 c) 8.11 \bigcirc 9.31 e) 5.67
M. 01166	ak - 1 MK
35 1	A sample of a weak base B is titrated with 0.100 M HCl. 40.0 mL of titrant is required to reach the equivalence point. When 24.0 mL of titrant had been added, the pH was 5.84. Calculate pK _b of the weak base. a) 5.84 b) 7.98 c) 8.11 9.31 e) 5.67 [Hy0] = K_b [Hy0
M. 0.166	Calculate the huffer canacity as moles of NaOH for a huffer consisting of 0.2 M
	NH_3 and 0.3 M NH_4Cl (K_b for $NH_3 = 1.75 \times 10^{-5}$)
3	NH ₃ and 0.3 M NH ₄ Cl (K _b for NH ₃ = 1.75x10 ⁻⁵) a) $3.11x10^{-2}$ mol b) $6.5x10^{-2}$ mol c) 0.23 mol C) 0.23 mol
	d) 6.5x10 mol e) 1.1x10 mol
leb M	a) 6.5x10 mol e) 1.1x10 mol [H30] = Kb = 3 (H30) = Kb = 3 6.2
	2H, 155
0.029	The type of mechanism by which crystalline precipitates form is:
	a) nucleation mechanism.
	coprecipitation.
	c) coagulation. d) particle growth mechanism.
	e) none of the above.
10.	AgCl is precipitated by adding NaCl to an aqueous solution of AgNO ₃ . The ion most strongly absorbed to the surface of the colloidal precipitate before the equivalence point is:-
	OH b) Na ⁺ c) Cl d) Ag ⁺ e) H ₃ O ⁺
X	
11.	The best wash solvent for Fe(OH) ₃ gelatinous precipitate is:-
	a) dilute ammonia solution b) pure water (c) acetone dilute HNO2 solution
X	c) acetone e) ethanol dilute HNO ₃ solution
\	Soft miles
	PK = 1053 Solt
PH =	

7/8/

Analytical Chemistry
Second Exam

							- I	Date: 2	4-4-201	13	
Nam	ie:	·····		• • • • • • •							
			C1							•	
Secti	ion:	1.	. (2)	3						6
** **	***	* * * *	***	****	***	* * * * *	* * * * ******	*****	* * **	* * *	* *
1.	(%	b	c	d	е .	9.	X	b	c.	d	è
2.	a	×	¢	d	e	10.	a	b	X.	d	ę
3.	a	b	c .	d	X.	11.	×	b	.c .	<u>d</u>	e
4.	a	×	C.	a	· e	12.	a	×	c	ď	Q'
5.	×	b	C	d	e	13.	×	b	c	d	e
		2 2				14.					
7.	a	b	c	d	X	15.	d	*	c	d	. e
8.	a	b	¢	X	e		:	•			

GOOD LUCK

1. Calculate the ionic strength of a solution that is 0.10M in FeCl₂ and 0.20M in FeCl₃. 1:3 - -

e) 0.8M d) 1.4 M c) 2.4 M b) 1.6 M

2. Neglecting any effect caused by volume changes upon addition of sodium hydroxide to a dilute solution of magnesium chloride MgCl₂, equation is: $MgCl_2(aq) + 2NaOH(aq) ----> Mg(OH)_2(s) + 2NaCl$ would you expect the ionic strength of the magnesium chloride solution to:

(b) Increase c) Decrease a) Remain constant

d) We cannot predict what will happen to the ionic strength

Mg(c104) =

2 $\mu g^{TC} + 2 C 10 J$ Solution of $\mu g = \mu g^{TC} + 2 C 10 J$ 3. Using activities, calculate the solubility of $\mu g = \mu g = \mu g = \mu g$ Mg(ClO₄)₂. The thermodynamic solubility product for $\mu g = \mu g = \mu g$ 1.1x10⁻¹⁰

1.1x10⁻¹⁰ 1.1×10^{-10}

a) 1.0×10^{-5} M b) 1.1×10^{-10} M c) 0.10 M d) 1.2×10^{-5} M e) 2.33×10^{-5} M

4. Concerning the activity coefficient, which of the following statements is incorrect:

a) In very dilute solutions, the activity coefficient of any ion is unity, (b) In solutions that are not too concentrated, the activity coefficient for a given species is independent of the nature of the electrolyte and dependent only on the ionic strength.

c) The activity coefficient of an uncharged molecule is approximately unity, regardless of ionic strength.

d) As the ionic strength decreases, the activity coefficient approaches zero.

e) At any given ionic strength, the activity coefficients of ions of the same charge and radius are approximately equal.

5. Using the systematic approach for complex systems, calculate the molar solubility of

Al(OH)₃ (Ksp = 3×10^{-34}) in water. $K_{w} = 1 \times 10^{-14}$ Al(OH)₃ = Al⁺³ + 30 H ZH20 Z & HJO+ + OH-(a) $3 \times 10^{-13} \,\mathrm{M}$ b) 3.2 ×10⁻⁹ M [OH] = B[AI+5] + [H,O+] - (1) c) $5.0 \times 10^{-13} \text{ M}$ 3X10B | EN = [H,0+] = [A1+3] [OH-] = d) $4.2 \times 10^{-12} \text{ M}$ e) $8.0 \times 10^{-13} \text{ M}$

Scanned by CamScanner

6. Calculate the minimum pH of a solution that is 0.1 M of each Fe(III) and Mg(II), in which

Fe(III) is needed to be separated quantitatively from the Mg(II) as hydroxide.

given that: Ksp for Fe(OH)₃ = 5×10^{-39} — pp + $f_{1/5}$ — $g_{1/5}$ — $g_{1/5}$ = $g_{1/5}$

Ksp for Mg(OH)₂= 7.1×10^{-12}

Using 1×10^{-5} M as criterion for quantitative removal of ions.

5=7.94 X10-12

a) 3.23 (b) 2.90 5.07 d) 10.77

7-1×10- = [M9][OH-)2 DOH = 11.1 [OH-] = 8.426×10-6 PH = 2.89 POH = 5.07 pH = 8.925

7. In an aqueous solution, where calcium oxalate was precipitated at pH $\stackrel{.}{=}$ 4, the following equilibria were established

 $Ca^{2+} + C_2O_4^{2-}$ CaC₂O₄

1 (at) = 2 (200 + 1140 +

 $H_3O^+ + HC_2O_4$ $H_2C_2O_4 + H_2O$

 $H_3O^+ + C_2O_4^{2}$ $HC_2O_4 + H_2O$

 $H_3O^+ + OH^-$ 2 H₂O

2 [Cat2] +[H,ot] = [HC,ai]

+ COHJ

One of the following charge-balance equations, is correct

a) $[Ca^{2+}] = [C_2O_4^{2-}] + [HC_2O_4] + [H_2C_2O_4] \times$

a) $[Ca] = [C_2O_4] + [HC_2O_4] + [H_2C_2O_4]$ b) $2[Ca^{2+}] = 2[C_2O_4^{2-}] + [HC_2O_4] + [H_2C_2O_4] \times$ c) $[Ca^{2+}] = [C_2O_4^{2-}] - [HC_2O_4] - [H_2C_2O_4] \times$ d) $[Ca^{2+}] + [H_3O^+] = 2[C_2O_4^{2-}] + [HC_2O_4] + [OH]$ e) $2[Ca^{2+}] + [H_3O^+] = 2[C_2O_4^{2-}] + [HC_2O_4] + [OH]$

8. Which is the correct mass balance equation for an aqueous solution

of 0.20 M in H₃AsO₄, Given that

 $[H_3\sigma^{\dagger}] = [H_2A_5O_{\psi}] + [H_ASC_{\psi}] + [A_5O_{\psi}] + [O_H]$ 0.2 0.2 0.2 $H_3AsO_4 + H_2O$ $H_3O^+ + H_2AsO_4$ $H_2AsO_4 + H_2O$ $HAsO_4^2 + H_3O^+$ $HAsO_4^2 + H_2O$ +[H3 ASU4] $AsO_4^{3-} + H_3O^+$ $2 H_2O$

a) $C_{H3AsO4} = 0.2 \text{ M} = [H_2AsO_4] + 2[HAsO_4^2] + 3[AsO_4^3]$

[H) ASU4] = [H2 ASU4].

b) $[H_3O^+] = [OH] + [H_2AsO_4] + 2[HAsO_4^2] + 3[AsO_4^3]$

c) $C_{H3AsO4} = 0.2 \text{ M} = [H_3AsO_4] + [H_2AsO_4] + [HAsO_4^2] + [AsO_4^3]$ ① $C_{H3AsO4} = 0.2 M = [H_3AsO_4] + [H_2AsO_4] + [HAsO_4] + [AsO_4]$ e) $C_{H3AsO4} = 0.2 M = [H_3AsO_4] + [H_2AsO_4] + [HAsO_4] + [AsO_4] + [AsO_4]$

9.	Encircle the correct statement:	
b)	adsorbed ions are held by electrostatic attraction	s. cy
(d)	The rate of precipitation increases as the relative supersaturation increases. Tr	Colloward
	applies to both colloidal and crystalline precipitates. All of the above statements are correct	
1 (Which of the following statements is correct : a) the particle size decreases by decreasing the relative supersaturation ratio. X b) inclusion means capturing of foreign ions into the space lattices of the crystal c) dispersion of colloidal precipitates occurs when washed with distilled water d) In gravimetric analysis positive error occurs if the crucuible containing the precipitate is dried to constant weight. e) occlusion means entrapment of a solution droplet into the crystal during precipitation.	l. ×
a) b) c) d)	precipitating ion by a homogeneous chemical reaction Coprecipitation, especially surface adsorption, can be avoided by heating only Peptization means that part of the precipitate coagulates X Precipitation from a homogeneous solution keeps Q-S/S low at all times; hence pure, dense precipitate forms. The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of precipitating agent The choice of the drying temperature of the precipitate depends on the nature of the precipitation and the precipitation	e a of the pendson o
Q	In the titration of a NaBr solution with silver nitrate solution, AgNO ₃ , what ion is readsorbed in the primary adsorption layer after the end point: a) Br b) Na ⁺ c) NO ₃ d) H ₃ O ⁺ e) Ag ⁺	nostly

13. Calculate the mass of SiO₂ (60.1 gmol⁻¹) precipitate that would be obtained from a 1.0g sample of pure NaAl(SiO₂)₂ (170gmol⁻¹).

(a) 0.71g

b) 0.38g

c) 1.1g

d) 0.12g

c) 0.12g

d) 0.91g

50440 = 0.2XV

U = 100 mg

120 ml-safte

OF NOBS Y

6-167

14. In the titration of 50.00 ml of 0.40 M of Na₂SO₄ with 0.20 M Pb(NO₃)₂, PbSO₄ precipitates down. Calculate the P function of Pb²⁺ (pPb) after adding $(20.00 \text{ ml } (f Pb(NO_3)))$ K_{sp} for PbSO₄ is: 1.6 x 10^{-8} .

a) 0.69

b) 3.90

c) 3.33

d) 7.80 (e) 6.66

15. A 0.4512 g of primary -standard grade Na₂CO₃ (106g/mol) required 36.44 mL of an H₂SO₄ solution to reach the end point in the reaction:

 $CO_3^{2-} + 2H^+$ The analytical molarity of H_2SO_4 is: $H_2O + CO_2$

a) 0.117 M (b) 0.234 M c) 0.00851 M d) 0.0234 M e) 0.0177M

Pb (NU,)2 - Pb+2 +2:NU,-1

 $\begin{bmatrix} J = \frac{N-N}{\Lambda + nA} \\ \frac{N-N}{\Lambda + nA} \end{bmatrix}$

Lesp = [Pb] [SU4]

Scanned by CamScanner

Varies of t fo	or Various Le	vels of Proba	bility		
Degrees of	80%	90%	. 95%	99%	99.9%
Freedom	3.08	6.31	12.7	63.7	637
1	1.89	2.92	4.30	9.92	31.6
2	1.64	2.35	3.18	5.84	12.9
3	1.53	2.13	2.78	4.60	8.61
4	1.48	2.02	2.57	4.03	6.87
5	1.44	1.94	2.45	3.71	5.96
6	1.42	1.90	2.36	3.50	5.41
,	1.40	1.86	2.31	3.36	5.04
8 9	1.38 -	1.83	2:26	3.25	4.78
	1.37	1.81	2.23	3.17	4.59
10	1.34	1.75	2.13	2.95	4.07
15	1.32	1.73	2.09	2.84	3,85
20 . 40	1.30	. 1.68	2.02	2.70	3.55
60	1.30	1.67	2.00	· 2.62	3.46
ου ∞ ,	1.28	1.64	1.96	2.58	3.29

Citation, 107		otient, Q^* Q_{crit} (Reject if $Q > Q_{crit}$)		Values of z Confidence Level, %	. z
Númber of Observations	90% Confidence	95% Confidence	99% Confidence 0.994	50	0.6 1.0
3 1000000000000000000000000000000000000	0.941	0.970 0.829	0.926	80	1.2
4 5	0.765 0.642	0.710	0.821	90	1.6
6 .	0.560	0.625 0.568	0.740 0.680	95.4	2.0
7 8	0.507 0.468	0.526	0.634	\$ 99 ₹ 99.7	2.5 3.0
9	0.437 0.412	0.493 0.466	0.598 0.568	99.9	3.2

Activity Coefficients for lons at 25 °C		Activity Coeff	icient at Inc	dicated Ior	ic Strength	
	α_{X_1} nm	€ 0.001	0.005	0.01	0.05	0.
on	0.9	0.967	0.934	0.913	0.85	0.8
1 ₂ 0 ⁺	0.9	0.966	0.930	0.907	0.83	0.
i+, C6H5COO-	0.4-0.45	0.965	0.927	0.902	0.82	0.
(a+, 103, HSO3, HCO3, H2PO4, H2AsO4, OAC	0.4=0.45	0.965	0.926	0.900	0.81	. 0.
OH-, F-, SCN-, HS-, CIO ₃ -, CIO ₄ -, BrO ₃ -, IO ₃ -, MnO ₄	0.33	0.965	0.925	0.899	0.81	0
Κ ⁺ , CI ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ , NO ₃ , HCOO ⁻	0.25	0.965	0.925	0.897	0.80	0
Rb ⁺ , Cs ⁺ , TI ⁺ , Ag ⁺ , NH ⁺ ,	0.23	0.872	0.756	0.690	0.52	0
Mg ²⁺ , Be ²⁺ Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Phthalate ²⁻	0.6	0.870	0.748	0.676	0.48	0
$Sr^2 + Ba^2 + Cd^2 + Hg^2 + S^2$	0.5	0.869	0.743	0.668	(0.46)	. 0
Pb ²⁺ , CO ₃ ²⁻ , SO ₃ ²⁻ , C ₂ O ₄ ²⁻	0.45	0.868	0.741	0.665	0.45	0
Hg2+, SO2-, S2O2-, Cr2-, HPO2-	0.40	0.867	0.738	0.661	0.44	0
Al ³⁺ , Fe ³⁺ , Cr ³⁺ , La ³⁺ , Ce ³⁺	0.9	0.737	0.540	0.443	0.24	0
PO ₄ -, Fe(CN) ₆ -	0.4	0.726	0.505	0.394	0.16	0
Th4+, Zr4+, Ce4+, Sn4+	1.1	0.587	0.348	0.252	0.10	0
Fe(CN)4-	0.5	0.569	0.305	0.200	0.047	0

Second Semester 2010/2011 Analytical Chemistry Second Exam

Reg. Secti	No.: ,, on:	A		<u> </u>	•							
	* * * ****	* * * ****	* * * *	* * *	* * *	* * ***	* * * ****	* * *	* * * ****	* * * *	* * * ****	* **
1.	a	b	X	d	е е		9.	a	Ъ.	C	d	×
2.	a	b	×	d	ę		10.	a	b	c	d	×
3.	a	b	*	d	e		11.	a	b	×	×	е
4.	a	4	×	d	è e		12.	a	b	*	d	е
5.	a	Ъ	Ċ.	d	X		13.	a	大	C	d.	e
6.	a	þ	С	d	×		14.	a	*	C	d.	е
7.	×	b	c.	d	е		15.	a	b	C	d	×

GOOD LUCK

d

	thes -2 - [-0.04 + 40.08] = 0.06
	Mar Son -> 2Nat + Son = [0.04 + 40.08] = 0.06
	0.04 0.04 3.3,4
$-\psi^1$	What is the ionic strength of a solution that is 0.04 M in KNO ₃ and 0.02 M in
	Na ₂ SO ₄ ? Na ₂ SO ₃ 2Na + 500 0,04K 009NO3
	Na ₂ SO ₄ ? a) 0.15 b) 0.2 Na ₂ SO ₄ ? Na ₂ SO ₄ ?
	1
	<u> </u>
2.	Which of the following sentences is not correct ?
	a) As a solution approaches infinite dilution, the activity coefficient
	approaches 1.
	 b) Activity coefficient of an uncharged molecule is approximately unity regardless of ionic strength.
	(i) In a solution that is not too concentrated, the activity coefficient of a given
	ion is independent of the nature of the electrolyte and dependent only on
	the ionic strength. d) At any given ionic strength, the activity coefficient of ions of the same
	charge are approximately equal.
	e) For a given ionic strength, the activity coefficient of an ion becomes closer
	to unity as the charge carried by the ion increases.
	Use activity coefficient to calculate the pH of a 0.120 M HNO_2 $0.05 \circ 0.05$ $(K_a=7.13x10^4)$ that is also 0.050 M in NaCl?
3.	Use activity coefficient to calculate the pH of a 0.120 M HNO ₂
2 2	(ILa-7.13X10) that is also 0.030 M in NaCl?
	a) 4.5 b) 3.9 g) 1.95 d) 1.55 e) 0.95 $\mathcal{H} = 0.5 + 0.05$
4.	Which is the mass-balanced equation for a saturated solution of CaF ₂ ?
) 2L
	\mathcal{E}
	e) All of the charm
	ka-1xxxx
	Will of the wall
	Miney 30 D
	ka = 1
	Va= (a, *a) = 2
Coopped by	ritation described from the condition of
ocanned by	y CamScanner

Which is the correct charge - balance equation of solution containing 1M Mg(OH)2 -> Mg+2 + 20H-5. $Mg(OH)_2$.

a)
$$[OH'] = \frac{1}{2} [Mg^{2+}] + [H_3O^+]$$

b) $[OH'] = [Mg^{2+}] + [H_3O^+]$
 $(OH') = 2 [Mg^{2+}] + [H_3O^+]$

a)
$$[OH] = [Mg^{2+}] + [H_3O^+]$$

$$M = Mg^{-1} + [H_3O^{+}]$$

d)
$$[OH] = 3[Mg^{2+}] + 2[H_3O^+]$$

H20 -> H30 +0H-

Calculate the hydrogen ion concentration at which CdS precipitates £6. quantitatively from a solution that is 0.01 M in Cd2+ using saturated solution of H_2S (0.10 M) as a precipitating agent. K_{sp} for $CdS = 1 \times 10^{-27}$. Use 1 x 10⁻⁴ of H_2S (0.10 M) as a precipitation. $H_2S + Cd^7 \longrightarrow Cd^2V$ as a criterion for quantitative precipitation. $H_2S : K_1 = 9.6 \times 10^{-8}$ and $K_2 = 1.3 \times 10^{-14}$ $H_2S : K_1 = 9.6 \times 10^{-8}$ and $K_2 = 1.3 \times 10^{-14}$ H25 + Cd+2_ cds/ +H+

7. A cupper ore was analyzed by dissolving 0.8234g sample in concentrated HCl and the Cu II was precipitated as CuSCN (Ksp = 4.0×10^{-14}) by the addition of KSCN. After filtration, the residue was dried to give 0.5394g of pure CuSCN (molar mass = 121.5gmol⁻¹). Calculate the percentage of cupper (63.5 gmol⁻¹) in the sample.

& Encircle the correct statement:

- (a) Colloidal suspensions show no tendency to settle from solutions but are easily filtered
- (b) Crystalline precipitates show no tendency to settle from solutions and are not easily filtered.
- The particle size of a freshly formed precipitate is determined by the mechanism of its formation
- (d)Particle size of precipitates increases by increasing Q values
- (e) The rate of nucleation is believed to decrease with increasing relative supersaturation

b) 1.40M

9. Encircle the correct statement:

(a) The drying step is a very important step in gravimetric analysis whereby the temperature is controlled so as to cause decomposition

(b) Washing generally does not remove much of the coprecipitated ions in case

of crystalline precipitates.

(c) Mechanical entrapment results when one of the ions in the crystal lattice is replaced by an ion of another element

(d) Mechanical entrapment occurs when crystals lie far away from each other during growth

(x) Coprecipitated impurities always cause positive determinate errors

10. Encircle the correct statement:

- (a) Coagulation can be enhanced by heating, by stirring and by the addition of an electrolyte
- (b) The process by which ions are retained at the surface of the solid is known as adsorption
- (c) The primary and secondary adsorption layers can be positively or negatively charged
- (d) Peptization is a process by which a coagulated colloid goes back to its original dispersed state

All of the above statements are correct

11. In the Fajan's method for the determination of $\underline{\underline{\Gamma}}$ in an aqueous sample using $\underline{\underline{AgNO_3}}$ as titrant and fluorescein as indicator. The indicator functions by coprecipitation of:

- a) The Fluorescein-NO₃ complex
- b) Fluorescein- I- complex
- c) Fluoresceinate- Ag salt
- Fluorescein-AgI
- Non of the above

and the control of th
 12. In which of the following titrations the solution must be acidic: a) Mohr's titration b) Fajan's titration d) In both Mohr's and Fajan's titrations e) In none of the above.
-13. In an argentometric titration (AgNO3 as titrant) to determine the concentration
of the
following anions in aqueous sample: CN (Ksp _{AgCN} = 2.2×10^{-16}), Cl (Ksp _{AgCI} = 1.8×10^{-10}), IO ₃ (Ksp _{AgIO3} = 3.1×10^{-8}), and BrO ₃ (Ksp _{AgBrO3} = 5.7×10^{-5}).
a) BrO ₃ will precipitate first.
The sharpest end point is obtained in case of titrating CN (CN will precipitate last)
d) IO ₃ (iodate) and BrO ₃ (bromate) will be precipitated together as single
component (one equivalence point)
e) AgCl will have the sharpest end point.
[0,1]
14. In the titration of 50.00 ml of 0.0500 M NaCl with 0.1000 M AgNO ₃ (Ksp =
1.82×10 ⁻¹⁰). Calculate pAg at the equivalence point.
a) 8.14 b) 4.87 c) 2.88 d) 5.60 e) 10.24 $\eta_{a_0} = 2.5 \times 10^{-3}$
a) 8.14 b) 4.87 c) 2.88 d) 5.60 e) 10.24 $\frac{\eta_{Ag}-2.5 \times 10^{-3}}{2}$
15 A To 3
15. 4. In the titration of 50.00 ml of 0.0500 M NaCl with 0.1000 M AgNO ₃ (Ksp = 1.82×10^{-10}). Calculate pAg after addition of 26.00 mL of AgNO ₃ :
a) 4.87 b) 6.87 c) 8.14 d) 1.78 2.88
[Ag+] = 2.6 - 2.5
마이크 아이들 수 있는 것이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그런 그런 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 사 그런 사람들이 되었다.

15

University of Jordan Department of Chemistry Analytical Chemistry 211 2nd Hour Exam

Date: 19/12/2009 Time: 75 minutes

Student's Name:	- HORA	HE ROPE PROPERTY A			
Registration No.:	A PARTIES	X			
Instructor:	lawi	N Prof			12
Section: ① Seat No.:			4		and the state of t
866/220	9 0 8 0 86]@ \$\$ \$66	989
		WER SHI			
				i de alle de la companie de la comp La companie de la companie de	
1. a 1 c	d e	9. a	× c	d e	
2. b c	d 💢	10. d	Ъ	d e	
				8- A	
3. a b c	A e	11. a	b c	d 🗶	
*4. a b *	d Je	12. a	K c	d e	
		10		4	
5. a 1 8	a e	13.	в с	a e	
6. *\ b c	d e	14 a	h c	∦ e	
		17. A			
*7. × b c	d e	15. a	oto X	d e	• • •
8. a b _E	_ d *	16. a	b c	d e	
			January		

GOOD LUCK

TABLE 10-2
Activity Coefficients for lons at 25°C

		Activity Coe	fficient at I	ndicated Ion	ic Strength	
lon	α_{X} , nm	0.001	0.005	0.01	0.05	0.1
H³O+	0.9	0.967	0.934	0.913	(0.85)	().83
Li ⁺ , C ₆ H ₅ COO⁻	0.6	0.966	0.930	0.907	0.83	0.80
Na ⁺ , IO ₃ , HSO ₃ , HCO ₃ , H ₂ PO ₄ , H ₂ AsO ₄ , OAc ⁻	0.4-0.45	0.965	0.927	0.902	0.82	0.77
$OH^-, F^-, SCN^-, HS^-, CIO_3^-, CIO_4^-, BrO_3^-, IO_3^-, MnO_4^-$	0.35	0.965	0.926	0.900	0.81	0.76
K ⁺ , CI ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , HCOO ⁻	0.3	0.965	0.925	0.899	(0.81)	0.75
Rb+, Cs+, TI+, Ag+, NH4	0.25	0.965	0.925	0.897	0.80	0.75
Mg ²⁺ , Be ²⁺	0.8	0.872	0.756	0.690	0.52	0.44
Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Phthalate ²⁻	0.6	0.870	0.748	0.676	0.48	0.40
r ²⁺ , Ba ²⁺ , Cd ²⁺ , Hg ²⁺ , S ²⁻	0.5	0.869	0.743	0.668	0.46	0.38
Pb ²⁺ , CO ₃ ²⁻ , SO ₃ ²⁻ , C ₂ O ₄ ²⁻	0.45	0.868	0.741	0.665	0.45	0.36
Ig2+, SO ₄ -, S ₂ O ₃ -, Cr ₄ -, HPO ₄ -	0.40	0.867	0.738	0.661	0.44	0.35
M ³⁺ , Fe ³⁺ , Cr ³⁺ , La ³⁺ , Ce ³⁺ PO ₄ ³⁻ , Fe(CN) ₆ ³⁻	0.9	0.737	0.540	0.443	0.24	0.18
Ch ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Sn ⁴⁺	0.4	0.726	0.505	· 0.394	0.16	0.095
Fe(CN) ₆ -	1.1	0.587.	Ó.348	0.252	0.10	0.063
O(O17)6	0.5	0.569	0.305	0.200	0.047	0.020

Source: Reprinted with permission from J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675. Copyright 1937 American Chemical Society.

Calculate the ionic strength of a solution that is 0.20 M in FeCl₃ and 0.10 $M = \frac{1}{2} (0.2 (3)^{2} + 0.5 (-1)^{2} + 0.1 (2)^{2} + 0.2 (-1)^{2})$ M in FeCl₂ **(b)** 1.5 d) 0.9 a) 0.7 c) 1.2 e) 1.6

Encircle the correct statement:

- A colloidal precipitate tends to form when a precipitate has high solubility.
 - b) Coprecipitation always results in positive error.
- c) When (Q-S)/S is large, the precipitate tends to be crystalline.
- d) If nucleation predominates, a precipitate containing large particles is produced.
- (e) None of the above.

The ion which has the largest activity coefficient is

Use activities to calculate the solubility of PbSO₄ in a 0.0167 M solution of Mg(NO₃)₂. For PbSO₄, $K_{sp} = 1.6 \times 10^{-8}$. The activity coefficients for the ions at indicated ionic strengths

Ion	0.001	0.005	0.01	* 0.05	0.1
Pb ²⁺	0.868 .	0.742	0.665	0.46	0.37
SO ₄ ² -	0.867	0.740	0.660	0.44	0.36

- a) 0.013 mol/L
- b) 6.3x10⁻⁵ mol/L c) 1.3x10⁻³ mol/L e) 2.8x10⁻⁴ mol/L

- d) $5.0x0^{-2}$ mol/L

5. One of the following statement is incorrect:

- a) Dilution prior to precipitation decreases the relative supersaturation.
- Occluded impurities are eliminated by washing. c) Colloidal particles are electrically charged.
- d) Precipitation at low temperature increase the relative supersaturation.
- e) Peptization can be prevented by the addition of an electrolyte to the wash solvent.

TI soul Q = relative

Consider an aqueous solution containing Na₃PO₄ and K₂SO₄. 6.

Equations:

$$Na_3PO_4 \rightarrow 3Na^+ + PO_4^{3-}$$

 $K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$
 $VACO \rightarrow VACO^+ + VACO^+$

For simplicity assume that there is no further hydrolysis of ions. Then the charge-balance equation is:

(a)
$$[Na^{+}] + [K^{+}] + [H_{3}O^{+}] = 3 [PO_{4}^{3-}] + 2[SO_{4}^{2-}] + [OH^{-}]$$

b) $3[Na^+] + 2[K^+] = [PO_4^3] + [SP_4^2]$

c) $[H_3O^+] = [SO_4^2] + [PC_4^3]$

d) $3[Na^{-}] + 2[K^{+}] + [H_3O^{+}] = [PO_4^{3-}] + [SP_4^{2-}] + [OH]$

e) $[Na^{+}] + [K^{+}] = [PO_4^{3-}] + [SO_4^{2-}]$

Calculate the molar solubility of Ag₂CO₃ in a solution that has an H₃O⁺ concentration of 1.0×10^{-6} M. For Ag₂CO₃, $K_{sp} = 8.1 \times 10^{-12}$ and for H₂CO₃, $K_1 = 4.45 \times 10^{-7}$ and $K_2 = 4.7 \times 10^{-11}$ Helpful equations:

$$Ag_2CO_{3(s)} \longrightarrow 2Ag^+ + CO_3^2$$

$$H_2CO_3$$
 $H^+ + HCO_3$ $H^+ + CO_3$

- 3 5.2x10⁻³ M
 d) 3.1x10⁻² M
- b) 7.1x10⁻⁵ M
- c) 0.12 M

- e) $6.7 \times 10^{-4} \text{ M}$
- One of the following mass-balance equations is correct for a solution that is 0.25 M in NaF and saturated with CaF₂. **Equations:**

$$NaF \rightarrow Na^+ - F$$

a)
$$[Na^+] = [Ca^{2+}] + 2[F]$$

b) $[Na^+] + [Ca^{2+}] = [F^-] - [HF]$ c) $[Na^+] + 2[Ca^{2+}] = [F^-] - [HF]$

d) $[Na^+] + [Ca^{2+}] = [F]$

(e) $[Na^+] + 2[Ca^{2+}] = [F] + [HF]$

9. Given that, for BaSO₄, $K_{sp} = 1.1 \times 10^{-10}$ and SrSO₄, $K_{sp} = 3.2 \times 10^{-7}$, using 1.0×10^{-6} M as a criterion for quantitative removal, determine whether it is feasible to use SO_4^{2-} to separate Ba²⁺ from Sr²⁺ in a solution that is initially 0.05 M in Sr²⁺ and 0.30 M in Ba²⁺:

a) The separation is feasible and $[SO_4^{2-}]$ must be 'held between 1.1×10^{-6} M

and 6.4×10^{-4} M.

(b) The separation is not feasible.

- c) The separation is feasible and $[SO_4^{2-}]$ must be held between 3.2×10^{-7} M and 7.6×10^{-4} M.
- d) The separation is feasible and [SO₄²-] must be held between 5.9x10⁻⁶ M and 1.5x10⁻³ M.
- e) The separation is feasible and $[SO_4^{2-}]$ must be held between 6.4×10^{-6} and 1.1×10^{-4} M.
- 10. An aqueous solution contains NaNO₃ and KBr. The bromide ion is precipitated as AgBr by addition of AgNO₃. Before an excess of the precipitating reagent has been added (i.e., Br is still in excess in the solution), the charge on the particle in the primary adsorption layer is:
 - a) Negative due to adsorption of Br.

b) Negative due to adsorption of NO₃.

O Positive due to adsorption of K⁺ and Na⁺.

d) Positive due to adsorption of Ag⁺.

e) Positive due to adsorption of K⁺ only.

11. The mercury in a <u>0.5456-g sample</u> was precipitated with an excess of paraperiodic acid, H_5IO_6 :

$$5 \text{ Hgs}^{2+} + 2 \text{ H}_5 \text{IO}_6 \implies \text{Hg}_5 (\text{IO}_6)_2 + 10 \text{ H}^+$$

The precipitate was filtered, washed free of precipitating agent, dried and weighed. The weight of the isolated precipitate, <u>Hg₅(IO₆)₂</u> (molar mass=1449 g/mole) was 0.4114 g. The percentage of Hg₂Cl₂ (molar mass=472) in the sample is:

a) 55.5% b) 23.6% c) 41.1% d) 15.7% @ 61.4%
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

- a) generation of the precipitate in a stirred solution.
- (b) generation of the precipitate at low temperature.
- c) using low concentration of the precipitating agent.
- d) using low concentrations of the analyte.
- e) slow addition of reactants.
- A 50.00 mL of 0.100 M NaCN solution is titrated with 0.200 M HCl standard solution. The pH after addition of 50.00 mL of the HCl standard solution is:
 - a) 1.30

- b) 4.69 c) 3.72 d) 1.90 e) 5.90
- Copercipitation in colloidal precipitates mainly occurs due to the following mechanism:
 - a) Peptization.
 - b) Occlusion.
 - c) Inclusion of foreign ions.
 - (d) Surface adsorption.
 - e) Mechanical entrapment.
 - 15. A 0.3251 g of a sample containing only CaCl₂ (111.0 g mol⁻¹) and NaCl (58.44 g mol⁻¹) yielded 0.8135 g of dried AgCl (143.32 g/mol). The inple is: mass sample = mass Nac (+ mass male) cacly

 6) 24.6% d) 20.9% e) 11.8% = mand nagel percentage of NaCl in the sample is:
 - a) 30.9% b) 60.3%

n Agal =