$$2A \xrightarrow{\text{cat}} B + C$$

(a) The initial rate of reaction is shown below

$$A \xrightarrow{\longrightarrow} B + C$$

$$-\mathbf{r}_{A} = \frac{\mathbf{k}P_{A}}{1 + \mathbf{K}_{A}P_{A} + \mathbf{K}_{B}P_{B}}$$

$$A + S \xrightarrow{\longrightarrow} A \bullet S$$

$$A \bullet S \longrightarrow B \bullet S + C$$

$$B \bullet S \xrightarrow{\longrightarrow} B + S$$

$$-r_{A} = \frac{kP_{A}}{\left(1 + K_{A}P_{A} + K_{C}P_{C}\right)}$$

$$A + S \xrightarrow{\longrightarrow} A \bullet S$$

(B)

$$A \bullet S \longrightarrow B + C \bullet S$$

$$C \bullet S \longrightarrow C + S$$

$$2A \longrightarrow B + C$$

$$-r_{A} = \frac{kP_{A}^{2}}{(1 + K_{A}P_{A} + K_{C}P_{C})^{2}}$$

$$(C)$$

$$A + S \longrightarrow A \bullet S$$

$$A \bullet S + A(g) \longrightarrow B + C \bullet S$$

$$C \bullet S \longrightarrow C + S$$

$$-\mathbf{r}_{A} = \frac{kP_{A}^{2}}{(1 + K_{A}P_{A} + K_{C}P_{C})^{2}}$$

$$A + S \xrightarrow{\longrightarrow} A \bullet S$$

$$A \bullet S + A \bullet S \longrightarrow B + S + C \bullet S$$

(D)

$$C \bullet S \xrightarrow{\longleftarrow} C + S$$

$$2A \longrightarrow B + C$$

$$A + S \longrightarrow A \cdot S$$

$$A \cdot S + A \cdot S \longrightarrow B + C \cdot S$$

$$C \cdot S \longrightarrow C + S$$

$$-r'_{A} = \frac{kP_{A}^{2}}{(1 + K_{A}P_{A} + K_{C}P_{C})^{2}}$$

$$\frac{P_{A0}}{\sqrt{-r'_{A0}}}$$

$$\frac{K_A}{\sqrt{k}} = 2 \Rightarrow K_A = 4 \text{ atm}^{-1}$$

$$\frac{-1/\sqrt{k} = (0.5) \Rightarrow k = 4 \text{ mol/kgcat} \cdot s \cdot atm^2}{P_{A0}}$$

$$-\mathbf{r}_{A0}' = \frac{4\mathbf{P}_{A}^{2}}{1 + 4\mathbf{P}_{A0} + \mathbf{K}_{C}\mathbf{P}_{C0}}$$

For $P_{C0} = 2$ atm and $P_{A0} = 1$ atm, then $-r'_{A0} = 0.0138 \frac{\text{mol}}{\text{kgcat} \cdot \text{s}}$

$$-r'_{A0} = \frac{4}{(1+4+2K_C)^2} = 0.0138$$

One equation and one unknown

$$K_{\rm C} = 6 \text{ atm}^{-1}$$

$$-r'_{\rm A0} = \frac{4P_{\rm A}^2}{(1 + 4P_{\rm A} + 6P_{\rm C})^2}$$

$$2A \xrightarrow{} B + C$$

$$A + S \longrightarrow A \bullet S$$
 $-r'_A = r_{A0} = k_A \left| P_A C_V - \frac{C_{A \bullet S}}{K_A} \right| \Rightarrow C_{A \bullet S} = K_A P_A C_V$

$$A \bullet S + A \bullet S \longrightarrow B + S + C \bullet S \qquad -r'_A = r_S = k_S C_{A \bullet S}^2$$

$$C \bullet S \longrightarrow C + S$$
 $-r_A = r_{DC} = k_{DC} [C_{C \bullet S} - P_C C_V K_C] \Rightarrow C_{C \bullet S} = K_C P_C C_V$

Where $K_A = 4$ atm⁻¹ and $K_C = 6$ atm⁻¹

- 1) At what is the ratio of sites with A adsorbed to those sites with C adsorbed when the conversion is 50%?
- 2) What is the conversion when the sites with A adsorbed are equal to those with C adsorbed?

$$2A \longrightarrow B + C$$

$$A \longrightarrow \frac{B}{2} + \frac{C}{2}$$

$$K_A = 4 \text{ and } K_C = 6$$

Ratio of site concentrations

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = \frac{K_A P_A C_V}{K_C P_C C_V} = \frac{K_A P_A}{K_C P_C}$$

$$P_A = P_{A0} (1 - X) / (1 + \varepsilon X)$$

$$P_C = P_{A0} \frac{X}{2(1 + \varepsilon X)}$$

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = \frac{K_A P_{A0} \left(\frac{1 - X}{1 + \varepsilon X}\right) \frac{P}{P_0}}{K_C P_{A0} \left(\frac{X/2}{1 + \varepsilon X}\right) \frac{P}{P_0}} = 2 \frac{K_A (1 - X)}{K_C X}$$

1) At X = 0.5

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = \sim \frac{(2)(4)(1-0.5)}{6(0.5)} = 1.33$$

2) At an equal concentrations of A and C sites, the conversion will be

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = 1 = \frac{2K_A(1 - X)}{K_C X}, \text{ then } X = \frac{2K_A}{K_C + 2K_A} = \frac{(2)(4)}{6 + (2)(4)} = \frac{8}{14}$$

$$X = 0.57$$

Dimethyl Either

Initially water does not exit the reactor the same as DME because Which of the following best describes the data

- **A** There is more DME than water.
- **B** Steady state has been reached.
- **C** Water reacts with ME.
- **D** Water is adsorbed on the surface.