| | Chemistry Department Chemistry 23 | 9 Date: | 10/04/2013 | . 1 1 | |-----------|--|--|--|----------------| | | Section: (0-1) wild Exam I | | | د. کمال سویدان | | | Name (in Arabic) | | No:0116948 | | | | ************************************** | known compand
****** | ************************************** | (~ mixture | | | Melting point: (6 points) the mixture with the Describe briefly how the melting point determination can be identify an unknown compound by measuring | the m.p of | mowest min
e first med
isidered to
the unknown | and may | | her
e, | 1. to identify an unknown compound by measuring in washing make some predictions about a then form mixtures with the unknown. It is a substance had a narrow melting point of the substance had a narrow melting point of the following will increase, decrease or not aff impairs. a) Presence of some solvent within the crystalsd. | and teach pre
melting point
the range the
La broad rect the melting point | diction mo
It is sharp
In the sub
Inelting point
Intrange? | and
stance | | | b) Presence of glass in the sample no extension of the sample no extension of the paraffin oil bath is not pure no extension of the paraffin oil b | ect / | | (5) | | | Boiling point and distillation (6 points) Bumping can be prevented during distillation bythe | lonodibbaot | poîllîng | Stones. | | | A liquid with a constant boiling point is not necessarily Because a mixture of liquids with will have a constant boiling poin | the same is | niod poilic | , L | | | The boiling point of hexane is 68°C and that of 2,2-dim | ethylbutane is <u>50</u> ° | C at 760 mmH | g. The | | | boiling point of a solution of hexane and 2,2-dimethylbu | | | | | | (a) between 50 °C and 68 °C b. lower than 5 | 0°C c. high | ner than 68.ºC | (5) | | | d. more information is needed | | (| W/ | | | † | | | | | => | What is the effect of the presence of non-volatile inso | luble impurity on | the boiling poir | nt of a | | | liquid? (Increase) decrease, no effect) | thou william | ii iii K. Tikoosiwankii | linikada. | | | How can you distill hexane at a temperature lower than | 13y aist | alling it c | | | | | pressure | lower th
0 mm Hg | JOIN | | | | 5 76 | 0 mm Hg | | | | | | 11 x x 2 | | | | | | |-----------------------------------|---|------------|------------|----------------------------|--|--------------------|---------------------|-------| | Name the best te | chnique th | at can | efficien | itly sena | rate a | solution | of boyana and | 2.2 | | dimethylbutane?* | | | | | iale a | Solution | or nexane and | 2,2- | | | | | Julian | | / | | | | | Recrystallization (7 | points) | | | | • | | | | | During re-crystallizat | | nent. | | | 6 | 5) | | | | Why is it preferable | - | | olution to | o cool ar | 1 - | | nid cooling in an | ice- | | bath? Because
Solid in the | ropid o | coolina | y wil | 1 lead | e to | the F | | | | Soluble impurities ar | e removed | by | #A)± | NALX KINLS | Mrs | Suction | n Filteration | 1 | | Colored impurities a | | | | the manager of the control | | | | 1 | | Insoluble impurities a | | | | | No. of the last | | | , j | | | | , | 9 | 3 | | • |) | 3(1 | | Premature crystalliza | ation in the | filter fur | nnel is m | inimized | bv: | | • | | | | Premature crystallization in the filter funnel is minimized by: 1. heating the Funnel and Flaste in the oven | | | | | | | | | | | | | | | | it through | • | | 2 KAHUAI CHIOGG | the f | | | | | | 7 | | | Concerning the solut | oility of com | npound | (A) in dif | ferent so | lvents: | | | | | -405 | CH₃OH ✓ H₂O CH₂Cl₂ | | | | | | | | | . Ju | | Hot | Cold | Hot | Cold | Hot | | | | | -ve | + ve | -ve | -ve | + ve | + ve | | | | | | | | <u> </u> | | | i | | | Compound (A) can b | e best recr | ystallize | ed using: | | | | | | | a) A pair of H ₂ O and | | | N 500 Y | air of H | O and (| CH ₃ OH | | . * | | c) H ₂ O only | | 2 | | OH only | 1.00 | 1 | | | | | | ٠ | O | | | 1 | | | | Extraction (7 points |) | | | | | | | | | Give an example of a | • | d extrac | tion (hin | t: vou ne | ed to sr | ecify the | solid and the liqui | id) | | the extracti | | | 0.5 | - 1701
1701 | - | | | | | Solid -> | | 19 | | | | | | | | Caffeine can be reco | | | | | | lavid- 1 | ioutch | | | | vorou mom | org | anic | Columbia | y | | straction; ar | rcl. | | | | 6 | hase. | (2) | · h | eatina | the solution | שר טע | | | | | | | | a hol | plate in t | ha | | | | | | | | F | prome in | 116 | ## (anhydrous salt such as Cacl2) Traces of water can be removed from dichloromethane by adding a drying agent? How can you improve the extraction of organic compounds from aqueous media by an organic solvent? I- Saturating the aqueous layer through the addition of a Salt such as Daci or Dazcoz. 2- Prevent the formation of emulsions through avoiding vigorous shating of the two layers. The solubility of compound (B) in different solvents is given bellow: | Solvent | Ethanol | Water | Dichloromethane. | Ether | |----------------------|---------|-------|------------------|-------| | Solubility (g/100ml) | 8 | 2 | 4 CC12H2 | 6 . | $KD = \frac{S_0}{S\omega} = \frac{109/100 \, \text{ml}}{89/100 \, \text{ml}} = 5$ If a solution of 1 g in 50 ml of water was extracted by 100 ml of ethyl acetate. Calculate the mass of (B) extracted by ethyl acetate. $$K_D = \frac{(m_B)}{V}$$ in ethyl acetate $\frac{(m_B)}{V}$ in water $\frac{mg}{100} = 5 \Rightarrow \frac{mg}{100} = 0.$ $\frac{1}{50} \left[mg = 10g \right]$ Steam distillation (6 point) Which fraction in the distillate has the highest bromobenzene ratio? - a. the first fraction in the distillate - b. the last fraction in the distillate - All have the same ratio - d. more information is needed to decide The boiling point of bromobenzene - water mixture at 760 mmHg will be: - a Lower than that of water. - b. Higher than that of bromobenzene. - c. Between the boiling points of water and bromobenzene. - d. Depends on the ratio of bromobenzene to water. Suggest a method that can be used to separate essential oil from spices other than steam distillation...liquid....extraction At 50 °C the vapor pressure of water = 300 mmHg, and for bromobenzene = 200 mmHg. Calculate the total vapor pressure of a 1:1 molar mixture. $$P_{T} = P_{W}^{\circ} + P_{BB}^{\circ}$$ = 300 + 200 = 500 mm Hg 3 Name one advantage and one disadvantage of using steam distillation as a method of purification. Advantage: Can be used for high-boiling (steam valatile longanic compound at temperatures below the b.p of water. Disadvantage: not all substances can be purified by Steam. distilation; their properties are: 1) steam volatile 2) inert towards steam Chromatography (8 pts) 3) immiscible with Calculate the R_F value of (B) $\frac{1}{2}$ cm $\frac{1}{2}$ $\frac{1}{2}$ Which compound A or B would you expect to have a lower polarity? compound 13. RET, polarity & Which compound is less strongly adsorbed on silica gel; ortho- or para-nitroaniline? Explain. ortho-nitrodpiline because 3cm 0 cm 10 cm 7.Cm it's Rp value is greater than that of para-nitrouniline. Name two methods that can be used to visualize colorless compounds on TLC? 1. Under UV light 2. exposing the slide to iodine vapor or sulferic acid I through the addition of a colorful indicator I. What does the abbreviation TLC stands for? Thin Layer Chromotography From the result obtained of the paper chromatography experiment of a food dye; which is less soluble in water blue or yellow dye? Blue; because 9t has a higher Re value.