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Preface

This manual provides detailed solutions to all the end-of-chapter (b) Exercises, and to the even-
numbered Discussion Questions and Problems. Solutions to Exercises and Problems carried over
from previous editions have been reworked, modified, or corrected when needed.

The solutions to some of the Exercises and many of the Problems in this edition relied more
heavily on the mathematical, graphical, and molecular modelling software that is now generally
accessible to physical chemistry students. This is particularly true for some of the new Problems
that specifically request the use of such software for their solutions. We used the following software
for many of the solutions in this manual: Excel™ for spreadsheet calculations and graphing, and
Mathcad™ for mathematical calculations and the plotting of the results. When a quantum-chemical
calculation or molecular modelling process has been called for, we have often provided the solution
with PC Spartan Pro because of its common availability. However, the majority of the Exercises
and many of the Problems can still be solved with a modern hand-held scientific calculator.

In general, we have adhered rigorously to the rules for significant figures in displaying the final
answers. However, when intermediate answers are shown, they are often given with one more figure
than would be justified by the data. These excess digits are indicated with an overline.

The solutions in this manual have been carefully cross-checked for errors not only by ourselves,
but also very thoroughly by Valerie Walters, who made many helpful suggestions for improvement.
We expect that most errors have been eliminated, but would be grateful to any readers who bring
any remaining ones to our attention.

We warmly thank our publishers, especially Jonathan Crowe and Jessica Fiorilla, as well as
Dave Quinn, for their patience in guiding this complex, detailed project to completion. We also
thank Peter Atkins and Julio de Paula for the opportunity to participate in the development of their
outstanding Physical Chemistry text.
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Fundamentals

F1.1{b}

F1.2(b)

F1.3(b)

Exercises

F1 Atoms

The atomic number, Z, is the number of protons in an atom. These protons are located within the
nucleus.

The nucleon number, A, which is also commonly called the mass number, is the total number of
protons and neutrons in an atom. These nucleons are located within the nucleus.

Example Element Ground-state electronic configuration

(a) Group 3 Sc, scandium [Ar]3d'4s?
(b) Group 5 V, vanadium [Ar]3d4s?
(©) Group 13 Ga, gallium [Ar]3d!%4s?4p!
(a) Chemical formula and name: CaH,, calcium hydride

Tons: Ca* and H

Oxidation numbers of the elements: calcium, +2; hydrogen, —1
(b) Chemical formula and name: CaC,, calcium carbide

Ions: Ca™ and Cgf (a polyatomic ion)

Oxidation numbers of the elements: calcium, +2; carbon, —1
(c) Chemical formula and name: LiN,, lithium azide

Ions: Li* and N; (a polyatomic ion)
Oxidation numbers of the elements: lithium, +1; nitrogen, —%
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Transition metals
Lanthanoids

Actinoids
1 2 3 4 5 ] 7 £ 9 10 11 12 13 14 15 16 17 18
ia A InB VB VB VIE | VIIB | VIIB | VIIIB | VIIB B 1B IIA IVA VA VIA | VIIA | VIIIA
1 2
H Periodic Table of the Elements He
1.008 4.003
3 4 5 & 7 -] 9 10
Li Be B C N o F Ne
6.041 | 9.012 10.81 | 12.01 | 14.01 | 1600 | 19.00 | 20.18
11 12 13 14 13 16 17 18
Na | Mg A | s P s a | ar
22,99 | 24.31 26.98 | 28.00 | 30.97 | 32.07 | 35.45 | 39.95
19 20 31 32 33 34 35 36
K Ca Ga Ge As Se Br Kr
35.10 | 40.08 69.72 | 72,59 || 74.92 | 78.96 | 79.90 | 83.80
37 38 49 50 51 52 53 54
Rb St In Sn b Te 1 Xe
£5.47 | 87.62 114.8 | 1187 | 1218 || 1276 | 1269 | 131.3
55 36 81 az 83 84 85 86
Cs Ba TI Pb Bi Po At Rn
132.9 | 137.3 2044 ¢ 207.2 | 209.0 | (209} || (210) | (222)
87 28 i)
Fr Ra Ac
(223) | 226 | (227)

F.2 Molecules

(a) Ammonia, NH;, illustrates a molecule with one lone pair on the central atom.

(c) The hydrogen fluoride molecule, HF, illustrates a molecule with three lone pairs on the central
atom. Xenon difluoride has three lone pairs on both the central atem and the two peripheral atoms.

.

H——F:

Xe

. i:.:

-




F2.2{(b)

F2.3(b)

F2.4(b)

FUNDAMENTALS

(a) Ozone, O, Formal charges (shown in circles) may be indicated.

.0 .
108 o:
10— 96 - ::Q'Q_p-@/
B l. L] 3t
(by CIF; tF— o —F:
'F:
(c) azide anion, Ny [eN:C;):N@}

The central atoms in XeF,, PCl;, SF,, and SF, are hypervalent.

Molecular and polyatomic ion shapes are predicted by drawing the Lewis structure and applying

the concepts of VSEPR theory.

(a) H,0,
Lewis structure:

H— 0— 0 —H

Orientations caused by repulsions between two lone pairs and two bonding pairs around each

oxygen atom:

H

~
0—0

Molecular shape around each oxygen atom: bent {or angular) with bond angles somewhat

smaller than 109.5°,

(b) FSO;
Lewis structure:
(Formal charged is circled.)

o—%—5—F
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Orientations around the sulfur are caused by repulsions between one lone pair, one double
bond, and two single bonds, while orientations around the oxygen to which fluorine is attached
are caused by repulsions between two lone pairs and two single bonds:

N
QS
O// \

Molecular shape around the sulfur atom is trigonal pyramidal with bond angles somewhat
smaller than 109.5° while the shape around the oxygen to which fluorine is attached is bent (or
angular) with a bond angle somewhat smaller than 109.5°.

() KrF : .
) Lewizs structure: \ /

Molecular shape: linear with a 180° bond angle.

(d) PCl
Lewis structure:
(Formal charge is shown in a circle.)

1 +

Cl

Orientations caused by repulsions between four bonding pairs (no lone pair):
+
al Cl
\%—) )~

1 Cl

Molecular shape: tetrahedral and bond angles of 109.5°,




F2.5(b)

F2.6{b)

F2.7(b)

F3.1(b)

F3.2(b)

F3.3(b)

F3.4(b)

F3.5(b)

F3.6(b)

FUNDAMENTALS 5§

(a) C—IH Non-polar or weakly polar toward the slightly more electronegative carbon.

b & & (o & &
P—S N Cl

(a) O,isabent molecule that has a small dipole as indicated by consideration of electron densities
and formal charge distributions.

(b) XeF, is a linear, non-polar molecule.

(¢} NO,is bent, polar molecule.

{(d) C:H,,1is anon-polar molecule.

In the order of increasing dipole moment: XeF,~ C;H,,, NO,, O,

F3 Buik matter

Condensed forms of matter (liquids and solids) have relatively high densities because of the close
proximity of constituent elemental atoms or constituent molecules; compressibility is low and
attractive forces are strong between neighbours. Perfect gases have low densities and they are highly
compressible; intermolecular forces of attraction are negligibly smali.

(a) Pressure is an intensive property.

(t) Specific heat capacity is an intensive property.
(c) Weight is an extensive property.

(d) Molality is an intensive property.

@ 0= 250 el 00wt

6.0221 x 10% molecules
mol

{(b) N =nN,=0.028 mol( J = |T7 x 1022 molecules

101325 Pa
222 — =|225%10"P
© (22um( 102R)
(b) Since 1 bar = 10° Pa, the above pressure is|225 bar|.

6/°C=TIK -273.15=90.18 - 273.15=-182.97 [F.2]
8=-18297°C

The absolute zero of temperature is 0 K and 0 °R. Using the scaling relationship 1 °F/1 °R (given
in the exercise) and knowing the scaling ratios 5 °C/9 °F (see Exercise F3.6a) and 1 K/1 °C, we find
the scaling facior between the Kelvin scale and the Rankine scale to be:

1°F 5°C 1K SK
X | —|=—
I°R 9°F 1°C ) 9°R
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The zero values of the absolute zero of temperature on both the Kelvin and Rankine scales and the
value of the scaling relationship implies that:

IT/K =3 X(6:/R) or 6/R=2x(T/K)]

Normal freezing point of water:
/R = 2 x (T/K) =2 x (273.15) = 491.67

1 mol
=0325g x| =2 |- 0.0161 mol
" B [20.18 gJ me
_7RT oo (00161 mol)8.314) K-t mol)293.15K) (_dm
P 2.00 dm? 10°m’

=1.96 x 104 Pa =[19.6 kPa]

F.4 Energy

All objects in motion have the ability to do work during the process of slowing. That is, they have
energy, or, more precisely, the energy possessed by a body because of its motion is its kinetic energy,
E,. The law of conservation of energy tells us that the kinetic energy of an object equals the work
done on the object in order to change its motion from an initial (i) state of », = 0 to a final () state
of vy =v. For an object of mass m travelling at a speed v,

E.=im’[F4]

The potential energy, E, or more commonly ¥, of an object is the energy it possesses as a result of
its position. For an object of mass m at an altitude & close to the surface of the Earth, the gravita-
tional potential energy is

V(k)=mgh[F.5], where g=9.81ms™

Eqn F.5 assigns the gravitational potential energy at the surface of the Earth, 1(0), a value equal
zero and g is called the acceleration of free fall.

The Coulomb potential energy describes the particularly important electrostatic interaction
between two point charges 0, and @, separated by the distance r:

Vir)= GO in a vacuum [F.6, g, is the vacuum permittivity]
dme,r
and V(r) = 4QlQZ in a medium that has the relative permittivity &, (formerly, dielectric constant).
REET

Eqgn E.6 assigns the Coulomb potential energy at infinite separation, F{(e}, a value equal to zero.
Convention assigns a negative value to the Coulomb potential energy when the interaction is attrac-
tive and a positive value when it is repulsive. The Coulomb potential energy and the force acting on
the charges are related by the expression F=—-d¥V/dr.
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4.2(b}) The law of conservation of energy requires that the minimum kinetic energy [F.4] required to reach
height / equals the increase in gravitational potential energy [F.5]:

E, =mgh
=(0.025 kg) % (9.81m s2) x (50 m) = 12 kg m?s2 =
4.3(b)  The Coulomb potential, ¢, is
&

= amer’ where r is the separation of point charge @, and the ion charge Q,.
Ty

¢, interacts with two ions, which are treated as point charges in this exercise, and the interactions
are additive:

6= O, n & _ € + —€
Amegr ) \Amegr ) \dmer )\ 4mer )
e 1 1
= x —_ —-| —
47:80 {( r JNa* ( ¥ JC]‘ }
_ 1.6022 x 10 C < 1 » I [
L1127 x 107071 C2 ' )T {102 m rfpm ). |\ rfpm ) ‘

= (1440 V) x (#J —[ 1 J Qyci=1v]
rfpm ) \ripm ) ‘

Figure F.1 shows the positions of the sodium and chloride ions as the charge @, approaches ‘
the centre point between the two ions along a straight line at the angle @ to the internuclear line. If
we interpret the exercise as specifying that the approach be at the angle 8 = 90°, then ry,. = 7o all ‘

along the approach and the above relationship tells us that at all values of r (defined in
Figure F.1). For angles other than 8 = 90°, the above equation for ¢ can be computed as a function

of r at fixed 8. The law of cosines is used to calculate the requisite values ry,+ and ro- at each value
of rand 6,

Faar =2+ r2=2rrcosB)?  and ro-=(ri+r?-2rrcos(n - N2
Na <

Plots of ¢ against r at 8 = 30°, 45°, and 60° are presented in Figure F.2. It is apparent that as @,
approaches the centre from infinity the Coulomb potential rises to a peak at about half the inter-
nuclear distance because of the dominate interaction with the sodium cation. On closer approach
to the centre the influence of the chloride anion progressively increases, thereby causing a decline in
the Coulomb potential until the interactions with the two ions is exactly balanced when @, is mid-
way between the ions (i.e. at r=0).
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\/ Line along which 0 approaches cenire

/v

1 1 " —_— —
0 200 400 600 800 1000
r/pm

Figure F.2

F.5 The relationship between molecular and bulk properties

The quantization of energy is most important—in the sense that the allowed energies are widest
apart—for particles of small mass confined to small regions of space. Consequently, quantization
is very important for electrons in atoms and molecules. Quantization is important for the electronic
states of atoms and molecules and for both the rotational and vibrational states of molecules.

lim( N ypper J - Tiné(e-AElkT) [F9]=e>=0

=0\ N Jower

im ( Nupper ] _ ym(e-wmr) F9=e=1
—peo

T—=\ N, lower

In the limit of the absolute zero of temperature, all particles occupy the lower state. The upper state
is empty. In the limit of infinitely large temperature, all states are equally populated.




=5.7(b)

6.1(h)

6.2(b})
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The Maxwell distribution of speeds indicates that a few molecules have either very low or very high
speeds. Furthermore, the distribution peaks at lower speeds when either the temperature is low or
the molecular mass is high. The distribution peaks at high speeds when either the temperature is
high or the molecular mass is low.

Rates of chemical reaction typically increase with increasing temperature because more molecules
have the requisite speed and corresponding kinetic energy to promote excitation and bond break-
age during collision at the high temperatures.

e > (TIM)2 [F.11]

Vaean(T3) _ (LMY (1)
VweTD)  (LIMY? T,

Vo 303K) (303K " ™
Voen293K) 293K )

A gaseous helium atom has three translational degrees of freedom (the components of motion in
the x, y, and z directions). Consequently, the equipartition theorem assigns a mean energy of %kT
to each atom. The molar internal energy, U, is

Un=3N,kT = 2 RT [F.10] = 3(8.3145J mol” K )(303 K) = 3.78 kJ mol-!

Imol ) 3.78kJ
U=nU,=mM-U,= (100 g)| > || 22 | 945K
" =m0 = g)[4.00g]( mol J

A solid-state lead atom has three vibrational quadratic degrees of freedom (the components of
vibrational motion in the x, y, and z directions). Its potential energy also has a quadratic form in
each direction because Vo< (x — x,,)%. There are a total of six quadratic degrees of freedom for the
atom because the atoms have no translational or rotational motion. Consequently, the equiparti-
tion theorem assigns a mean energy of %kT= 3k T to each atom. This is the law of Dulong and Petit.
The molar internal energy, U_, is

Un=3N,kT = 3RT [F.10] =3(8.3145 J mol-' K 1)(293 K) = 7.31 kJ mol-!

Imol | 7.31 k¥
U=nUy=mM-U_=(100g) —— =10.
nU,=m U.=( g)[207.2 gJ[ ] J 0.353kJ

F.6 The electromagnetic field

¢ 3.00x108ms!
=—[Fl12]=———————— =417 x10%s'=(4.17 x 10"
v s T m XS Hz

v 160 % 10851
V=-~[F.13] =2 ————— =10.533 m"!
V= R3] s
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1 1
F6.3 V== [F.13]= —— =|0. -1
) (2) V= [F13=os 0.33 cm

_3.00%x10°m s

(b) V=%[F12]—m =1.0x10951=]|10 GHz

F.7 Units

3
v
F7A() 145 dmf"(llgdifnn] =[1.45 x 10* cm?

3
g lkg 1 dm —
Fr2t) (1'12 dm’JX[IOZ’g}X[lO“‘m =|L12kgm?

P (Nmf m* m -
A 5N g me -]

KT (1381x103C VK x (298 K)( mV
7 kT _ =P257mv|y=1c
Al 1602 x10°C 102V mVvit M

1eV
KT = (1381 x 102 K x (298 K) = (4.11 X 102 T) x [;—}

1.602 x 10-1*J
=257 x102eV =|25.7 meV

3.31445) (Pam’) ( om 3x 1 mol
F7.50) K mol ] 102m | | 6,022 x 10 molecule

=[1.381 x 10" Pa cm? K~ molecule |

3
Pa m* latm cm L
=|9.869 x 10*atm L
F.60) (IJ)X[ 7 ]X[101325Pa]x[10'2m]x(103cm3)| L

. . efl Cls kg m*s? ~
F7.7(b) (2) Base unit of pz = Base unit of T ( ke ] X ( T =Cm?s™!

(3

. I _ (Cm?s'y J =|Ctkg g2
Base unit of — —((J 2 mo) x (m) X kgmis~

Hol

4
; J
{b) Unitof f:—s =(C*kg's2) x (ﬁ] =13 V-*kgls?
]
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1 The properties of gases

D1.2

D14

D1.6

E1.1(b}

Answers to discussion questions

The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it occupied
alone the same container as the mixture at the same temperature, Dalton’s law is a limiting law
because it holds exactly only under conditions where the gases have no effect on each other. This
can only be true in the limit of zero pressure where the molecules of the gas are very far apart.
Hence, Dalton’s law holds exactly only for a mixture of perfect gases; for real gases, the law is only
an approximation.

The critical constants represent the state of a system at which the distinction between the liquid
and vapour phases disappears. We usually describe this situation by saying that above the critical
temperature the liquid phase cannot be produced by the application of pressure alone. The liquid
and vapour phases can no longer coexist, although supercritical fluids have both liquid and vapour
characteristics.

The van der Waals equation is a cubic equation in the volume, V. Every cubic equation has some
values of the coefficients for which the number of real roots passes from three to one. In fact, any
equation of state of odd degree n > ! can in principle account for critical behaviour because for
equations of odd degree in V there are necessarily some values of temperature and pressure for
which the number of real roots of V passes from n to 1. That is, the multiple values of ¥ converge
from n to 1 as the temperature approaches the critical temperature. This mathematical result is
consistent with passing from a two-phase region (more than one volume for a given T and p) to a
one-phase region (only one V for a given 7"and p), and this corresponds to the observed experimental
result as the critical point is reached.

Solutions to exercises

(a) The perfect gas law [1.8]is
pV=nRT
implying that the pressure would be

_nRT
Vv

P



E1.2(b)

E1.3(b}

E1.4(b)
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All quantities on the right are given to us except n, which can be computed from the given mass
of Ar.

25g -
=——=— =0.626 mol
"= 39.95 g mol” e
_ (0.626 mol) x (8.31 x 102 dm* bar K'mol} x (30 +273K) ==
r= 15 dm’ =(10.5 bar
not 2.0 bar.

(b) The van der Waals equation [1.21a] is

__RT _a
PRy v

_ (831 x10-2dm’ bar K 'mol™') x 30 + 273) K
P = 1.5dm*/0.626 mol) — 3.20 x 102 dm® mol"'

(1.337 dm® atm mol) x (1.013 bar atm™) =
- = =(104b
(1.5 dm*/0.626 moly?

{a) Boyle’s law [1.5] applies.

80

pV=constant so p¥;=pV¥,

This equation can be solved for either initial or final pressure, hence

Ve (197 bar) x (2.14 dm?)
e =[107b
B="y (2.14+ 1.80) dm®

{b) The original pressure in Torr is

latm 760 Torr
.= (1.07 b =803 T
pi=01.0 ar)x(l.OI?;barjx( J 8 orr

1 atm

The relationship between pressure and temperature at constant volume can be derived from the
perfect gas law, pV'=nRT[1.8]

so po<T and %=—‘;}
i f

The final pressure, then, ought to be

T (125kPa)x(11+273) K
= = =120 kP
Pr T; (23+273) K -

According to the perfect gas law [1.8], one can compute the amount of gas from pressure, tempera-
ture, and volume.

pV=nRT

,_ PV _ (1.00atm) x (1.013 x10° Pa atm'!) x (4.00 x 10°m?%)
" RT (8.3145J K'mol ) x 20+ 273) K

=1.66 x 10° mol

50




THE PROPERTIES OF GASES 15

Once this is done, the mass of the gas can be computed from the amount and the melar mass:
m = (1.66 x 10°mol} x (16.04 g mol~') = 2.67 x 106 g =(2.67 x [0* kg

1.5(b) Use the equation for hydrostatic pressure [1.3], p = p, + pgh. Let p,, be the pressure at the top of the
straw and p is the pressure on the surface of the liguid (atmospheric pressure). Thus, the pressure
difference is

lem
10%m

kg
—p.=pgh=(.0 X ——X
P~ Pu=pgh=(1.0gcm™) T0°g [

== 1.5% 10-2atm

E1.6(b)  The pressure in the apparatus is given by

3
) x(9.81ms7?)x(0.15m)

P =P+ pgh([1.3]
where p,, =760 Torr=1 atm = 1.013 x 10° Pa,

and pgh=13.55gem=x | <& | x
10°g

p=1013x10°Pa+133x10*Pa=1.146 x 10°Pa=|115kPa

E1.7(b) Rearrange the perfect gas equation [1.8] to give R = —E-T-V; = %Vi“—
n

1cm
102m

3
J x0.100 m x 9806 ms2=1.33x10*Pa

All gases are perfect in the limit of zero pressure. Therefore, the value of p ¥ /T extrapolated to zero
pressure will give the best value of R.

The molar mass can be introduced through
pV =nRT = "2 RT
M

which on rearrangement gives M = mRT _ pﬁ.

P P

The best value of M is obtained from an extrapolation of p/p versus p to zero pressure; the intercept |
is M/RT.

Draw up the following table:

platm (pV,/TH({dm?* atm K- mol!) (p/pY(g dm=atm™)
0.750 000 0.082 0014 1.428 59
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90

From Figure 1.1(a), [%Kﬂ] = ‘0.082 062 dm? atm K mol™!
p=0
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0.08207 T T T : :
PVl T=-7.999 x 107% +0.082062 |
0.08205 - eveeveeenn ‘. ............. , ............. ............. ST -

0.08204

0.08203 -

0.08202

(pVo/T)f(atm dm?® mok! K1)

0.08200

Figure 1.1(a)

1.4288

(p/lp)/(g atm™! dm3)

1.4274 ; ; : ; : : :
0 01 02 03 04 05 06 07 08
platm

Figure 1.1(b)

From Figure 1.1(b), (EJ =1.427 55 gdm?atm".

=0

M= RT(E) = (0.082062 dm?atm K- mol-") x (273.15 K) x (1.42755 g dm™> atm™)
=0}

r
=|31.9988 g mol"

The value obtained for R deviates from the accepted value by 0.005%, better than can be expected
from a linear extrapolation from three data points.

The mass density p is related to the molar volume ¥, by

_r.rm. M
n m m p

|

m
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where M is the molar mass. Putting this relationship into the perfect gas law [1.8] yiclds

pVo=RT so PY _gr

P
Rearranging this result gives an expression for M; once we know the molar mass, we can divide
by the molar mass of phosphorus atoms to determine the mumber of atoms per gas molecule.

_ RTp _ (8.3145 Pa m® mol™) x [(100 + 273) K] X (0.6388 kg m™)

M P 1.60 x 10°Pa

=0.124 kg mol™ =124 g mol™!
The number of atoms per molecule is

124 g mol™

——E— =400
31.0 g mol™!

suggesting a formula of .

Use the perfect gas equation [1.8] to compute the amount; then convert to mass:
Vv
pV=nRT so n= 22
RT

‘We need the partial pressure of water, which is 53% of the equilibrium vapour pressure at the given
temperature and standard pressure. (We must look it up in a handbook like the CRC Handbook of
Chemistry and Physics or another resource such as the NIST Chemistry WebBook.)

p=(0.53)x (2.81 x 10° Pa)=1.49 x 10° Pa

___ (149 x10°Pa) x (250 m?)
(83145 K moly x (23 + 273) K

and m=(151mol)x(18.0 gmel)=2.72x10°g=(2.72 kg

(a) The volume occupied by each gas is the same, since each completely fills the container. Thus,
solving for V' we have (assuming a perfect gas)

_ mRT
Pr

=151mol

50 R

v

We have the pressure of neon, so we focus on it

0.225¢ _
=— 28 115 % 102 mol
"N~ 30.18 g mol™ X i9Tmo
Thus,
1115 x 10 mol x 8.3145 Pa m?* K~ mol-' x 300 K.
V= = 3.14 % 10" m’= [3.14 dm’
o x10%m

(b) The total pressure is determined from the total amount of gas, 7 = ney, + R+ Ry
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0320g - 0175g
——=1.995 -2 =—"1"2 -
16.04 g mol 95 x102mol  n,, 39.95 g mol 4.38 x 10 mol

n=(1.995 + 0.438 + 1.115) x 10-2mol = 3.55 x 102 mol

Ren, =

3.55x102mol x8.3145 Pam?*K"mol~! x 300 K
3.14 x 103 m?

and p= m;T [1.8]=

= |2.82 x 10* Pa| = [28.2 kPa]

E1.11(b) This is similar to Exercise 1.11(a) with the exception that the density must first be calculated:

M= pE [Exercise 1.8(a)]
P

_3B5x107g [103cm3

- -3
750 o e J 0.134 g dm

(0.134 gdm?) x (62.36 dm® Torr K-"mol~) x (208 K)
M= =16. -1
159 Tors 16.4 g mol

E1.12(b} This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as that tem-
perature at which the volume of a sample of gas would become zero if the substance remained a gas
at low temperatures. The solution uses the experimental fact that the volume is a linear function of
the Celsius temperature:

V=V,+0af, where V,=20.00dm’and«=0.0741 dm?*°C™"

At absolute zero, V=0=V;+af

Va 20.00 dm?
_ A b RS TV
50 B(abs ZBI'O) o 00741 de OC—I

which is close to the accepted value of —273°C.

E1.130) (a) p= ”f;T [1.8]
. (1.0 mol) x (0.08206 dm?*atm mol“ K1) x (273.15K)
= =(1.0atm
o s 't
.. (1.0 mol) x (0.08206 dm*atm mol K-') x (500 K) .
(ay p= 0.150 dm =|270 atm| (2 sig. figures)
nRT  an?
b = -—L21
by p=y—r -5 [1.21a]

From Table (1.6) for H,S, a=4.484 dm® atm mol™ and 5 = 0.0434 dm* mol-'.

_ (1.0 mol) x (0.08206 dm® atm mol K-} x (273.15 K)
T 22.414dm?— (1.0 mol) x (4.34 » 102 dm? mol ')

(4.484 dm’ atm mol~?) x (1.0 mol)?
- = -0.99 tm
(22.414 dm®)? [0.99 atm|

(1)
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i) - (L0 mob x (008206 dm?atm mol™ K1) x (500 K)
P= 0150 dm’— (1.0 mol) x (4.34 x 102 dm® mol™)

3 -1 2
_ (4484 dm fﬁ?ﬁ; 3)); d.omely” (2 sig. figures)

1.14(b) The conversions needed are as follows:
latm=1.013%x10°Pa, 1 Pa=1kgm” s2 1 dm®=(10"" m)¢ = 10¢m°, 1 dm*=10-3 m?
Therefore,

1.013 x 10°kg m's72 < 104 m®

a=1.32 atm dm®mol 2 x
latm dm®

=11.34 x 10~ kg m s~ mol |

10°%m

and 5 =0.0426 dm?*mol'x
dm?

3
= |4.26 x 10-° m? mol ™}

E1.15(b) The compression factor is

Vo

PVa
Z=£=n17=""1
RT (1171 Ve

{a) BecauseV, =V, +0.12V, =(1.12)F], wehave Z=[1.12

forces dominate.

(b} The molar volume is

V=(1.12)V§1=(1.12)x(%]

(0.08206 dm?*atm mol~' K~} x (350 K)
12 atm

V=(1.12)x( J: 2.7 dm* mol~!

RT _ (8.3145J K~'mol ) x (298.15 K)
"~ (200 bar) x (10° Pa bar™)

=1.24 x 10~ m* mol'={0.124 dm? mol™

(b) The van der Waals equation is a cubic equation in V. The most direct way of obtaining the
molar volume would be to solve the cubic analytically. However, this approach is cumbersome, so
we proceed as in Example 1.4. The van der Waals equation is rearranged to the cubic form

V- (b + £JV§,+(£]VH,-%=O or x¥-— (b + E]x% (E—}c _ab_ 0
» r ? p b P

E116(b} (a) Vo=

with x=V_/(dm® mol).
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The coefficients in the equation are
3 -1 K -1
5 +£=(3.19 « 102 dm’ mol-1) + (0.08206 dm®atm mol-' K1) x (268.15 K)
P {200 bar) x (1.013 atm bar ')
=(3.19 x 10-2+ 0.1208) dm® mol ' = (.1527 dm® mol-!

a 1.364 dm®atm mol-?

- = 6.73 x 10 dm¢ mol-?
7 (200 bar) x (1.013 atm bar-)) e

ab _ (1.364 dm®atm mol?) x (3.19 x 102 dm* mol ')
P (200 bar) x (1,013 atm bar ')

Thus, the equation to be solved is x* — 0.1527x2+ (6.73 x 1073)x — (2.148 x 10-4) = 0.

=2.14%8 % 10-*dm® mel™

Calculators and computer software for the solution of polynomials are readily available. In this
case we find

x=0.109 and ¥V_=|0.109 dm?*mol!

The difference is about 15%.

. . . v, L
E1.17(b) The molar volume is obtained by solving Z = i—T"’ [1.17], for ¥V, which yields

_ ZRT _(0.86) x{0.08206 dm?®atm mol~' K"} x (300 X)
T op 20 atm

=1.06 dm® mol™!

Vi

() Then,¥ =nV,=(8.2 x 10 mol) x (1.0 dm* mol-') = 8.7 x 103 dm’= 8.7 cm?

(b) An approximate value of B can be obtained from eqn 1.19b by truncation of the series expan-
sion after the second term, B/ ¥V, in the series. Then,

B= Vm[PVm - 1J =V, x(Z — 1)=(1.06 dm?* mol!) x (0.86 — 1) =[~0.15 dm? mol

RT

E1.18(b) (a) Mole fractions are

X = Ry [1.14] 2.5mol

P T@5+15mol

Similarly, xy =

(¢) According to the perfect gas law

ptol.a.l V= ntota]RT
R RT (4.0 mol) x (0.08206 dm?atm mol' K1) x (273.15 K
50 Pow= tom[l/ = ( Lx¢ 22 4 dm? 1x( ) =

{(b) The partial pressures are

P = %P = (0.63) x (4.0 atm) =
and py=(0.37) x(4.0am)=
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1.19{b)  The critical volume of a van der Waals gas is V,=3b

so b=1¥,=1(148 cm’ mol) = 49.3 cm?® mol' = 0.0493 dm” mol !

By interpreting & as the excluded volume of a mole of spherical molecules, we can obtain an esti-
mate of molecular size. The centres of spherical particles are excluded from a sphere whose radius
is the diameter of those spherical particles (i.e. twice their radius); that volume titnes the Avogadro
constant is the molar exciuded volume b

173
4r(2¢)? 1f 3
b:NA[ (3)] 50 r=5(4nN)
A

173
1 3(49.3 cm* mol™') _ _ _
r=5[4n(6.022 X 1023m01-1)) =135x10%ecm=|1.35x10"m

The critical pressure is p, = 5—%;

50 a=27p0b%=27(48.20 atm) x (0.0493 dm’ mol '} = |3.16 dm® atm mol~*

But this problem is overdetermined. We have another piece of information:

_ 8a
" 27Rb

According to the constants we have already determined, 7, should be

- 8(3.16 dm® atm mol-2)
¢~ 27(0.08206 dm’ atm mol"' K. ) X (0.0493 dm® mol-)

=231K

However, the reported 77, is 305.4 K, suggesting that our computed a/b is about 25% lower than it

should be.
E1.20(b) (a) The Boyle temperature is the temperature at which ;}Jm d(ﬁ’V ) vanishes. According to the
van der Waals equation
RT a
Z PVa _\Vab Vi)™ Vi a
~ RT RT “V.-b V,RT

dz__(dz ) ( d¥,
d@/v,) (dv, d(1/v,)

e dz -y -V . 1 L_4a
dv, Vu—bY V.-b VLRT

__Vab _ a
V.—-b¥ RT
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In the limit of large molar volume, we have

. dZ aq a
1 _po 2 a__
7 R v v
a (4.484 dm°® atm mol-?)
and T=—= =
Rb  (0.08206 L atm mol ' K} x (0.0434 dm mol) ~ L2220 K

(b) Asin Exercise 1.19(b)

3 /3
(222 2]
A

1{ 3(0.0434 dm*mol) \"
r= 5(4;(6 e Ilr{l)zznn?ol‘)')] =1.29%x10°dm =129 x 109 m = [0.129 nm

States that have the same reduced pressure, temperature, and volume are said to correspond. The
reduced pressure and temperature for N, at 1.0 atm and 25°C are

_p _10am _ .00 and 7;=Z_(2_5ﬂ1<_

P - =2.36[1.24, Table 1.5
B T 33.54am 7. 1263K [1.24, Table 1.5]

The corresponding states are
(a) For H,S
= pop=(0:030) x (88.3 atm) =
T=T7T,=(236)x(373.2K) =
(Critical constants of H,S obtained from CRC Handbook of Chemistry and Physics.)
(b) ForCO,

p=p.p.=(0.030) x (72.85 atm) =
T=T.T,=(2.36) x (304.2K) =718 K

(c) ForAr

p = p.p. = (0.030) x (48.00 atm) =
T =T.T,=(2.36)x (150.72K) =[356 K

The van der Waals equation is

RT a
= -—1[1.21b
P AT i ]
which can be solved for b
-1 -1
b=v. KT _ 400 x10-m? mot- - — (83145 1K mol-!) x (288 K)
+ L 4.0x10°Pa + 0.76 m® Pa mol~
Py ' (.00 % 10-*m’ mol 12

= [1.3 » 10~*m? mol~!
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The compression factor is

PV, (4.0 x 106 Pa) x (4.00 x 10-*m*mol™!)
Z=2"271171= =(0.67
RT (1.17] (8.3145T K'mol™) x (288 K)

Solutions to problems

Solutions to numerical problems

. . 4 ..
Sotving for » from the perfect gas equation [1.8] yields n = % From the definition of molar mass

Mj . . . . RT
n= %, hence p= % = R_§ Rearrangement yields the desired relationship, namely | p = p——/|.

M

Therefore, for ideal gases £_ EI— and M = R—;f For real gases, find the zero-pressure limit of £

pip P
by plotting it against p. Draw up the following table. Bear in mind that 1 kPa=10* kg m~! 2.

pl(kPa) 12.223 25.20 36.97 60.37 85.23 101.3
ol(kg m—) 0.225 0.456 0.664 1.062 1.468 1.734
_ P 54.3 55.3 55.7 56.8 58.1 58.4
103 m2s?

£ plotted in Figure 1.2. A straight line fits the data rather well. The extrapolation to p =0 yields
P

an intercept of 54.0 x 10° m? 2. Then,

RT _(8.3145J K'mol™') x (298.15 K)

T 540 x10°m?s2 540 X 10° m? s

=0.0459 kg mol~'=|45.9 g mol-!

plip=0.0461p +54.0 ;
LT 15 O -

h
-1
1

Lh
(=)
}

@IpI10° m? 572

0 20 40 60 80 100 120

Figure 1.2
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COMMENT. This method of the determination of the molar masses of gaseous compounds is due to
Cannizaro, who presented it at the Karlsruhe conference of 1860, which had been called to resolve the

problem of the determination of the molar masses of atoms and molecules and the molecular formulas of
compounds.

The mass of displaced gas is pV, where ¥ is the volume of the bulb and p is the density of the gas.
The balance condition for the two gases is

m{bulb) = pF(buib), m(bulb} = g’ ¥{bulb)

C e s M e P
which implies that p=p’. Because [Problem 1.2] p = R the balance condition is pM =p’M’, which
implies that M" = l} x M.

p
This relationship is valid in the limit of zero pressure (for a gas behaving perfectly).

In experiment 1, p = 423.22 Torr, p” = 327.10 Torr. Hence,

_ 42322 Torr
"~ 327.10 Torr

’

x 70.014 g mol~ = 90.59 g mol~*

In experiment 2, p =427.22 Torr, p* =293.22 Torr, hence,

_ 427.22 Torr
"~ 293.22 Torr

’

x 70.014 g mol~'=102.0 g mol~!

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the balanced
weight). Experiment 2 is closer to zero pressure than experiment 1, so it is more likely to be close to
the true value:

W =102 g mol™!
The molecules CH,FCF, and CHF,CHF, have molar mass of 102 g moi™.

COMMENT. The substantial difference in molar mass betwsen the two experiments ought to make us wary
of confidently accepting the result of Experiment 2, even If it is the more likely estimate.

We assume that no H, remains after the reaction has gone to completion. The balanced equation is
N, +3 H, —» 2 NH,.

We can draw up the following table:

N, H, NH; Total
Initial amount # 74 o n+n
Final amount n-in' 0 w n+in
Specifically 0.33 mol 0 1.33 mol 1.66 mol
Mole fraction 0.20 0 0.80 1.00




THE PROPERTIES OF GASES 25

nRT (0.08206 dm® atm mol * K1) x (273.15K)
= =(1. =|1.66 atm
r (1.66 mol) x ( 74 dm’ a
p(Hy) = x(H,)p=[0]
PN, = x(N)p = 0.20 x 1.66 atm =
P(NH,) = x(NH,)p = 0.80 x 1.66 atm =
>1.8 From the definition of Z[1.17] and the virial equation [1.19b], Z may be expressed in virial form as

1 1y
z:1+3[ﬁj+c[zj .

Since V,, = RT [assumption of perfect gas], VL = %, hence on substitution and dropping terms
P

m

beyond the second power of [VLJ

2
Z=1+B| 2 |+c| £
RT RT

Z=1+{-21.7 x103dm* mol™) x {

100 atm
{0.08206 dm?atm mol~' K1) x (273 K)

100 atm ’
(0.08206 dm* atm mol ' K-') x (273 K)

Z =1 (0.0968) + (0.0239) = [0.927

RT 0.0821 dm* atm K~ mol') x (273 K
V., = (0.927) x (?] —(0.927) x (( Ap o X ( )) =[0.208 dm’

+ (1.200 x 107 dm® mol-?) x (

Question. What is the value of Z obtained from the next approximation using the value of ¥, just
calculated? Which value of Z is likely to be more accurate?

1.10 Since B'(T5) =0 at the Boyle temperature {Section 1.3b], B'(Ty) = a + be~T6 =0

- _ 2
Solving for Tp: Ty= ¢ - . (;112;19;(13;1) =50 x 102K
Gty

—a
In| —<
[ b J (0.2002 bar™)

172 2
2
.12 From Table 1.7 TC=(§JX(3§’—§J ,Pc=[*1*12_J X[Z;;I]

2a )" . . 12bp,
BR) MY be solved for from the expression for p, and yields = |
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ThUS,TC=%X—12&—I-)—=§XPC—:VC
3 R 3 R
8 (40 atm) x (160 x 103 dm? mol-) =
=|—1|% =
(BJ ( 0.08206 dm’atm mol~' K-! 210K
By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an esti-
mate of molecular size. The centres of spherical particles are excluded from a sphere whose radius

is the diameter of those spherical particles (i.e. twice their radius); that volume times the Avogadro
constant is the molar excluded volume b

13 1/3
47 (2r)y [ 3b . 1{ ¥,
b=N,| ———|, =_ 1.19 - <
A[ 3 so r 2| ann, [Exercise (b)] 2\ N,

13
1 160 cm? mol™! ~
r:5(4n(6.022x1023m01“)] =1.38 x 10 %¢m = 0,138 nm

Solutions to theoretical problems

Substitute the van der Waals equation [1.21b] into the definition of the compression factor [1.17]

PV 1 __a
RT 1 b RTV,
V.

m

zZ [Exercise 1.20(a)]

V. =

m

Z
Z=1+(b—a-a—Jx[—1—~J+b2[L} + o
RT Ve Va

We note that all terms beyond the second are necessarily positive, so only if

a b (bY
>—t|— |+
RTV. V. \ V.

m

-1 2
which on expansion of [1 - LJ =1+ —f?— + (ViJ +--- yields

. b . .
can Z be less than one. If weignore terms beyond 7o the conditions are simply stated as

m

Z<1 whenwa—>b; Z>1 wheni<b
RT RT

Thus, Z < 1 when attractive forces predominate and when there is insufficient thermal energy to
disrupt those forces, and Z > 1 when size effects (short-range repulsions) predominate.

The Dieterici equation is

RTe—aIRTVm

i - [Table 1.7]
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At the critical point the derivatives of p with respect to V, equal zero along the isotherm defined by
T=T,.. This means that (dp/oV,)),= 0 and (2*p/oV' %), = 0 at the critical point.

dp | _ |aV,—ab- RTVY
. ) =P\ v, —ayRT)

T

and dp) [ op aV,—ab— RTVY N (—2aVi+ 4V, ab + RTV: - 2ab?)
Vi T_ IV J | ViVa— bXRT) Wal(Va— 6 (RTH}

Setting the Dieterici equation equal to the critical pressure and making the two derivatives vanish
at the critical point yields three equations:
RT, e-aRTY,
PETY T
~2aVi+dV.ab+ RTV:-2ab?=0

; aV,—ab—- RT.V2=0

Solving the middle equation for T, substitution of the result into the last equation, and solving for
V, vields the result

V.=2b or b=V12
(The solution V_ = b is rejected because there is a singularity in the Dieterici equation at the point
V= b.) Substitution of V=25 into the middle equation and solving for T, gives the result
T,=al4bR or a=2RT.V,
Substitution of ¥, =2b and T, = a/4bR into the first equation gives
ae”? 2RTe>

Pe= 7

The equations for V,, T,, p. are substituted into the equation for the critical compression factor
[1.23]to give
v

Z,= 2 _pe2202707.
RT,

<

This is significantly lower than the critical compression factor that is predicted by the van der Waals
equation, Z (vdW)=p_V./RT =3/8=0.3750. Experimental values for Z_are summarized in Table 1.5,
where it is seen that the Dieterici equation prediction is often better.

Ve

—==1+Bp+Cp*+-[l

RT P P+ [1.193a]

v, B C

—LE =]+ —+—+---]1.

RT vt [1.19b]

B C

Th Bp+CpP+ =—+—+

us, f4 4 Ve VL

Multiply through by ¥, replace p¥, by RT{1 + (B/V) + ---}, and equate coefficients of powers of
1V,
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4 rp2T2
B'RT+BBRT+CRT +---=B+—C—+---
Vo V.
’ . . B
Hence, B'RT = B, implying that |B"' = —
RT
’ FDITY ' P2 ol s B . , C—Bl
Also, BB'RT+ C'R*T*=C= B*+ C’R*T?, implying that |C = Rirr

P20 Write V,=f(T,p) thendV.=| 22| ar 4| e ] gp
e p &P Jr

Restricting the variations of T'and p to those that leave V,, constant, that is dV_ = 0, we obtain

)5 AL
or )~ ap ). \oT),~ \av.), "\or),

From the equation of state

Op | _ RT 2a+bT) V.RT +2a+bT)
V. ) Vi v:o V3

and a_p =£+i=RVm+b
v Ve Vi Vi

Substituting

av, ) Vi RV, +b)  RVi+bBV,
oT ), \VuRT +2a+bT) )\ Vi ) V.RT +2a+bT)

From the equation of state, a+ bT=pVZ: —RTV,

Then, (

aT | V.RT +2pVi—2RTV, |2pV.— RT

an) RV%+bV, RV_+b,
P

v
P1.22 Z= V—’: where V2 = the molar volume of a perfect gas

m

From the given equation of state

Vm=b+£=b+V§,
14

For V= 10b, we have 10h=bh+ V5,50 V5 =9b.

Then,Zzﬂz E=1.11
9b 9




THE PROPERTIES OF GASES 29

P1.24 The virial equation is

B C
V.=RT|1+—+—+---{[1.19b
Pn [ v tyr }[ ]
me = +£+£.+...
R TV, 2
. PVo 1 .
(a) If we assume that the series may be truncated after the B term, then a plot of RT T will

m

have B as its slope and 1 as its y-intercept. Transforming the data gives

p/MPa  V(dm*mol")  (U/V,)(moldm™)  pV./RT

0.4000 6.2208 0.1608 0.9976
0.5000 4.9736 0.2011 0.9970
0.6000 4.1423 0.2414 0.9964
0.8000 3.1031 0.3223 0.9952
1.000 2.4795 0.4033 0.9941
1.500 1.6483 0.6067 0.9912
2.000 1.2328 0.8112 0.9885
2.500 0.98357 1.017 0.9858
3.000 0.81746 1.223 0.9832
4.000 0.60998 1.639 0.9782
1 H o H H H
{ PV IRE = —0.01324/Vi + 0.99948
e (Rzodess i T . i

0.995 - cerenie ............ ............ ............ ............ ferrenenes
ey
B
B 0.985 Jovereeennees s S frre PN e T

0.98 -

0.975 ; : i : : ;
0 02 04 06 08 1 12 14 16 18

(1/Vg)(mol dm™?)

Figure 1.3(a)

The data are plotted in Figure 1.3(a). The data fit a straight line reasonably well, and the y-intercept

18 very close to 1. The regression yields B = |—1 .324 x 102dm® mol™|.
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{b) A quadratic function fits the data somewhat better (Figure 1.3(b)) with a slightly better cor-
relation coefficient and a y-intercept closer to 1. This fit implies that truncation of the virial series
after the term with C is more accurate than after just the B term. The regression then yields

1

AVn/RT & 0.00106V% — 0.01503¥,, +0.99996
: R=1 i
0.995 - 00 TS FRNS S -

pVu/RT

0.98 -

0.975 N S SR S S S S—
1] 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8
{1/V)/(mol dm™3)

Figure 1.3(b)

B=|-1503 x102dm*mol™!| and C =|[1.06 x 10°dm®mol-

Solutions to applications

The perfect gas law is p¥V' =nRT

so n=22
RT

At mid-latitudes

2 -3 -1
n:(l.OOatm)x{(l.OOdm ) % (250 x 102 cm)/10 cm dm }=
(0.08206 dm®atm K'mol™) x (273 K)

In the ozone hole
2 -3 -1
v (1.00 atm} x {{1.00 dm?) x (100 x 10~ cm}/}0 cm dm™'} _[3.46 <10~ mol
(0.08206 dm*atm K-'mol-) x (273 K)

The corresponding concentrations are

n_ 1.12 x 10-3 mol
¥ (1.00 dm?) x (40 x 103 m) x (10 dm m™")

"o 4.46 x 10~*mol
¥~ (1.00 dm?) x (40 x 103 m) x (10 dm m™!

= l?x 10~ mol dm™

and

=|1.1%x10° mol dm™
| |

respectively.
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4 _
"= % 1.8, ¥= %"ﬁ: %7 x (30 m)=113 m?= volume of balloon

p=10atm, T=298 K

) 3 3 —
@ n= (1.0 atm) x (113 x 10° dm?) [T %107 mol
(0.08206 dm?*atm mol~ K1) x (298 K)

(b) The mass that the balloon can lift is the difference between the mass of displaced air and the
mass of the balloon. We assume that the mass of the balloon is essentially that of the gas it
encloses:

m = m(H,) = nM(H,) = (4.62 x 10 mol) x (2.02 g mol-") =9.33 x 10°¢
Mass of displaced air = (113 m*) x (1.22 kg m?) = 1.38 x 10°kg

Therefore, the mass of the maximum payload is

138 kg —9.33 kg =[1.3x 102kg

(c) For helium, m = nM(He) = (4.62 x 10° mol) x (4.00 g mol ") =18 kg.
The maximum payload is now 138 kg — 18 kg ={1.2 x 102 kg|.

Avogadro’s principle states that equal volumes of gases contain equal amounts {(moles) of the gases,
so the volume mixing ratio is equal to the mole fraction. The definition of partial pressures is

Pi=xp

The perfect gas law is

pV=nRT so 2=F2L_2F

vV RT RT
@ H(CSEF) ~ (0.08206 c§r211631a)t<1111(;:‘2‘);c>(11';()) itl(?t)) ¥23)K (110" ol om
» n(c<I:/12F2) - ;5129;;; (:{11 );0(11— ;t)) it?ll()) S TOY 2.2 x 107" mol dm|
© S = 55206 datn QR L 10 ol ]
and MCCLE) (509 x 107%) X (0.030 atm) = |1.6 x 107 mol dm3

¥V (0.08206 dm®atm K- mol-"} x {200 K)



2 The first law

D2.2

D2.4

D2.6

E2.1(b}

Answers to discussion questions

Rewrite the two expressions as follows:
(1) adiabatic p o= 1/¥7 (2) isothermal p == 1/¥

The physical reason for the difference is that, in the isothermal expansion, energy flows into the
system as heat and maintains the temperature despite the fact that energy is lost as work, whereas
in the adiabatic case, where no heat flows into the system, the temperature must fall as the system
does work. Therefore, the pressure must fall faster in the adiabatic process than in the isothermal
case. Mathematically, this corresponds to y> 1.

The change in a state function is independent of the path taken between the initial and final states;
hence for the calculation of the change in that function, any convenient path may be chosen. This
may greatly simplify the computation involved and illustrates the power of thermodynamics.

The following list includes only those state functions that we have encountered in the first two
chapters. More will be encountered in later chapters.

Temperature, pressure, volume, amount, energy, enthalpy, heat capacity, expansion coefficient,
isothermal compressibility, Joule-Thomson coefficient.

One can use the general expression for z, given in Further Information 2.2 (and proved in Sec-
tion 3.8, eqn 3.51) to derive its specific form for a van der Waals gas as given in Exercise 2.31(a),
that is, ;- = a/V2. (The derivation is carried out in Example 3.6.) For an isothermal expansion in
a van der Waals gas dU,, = (a/V, Y. Hence, AU, = —a(l/V,, 2} — 1/V,, ). See this derivation in the
solution to Exercise 2.31(a). This formula corresponds to what one would expect for a real gas.
As the molecules get closer and closer the molar volume gets smaller and smaller and the energy
of attraction gets larger and larger.

Solutions to exercises

The physical definition of work is dw =—F dz. [2.5]

In a gravitational field the force is the weight of the object, which is F=mg.
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If g is constant over the distance the mass moves, dw may be integrated to give the total work

zr 5
w=—J Fdz=—f mg dz = —mg(z,— z;) =—mgh, where h=(z-z)

H Zi

w = —(0.120 kg) x (9.81 m s72) x (50 m) = —59 J =59 J needed

This is an expansion against a constant external pressure, hence w = —p AV, [2.8]

The change in volume is the cross-sectional area times the linear displacement:

3
AV =(50.0 cm?) x (15 cm) x| —2 | =7.5 x 10-4m?
100 cm

so w=—(121x10°Pa) x (7.5 x 10~ m?*) = as1Pam’=1]J

For all cases AU =0, since the internal energy of a perfect gas depends only on temperature. (See
Section 2.2a and Section 2.11(b) for a more complete discussion.) From the definition of enthalpy,
H=U+pV,s0 AH=AU+A(pV)= AU+ AnRT) (perfect gas). Hence, A H =0 as well, at constant
temperature for all processes in a perfect gas.

@

12
VJ [2.10]

31.7 dm?
= —(2.00 mol) x (8.3145 J K- mol-! THK xS =162 x10°
(2,00 mol) x ( JK-mol™) x (22 + 279 K x In s
g=-w=|1.62x10J
(b) [AU=8H=0

w=—p, AV[2.8]

w= —nRTln[

where p,, in this case can be computed from the perfect gas law
pV=nRT

_ (200 mol) x (8.3145 JK " mol-') X (22 + 273) K
r= 31.7 dm

x (10 dm m™)*=1.55 % 10’ Pa

=(1.55 x10°Pa) x (31.7 ~ 22.8) dm®
and w= 10 dm 1y =|{-1.38 x10%]

®
[freeexpansion] q=AU—-w=0—O=@

COMMENT. An isothermal free expansion of a perfect gas is alse adiabatic.



E2.4(b)

E2.5(b)

E2.6(b)

E2.7{b)

34 INSTRUCTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

The perfect gas law leads to
pV  nRT, T, (111kPa)yx (356 K)
o L = = =143k P
2,V nRT, 2= 277K

There is no change in volume, so . The heat flow is
g= JCV dT = CyAT =(2.5) x (8.3145 F K mol') x (2.00 mol} x (356 - 277) K

i

— 3 3
@ we_pap = (TX10 Pa)x(2.5dm):

(10 dm o'y’
Vi
(b) w=-nRT m[?] [2.10]
3
weo| 8308 1, (83145 T K- molt) x (305 K) x In 2 ¥ 18
39.95 g ol 8.5 dm’

=|-52817
AH = Aoy H = —A . H = ~(2.00 mol) x (35.3kJ mol~') =|-70.6 kJ

Since the condensation is done isothermally and reversibly, the external pressure is constant at
1.00 atm. Hence,

g=g,=AH=|-70.6k]

w=—p, AV[2.8], where AV=V, -V, ~-F, because V<« V,,

. . RT .
On the assumption that methanol vapour is a perfect gas, V,,, = B2 and P = Pex» Since the con-
p

densation is done reversibly. Hence,

w =nRT =(2.00 mol) x (8.3145 J K-' mol ) x (64 + 273) K = 5.60 x 10°J
and AU =g +w=(=70.6 + 5.60) kJ = |-65.0kJ

The reaction is
Zn+2H — Zn” +H,

so it liberates 1 mol of H,(g)} for every 1 mol Zn used. Work at constant pressure is

w=—p AV =—-pV, =-nRT

50¢g
=—| ———2— % (83145 T K*mol 1} x (23 + 273 K =188 ]
[65.4gm01“'] ¢ mol ™y x ( ) -




E2.8(b}

E2.9(b)

E2.10(b}

E2.11(b)
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(a) At constant pressure, g=AH.

1004273K

qg= [ CdT = [ [20.17 + (0.400)T/K]dT J K
04273K

173K

JK!

273K

=[(20.17) x (373 — 273) + 1(0.4001) x (373 - 273)J = [14.9 x 10°] | = A H

w=—pAV = -nRAT =—(1.00 mol) x (8.3145J K-'mol™) x (100 K) = |-831J

AU=¢g+w=(149-0831)kJ=|14.1kJ

{b) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, AH =149 kJ

and AU =:14.1kJ|, as above. At constant volume, w = @ and AU=gq,s0g =|+14.1kJ|.

For reversible adiabatic expansion

1 T
= {(20.17)1'w + 5(0_4001) X [iﬂ

Ve
Vi
T, =T, [-V—] [2.28a]

r

Cvm Con— R _(37.11-8.3145)J K" mol”

h = = 3463
wheree R 831451 K- mol"
therefore, the final temperature is
1/3.463
500 x 1073 dm?
= 15K _ =[200K
- Gos1s k) x| 29700
Reversible adiabatic work is
w=CpAT[227]=n(C,p— RyX (T - T})
where the temperatures are related by
e
g -R
T.=T, L4 [2.28a], where c= Com _Gm=R _ 2.503
v, R R

3 g3 \1/2:503
So 7; =[(23.0+273.15)K] [%] _156K

312g
= t28 | (29125~ 8.3145) T K- mol” x (156 — 296)K =325 7
and [ZS.Ogmol‘Jx( ) K molx( K =[-3259

For reversible adiabatic expansion

1.3
v, Y 500 % 10-*dm?
pVi=pV][229) so pf=p{7} =(873 Torr)x[wj = [8.5 Torr

f
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E2.12(b) g,=nC,,AT[2.24]

Com= %o _ 1787 =|53J K" mol™!
AT  19mol x1.78K
Con=C,,—R={53-83)JK"'mol"=|45J K~' mol"!

E2.13(b) AH = g,= C,AT [2.23b,2.24] = nC,,, AT

AH = g,= (2.0 mol) x (37.11] K- mol™) x (277 — 250) K = 2.0 x 10°J mol-!

AH=AU+AMpV) =AU + nRAT so AU=AH - nRAT
AU =2.0x10°) mol™ - (2.0 mol) x (8.3145 T K mol~) x (277 - 250) K

={1.6 x 10*J mol™!
E2.14(b) In an adiabatic process, g = @ Work against a constant external pressure is
—(78.5x 10°Pa) x (4 x 15— 15)dm?
——p AV = =|-3.5x10°J
w Pex (10 dm m™'y
AU=g+w=|-3.5%x10°]

One can also relate adiabatic work to AT (eqn 2.27):

v
MCym— R)

2

w=CyAT =n(C,n— RIAT, so AT =

-3.5x%10%]

= =[-24K
(5.0 mol) x (37.11— 8.3145) J K- mol"!

AT

AH =AU + A(pV) = AU + nRAT

= -3.5%10°J + (5.0 mol) x (8.3145 J K-'mol ") x (=24 K) =

E2.15(b} In an adiabatic process, the initial and final pressures are related by (eqn 2.29):

Con  Cow _ 208JK'mol'
Crm Com—R  (20.8-831)T K- mol"

pVi=pV{, where y= 1.67

Find V, from the perfect gas law:
#RT, _(1.5mol)(8.31J K-"mol)(315 K)

V= =0.017T m’
P 230 x 10°Pa
Ity 1/1.67
P - 230 kPa —
Vi=VF|=—| =(0.0171m? = ((1.0205 m?
w© ¥ l[pf] c m)(mkpa

Find the final temperature from the perfect gas law:

pV: (170 x 10° Pa) x (0.0205 m?) =
T, =201 = =279 K
"7 WR ~ (1.5mol(8.31T K" mol")
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Adiabatic work is (eqn 2.27)

w=C,AT =(208—-8.31) J K-'mol- x 1.5mol x 279 - 315) K =1-6.7 x 10?]

At constant pressure

g=AH =nA,,,H*=(0.75 mol) x (32.0 kJ mol~') ={24.0 kJ

and w=-pAV=—pV_  =-nRT =—-(0.75 mol) x (8.3145 J K-'mol") x (260 K)

vapor

w=-16x10"]=|-1.6kJ
AU=w+q=240-16kI=[223KJ

COMMENT. Because the vapour is here treated as a perfect gas, the specific value of the external pressure
provided in the statement of the exercise does not affect the numerical value of the answer.

The lattice enthalpy is the difference in enthalpy between an ionic solid and the corresponding
isolated ions. In this exercise, it is the enthalpy corresponding to the process
MgBr,(s) - Mg**(g) + 2Br (g)

The standard lattice enthalpy can be computed from the standard enthalpies given in the exercise
by considering the formation of MgBr,(s) from its elements as occurring through the following steps:
sublimation of Mg(s), removing two electrons from Mg(g), vaporization of Bry(l}, atomization of
Br,(g), electron attachment to Br(g), and formation of the solid MgBr, lattice from gaseous ions:

AcH®(MgBr,,8) = Ay H° (Mg, s) + A H° (Mg, g) + A, H* (B, 1)
+ A, H®(Br,g) + 2A,,H®(Br,g) — A, H*(MgBr,,s)

So, the lattice enthalpy is

ALHQ(MgBIZ’S) = AmbHe(Mg= S) + AionHe(Mgs g) + AvapHe(BrZ’l)
+ A, H®(BL,,8) + 2A,,H®(Br,g) -~ AcH* (MgBr,,5)

A H*(MgBr,,s) = [148 + 2187 + 31 + 193 — 2(331) + 524] kJ mol-'= [2421 kJ mol-!

The reaction is
C.H;OH() + 7 O,(g} — 6 CO,(g) + 3 H,O0
AH?® = 6AH*(CQ,) + 3A.H® (H,0) — A H®(C,H,OH) — 7TAH®(0,)
=[6(—393.51) + 3(—285.83) — (-165.0) — 7(0)] kJ mol'= |—3053.6 kJ mol™ |

We need A:H* for the reaction
(4) 2B(s)+3 Hy(g) — B,Hy(g)
reaction {(4) = reaction (2) + 3 x reaction (3) — reaction (1)

Thus, AH® = A H®{reaction(2)} + 3 x A, H*{reaction(3)} — A, H*{reaction(l)}

=[-1274 + 3 x (—241.8) — (=2036)] kJ mol ' =|+36.6 kJ mol "
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E2.20{b} For anthracene the reaction is
CsHio(s) + 2 0,(g) — 14 CO,(g) + 5 H,0()
AU®=AH>- AnRT[221], An,=-mol

AU® =-7061 kI mol-'— (=2 x 8.3 x 10 kJ K-'mol' x 298 K)
= -7055 kJ mol-!

225x103g
178.23 g mol™

lgl  0.0891kJ -
C=-L -2 - 0.0660 kI K-=166.0T K~
TR

|q|=|qu=inAcU°l=[ Jx(7055 kJ mol ') =0.0891kJ

When phenol is used the reaction is C;H;OH(s) + 1—25 0,(g) > 6 CO{(g) + 3 H,O)

A H®=-3054 kJ mol~ [Table 2.6]

AU =AH® - An,RT, An,=-3
= (=3054 kJ mol™') + () x (8.314 x 10 kJ K~'mol™") x (298 K)
=-3050 kJ mol™!

-3 —
lql=| 232X1078 ) 3050 kT mol ) = 4373 kJ
94.12 g mol™!

g1 4375 kJ
AT=2=——— — — _=—14+663K
C  0.0660kI K

COMMENT. In this case A L/° and A H* differed by about 0.1%. Thus, to within 3 significant figures, it would
not have mattered if we had used A_H® instead of AU, but for very precise work it wouid.

E2.21(b) The reaction is AgBr(s) — Ag'(aq) + Br'(ag)
A H® = AH®(Ag'aq) + A H®(Br™,aq) - A H{*(AgBrs)

=[105.58 + (-121.55) - {~100.37)] kJ mol'= {+84.40 kJ mol™

E2.22(b) The combustion products of graphite and diamond are the same, so the transition C(gr) — C(d) is
equivalent to the combustion of graphite plus the reverse of the combustion of diamond, and

A H® = [-393.51 — (~395.41)] kJ mol-'=[+1.90 kJ mo}"

£2.23(b) (a) reaction(3)=(-2)xreaction(l)+reaction(2) and An,=-1

The enthalpies of reactions are combined in the same manner as the equations (Hess’s law).

AH*(3)=(=2) x AH*(I) + A, H*(2)
= [(=2) X (52.96) + (—483.64)] kJ mol* = [-589.56 kJ mol"!|

AU® = A H®— An,RT = —589.56 kT mol-'— (~3) x (8.314 J K-'mol™) x (298 K)

= —589.56 kJ mol™ + 7.43 kJ mol-' =|{~582.13 kJ mol-!|
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{(b) A H" refers to the formation of one mole of the compound, so

ApH* (HI) = 1(52.96 kJ mol~) = [26.48 kJ mol"!

ArH®(H,0) =1(-483.64 kJ mol-) = |-241.82 kJ mol"'|

AH®=AU®+ RTAn,[2.21]

=—772.7 kJ mol™'+ (5) x (8.3145 x 10° kJ K-'mol™') x (298 K)

= (-760.3 kJ mol"!

Combine the reactions in such a way that the combination is the desired formation reaction. The
enthalpies of the reactions are then combined in the same way as the equations to yield the enthalpy
of formation.

A H®I(kI mol™)
% N,(g)+ % 0,(g) = NO(g) +90.25
NO(g) + 7 CL,(g} = NOCl(g} —-3(75.5)

% N,(g) + % O,(g)+ -;- Cl,(g) - NOCl(g) +52.5

Hence, A H*(NOCL g) = [+52.5 kT mol™!

According to Kirchhoff’s law [2.36a]

166°C
AH*(100°C) = A, H*(25°C) + J ACSdT

25°C

where A, as usual signifies a sum over product and reactant species weighted by stoichiometric coefli-
cients. Because €, can frequently be parametrized as

Com=a+bT+clT?
the indefinite integral of C, , has the form
[CondT =aT + 16T /T
Combining this expression with our original integral, we have
AH*(100°C) = A H*(25°C) + (TA,a + L T*Ab ~ A el T)| 00
Now, for the pieces
A H?(25°C) = 2(—285.83 kJ mol™) — 2(0) — 0 = —571.66 kJ mol™!
Aa =[2(75.29) — 2(27.28) — (29.96)] ] K- mol'=0.06606 kJ K' mol*
Ab =[2(0) - 2(3.29) — (4.18)] x 10~ J K2 mol~ = ~10.76 x 10 kJ K- mol~!
A.c =[2(0) - 2(0.50) ~ (-1.67)] x 105 T K mol-'= 67 kJ K. mol-"
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A H?(100°C) = [~571.66 + (373 — 298) x (0.06606) + (3732 — 298%)
% (—10.76 x 10-6) — (67) % (755 — 355)] kJ mol™!

=[-566.93 kJ mol-!|

E2.27(b} The hydrogenation reaction is
() C,H,(2) + Hy(g) > C:Hy(g) AH(T)=?

The reactions and accompanying data which are to be combined in order to yield reaction (1) and
AHT(T)are

(2)H,(2) + 3 0,(g) » H,O() A H®(2)=-285.83 kJ mol™’
(3 C,H.(g) +304,(g) — 2 H,O(l) + 2 CO,(g) A H”(3)=-1411kJ mol™!
(4) C;H,(g) + 2 0.(g) = H,O() + 2CO,(g) A H*(4) =-1300 kJ mol ™
reaction (1) = reaction (2) — reaction (3) + reaction (4)

Hence, at 298 K:

(a) AH®=AH*(2)-AH(3)+AH(4)
=[(~285.83) — (~1411) + (~1300)] k] mol"!

=|-175kJ mol™!

AU°=AH®-AnRT[221; An,=-1
=-175 kJ mol-' - (1) x (2.48 kJ mol™')
-
(b) At348K:
AH*(348K)= A H°(298K) + A,CS(348 K — 298 K) [Example 2.6]
ACS= ;vj C2 () [2.36b] = Con(CoHy, 8) — Con(CoH,,8) - Crn(H, 2)

=(43.56 — 43.93 — 28.82) x 10 kJ K~ mol ™"
=-29.19 x 102 kJ K~ mol™

A H®(348K) = (=175 kI mol™) - (29.19 x 10 kJ K- mol) x (50 K)

=|-176 kJ mol™

E2.28(b) NaCl, AgNC,, and NaNO, are strong electrolytes, therefore the net ionic equation is
Ag(aq) + Cl (aq) — AgCl(s)

AH® = AH®(AgCl) - A H?(Ag") — ALH®(CT")
= [(-127.07) — (105.58) — (-167.16)] kJ mol™!

=|—65.49 kJ mol™



=2.29(b)

=2.30(b)

2.31(b})

THE FIRST LAW

The cycle is shown in Figure 2.1.

Ca?* (g) + 2¢~ + 2Br(g)

A
Ionization Calg) + 2Br{g)
A
Dissociation | Ca(g} + Bra(g)

Electron
gain Br
l\3/'::11)0rizaticu-1 Ca(g) + B (1) Ca® {(g) +2Br (g) \ 4
. e
(S::b]jmation Cafs) + Bra(l) Hydration Br~
Ca®*(g) + 2Br (aq) \ 4
—Formation
Hydration ca®t
—Solution \4

Figure 2.1

—Ap o H®(Ca?) = A H? (CaBr,) — A, H*®(CaBr,,s} + A, H°(Ca)
+Av, H ?(Br,) + Ag H*(Bn) + A H(Ca)
+ A H®(Ca*t) + 2AegH°(Br) + 2Ahde° (Br)
=[—(~103.1) - (~682.8) + 178.2 + 30.91 + 192.9
+589.7 + 1145 + 2(=331.0) + 2(97.5)] kJ mol-

=(2456 kJ mol™!
so0 A H*(Ca?)=|~2456 k] mol-!

41

The Joule-Thomson coefficient g is the ratio of temperature change to pressure change under con-

ditions of isenthalpic expansion. So,
oT AT -10K
= =] =—=—""— =048 Katm"!
ve(3F) AL

The internal energy is a function of temperature and volume, U, = U(T,¥,), so

au, U, }
U= (a_T] T+ [ o ldvm [ty = (U 13V)7]

For an isothermal expansion dT = 0, hence

U
v, =| 2Ya AV, = npdV, = —d¥,,
oV, r v
Vinz Vina 22.1dm¥mol-1 22.1dm?* mei-1
- m.z V
AUm=J dUm=J "E;de:aJ d 2m=_i
Vi ¥l Va 100dm mor-1 V' Ve [1.00 dmd moi-i
a a 21.1a

—- + = =0954ﬁ dm™ 1
22 1dm’mol”  1.00 dm’mol~'  22.1dm’mol ! @ dm Tmo
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From Table 1.6, a=1.337 dm® atm mol?
AU, = (0.95475 mol dm?} x (1.337 atm dm® mol-2)

— 3
=(1.2765atmdm3mol‘1)><(1.01325><105Paatm“)><[ Lm J

103dm?
=129 Pam*mol* =(129 J mol-!

RT
w= _j pdV,, where p=——- A for a van der Waals gas. Hence,
Vo—b Vi
RT a
w:—J [Vm_ b)de+ J’ V—éjde:—q +AUm
Thus,

22,1dm3 mol-1 22.1 dm3 mol-!
g:J ( RT Jde=RTln(Vm—b)

1.00 dm3 mol-1 Vm - b 1.00 dm? moi—1

22.1-320x1072
1.00 - 3.20 x 1072

= (8314 K-'mol™) x (298 K) x ln( J = [+7.7485 KJ mol-|

and w = —q + AU, =—(7747 ] mol™) + (129 J mol-) =[-7618 J mol-'| = [~7.62 kJ mol"|

E2.32(b) The expansion coefficient is

*=v\ar v
VBT x10%+2x1.52 x 10%T/K) K
T V077 + 3.7 x 1074(T/K) + 1.52 x 10-5(T/K ]

-4 -6 ~1
_ [3.7x 104+ 2 % 1.52 x 10-%(310)| K (37 < 105K
0.77 + 3.7 x 107*(310) + 1.52 x 10-%(310)%
E2.33(b) Isothermal compressibility is

1({ oV AV AV
Kp==—|—| =——— 50 Ap=~
ap j.

_ _I{BVJ VBT x 107K+ 2 x 1.52 x 10T K2)
4

V VAp Vi,
A density increase of 0.08% means AV/V = -0.0008. So, the additional pressure that must be applied is

0.0008

= 22w 10vam o1

Ap

E2.34{b) The isothermal Joule-Thomson coefficient is

[a;fm) =-pC,,=~(1.11K atm™) X(37‘11‘IK71m°}_1)=i—41-21atm"mol“l
P Jr
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If this coefficient is constant in an isothermal Joule—Thomson experiment, then the heat that
must be supplied to maintain constant temperature is AH in the following relationship

AHIn

=—412Jatm'mol! so AH=-(41.2Jatm'molnAp

AH =—(41.2J atm™ mol™) X (12.0 mol) X (—55 atm) =|27.2 x 10° J

Solutions to problems

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data
are for 298 K.

Solutions to numerical problems

w=—p.AV (28] V,="RE

>V; so AV =V

Pes

Hence, w={(—p,)X% (HRT] =-nRT =(-1.0mol) X (8.314 T K 'mol™) x (1073 K)
P

Even if there is no physical piston, the gas drives back the atmosphers, so the work is also

The virial expression for pressure up to the second coefficient is

RT B
pP= [—V:J[l + .V::] [119]3}

f f
w=—| pdV=-—n RT X 1+-€— dV,=-nrRTIn Var +nBRT L
i i Vm Vm Vm.i me Vm.i

From the data,

#RT = (70 x 10~ mol} x (8.314 T K-'mol ") x (373 K)=217 J

5.25 cm? - 6.29 cm?® =
= =750 em*mol”!, ¥, =——"— =89.9 cm®mo]"!
™= 70 % 10- mol MO = 70510 mol e me.
| 1 1
dso B| — — — |=(-28.7 cm® mol) x _
anase [me ,m.J (728.7 em?mol™) (89.9 cm’mol”  75.0 cm? moHJ

=6.34 x 1072
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= 6.29 = — _
Therefore, w = (=217 J) x 1“(53] + (217 D% (6.33 x102) = (=392 1)+ (13.8 ) =

Since AU=g+wand AU=+835 L ¢=AU ~w=(8351)+(25])=|+109]

AH =AU+ A(pV), with pV=nRT(1+-§—J

™

ApV)y= nRTBA(VLJ = nRi"‘!’i(L - LJ, asAT =0

m Vm,f m,i

=217 ) x(6.34 x102)=13.8]

Therefore, AH = (83.51) + (138 J) =

vz
nRT nla
P2.6 =- 14 ith = -—11.21
W [‘” with p= o Ty 121l

¢

%)
Therefore, w=-nRT dv + n%a d—V =|-nRT In Lﬂb —nla L - i
y, V —nb w V2 Vi—nb , "

This expression can be interpreted more readily if we assume V > nb, which is certainly valid at all
but the highest pressures. Then, using the first term of the Taylor series expansion,

xl‘
1n(1—x)=—x~—7--- for|x|<1

1n(V—nb)=]nV+ln(1-»ﬂ]xan—Eé
vV Vv

and, after substitution

w=-nRTIn ﬂ +n*bRT i—i —nla i—i
|4 Vv, W v, K

v, 1 1
=-nRTIn| = |- #n*(a—bRT)| — - —
n n{Vl] n*(a )[V2 VJ

1
= +wy— n?(a — bRT) {VL - F] = perfect gas value + van der Waals correction.
2 1

w,, the perfect gas value, is negative in expansion and positive in compression. Considering the

. . . I 1 . .

correction term, in expansion V> V;, so (— — —J < 0. If attractive forces predominate, a > bRT
2 1

and the work done by the van der Waals gas is less in magnitude (less negative) than the perfect

gas—the gas cannot easily expand. If repulsive forces predominate, 8RT > a and the work done by

the van der Waals gas is greater in magnitude than the perfect gas—the gas easily expands. In the

numerical calculations, consider a doubling of the initial volume.
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Ve
(a} wy=-nRT ln(vf

=172 x10°1 = [-1.7 W]

(®) w=wy—(1.0molyx [0 —(5.11 x 10-*dm>mol ') x (8.314 T K- mol-") x (298 K)]

1 1 , -
- (17 x10°)) - (63 1) =-1.T8 x 10°] =[-1.8kJ
X(Z.Odrrﬁ I.Odm3J (CL72x104) - (63 ]) *

3
Jz (-1.0 mol ) x (8.314 T K~ mol 1) x (298 K) x 1n(2'0 i J

1.0 dm?

I 1
(€) w=w,— (1.0 mol) x (4.2 dm®atm mol-2) x {2‘0 dm? - 1.0 deJ

w=w,+ 2.1dm’atm

3

= Im 1.01 x10°Pa
=(-1.72 3 . 3

(-1.72x10°))+ (2.1dm aun)x(IOde x( ot J

=(-1.72x10° 1)+ (0.21x 10° ) = [-1.5kJ

Schematically, the indicator diagrams for the cases (a), (b), and (c} would appear as in Figure 2.2.
For case (b) the pressure is always greater than the perfect gas pressure and for case (c) always less.
Therefore,

szdV(c)<J'2pdV(a)<[zpdV(b)

4l 4 M

and we see that w(b) > w(a) > w(c).
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The calorimeter is a constant-volume instrument as described in the text (Section 2.4), therefore
AU=gq,
The calorimeter constant is determined from the data for the combustion of benzoic acid

0.825 g _
AU =| ——2228 |y (£3251kJ mol) =219
(122.12gm01-1Jx( mol™) 6k

lgl 2198 k]

o S 132KTK
AT  1940K KK

Since AT =1940K,C=

For p-ribose, AU = —CAT =—(11.32 kJ K') x (0.910 K)

AU

— -1
Therefore, AU = ——=—(11.32 k] K"} x (0.910 K) x (M
n

=-2127 kJ mol™
0727 ¢g

The combustion reaction for p-ribose is
C;H jO4(s) + 5 0:(g) — 5 COy(g) + 5 HO(D)
Since there is no change in the number of molies of gas, A, H =AU [2.21]

The enthalpy of formation is obtained from the sum

AHI(kY mol™")
5 COLg) + 5 H,O(l) » CsH,(O4(s) + 5 O4(8) 2127
5C(s) + 5 0,(g) = 5 COLg) 5% (=393.51)
5 H,(g) + 2 0,(g) » SH,O(l) 5% (—285.83)
5C(s) + 5 Hy(g) + £ O4(g) = C5H ,O4(s) -1270

Hence, AiH =|-1270 kJ mol™!

Data: methane—octane normal alkane combustion enthalpies

Species CH, C,H, C,H, CH,, CH,, C.H., CHys
A H*{kImol")  -890 -1560 -2220 —2878 —3537 ~4163 —5471
Mi(g mol™) 16.04 30.07 44.10 58,13 72.15 86.18 114.23

Suppose that A, H* = kM". There are two methods by which a regression analysis can be used to
determine the values of k and x. If you have a software package that can perform a ‘power fit’ of
the type Y=aX®, the analysis is direct using ¥=A H and X= M. Then, k=aand n=>5. Alternatively,
taking the logarithm vields another equation—one of linear form

In|AH®|=In|k|+nln M, wherek<0

This equation suggests a linear regression fit of ln (A_H®) against In M (Figure 2.3). The intercept
is In & and the slope is #. Linear regression fit

In|k|=4.2112, standard deviation=0.0480 & =—e*?'1? =
n=09253|, standard deviation=0.0121
R=1.000




P2.12

THE FIRST LAW 47

This is a good regression fit; essentially all of the variation is explained by the regression.

For decane the experimental value of A_H*® equals —6772.5 kT mol™! (CRC Handbook of Chemistry
and Physics). The predicted value is

AH® = kM" = —67.44(142.28)®9% kJ mol-'= [~6625.5 kJ mol-'|

Normal alkane combustion enthalpies

T

bag @
< th
1

In (=AH *f(k) mol™1))
=~
un
|

7.0

T T

3 I I S B I
30 35 4.0 4.5 5.0
In M/(gmol™")

g
tn

Figure 2.3

—6772.5 - (-6625.5)
—6625.5

Percentage error of prediction =

‘xlOO

Percentage error of prediction=(2.17%

(a) The magnitude of the energy released as heat is

g=-nAH®*=- 15¢ = X (—5645 kI mol-!) =

342.3gmo
(b) Effective work available is = 25kJ x0.25=6.2 kJ
Because w=mgh, and m=65kg

6.2 x10°]

~ Y
65kg %981 ms? =

(c) The energy released as heat is

25¢g
= —AH=-nAH*=-| —=2& |, (-2808 kJ mol"")=[39 kJ
AR ETR {180gm01-')x( 808 kJ mol™)

(d) If one-quarter of this energy were available as work a 65 kg person could climb to a height /
given by

39 x10°] 5ol
sg=womgh S0 A e 65K x(98ms ) Lo
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H,0"(aq) + NaCH,COO - 3 H,O(s) — Na'(aq) + CH,COOH(aq) + 4 H,O(l)
Fo = Mg/ M, = 1.3584 2/(136.08 g mol™')=0.0099824 mol
Application of eqns 2.13 and 2.19b gives:

ATHm = _AcalorimeterH / Heay = _Ccalorimctcr-}-comcmsAT"'nsalt
= _(Ccaloﬂmeter + Cogjution )AT/Rsah
=~(91.0J K"+ 4,144 J K'cm™ x 100 cm?) x (—0.397 K}/0.0099824 mol
=20.1kJ mol™

Application of eqn 2.32 gtves:

AH®= AH*(Na' aq) + A H*(CH,COOH,aq) + 3A.H°(H,0,])
—-AH®(H' aq) — A * (NaCH,COO - 3H,0,3)

(where the water coefficient is 3 not 4 because one water in the chemical equation is part of the
hydrated hydrogen ion). Solving for A.H *(Na’,aq) and substituting A H ® values found in Tables 2.6
and 2.8 gives

AH*(Na®,aq) = A, H® - A H*(CH,COOH,aq) - 3A:H® (H,0,])
+ A H®(H",aq) + A, H*(NaCH,COO 3H,0.s)

AH®(Na',aq) = {20.1— (—485.76) — 3(~285.83) + (0) + (—1604)} kJ mol*

=(-241kJ mol™!

We must relate the formation of DyCl,
Dy(s) + 1.5 Cli(g) — DyCly(s)

to the three reactions for which we have information. This reaction can be seen as a sequence of
reaction(2), three times reaction(3), and the reverse of reaction(l), so

AH*(DyClys) = A, H*(2) + 34, H*(3) - A, H*(1),
AcH*(DyCly,s) = [699.43 + 3(-158.31) — (~180.06)] kJ mol-!
=[-994.30 kI moi-!|

(8) AH®=AH*(SiH,O0H) - A H*(SiH,) - AH"(0,)
= [-282 - 34.3 - 1(0)] kJ mol™

=(-316.3 kJ mol~!

(b) AH® = AH(SiH,0) - A H*(H,0) - A H*(SiH,) - A H*(0;)
= [-98.3 + (~285.83) — 34.3 - 0] kJ mol-!
= [~418.43 kJ mol-!|

(© AH® = AH(SIH,0)— A H*(SiH,0H) — A H*(H,)
= [-98.3 — (~282) — 0] kJ mol-’

=1183.7 kJ mol™!
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dH = [8 J dT +(8HJ dp, or dH =(BH} dp [constant temperature]
oT ap } P ),

aH,,
dp

2a
} =—puC,p [Justification 2.2]= [E - b]

- _[ () x (360 dm*atm mol-?)

00821 dm’amn K- mol ) x GO0 K) 044 am’ m°1_1] = ~0.2483 dm?mol™

P Pr
AH =J dH = J' {(—0.2483 dm? mol) dp = —0.2483(p; — p;) dm* mol™'
pi Pi
RT
b

V2 [1.21b]

V
[ (0.0821 dm®atm K~ mol™) x (300 K) | _ 1 3.60 dm® atm mol?
b (20.0 dm® mol™) — (0.044 dm* mol ™) (20.0 dm® mol 1y

] =1.225 atm

e [(0 0821 dm’atm K~ mol™) x (300 K)] [3.60 dm® atm mol?
=

=2.43% atm
(10.0 dm* mol-!) — (0.044 dm? mol™") {10.0 dm? mol-1)? ] &

AH =(~0.2483 dm®mol ) x (2.438 atm — 1.225 atm)

3
Im 1.013x10°Pa
=(—0.301 dm?®atm mol! =(-30.5 I mol~!
(0301 dmatm ot x| 12 LIP3 ]

Solutions to theoretical problemns

A function has an exact differential if its mixed partial derivatives are equal. That is, f(x,)) has an
exact differential if

o\_a(of
ax oy ay ox

H

_(2 xy)=2x and 3 [af

(@) <\ 3y

ay(ax J a(xz+6y) 2x

b
®) ay(ax}

= —xsinxy — xsinxy — x*ycosxy = —2xsinxy — x*ycosxy
and i(z]

—(cosxy — xysinxy)

d
—(—x?sinxy} = —2xsinxy — x>y cosxy

gx\dy, ox

9 F1_ 2 2,2y 62 (T2 5y 6x2
© ay( x}—ay(ﬁﬁxy)—éxy and 3% 2y —ax(ny)—6xy

O[Y_ 9 ipe O[T )2 o eymer
(d) at( SJ-ar(te +1)=e° and as{atJ—aS(2t+e)—e
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sl
"V‘[ﬁl

U
{—J = 0 for a perfect gas [Section 2.11(b)]
Gl

Hence, (aiJ =0
T

aC, | | @ [oU | 9 faU T .
[ Y )T_ {BV (ET ]V] = [BT [BV ]T] (derivatives may be taken in any order)
T V

oV
S JH aC o dH 9 [ dH
o). - [EL R )
an apT apanT or apr
(a—H} = 0 for a perfect gas.
a ),

Hence, 9, =0.
ap J,

Using Euler’s chain relationship and the reciprocal identity [MB2.3c]

(a_p} _ _(B_PJ (B_V]
aT j, oV ) \oT A
Substituting into the given expression for C,— C,
2
dp 14
—C, =T 2 | | ZZ
GG [BV]T[BTJ
r
Using the reciprocal identity again
Y
T —_—
5
7
%)
P j,
For a perfect gas, p¥" =nRT, 50
PVT FRT {Mq ART
—=|=|— and |—|=-—7
T ) \ » o). P
_T{ﬁ

2
)
SO Cp_CV:_nTz

p?.

C,-Cy=-
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This problem is the same as Problem 2.25(b). The solution is the same as presented for that
problem.

oV aV
V=W V=|— +|— | a7
(@) (p,T), hence, d [ 3 ]po [8 ld

Likewise p=p(V.T},sodp = [;1;] dVJ{&?T] a
¥

(b) Weusea= (V ]( gV) [2.42] and k= —(%J[a—g i [2.43] and obtain

oV av
=— - dr|.
o« v ([ 22) 1) 22 - Ec

Likewise dlnp= d _{@_J dV+l(§—?] dr
14 v

r av ),

We express [ ;II;J in terms of ko

-1
)4 or ap 1

=— e e A [
T [ap] [ (avu 5 (avl oV

3 .
We express {%J in terms of xrand o
V

ap oV -1 so @) __@VET), o
oT ), aV 3 r aT /|,  @V/idpr xr

so dlnp=- = +adT= L ( dT—d—V]
eV pxr P’Crk |4
¥ ¥ ¥

w=—J pdV=—nRTJ d—V+n2aJ g

¥ b V —nb 5 V

=-nRTIn —nb - na 11
—nb v, %

By multiplying and dividing the value of each variable by its critical value we obtain

2
w=—-nRx £l T.x1n o Ve Y R E—E
T, hom| (v, B N
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T
Y -2t
v, 27Rb

V..,—1
] (T xIn| 222 | raj 1 _1
27h Va—3) \3) \Vs Vi
The van der Waals constants can be eliminated by defining w. = 3b—w, then w =
a
o= —§nT,ln V,,—1/3 o 11
9 Va-13 Vio Vi

Along the critical isotherm, T, =1, V,,; =1, and ¥V, =x. Hence,

% —§1n[3x_1)—l+1
2

V.=3nb [Tablel.7]

rad
11

n 9 X
P2.34 U= {%—;] [2.50]
H

Use of Euler’s chain relationship [MB2.4] vields

%)
= —--wcvf—.: [Justification 2.2)

p/m

[aﬁm] ~ [aUmJ +|:3(me)1| B {aUmJ [anJ +[a(me)}

o ), ap /), op | \oVu L\ op ), 9o |,

TJse the virial expansion of the van der Waals equation in terms of p. (See the solution to Problem 1.9.)
Now let us evaluate some of these derivatives.

(3(;: ]: [g_g}: . % [Exercise 2.31a]

1 a
= 1+ —]b-—
Y, RT[ +RT[ RTJP+ }
ApVu) | L @ [OVw) __RT
p |, RT’ o ). P

cuting 2| o[ &) - RT) (5o 2| 2R (2
Substituting ? T" L »? RT ) (pV,) RT
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) oH, | . . . .. -
Since — | is in a sense a correction term, that is, it approaches zero for a perfect gas, little error
T

dp
will be introduced by the approximation, (pV,)* = (RT).

P2.36 o= 1fav = 1 [reciprocal identity, MB2.3b]
V\aT oT
pl 2
)4
P
1 1
==X [Problem 2.35]

v T 2na
[V—nb]_[RWJx(V_nb)

_ (RV?2) x (V — nb)
T (RTV = (2na) x (V — nb)?

Xy _i(a_V) -— =1 [reciprocal identity]

Vi dp - ( dp ]

V PRI
v ),

1 1
Kp==——X [Problem 2.35]

4 -nRT . 2nta

DI NEZ
VIV — nb)?

nRTV?*—2n%a(V — nb)?

Then, ET:- = Von
o

, implying that xR =a(V,, — b)

Alternatively, from the definitions of o and x- above

_(a_VJ
Kr ap T _ -1

M = reciprocal identi
« T Tar) () (o) e
a7 av ) | aT
P T .
= [EZJ [Euler chain relation] = V—nb [Problem 2.35],
ap - nR
KR = a(V — nb)
R

Hence, x R=a(V_,-b).
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P2.38 Work with the left-hand side of the relationship to be proved and show that after manipulation

aly
using the general relationships between partial derivatives and the given equation for [BV] the

right-hand side is produced.

oH oH } { dV
{51 ( BV) ( . JT[change of variable]

(B(U + pV)] ( ] [definition of H]
dp .
oU aV a(pV) oV
FY4 14 A dp -
_ {T(g_? V_ P}[%_zl_,_[a(_gg/_)]r[equaﬁon for (%gl}
L Ll +¥V + i
. ap - ap ). 7 P j

J EK] +V = T + ¥ [chain relation]
N ) or
oV
P
=|-T EK + V| [reciprocal identity]
ol
2 12

P2.40 Cs: ﬂ . p = p—@.]_“, SO ﬁ = £; hence cs: E

M M M p )

112
(8.314 T K~ mol™) x (298 K) x 3 -
Forargony =3,50¢= ( 39.95 x 103 kg mol™* =[32ms”

Solutions to applications

P2.42 (a) gy=-nA. U hence

(i) AU®= v —CAT _ _MCAT, where m 1s sample mass and M molar mass
R n m
-1 -1
0 AU =- (180.16 g mol™) x (6417 K~) x (7.793K) _ 2803 KJ mol
0.3212¢g

(i) The complete aerobic oxidation is

CH ,04(s) +6 O,(g) — 6 CO(g) + 6 H;O(D)
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Since there is no change in the number of moles of gas, A H*=A U*®[2.21] and

(i) AH®=6AH(CO,,g)+ 6AH* (H,0,]) — A H*(CH,,04,5) — 6AH*(O,.8)
so  AcH®(CgH,,04,5) = 6AH*(CO,,g) + 6AH* (H,0,1) ~ 6A,H*(05.8) — A H®
A H*(CgH ,,04,5) = [6(=393.51) + 6(—285.83) — 6(0) — (~2802)] kJ mol

=|--1274 kJ mol

(b} The anaerobic glycolysis to lactic acid is
CH,,0, — 2 CH,CH(OH)COOH

A H® =24, H* (lactic acid) — A.H* (glucose)
= {(2) x (—694.0) — (—1274)} kJ mol~'=-114 kJ mol~!

Therefore, aerobic oxidation lis more exothermic by 2688 kJ mol‘j than glycolysis.

The coefficient of thermal expansion is
a=i EK =£—V— so AV =oaVAT
VieT A VAT
This change in volume is equal to the change in height (sea level rise, Ak) times the area of the ocean

{(assuming that area remains constant). We will use & of pure water, although the oceans are com-
plex sclutions. For a 2°C rise in temperature

AV =(2.1x 10 K1) x (1.37 x 10° km®) x (2.0 K) = 5.8 x 105 km?

50 Ah=%=1.6x10—3km=

Since the rise in sea level is directly proportional to the rise in temperature, AT = 1°C would lead to
Ak = and AT=3.5°C would lead to Ak =[2.8 m|.

COMMENT. More detailed models of climate change predict somewhat smaller rises, but the same order of
magnitude.

We compute i from

#__L[B_HJ
C\a ),

and we estimate [%—HJ from the enthalpy and pressure data. We are given both enthalpy and heat
P Jr

capacity data on a mass basis rather than a molar basis; however, the masses will cancel, so we need

not convert to a molar basis.
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(a) At300K
4266 [ = 42792 18.000x |
2
4264 |
426.2
Hi(d kg )
426.0
4258
ase L P ¢ i i PG
007 008 009 010 011 012 0.3
p/MPa
Figure 2.4(a)

H
The regression analysis gives the slope as —18.0 J g~ MPa~'= [E;J_p] {see Figure 2.4(a))
T

e e - [sKMpa ]
- ~[23.5K MPa"!
0 K= T 0764910 kg K 2

(b) At350K

462

Ly=47
H Rz

461
460 |-

HikI kgy 459 |

458
457 |
456 - : - -
0.8 0.9 1.0 1.1 1.2 1.3
p/MPa
Figure 2.4(b)

The regression analysis gives the slope as —14.5J g7 MPa™' = [%J (see Figure 2.4(b}))
T

SledkT ke MA
—- —[14.0 K MPa-
S0 AT 0392 k) kg K- 2




3 The second law

D3.2

Answers to discussion questions

The device proposed uses geothermal heat {energy) and appears to be similar to devices currently
in existence for heating and lighting homes. As long as the amount of heat extracted from the hot
source (the ground) is not less than the sum of the amount of heat discarded to the surroundings
{(by heating the home and operating the steam engine) and of the amount of work done by the
engine to operate the heat pump, this device is possible; at least, it does not violate the first law of
thermodynamics. However, the feasibility of the device needs to be tested from the point of view of
the second law as well. There are various equivalent versions of the second law, and some are more
directly useful in this case than others. On first analysis, it might seem that the net result of the
operation of this device is the compiete conversion of heat into the work done by the heat pump.
This work is the difference between the heat absorbed from the surroundings and the heat dis-
charged to the surroundings, and all of that difference has been converted to work. We might, then,
conclude that this device violates the second law in the form stated in the introduction to Chapter 3
and therefore that it cannot operate as described. However, we must carefully examine the exact
wording of the second law. The key words are ‘sole result’. Another slightly different, although
equivalent, wording of Kelvin’s statement is the following: ‘It is impossible by a cyclic process to
take heat from a reservoir and convert it into work without at the same time transferring heat
from a hot to a cold reservoir.” So as long as some heat is discharged to surroundings colder than
the geothermal source during its operation, there is no reason why this device should not work,
A detailed analysis of the entropy changes associated with this device follows (see Figure 3.1).

Environment at T,
Pump

4%

—+

Flow
Flow

}

“ground” water at T},

Figure 3.1 C and C, are the temperature-dependent heat capacities of water
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Three things must be considered in an analysis of the geothermal heat pump: Is it forbidden by the
first law? Is it forbidden by the second law? Is it efficient?

AEtot = AEwater + AEground + AEeuvimn:ncnt
AEwater = 0

AEgrouud = _CV(Th) { Th - Tc}
AEenviranmenl = _CV(Th){Th - Tc}

adding terms, we find that AE,, = 0, which means that the first law is satisfied for any value of T}
and T;

AStut = ASwzu.cr + ASground + ASerM'mument
AS,

water

=0

-C -
ASyouma = qs;:"d - P(Th;fTh L}
h

environmen| C (T;: I, - T:::}
ASenviwument= 9 ](:n L2 ); :

c

Adding terms and estimating that C,(T}) = C,(T,) = C,, we find that

1 1
ASm[= Cp{Th - T::}{'TTC - Fh}
This expression satisfies the second law (AS,,, > 0) only when T}, > T,. We can conclude that, if the
proposal involves collecting heat from environmentally cool ground water and using the energy to
heat a home or to perform work, the proposal cannot succeed no matter what level of sophisticated
technology is applied. Should the ‘ground’ water be collected from deep within the Earth so that
T, > T., the resultant geothermal pump is feasible. However, the efficiency, given by eqn 3. 10, must
be high to compete with fossil fuels because high installation costs must be recovered during the
lifetime of the apparatus.

With 7, = 273 K and T} = 373 K (the highest value possible at 1 bar), n,, = 0.268. At most, about
27% of the extracted heat is available to do work, including driving the heat pump. The concept
works especially well in Tceland, where geothermal springs bring boiling water to the surface.

All of these expressions are obtained from a combination of the first law of thermodynamics with
the Clausius inequality in the form TdS = dg (as was done at the start of Justification 3.2.) 1t may
be written as

—dU—-p.dV +dw,+TdS520

where we have divided the work into pressure—volume work and additional work. Under conditions
of constant energy and volume and no additional work, that is, an isolated system, this relationship
reduces to

dS=0
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which is equivalent 10 AS,,, = AS,piveree 2 0. (The universe is an isolated system.)

Under conditions of constant temperature and volume, with no additional work, the relationship
reduces to

d4<0,
where A is defined as U— T'S.

Under conditions of constant temperature and pressure, with no additional work, the relationship
reduces (o

dG <0,
where Gis defined as U+ pV - TS=H-TS.

In all of these relationships, choosing the inequality provides the criteria for spontaneous change.
Choosing the equal sign gives us the criteria for equilibrium under the conditions specified.

D3.6 See the solution to Exercise 2.31(a) and Example 3.6, where it is demonstrated that 7. = a/¥2 fora
van der Waals gas. Therefore, there is no dependence on b for a van der Waals gas. The internal
pressure results from attractive interactions alone, For van der Waals gases and liquids with strong
attractive forces (large @) at small volumes, the internal pressure can be very large.

D3.8 The relationship (9G/0T'), = —S shows that the Gibbs function of a system decreases with T at
constant P in proportion to the magnitude of its entropy. This makes good sense when one
considers the definition of &, which is G= U+ pV — T'S. Hence, G is expected to decrease with
7 in proportion to .S when p is constant. Furthermore, an increase in temperature causes entropy
to increase according to

£
AS =J dg.. /T

L

The corresponding increase in molecular disorder causes a decline in the Gibbs energy. (Entropy is
always positive.)

Solutions to exercises

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

ey ¢
E3.1 AS=| =i
®) f ==

3
(@) AS=%= 18x10°TK
3
(b) AS=E%%%= 15x 10T K-




E3.2(b)

E3.3(b}

E3.4(b)
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At 250 K, the entropy is equal to its entropy at 298 K plus AS, where

AS:J%: JM=CKm1n£

0 §'=15484 K-mol-'+ [20.786 ~ 8.3145) T K- mol ] x In 22 L2

8§ =[152.65] K ' mol!|

However, the change occurred AS has the same value as if the change happened by reversible heat-
ing at constant pressure {(step 1) followed by reversible isothermal compression (step 2):

AS=AS, +AS,
For the first step
dg C,.dT T
AS = |2 - | Zemt o £
! J T J 7 Gl T;
7 (135+273) K
AS)=(2.00 — 8.3145J K'mol™! A e st 183K
S=( mol)x[zjx( mol1)yx In 251279 K 3]
and for the second
AS,= J_dqm G
T T
Fr Pi
where ¢, =-w =jpdV =nRT hh— =nRT In—
|4 Pr
J:2 B _ 1.50 atm o
s0 AS,=nRIn— =(2.00mol)x (8.3145 T K 'mol ) x In————=-25.6J K
P 7.00 atm

AS =(183-256)J K”=|-7.3TK"!

The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy.
Alternatively, the ordering represented by confining the sample to a smaller volume in step 2 over-
came the disordering represented by the temperature rise in step 1. A negative entropy change is
allowed for a system as long as an increase in entropy elsewhere results in AS,., > 0.

4 = 4., = 0 [adiabatic reversible process]
f
| 94w _
ss=] e

AU = nCynAT = (2.00 mol) x (27.5 J K-'mol™") x (300 — 250) K

= 27507 = [+2.75 K]
w=AU-g=275kI —0=[275 k]




E3.5(b)

E3.6(b)
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AH=nC, AT
Com=Cym+ R=(27.5T K 'mol™' +8.314 J K'mol™) = 35.814 ] K~ mol!
So, AH =(2.00 mol) x (35.813 J K-' mol") x (+50 K) = 35874 J =
Since the masses are equal and the heat capacity is assumed constant, the final temperature will be
the average of the two initial temperatures,
Ii= %(200°C +25°C)=112,5°C
The heat capacity of each block is
C=mC,
where C; is the specific heat capacity
so AH(individual) = mCAT =100 x 10°g x 0.449 J K- g-'x (3875 K) = +39 kJ

These two enthalpy changes add up to zero:

AS = mC, ln[%); 200°C =473.2K; 25°C=298.2K; 112.5°C = 3857 K

AS = (1.00x10°g) x (0.449 T K g1) x m[%) =11535 K"

AS,=(1.00 X 10°g) x (0.449 T K- g') x m[ﬁlJ =—91.802T K

4732
ASgu=AS+ AS, =[24 T K-

{a) ¢g=0/[adiabatic]

by w=—-p, AV =—(1.5atm) x

=-22727={-230]
(© AU=g+w=0-230J=[-230]]
(d) AU=#nC, AT
AU -227273
AT = = =[-53K
nCpn  (1.5mol) x (28.8J K-'mol™)

(e) Entropy is a state function, so we can compute it by any convenient path. Although the specified
transformation is adiabatic, a more convenient path is constant-volume cooling followed by
isothermal expansion. The entropy change is the sum of the entropy changes of these two sieps:

s 3
LO1x10°Pa 1, (1000 cm?) x (15 cm) x | 2 E
" 10%em

AS = AS+ AS, = nc,,,mln(%J + nR]n(%) [3.23&3.17]

i i



E3.7(b)

E3.8(b)

E3.9(b)

E3.10(b)
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T;=288.15K -5.26 K =2829K

nRT _ (1.5 mol) x (8.206 x 10 dm*atm K-'mol') x (2882 K)
pi 9.0 atm
=3.942 dm?

I/;:

— 1047 3 2 1dm*
V;=3942 dm?+ (100 em?) x (15 ¢cm) X | ———o
1000 cm3

=3.942 dm®+ 1.5 dm*= 5.44 dm®

AS = (1.5 mol) x {(28.8 JK-'mol™) x ln( §:§§J +(8.314 T K-'mol 1) x ln( 5'4i J}

3.9
= 1.5 mol(~0.5346 J K-'mol-'+ 2.678 J K-'mol"!) =

A H 3527 x10*Tmol™! _
a) A S=—"—= =+104.58 JK1=|104.6 TK!
@ P T, (64.1+273.15K
(b) If vaporization occurs reversibly, as is generally assumed

AS,+ AS,, =0 so AS,=|-104.6JK"!

(a) AS°=S2(Zn*,aq) +Se(Cu,s) - S5(Zn.s) - S3(Cu**,aq)
=[—112.1+ 33.15 - 41.63 + 99.613 K- mol-'= [-21.0 J K~ mol-!|

(b) AS®=1255(CO,,g) + 1185 (H,0,1) - S7(C1;H;,0,1.5) - 1257(05,8)
={(12 % 213.74) + (11 x 69.91) — 360.2 ~ (12 x 205.14)] J K~ mol!

=|+512.0 J K~ mol-!|

(o]

(a) AH®=AH*(Zn*,aq) - AH*(Cu™,aq)
=-153.89 — 64.77 kJ mol~! = -218.66 kJ mol™

A,G® = 218,66 kJ mol- — (298.15 K) x (-21.0 J K- mol) = [~212.40 kJ mol-'|

(b) A H®=AH®=-5645%J mol™!

A,G*=—-5645 kJ mol™ - (298.15 K) x (512.0 F K mol™) = |-5798 kJ mol~!

(a) AG®=AG*(Zn*,aq) - AG"(Cu™,aq)
= —147.06 - 65.49 kJ mol =[-212.55 kI mol-|

(®)  AG*=124,G%C0,,8) + 11AG (H,0,) - A,G*(C;,Hp0,.8) — 12A:G°(Oy, )
=12 x (=394.36) + 11 x (~237.13) ~ (—1543) — 12 x 0] kJ mol-’

= [-5798 kJ mol™!

COMMENT. In each case these values of AG* agree closely with the calculated values in Exercise 3.9(h).
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3.11(b) CO(g) + CH,0H(l) - CH,COOH()

ArHe = Z Vl&f]f6 - Z VAff.{9 [2.32]

Products Reactants

= ~484.5 kI mol' — (-238.66 kJ mol™) — (-110.53 kJ mol™)

= —135.31 kJ mol-!
AS®= Z vSa— Z vSo [3.25a)
Products Reactants

=156.8J K'mol'-126.8 ] K-"'mol'=197.67 J K-'mol™!
=-164.67 J K~ mol-

AG®=AH®—TAS®
=-135.3TkImol"' - (298 K) x (~164.67 T K~ mol')

=-135.31 kJ mol-'+ 49.072 kJ mol-' =|—86.2 kJ mol-*

E3.12(b) The formation reaction of urea is
Clgr) + 5 Oa(g) + Ny(g) + 2 H,(g) - CO(NH, ),(s)
The combustion reaction is
CO(NH,),(s) + 2 O,(g) — CO,(g) + 2 H,O(I) + N,(g)
AH® = AH*(CO,,8) + 24, H*(H,0,1) — A H*(CO(NH,),,5)

AcH®(CO{NH,),,8) = A{H*(CO,,g)+ 2A . H*(H,0,1) - A_ H°(CO(NH,),,s)
=-393.51kJ mol~ + (2) x (-285.83 kJ mot-!) — (=632 kI mol™)
=-333.17 kJ mol!

AS® = SYCO(NH,),,8) - $3(C,gr) — 387(0,.8) - SRN;. ) - 257(H,, )
=104.60 J K- mol™' - 5.740 J K-'mol~' - 1(205.138 ] K~ mol™')

—191.61J K" mol-!— 2(130.684 J K-'mol™)
=-456.687 J K- mol-!

AfGe.= AfH& - :I“Aps"0
=-333.17 kJ mol-— (298 K) x (-456.687 J K- mol-)
=-333.17 kJ mol-! + 136.093 kJ mol~!

=|-197 kJ mol!

: 39.95 g mol™! 1.20

=5873IK1=|59TK"!
AS(surroundings) = —AS(gas) =|-5.9 J K-'| [reversible]

AS(total) = [0]

(b) AS(gas)=!45.9J K|[S is a state function]

AS(surroundings) = @ [no change in surroundings}

E3.13(b) (a) AS(gas)=nR h{%] [3.17]= [_2_1_;;_} «(8.314 ] K- mol-)In +-52

63




£3.14(b)

£3.15(b)

‘ E3.16(b)

E3.17{b)

E3.18(b)
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AS(total) = [+5.9T K~
© Zw=0 so AS(gas)=|0]
AS(surroundings) = @ [no heat is transfered to the surroundings]

AS(total) =|0]

C;Hy(g) + 5 04(g) — 3 CO4(g) + 4 HO()

AG® = 3A,G*(CO,, g) + 4A.G°(H,0,1) - A,G*(C;H,,g) - 0
= 3(=394.36 kJ mol™) + 4-237.13 kJ mol) — 1(~23.49 kJ mol')
=—2108.11kJ mol-!

The maximum non-expansion work is{2108.11kJ mol!| $ince | Woyq max | = 1AG].

500K
1000K

(b) Maximum work = n{g,| = (0.500) x (1.0 kJ) =(0.50 kJ
(C) Mmax = Threv and | wmaxl = |th - |q::,rnini

(a) n=1—%[3.10]=1— 0.500
h

lq:,mjnl = |Qn|_ !wmaxl

=1.0kJ -0.50 kJ =[0.5kJ]

AG = nRT]n(ﬁJ [3.59] = nRT m[;) [Boyle’s law]
i f

1

AG = (2.5 % 10 mol) x (8.314 J K- mol-") x (298 K) x h{%] =

G 9G; 9G,
— . s — S , ! — :
[—a ]p— -5 [3 53], hence [ a l,— I3 and [ 3 )P =-5

_g_g__108G) (9G] __[dG-GC)
AS =5 -5= {aTlJ’(arl‘ ( T l

__9AG) O myyrarsixl
or )~ ar X

dG=-8dT+ Vdp [3.52]; at constant T, dG = Vdp, therefore

B
AG =J Vdp

Pi

The change in volume of a condensed phase under isothermal compression is given by the isother-

mal compressibility (eqn 2.43):
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rcT=—l 1 =126 x10*Pa!
Viadp ),

This small isothermal compressibility (typical of condensed phases) tells us that we can expect a
small change in volume from even a large increase in pressure. So we can make the following
approximations to obtain a simple expressicn for the volume as a function of the pressure:

1(V-W 1(V-W
| — [ - —L |, V="V(1-
K7 V[p_pj V[ - J 50 (1 =xrp)

1

where V] is the volume at 1 atm, namely the sample mass over the density, m/p:

IOOMPam
AG =J —(-xrp)dp

100 xPa

100 MPz 100 MPa
J dp—xr J pdp

100 kPa 100 kPa

ol
100MP2

1 2
—3KplP
100kPa

100 MP2

m
=—tPr

100kPa

= %;m-a@-% x 107 Pa — 1(1.26 x 10 Pa ) x (1.00 x 10'6 Pa?))

3
Im 7
IOOCHJ x9.36x107Pa

=295 x10°] = 3.0 K]

=31.Ecm3x(

E3.19{b) AGu=G,; - Go=RTIn [%J [3.59]

252.0
= -1 -1 —_— | = -t
(8.314 J K- mol )x(323K)><1n( 92_{)} 2.71kJ mol

E3.20(b) Foranidealgas, G.=G.+RT ]n(ie) [3.59 with G,,= G..]
p

But forareal gas, G,=G, + RT ]n[—f—oJ [3.61]
P
So G,-Gy,=RT lni [3.61 minus 3.59); L =¢
P P

= RT Ing =(8.314 T K- mol™!) x (290K) x (In0.68)

=i—0.93 kJ mol*
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E3.21(b) AG=nV_ Ap[3.58]= VAp

1m3
AG = (1.0 dm?®) x {m] X (200 x 10*Pa) =200 Pa m3=(200J

E3.22(h) AG, = RT m(ﬁ) =(8.314 7 K~ mol™") x (500 K)) x In[
4

=|+2.88 kJ mol™!

100.0 kPa
50.0 kPa

Solutions to problems

Solutions to numerical problems

Fi 3 2
P3.2 ASm=J GoedT (3 9012 J (“”’T]dr aln[ J+b(T )
s\ T T

Ti

a=91.45TJK'mol™, #=7.5%102JK?mol?

300K

-1 -1
=(91.47J K-'mol" )xln[ TR

=(10.7 J K-' mol~!

P3.4 First, determine the final state in each section. In section B, the volume was halved at constant
temperature, so the pressure was doubled: py ; = 2pg;. The piston ensures that the pressures are equal
in both chambers, so p, ;= 2py,; = 2p, ;. From the perfect gas law

) +(0.075 T K2 mol™) x (27K)

h PasVas (ZPAI) x (3.00 dm*)
Thi  PaVa;  (pas) x(2.00dm?)

3.00, 16 TA,f = 900 K

(a) ASA—nCymln[;M

A

J[3 23]+ nR ln[z ] [3.17)

Al
AS,=(2.0 mol) x (20 T K~'mol!) x In3.00

+(2.00 mol) x (8.314 J K~ mol™") x ]n[

SENITS]

ASy= ann(VBf
V;

B,

RETHTS

3.00 dm?
2.00 dm?

1.00 dm?
2.00 dm?

] (2.00 mol) x (8.314 T K~"mol™") x 1n[
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(b) The Helmholtz free energy is defined as 4 = U~ T5[3.33]. Because section B is isothermal,
AU=0and A(TS)=TAS, s0

Adg=-T,AS;=—(G00KX-11.5T K ) =346 x10*T=+3.46 k]
In section A, we cannot compute A(TS), so we cannot compute AU. A4 in both

magnitude and sign. We know that in a perfect gas, U/ depends only on temperature; moreover, L(T)

U . L P
is an increasing function of T, for ?)_T = C (heat capacity), which is positive, since AT >0, AU>0 as

well. But A(TS) >0 too, since both the temperature and the entropy increase.

(c) Likewise, under constant-temperature conditions
AG=AH-~TAS

In section B, AHg = 0 {constant temperature, perfect gas), so

AGy=-TAS;=—-(B00K)x (-11.5J K1) =|3.46 x 10°]
AG, is in both magnitude and sign.
(d) AS(iotal system) = AS, + ASy=(50.7 - 11.5) J K '=|+39.2 JK~!

If the process has been carried out reversibly as assumed in the statement of the problem we can say
AS(system) = AS(surroundings) =0
Hence, AS(surroundings)=|-39.2J K™

Question. Can you design this process such that heat is added to section A reversibly?

q w AU=AH  AS AS,.. A8,
Path(a)  274k]  -274K) 0 9.13JK'  —913JK' 0
Path(b) 166k  -1.66kJ 0 9.13JK"  -553JK'  3.60JK

Path (a)

i f

w=—nRT m(%) [2.10]= —nRT m(!ij [Boyle's law]
2

3.00atm
1.00atm

- !

AH=AU= IEI [isothermal process in perfect gas] ‘

g=AU-w=0-(-274kI)=+2.74k]
Brey

. 2.74x10°7 .
AS = T [isothermal] = 50K - +9.13J K-

=—(1.00 mol) x (8.314 J K~ mol™) x (300 K) x m[ J =-274%10%]
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AS, = @ [reversible process]

AS, = AS - AS=0-9.13TK*=(-9.13J K~

Path (b)

RT
W= =¥ Vi)=-pﬂ[" - "RT] = —nRT[*”i‘— &J
Pr B P B

1.00 atm _ 1.00 atm
1.00atm 3.00 atm

= —(1.00 mol) x (8.314 J K-} x (300 K) x [

=-1.66x10°) =[~1.66 KJ]

AH=AU= |§| [isothermal process in perfect gas]

g=AU-w=0-(-1.66k))=[+1.66 kJ
3
AS:qTM[isothennau:g'—?—;%i—g—J: 4913 K-

Note: One can arrive at this by using ¢ from Path (@) as the reversible path, or one can simply use AS
from Path (a), realizing that entropy is a state function.

G _ —q _ —1.66x10°] -
ASy == L= ————=|-553JK"
sur T, T 300K
A8, =AS+ A8, =(9.13-55)TK'=[+3.60 T K}

AS depends on only the initial and final states, so we can use AS =n vamlng [3.23].

2
9+ PR v = R

Since q= nCp,m(I}_ T;)s ]}' = T; +
1Cym nC,n

. I*Rt
Thatis, AS=nC,,In| 1+
| nC,.T;

500g

5 emol’ o mol” =7.87 mol

Since n=

AS =(7.87 mol) x (24.4 J K-'mol™) x In| 1
§ =(7.87 mol) x ( mol™) [+(7.87)x(24.4JK"‘)X(293K)

=(192JK) x (In1.27)=[+454 T K

[LI=1AVs=1A2Qs5]

(1.00 A)? x (1000 Q) % (15.0'5) ]

For the second experiment, no change in state occurs for the copper, hence AS{copper) =0, However,
for the water, considered as a large heat sink

g I*Rt (100 AP x (1000 Q) x (15.05) -
e 1000
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.10 Consider the temperature as a function of pressure and enthalpy: 7'=T(p,H)

50 dT=(§£J dp+(£} dH
dp - ,

The Joule-Thomson expansion is a constant-enthalpy process (Section 2.12). Hence,

dT = (B_T] dp=udp
ap

py
AT = J udp=uAp [uis constant]
Pi

= (0.21 K atm™) x (1.00 atm — 100 atm)
Fag]
T;=T,+AT=(373-21) K=352 K [Mean T=363K]

Consider the entropy as a function of temperature and pressure: §=S(7,p).

Therefore, dS = B_S dT + 98 dp
aT i dp .

as) ¢, {as av
Zi=2 [Zi=]Z| [Tabls.
) (B A5 mees

For V,= E(1 + Bp)
P

av, R
I | _ By
[aTl p( + Bp)

Then, dS, = % a7 - 21+ Bpydp
P

or dszﬁdT—Edp—Rde
r p

On integration

2
ASm=J ds, = Cpmm[%) -R h{&] — RB(p,- p)
p

1 1 1

352 1 0.525 atm™!
=iRmIm| =2 |-Rln| — |- R| - =25 ~
3 n( 373] H(IOOJ R( 363 Jx( 99 atm)

= [+35.9J K- mol!

69
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P3.12 AH®= Y VvAH®- % vAH®[2.34a]

products reactants
AH®(298 K) =1x A H®(CO,g) + 1 x AcH*(H,0,2) - 1 X A, H*(CO,.8)

= {~110.53 - 241.82 — (~393.51)} kJ mol- =

AS®= Y vSp~- Y vS:[3.252]

products reactants
AS*(298 K)=1x S5(CO,2) + 1 x S(H,0,g) ~ 1 x $2(CO,,g) — 1 x So(H,,g)
= (197.67 +188.83 — 213.74 — 130.684) kJ mol ' = [+42.08 J K~ mol"!|

398 K

AH°(398 K) = A, H*(298 K) +J AC24T [2.362)

298 K

=A H°(298 K)+ A, C;AT  [heat capacities constant)

Arcjz 1 X C:m(co’g) + 1 X C:,m(HZOag) - 1 X C:.m(coz,g) - 1 X sz(th)
=(29.14+33.58 - 37.11-28.824) J K'mol'=-3.21 J K- mol""

A H?(398 K) = (41.16 kJ mol™) + (=3.21 J K~ mol) x (100 K) = |+40.84 kJ mol™!

For each substance in the reaction

AS,= cp,mln(EJ - q,,,,,m[”ﬁj [3.23]

T, 298 K
Thus,
A4 & & T;' e Tt"
AS°(398K)=AS°(298K)+ ¥ vCp!m]n(—]— )3 vCP‘m(J)ln(—J
products T; reactants T;
398 K
=AS°298K) + A.C) In| ——
T ( ) ™p {298 K]
398K
=(42.08J K1mol ') + (—3.21J K-'mol }n| ——
( mol™) + ( mo )n(zggK]

= (42.08-0.93) T K~ mol” = |+41.15 J K~ mol"!|

COMMENT. Both A,H° and A,S° changed little over 100 K for this reaction. This is not an uncommon result.

P3.14 Draw up the following table and proceed as in Problem 3.11.

T/IK 14.14 16.33 20.03 3115 44.08 64.81
(Cm/TYIK2molt) 0,671 0.778 0.908 1.045 1.063 1.024
T/IK 100.90 140.86 183.59 22510 262.99  298.06

(Com/ THJI K7 mol™) 0.942 0.861 0.787 0.727 0.685 0.659
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Plot C,,, against 7 (Figure 3.2(a)) and C, /T against T {Figure 3.2(b)), extrapolating to T'=10 with
C,..=aT’ fitted at T=14.14 K, which gives 2 = 3.36 mJ K mol . Integration by determining the

P
area under the curve then gives

Figure 3.2(b)

298K

H2(298 K) - HZ2(0) =J C, . dT =[34.4 KJ mol-!

0

298K

5.(298 K) = 8., (0) +f %dr = S,.(0) +[243 T K-'mol-!
[}

P3.16 The Gibbs—Helmholtz equation [3.55] may be recast into an analogous equation involving AG and
AH, since

)5 (5
aT | | aT T
4 P fd

and AH=H;-H,
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Thus, ( 9 AG ]z_A,H

ar T T

T oT T 2

A[AGT\__ [ AHdT
T ) T

s

AG* 3 AG® .
d( J = [ ] dT [constant pressure] = — A;{{ dr
P

T
o] dT o1 1
=—AH JTC 77 = AH (? - ?J [A. H? assumed constant]

c

Therefore,

AG(T) _AG (m:ArHe(i__l_]
T T. Tr T

c

T
andso AG*(T)= ?A,Ge(Tc) + [1 - ;}A,H"(TC)

c ¢

=tA G T+ (1 - A H*(T,), where t= ;

For the reaction
2CO(g) +04(g) > 2CO(g)

AG*(T,) = 20,G7(CO,,8) — 24,G°(CO, g)
= [2 X (=394.36) — 2 x (~137.17)] kJ mol~' = —514.38 kJ mol"’

AH(T)=2AH*(CO,,g) - 2A.H°(CO,g)
= [2 x (~393.51) — 2 x (~110.53) kI mol"' = ~565.96 kJ mol~!

375 _ 1.258

Therefore, si = =
CIreIor I0CE T 298 15

AG*(375 K) = {(1.258) x (=514.38) + (1-1.258) x (-565.96)} kJ mol !

=|-501kJ mol™!

b4
P3.18 A graphical integration of Ing¢ =J {E-_—l] dp [3.63] is performed. We draw up the following table:
P

0

platm 1 4 7 10 40 70 100

ms(z‘l)/amﬁ 29 -301  -303 304 317 319 313
P

The points are plotted in Figure 3.3. The integral is the shaded area up to zero on the vertical axis,
which has the value —0.313, so at 100 atm
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=2.70

-2.80
f]
£ -290
=
T
§ -3.00
E
-3.10
-3.20
Figure 3.3
p=e03M3=073

and the fugacity of oxygen is 190 atm x 0.73 = .

Solutions to theoretical problems

P3.20 Paths A and B in Figure 3.4 are the reversible adiabatic paths that are assumed to cross at state 1.
Path C (dashed) is an isothermal path which connects the adiabatic paths at states 2 and 3. Now go
round the cyele (1 — 2, step 1; 1 — 3, step 2; 3 — 1, step 3).

p

Figure 3.4

Stepl AU =g,+w =w[q,=0, adiabatic]
Step 2
AUy=¢,+w,=0 [isothermal step, energy depends on temperature only)
Step3 AUy=g;+wy=wy [g,=1{, adiabatic]
For the cycle AU=0=w, + g, + w, + w; or w(net) = wy + wy+ wy=~g,

But, AU, = -AU, [AT, = -AT,]; hence, w, = —w; and w(net) = w, = —g,, or —w(net) = g,
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Thus, a net amount of work has been done by the system from heat obtained from a heat reservoir

at the temperature of step 2, without at the same time transferring heat from a hot to a cold reser-
voir, This viclates the Kelvin staterent of the second law. Therefore, the assumption that the two
adiabatic reversible paths may intersect is disproven.

Question. May any adiabatic paths intersect, reversible or not?
Alternative solution not reguiring the system to be a perfect gas

Note that step 2 above effectively requires the system to be a perfect gas. The following solu-
tion is more general.

Suppose that two adiabats cross at point 1.
Consider the isotherm at T crossing both adiabats at points 2 and 3.
We now can define a quasi-steady closed cycle along the two adiabats and the isotherm.

By definition of state variables:
AU =§dU =0
AS={§ds =0

Using the first law:

AU=qu+§dw=q+w

= g=-w

and the second law for reversible processes we have:

As Tis finite we find:
w=—g=0

As the work corresponds to the surface area of our closed cycle we conclude that the two adiabats
coincide (are a single curve).

V=(a—G} [3.53]= R—T+B+Cp+Dp2
). P

which is the virial equation of state.

We start from the fundamental relationship

dU=TdS - pdV [3.46]
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But, since U= UAS, V'), we may also write

al ol
V
dU= (E)S}ds {BVJCI

Comparing the two expressions, we see that

U ol/
(ﬂi” and [a—vl"f’

These relationships are true in general and hence hold for the perfect gas. We can demenstrate this
more explicitly for the perfect gas as follows. For the perfect gas at constant volume

dU=C,dT

and
dS: dqu — CvdT
T T
Then, (ﬂ] [a_U] __GdT _,
ds ), | 0§ . (AT
T

For a reversible adiabatic (constant-entropy) change in a perfect gas

dU=dw=—pdV

Therefore, a—U =-p
av

by

{1, [2¥ = (L] [2¥
—[;]x[ l[242 Ky = [ij[apl[zu]

(a) (—] ( ? J [Maxwell relationship]

Qv

( J ( ] ( J [Euler chain relation MB2.3¢]
[

oT

NEZ

ap /.

),
I,

———% [reciprocal identity, MB2.3b)

f_‘\

/"—\
==

°’|9<’ ¥S -
—

VI[*—*
N

e
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av

%)

9T | _ [T
ap ). \as

First, treat the numerator:

BpS

as

av

l(b;l- [Euler chain] = —

(i_i}:} [Maxwell relationship]

oS

P /r

d
&)
oT
»

Ay .
(g]T = _(E] [Maxwell relation] = —a ¥

P

As for the denominator, at ¢
as
ds=(—
&l

Therefore, a—S G
a7 ,

Rt
T

a

o) _ [dT
o (%) 5] e

ol
aV

)

oS oU

|
T

P3.28

an
aS

(5

d7 and dS=—-=

e (ﬁl

 35)
%)

First use an identity of partial derivatives that involves a change of variable

)5

onstant p

d¢., dH _C,dT

T T

T

aTV
C

i

av

xwell relationship]

as

oV

T

),

[Euler chain] =

T

[Maxwell relation] =

” [reciprocal identity, twice] =

)

[aﬁj [MB2.3a]
ap s

[dg,=

INSTRUCTOR’S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

[reciprocal]

dH)

[reciprocal]

)
(o) 57

d

oT
krCy

[Euler chain]
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We will be able to identify some of these terms if we examine an expression for dH analogous to the
fundamental equation [3.46]. From the definition of enthalpy, we have:

dH=dU+pdV+Vdp=TdS—pdV[346]+pdV+ Vdp=TdS+Vdp

Compare this expression to the exact differential of H considered as a function of Sand p:

dH={a—h—r-] dS+{a—HJ dp
» s

Ay dp
Thus, oH =T, il =T [dH exact]
as A ap )

V
Substitution yields oH =T i) +V=|-T 4 + V' |[Maxwell relation]
ap /. p . oT X

(a) ForpV=nRT

aV nR oH —-nRT
(5)-5 o (525 E

L p P
aRT  an?
b)) F = - Table 1.7
(©) Forp=—r~ 2 [Table 1.7)

Because we cannot express F in closed form as a function of T, we solve for T as a function of ¥
and evaluate

[aﬁ] = _T(B_VJ +¥V = - + ¥V [reciprocal identity)
P ). of : T
oV
p
T= p(V —nb) N na(V —nb)
nR RV

oaT P na _ 2na(V - nb)
aVP—nR RV? RV?

Therefore, oH = T +V
o J. P L 2na(V —nb)
nR RV? RV?

which yields after algebraic manipulation

nb — [Zﬂ_a]ﬂg
(BHJ RT nb

—_— =b, 1:1——
9p ). 2na ., Vv
" &=rv A

Wh.‘:nVi <« A=1and

m
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2na _2na 1 Jna  p__ 2pa
RTV RT "V RT nRT RT?

2na
nb - {EJ
1 2pa
RVTE

For argon, a=1.337 dm®atm mol2, &= 3.20 x 102 dm? mol",

Therefore, (B_HJ =
ap r

2na _ (2)x (1.0 mol) x (1.337 dm® atm mol 2)

== =0.11dm?
RT ~ (8.206 x 10~ dm*atm K-'mol™') x (298 K)

2pa  (2)x(10.0 atm) x (1.337 dm® atm mol~*)
RAT? T [(8.206 x 1072 dm® atm K~ mol™) x (298 K)P

3HY  {(3.20 x 102) — (0.11)}dm? -
H oH = 00832 dm*=|-84 l
ence, [ap JT 1- 0045 0832 dm
3H
AH =| 5> Ap~(-8.4F atm™) x(latm) =[-8 7]
P [y

N (AP
' BEar), Ter),

Gy = [g_glj (%%]V = a;l {Euler chain relation]
),
dp

= _[8_U} [reciprocal identity] = p — T{—} [3.51]
T v

=0.045

ar oT

[B_KJ

aT

(a_p} =—_1-—[Eulerchain]=—P=g—

o)y (L) (3w (B_VJ &
aV A o /. op ).

T
Therefore, ; u,C,, = p— o

Kr

P3.32 Ksg= (1)X(8V = —-1——
ERRAES
Vi —

§

v

The only constant-entropy changes of state for a perfect gas are reversible adiabatic changes, for which

pV7¥=const
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op )\ ( 0 comst) const | _ ~yp
Then. (Wl"(aV vy l_ TX(V?“ )_ v

Therefore, xg=—-———7"=—

Hence,

The starting point for the calculation is eqn 3.63. To evaluate the integral, we need an analytical
expression for Z, which can be obtained from the equation of state.

{a) We saw in Section 1.4 that the van der Waals coefficient a represents the attractions between
molecules, so it may be set equal to zero in this calculation. When we neglect 2 in the van der Waals
equation, that equation becomes

_RT
=%

and hence

z-1+22
RT

The integral in eqn 3.63 that we require is therefore

(z-1 lb  bp
Ing= puni— o —_ .
wo- (55 o[ o

Consequently, from eqns 3.62 and 3.63, the fugacity at the pressure p is

-

From Table 1.6, & =13.71 x 10-2dm® mol™, so pA/RT = 1.516 x 1072, giving

f=(10.00 atm) x 001516 =

COMMENT. The effect of the repulsive term (as represented by the coefficient 6 in the van der Waals equation)
is t0 increase the fugacity above the pressure, and so the effective pressure of the gas—its *escaping tendency’
~~ig greater than if it were perfect.

(b) When we neglect & in the van der Waals equation we have

_RT _a
Vo V&
and hence
z=1--12
RTV,,

Then, substituting into eqn 3.63 we get

P 7
Z-1 —a
Ing = —— ldp= d
¢ j[ P )p LPRTVm ?
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In order to perform this integration we must eliminate the variable V,, by solving for it in terms of p.
Rewriting the expression for p in the form of a quadratic we have

Vi- EVm +2=0
P P
The solution is

1{RT 1
Vv, = —[— + —J(RTYP- 4ap)
2p »p

Applying the approximation (RT')* > 4ap we obtain
v L [51 s HJ

p p
Choosing the + sign we get

V,= E, which is the perfect-gas volume.

B p_ a _i__ap
1"‘”‘[ ®TY 7P| ®TY

o

For ammonia, @ =4.169 atm dm® mol=

4,169 atm dm® mol=2 x 10.00 atm

ng=—
9= ~0.08206 dm*® atm K- mol ' x 298.15 K
=-0.06965
p=09327=L
P

£ =¢p=09327 x 10.00 atm =(9.327 atm

Solutions to applications

Taking the hint, we have
A, S°(25°C) = AS; + AS; + ASj

tre

We are not given the heat capacity of either the folded or unfolded protein, but if we let C, , be the
heat capacity of the folded protein, the heat capacity of the unfolded proteinis C,, +6.28kJ K- mol™.
So, for the heating and cooling steps, we have:

AS, = cpln(ﬁ) - cpmm[ 348.7 KJ [3.23]
= =6

2982 K

1
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2K
and AS;=(C,,+628kJ K" 11101")]1'1[298 }, SO

348.7K

387K
2982K

AAS""' ASiiizCP,mln( 348_7 K

]+ (C,m+ 628kT K™ mOI_l)ln[M_J

2982K
347K

=(6.28kJ K" mol")ln( ] =-0983kJ K- mol™

For the transition itself, use Trouton’s rule (eqn 3.20):

- -1
asy= At _ 509 kJ mol
T,, 3482 K

Hence, A,.S°=(1.460 —0.983)kJ K-'mol'=0.477 kJ K-'mol™'= 477 J K" mol"!

(a) At constant temperature,

=1.460 kJ K- mol™

AH-AG
T

— — = =i
and As=2 (3%)]1;] Mol 10,035 kJ K- mol '=[+35 J K- mol"

The positive sign for the entropy of reaction is consistent with the formation of two new substances,
resulting in greater disorder on the product side.

AG=AH-TAS s0 AS=

(b} The power density P is

_AGin
v

P

where # is the number of moles of ATP hydrolysed per second

N 1085

= N_A =m= 1.66 x 10~¥ mol 5!

R

and ¥V is the volume of the cell

V=%xr=%47(10 x 10¢ m)’= 4.19 x 10"% m?

3

_|AGIR  (31x10°] mol') x (1.66 x 108 mol s1) »
Thus P= Vo 4.19 x 105 m? =

This is orders of magnitude less than the power density of a computer battery, which is about

3
I5W 100 cm
Pbamry= 100 o’ X( ] =|15%x10°Wm™?

Im

(¢} Simply make a ratio of the magnitudes of the free energies

14.2 kJ {mol glutamine)™' mol ATP
31kJ mol ATP' | mol glutamine
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The Gibbs—Helmholtz equation is

2(aG)__an
T\ T ) 1
2:3 - 24 .
o Jd AG =_JArH2dT and AGie _ AGh +AH® L
T T T;90 TZZD 1]90 T220
AGHy = AGy T | AH® (1 - @}
EZO 220
For the monchydrate
190 K 150 K
A,G3y=(46.2 kJ mol™) x 1 x| fee—
o= mol™) (zzoKJ+(27kJmol )x[l 220K)’
A G =1|57.2 kI mol!
For the dihydrate
190K 190K
A G = (69.4 kJ mol™! - vy
Graa = ( mo )x{zzOK]-t-(lSSkJmol )x[l 220KJ’
A, G =185.6 kT mol™!
For the trihydrate
AGS =932k mol) x| BOX 14 237 k3 moly x| 1- 20K |
220K 220K

A,GS,=112.8 kJ mol~!

In effect, we are asked to compute the maximum work extractable from a gallon of octane, assum-
ing that the internal combustion engine is a reversible heat engine operating between the specified
temperatures, and to equate that quantity of energy with gravitational potential energy of a 1000-kg
mass. The efficiency is

T,

~ vl Wl 1T 30, so wi=jaH|1-L
T, T,

= 58] = o = 7,
X [AH]| ]

3.00x10%g o 1mol

=1.448 x 108 ]
1 gal 11423 g

|AH|=5512 x 10°J mol'x 1.00 gal x

1073K
2273K

s0 |w|=1.44§x1031x(1— J=7.64§><107J

If this work is converted completely to potential energy, it could lift a 1000-kg object to a height &
given by |w|=mgh, so
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|w} 7.642 x 107 1
h=—= =7.79%10°m={7.79 km
mg (1000 kg)(9.81 ms2)

(a) Assuggested, relate the work to the temperature-dependent coefficient of performance [fmpact
3.1

GAT| _ .

T P
Th""'T
Integrating vields

T T
n| 4- j ar

5 T 5

(b) The heat capacity is C,= (4.184 T K™ g') x (250 g) = 1046 J K-, so the work associated with
cooling the water from 293 K to the freezing temperature is

T,dT
T

) 191
C

dT‘

[w|=C, =C,

T
Thln%_(n _ﬂ)‘=cp(ThlnFl—x +Tf}

i f

293K
273K

lewoh-ng=1046JK“x(293K><ln —-293K + 273 K}=748J

The refrigerator must also remove the heat of fusion at the freezing temperature. For this isother-
mal process, the coefficient of performance does not change, so

gl AgH T, - T,
W] poeee = —— = = A H —t
¢ T. T,
{T,,—Tj

=6.008 x 10°J mol™ x

2508 (293 -273

=6113J
18.0 g mol™! 273 J

The total work is

19 ot = 1] g + 1] e = (748 + 6113) I = [6.86 % 10° T = 6.86 k|
At the rate of 100 W =100 J 57, the refrigerator would freeze the water in

6.86 x10°J
t=————=|68.6
i




Physical transformations
of pure substances

D4.2

D4.4

Answers to discussion questions

Mathematically, we can trace the change in chemical potential when pressure is changed to the pV’
term within the Gibbs energy (part of the definition of enthalpy); the product changes when the
pressure changes. Physically, an incompressible system does not store energy like a spring (or like
a highly compressible gas); however, it can transmit energy, as it does in a hydraulic cylinder.
Furthermore, an incompressible system under pressure is under stress at a molecular level, Its
bonds or intermolecular repulsive forces resist external forces without contraction. Finally, one can
observe changes in phases in equilibrium with incompressible liquids (the pressure of their vapours,
for example) when pressure is applied to the liquid; see Section 4.4(c).

Vapor pressare curve of water

Exploration C
pahp(T) % N
2212 bar (—
p
1
6474 K
Figure 4.1

Refer to Figure 4.1 above and Figure 4.8 in the text. Starting at point A and continuing clockwise
on path p(T') toward point B, we see a gaseous phase only within the container with water at pressures
and temperatures p(7T). On reaching point B on the vapour-pressure curve, liquid appears on the
bottom of the container and a phase boundary or meniscus is evident between the liquid and less
dense gas above it. The liquid and gaseous phases are at equilibrium at this point. Proceeding clock-
wise away from the vapour-pressure curve the meniscus disappears and the system becomes wholly
liquid. Continuing along p{T) to point C at the critical temperature no abrupt changes are observed
in the isotropic fluid. Before point C is reached, it is possible to return to the vapour-pressure curve
and a liquid-gas equilibrium by reducing the pressure isothermally. Contimuing clockwise from
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point C along path p(T) back to point A, no phase boundary is observed even though we now
consider the water to have returned to the gaseous state. Additionally, if the pressure is isothermally
reduced at any point after point C, it is impossible to return to a liquid—gas equilibrium.

When the path p(T} is chosen to be very close to the critical point, the water appears opaque.
At near-critical conditions, densities and refractive indices of both the liquid and gas phases are
nearly identical. Furthermore, molecular fluctuations cause spatial variations of densities and
refractive indices on a scale large enough to strongly scatter visible light. This is called critical
opalescence,

See Section 4.6 for classification of phase transitions. First-order phase transitions show discon-
tinuities in the first derivative of the Gibbs energy with respect to temperature. They are recognized
by finite discontinuities in plots of H, U, S, and ¥ against temperature and by an infinite discontinuity
in C,. Second-order phase transitions show discontinuities in the second derivatives of the Gibbs
energy with respect to temperature, but the first derivatives are continnous. The second-order tran-
sitions are recognized by kinks in plots of H, U, S, and V against temperature, but most easily by a
finite discontinuity in a plot of C, against temperature. A A-transition shows characteristics of both
first- and second-order transitions and, hence, is difficult to classify by the Ehrenfest scheme. It
resembles a first-order transition in a plot of C, against T, but appeanrs to be a higher-order transition
with respect to other properties.

At the molecular level first-order transitions are associated with discontinuous changes in the
interaction energies between the atoms or molecules constituting the system and in the volume they
occupy. One kind of second-order transition may involve only a continuous change in the arrange-
ment of the atoms from one crystal structure {symmetry) to another while preserving their orderly
arrangement. In one kind of A-transition, called an order—disorder transition, randomness is intro-
duced into the atomic arrangement. See Figures 4.19 to 4.22 of the text.

Solutions to exercises

The phase rule {cqn 4.1) relates the number of phases (P), components (C), and degrees of freedom
{F) of a thermodynamic system:

F=C-P+2
Restricting to pure substances (C= 1) and rearranging for phases gives

P=3-F
Areas in the phase diagram have two degrees of freedom; one can vary pressure and temperature
independently (within limits) and stay within the area. Thus, F =2 and P =1 in areas. Lines have
one degree of freedom; one can vary pressure or temperature, but to stay on the line the value of the
other is determined by the line. Thus, F=1 and P=2 on lines. Points on the phase diagram have zero

degrees of freedom; one can vary neither pressure nor temperature on a given point. Thus, #=0 and
P =3 on points.

(a)is in an area, so there is a |single phase|. (b) and (c) are points, so there are present.
{d)is on a line, so there are present.
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For pure substances (one-component systems), the chemical potential is the molar Gibbs energy:
dG =gy — u)dn
50 AG=(t, —p)n =(-8.3 kJ mol")0.15x 10~ mol) =+1.2 x 10 kI =

The difference between the definition of normal and standard transition temperatures is the pres-
sure at which the transition takes place: normal refers to exactly 1 atm (101325 Pa), while standard
refers to exactly 1 bar (10° Pa). At the standard boiling temperature and pressure, the liquid and gas
phases are in equilibrium, so their chemical potentials are equal:

lu'l.iquid(T:std’pstd) = #gas( T'sldspstd)

The same can be said at the normal boiling temperature and pressure:

#l.iquid( Tnormspnnrm) = nu'gas( Tnormvpnnrm)

Eqns 4.2 and 4.3 show how the chemical potential changes with temperature and pressure, so for
small changes we can write

du = 9 dT + o dp=-S dT +V_ dp
ar A ap ),

Assuming that the differences between standard and normal boiling point are small enough, we can
equate the differences in the chemical potentials of the two phases:

Aptgas = =S g AT + Vi 0s80 = =S 1iquaAT + Vi siguieB P = Miguia
where Ap is defined as p, ., — Paq- Rearrange to isolate AT

(Sm,liquid - Sm,gas)AT= (Vm,liqu.id - Vm,gas)Ap

(_AvapS JAT= (Vm,]iqu.id - Vm,gas)Ap = = Vi gaeAD

Use the ideal gas law to find the molar volume of the gas. Also, we need to find A,,,5 or to use
Trouton’s rule (eqn 3.20):
VigasAp  RTAp _ RT{Ap  (8.3145 1 K-'mol")(373 K)*(1325 Pa)

A= 5~ PAyS  PAH (10° Pa)(40.656 x 10°J)

vap

]

That is, the normal boiling temperature is .38 K higher than the standard boiling temperature.

Use the phase rule (eqn 4.1)
F=C-P+2

to solve for the number of phases:
P=C-F+2=4-F+2=6-F<lg|

The maximum number of phases in equilibrium occurs when the number of degrees of freedom is
at a minimum, namely zero; that number is six.
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Eqn 4.2 shows how the chemical potential changes with temperature
du
du=|=—1dT =-8,dT
o (aT l

S0 Au=~—[S§,dT = -S,AT =53] K-'mol" x (1000 - 100) K
=14.8 x10*J mol-!] =48 &J mol"!|

Note: As the problem stated, we assumed that the entropy is constant over the temperature range.

Eqn 4.3 shows how the chemical potential changes with pressure

du= (g—'uj dp=V_dp= Edp
P ). P

1 3
$0 Au= gdp=£Ap=Mx(10x106—100x103)Pax 1m
P P 0879 gcm™ 104 cm?

=[8.8 x 1023 mol~!|={0.088 kJ mol|

Note: We assumed that the sample is incompressible.

The effect on vapour pressure of a change in applied external pressure on a liquid is given by eqn 4.4

p= p*eYnAPRT

For liguid naphthalene, the molar volume is

M 118.16 g mol™!
n=—=—————=122.8 cm® mol~"
p 0962gcm? e me
Fo(DAP  122.8 cm® mol~ % (15 x 10— 1.0 x 10°) Pa 1m?

RT 831457 K ‘mol~ x 368K *10°em

> =0598

and p= p*e'mWAPRT = (2 O kPa)e®%=|3.6 kPa

Use the Clapeyron equation (eqn 4.6)

dp _ AgS
TN

Assume that A, S and A, T are independent of temperature:

dp Ap
fias fus X(]TJ fus X AT

(1.2x10%Pa — 1.01x 10° Pa)

AqS = (152.6 cm® mol-! — 142.0 cm® mol-!
S = (152.6 em?mo o O X 26 K ~ 43715 K

3
= (10.6 cm* mol ) x [ 01 m

105 cm?

=552Pam*K-'mol =[+5.5F K mol!

] x(5.21x10°Pa K"}
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At the melting temperature

AgH = TiAgS = (427.15K) x (5.52 T K- mol™") = |+2.4 kJ mol!

E4.9(b)  Assume that the vapour is a perfect gas and A, H is independent of temperature
A, H 11 p*
= p¥ez, == x| =-—=—|[4.12], Int—=
p=r x[RJ[TT*J[]px

*
L + R ln.}l..
T ALH p
1 8.3145J K 'mol~! 58.0
= + x In
2032K 327 x10°J mol”! 66.0

1
H. T=-—re—————————=296K =(23°C
L T 3B x 107K
E4.10{(b) Integrating the Clausius—Clapeyron eqation {4.11) yields an expression for In p:

A H
dinp= |==Z_dTr
[ d Jm

1
T

J =3.378 x 103K

A H
so Inp=constant — —2—
P RT

Therefore, A, H =3036.8 K x R=8.3145 J K" mol™' x (3036.8 K) = |+25.25 kJ mol™!

E4.11(b) (a) The indefinitely integrated form of eqn 4.11 is used as in Exercise 4.10(a).

vap H

In p = constant Bupll or logp=constant - —> —
np=co RT Ep= 2303 RT

Thus, A, H =1625K x Rx2.303=1625 K x 8.3145 J K-'mol~'x 2.303

=131.11kJ mol™!

(b) The normal boiling point corresponds to p = 1.000 atm = 760 Torr,

1625 K
T

1625K
T=— 9%  _[769K
and 8.750 — log 760

so log760 =8750—

Eat2p) AT ~ ‘i&‘; x Ap[4.6 and Exercise 4.8(a))]

fus’

TAwd TMAap (1)1 _
=t Ap=—1—TE XAl — Vm = M/
Afu.shT r AfusH P [ p]



.13(b)

4.14(b)

4.15(b)

1.16(b)

PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES 89

Normal freezing point is T; = (273.15 — 3.65) K = 269.50 K at a pressure of 1 atm, which is about
0.1 MPa. Thus, to the nearest MPa, Ap = 100 MPa=1.00 x 108 Pa

-1 g
7 269-50 K x 46.1 g mol- x (1.00 x 10* Pa) x[ 1 1 J=2.7K

8.68 x 10°J mol~’ 0.789 gcm~ 0.801 gem?

Therefore, at 100 MPa, T, =(269.50 +2.7) K =[27.2 K] or [- 1.0°C]

The rate of loss of mass of water may be expressed as

am _ i(r:qM ), where n= g
dr dt A H
dr  dg/dt  (0.87 x 10°W m2) x (10*m?) = _
—_— = = 2 1
B T 440 % 10° T mol | 00 ol

dm ] ) -
and == = (200 mol 1) x (18.02 g mol ) =

The equilibrium vapour pressure of ice at —5°C is 0.40 kPa. Therefore, the frost would sublime.
A partial pressure of 0.40 kPa or more would ensure that the frost remains.

(a) According to Trouton’s rule (Section 3.3(b))

A =85T K mol"'x 7, =85J K mol'x 342.2 K =|29.1 kT mol™!

(b) Use the integrated form of the Clausius-Clapeyron equation {(eqn 4.12) rearranged to
m(&J=MX(L_LJ
B R I
At T, =342.2 K, p; = 1.000 atm [normal boiling point]; thus, at 25°C
4 -1
n o _ 2,91 x10*J mol y 1 _ 1 — 151
1.000 atm 8.3145 T K 'mol™! 3422K 2982K
and p,=e'¥atm=

4 -1
At60°C,1n( A ]=(2.91x101mol ]x[ 1 1 J=_0'276

1.000 atm | | 8.3145J K-'mol”! 3422K 3332K

and p,=e % atm=

AT = T(10 MPa) — T;(0.1 MPa) = MA(l} [Exercise 4.12(b)]
6 -1
AT = (273.15K) x 9.9 x 10* Pa x 18.0 g mol 1 : 1 — 074K
6.01 x 10*J mol™! 0998 gem™  0915gcem™

T;(10 MPa)=(273.15-0.74) K =[272.41 K
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A H = Ay U+ A pV) =43 5 kI mol!

Avap(p V) :PAvapV:P( Vgas - Vliq) szgas = RT [perfGCt ga.s]
Ao(p¥) =(8.3145J K- mol™!) x (352 K) = 2.93 x 10* J mol™!

. A (pV)  2.93kJ mol!
Fraction = =2 ) _ ~[0.0673| = 6.73¢
eHON ==\ 43.5kJ mol" 3%

Vap

Solutions to problems
Solutions to numerical problems
Use the definite integral form of the Clausius—Clapeyron equation {Exercise 4.15(b)].
ln[&] = M % [i — i]
D R L T
At T, =(273.15 - 29.2) K = 244.0 K (normal boiling point), p, = 1.000 atm, thus, at 40°C
3 -1
n I _ 20.25 % 10°J mol . 11 2205
1.000 atm 8.3145F K-'mol™! 2440K 3132K
and  p,=1.000 atm x €22 =

COMMENT. Three significant figures are not really warranted in this answer because of the approximations
employed.

(a) (M) - [Qﬂ@] =8, (1) + Sn(5) = ~Ag,S = 2 [4.13)
14 r f

oT oT T;
— -1
= 6'012;‘31(1);;{’“01 =[-22.0 7K' mol"']
M - M), — —_ _ —AvapH
(b) [ aT ]p ( oT p_ m(g) + Sm(l) - Avap‘S - Tb

_ —40.6 x10° T mol™!
B 373.15K

© p(1~5°C) - p(s,~-5°C) = p(,-5°C) - u(1,0°C) — {(s,~5°C) — u(s,0°C)}
because u(1,0°C) = pu(s,0°C)
Thus, w(l,~5°C) — p(s,~5°C)= Ap(l) — An(s)

=[-108.8 1 K- mol|

where Ay is the difference in chemical potential of a given phase at —5°C compared to that at
normal freezing temperature.

A= (3—;} AT =S, AT [4.2],

2
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so  {u(l,=5°C) - u(LL0°C)} — {u(s,-5°C) — u(s,0°C)} = —Aq SAT

1#(1,-5°C) — p(5,~5°C) = —(+22.0 T K- mol-') x (=5 K) = (+110 J mol-!

Since p(l,-5°C) > p(s,—5°C), there is a thermodynamic tendency to freeze.

dp _ AsS AneH

LD _ B> g 6]= )

ar ~ a0 TALYV [4.7]
TALV

=g
Thus, dT g P

fus

Integrate both sides:

Tibot Phot
AT =J' dr = J %:%dp = %Ap [assuming the integrand is constant]

Trtop Pop

Now, Ap=pu,—Pup=pgh

so AT = Inf2hlul
Aﬁ.tsI{
_(2343K)x(13.6 gom) x (9.81 m s7?) x (10.0 m}) x (0.517 cm® mol™') v lkg
2.292 x 10°J mol™ 10%g
=0.071K

Therefore, the freezing point changes to |234.4 K|,

Integrating the Clausius—Clapeyron eqation (4.11) yields an expression for in p:

In p = constant Ayt
= nt - —
P RT

Therefore, plot In p against 1/7 and identify —A ,, H/ R as the slope of the plot. Construct the follow-
ing table:

8/°C 0 20 40 50 70 30 90 100
T/K 273 293 313 323 343 353 363 373
1000 K/T 3.66 341 319 3.10 2.92 2.83 275 2.68

In( p/kPa) 0.652 1.85 2.87 3.32 4.13 4.49 483 5.14

The points are plotted in Figure 4.2. The slope is —4569 K, so

% =-4569K or A, H =|+38.0kJ mol"

The normal beiling point occurs at p = 1 atm = 101.3 kPa, or at In( p/kPa)} = 4.618, which from

the figure corresponds to 1000 K/T = 2.80. Therefore, T, =|357 K (84°C).| The accepted value is
83°C.
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55D

In{p/kPa}

30

26 28 30 32 34 36 3.8

(104K
Figure 4.2

The equations describing the coexistence curves for the three states are

(a) Solid-liquid boundary

AH , T
p=pt+ A—f7 ln—T_; [4.8]

fias

{b) Liquid-vapour boundary

A H 1 1

= prer, p=—= x| ———|[412
p=piet, y=—p X[T T*]{ 1

{c) Solid-vapour boundary

AsuhH %

p=per, y= 2 [l - L] [analogous to 4.12]

T T*

We need A, H = A H + A H=41.4 kI mol”

1 1 78.11 g mol™! 1 1
AV =M x| ————|= - = +1.20 em® mol
- * {p(l) p(S)J ( gom™ ) * (0.879 0.891) T emme

After insertion of these numerical values into the above equations, we obtain

10.6 x 10°J mol™! T
= p* In—
@ p=2 +[1.20><10’6m3m01"J T*

T
= p*+8.86 x10° Pa x h‘l% = p* +(6.64 x 107 Torr) IHF [1 Torr =133.3 Pa]
This line is plotted as @ in Figure 4.3, starting at the triple point (p*,7*) = (36 Torr, 5.50°C (278.65 K)).

308 %107 mol? ) (1 1 . 11
- L L lemakyx|—-—
®) x [8.3145JK'1m01"JX(T T*J @ )X[T T*]

p= p* e-STDEKx(UT—l.'T*)
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i omon{s -]

T

This equation is plotted as curve b in Figure 4.3, starting from the triple point (p*,7%).
1 1

41.4 x10°J mol!

© z= [8.3145 7K mol”
These points are plotted as curve ¢ in Figure 4.3, starting from the triple point { p*, 7*). The lighter

p= p* e-497§xx(1.'r-1!7")
lines in Figure 4.3 represent extensions of lines b and ¢ into regions where the liquid and solid states,

respectively, are not stable.
The slope of the solid-vapour coexistence curve is given by
dp

dp  ALH
— =—""—T[analogous to 4.10]s0 A, H =TA ,V —
ar - T,y Lenaloe 150 Ao 4T

60 :
L op = 2659 x 1071901877

50

40 i

p/Pa

30 b

20 i
156

L
152 154

150

10
148
/K

E44 146

Figure 4.4
The slope can be obtained by differentiating an equation fit to the coexistence curve (Figure 4.4).
Fit the data to an exponential function or take natural logarithms of the pressures and make a

linear fit to the transformed data. The fit equation is

P/Pa = 2.659 x) 10710 e0.1687Tn’K
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s a‘.‘% — (2,659 x 107 Pa) x (0.1687 K1) x e®1%77% = 4. 41 Pa K at 150 K

The change in volume is essentially the volume of the vapour

-1 -1
_RT _ (83145J K" mol™) x (150K) _ R
P (2,659 x 10710 Pa) x 016873t

Vm

So, Ay H®=(150K)x (47.7 m%) x 441 Pa K-'= 3.16 x 10°J mol™!

[remmr]

Solutions to theoretical problems

dH=C,dT+Vdp implies dAH=AC,dT+AVdp

where A signifies a difference between phases. Along a phase boundary dp and dT are related by

d
S AH g oral0]
dT TAV
Therefore,
AH AH dAH AH
dAH =| AC,+ AV dT = AC,+ 22 |dT and ——=AC, + —
[ »t+ XTAVJ ( P+TJ and o AC, T

Then, since

T

dT T

-t

ar “Tar 1

substituting the first result gives

d fAH)_AG
drl Tt ) T
Therefore,

Eqn 4.4 gives the vapour pressure of a liquid under an additional applied pressure AF:
p= p*eaaPRT

The applied pressure is the hydrostatic pressure of the liquid overlying the depth 4:
AP=pgd

The molar volume of the liquid is

V)= Mip
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Substituting into eqn 4.4 yields

— p¥ aMgdiRT

For a 10-m column of water at 25°C,

Mgd  (18.02 107 kg mol) x (9.81 m s2) x (10 m) _

7.1x10~*
RT (8.3145] K-'mol™) x (298 K)
so L—etioto 14 71x107
)

That is, the fractional increase in vapour pressure is [7.1 x 104 | or |0.071%|.

4.18 In each phase the slopes of curves of chemical potential plotted against temperature are
du
— | =S, [4.2
( 3T ] = [4.2]

The curvatures of the graphs are given by

(98
o2 | oT
o P

To evaluate this derivative, consider d.S at constant p:

2
dS:dq_mzd_H:E 50 H =_ai =_Cp’m
T T T oT? ; aT T

Since C,, is necessarily positive, the curvatures in all states of matter are necessarily negative. C,,, s
often largest for the liquid state, although not always. In any event, it is the ratio C, /T that determines
the magnitude of the curvature, so no general answer can be given for the state with the greatest
curvature. It depends on the substance.

4,20 S=S8(T,p)

as s
ds = (EldT + (E]po

as) C, a5 oV
Pl==2 418; |21 =42 S]=-
[BTJ T [Problem 4.18]; (ap l. (BT l[Table 3.5]=—aV,

P

v
dg.,=TdS=C,dT -T| 2= | 4
oeras-car-1(2)

dq dap A H
Co=|— | =C,-TVe| —= | =|C,—aV 4.7
‘ [aTl ’ a[af]s G A |
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Solutions to applications

(2) The Dieterici equation of state is purported to have good accuracy near the critical point.
It does fail badly at high densities where ¥, begins to approach the value of the Dieterici coefficient b.
We will use it to derive a practical equation for the computations.

2T, e 2Tk

= Table 1.
b W1 [Table1.7]

Substitution of the derivative

) _@+TVp
i), T,

into the reduced form of egn 3.51 gives

U, =T, op; —p,:ADL U= U
aV; T aT‘rV ]-:’Vl' pCVD

Integration along the isotherm 7, from an infinite volume to ¥, yields the practical computational
equation.

=

22TV
.,

AUr(T;!Ifr) = _J

Trconstant

The integration is performed with mathematical software.

(b) See Figure 4.5(a).

—2 T T T ] T |

.

4
AU,

-7 | | | | u | |
0.5 1 1.5 2 25 3 35 4 4.5

Figure 4.5(a)

() 6(1.,V)=(-p AUV Y2, where p,=72.9 atm

Carbon dioxide should have solvent properties similar te liquid carbon tetrachloride (8 6 < 9)

when the reduced pressure is in the approximate range |0.85 to 0.90 when T, = 1|. See Figure 4.5(b).
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Solubility parameter of carbon dioxide
T

20 | T T
15 —
8
am 2
10
5 ] 1 ] !
0.75 0.8 0.85 0.9 0.95 1
or
Figure 4.5(b)

C{graphite) = C{diamond) A,G=2.8678 kJ mol at T=25°C
We want the pressure at which A G = 0; above that pressure the reaction will be spontaneous.
Eqgn 3.53 determines the rate of change of A G with p at constant T.
W [ LE) cay = Wo-vorm
ap ),

where M is the molar mass of carbon; ¥, and ¥, are the specific volumes of diamond and graphite,
respectively. A,G{ p) may be expanded in a Taylor series around the pressure p; =100 kPa.

dA.G 1( ¢*AG
@) AG(E)= A6+ (%}f—"‘lll(p -+ 5[——%}}0 ~ i

‘We will neglect the third and higher-order terms in { p — p); the derivative of the first-order term can
be calculated from eqn (1). An expression for the derivative of the second-order term can be derived
from eqn (1).

@ |ZAG) U0 [0 |y - 3oy Vo )M [2.43]
ap T ap T ap T

Calculating the derivatives of eqns (1) and (2) at p,,

@ [aa,g(po)]
/4

cm?®

= (0.284 — 0.444) x [?J x [12‘01 g

mol

J =-1.92 ¢cm?® mol™!

T

—} = {0.444(3.04 x 107*) — 0.284(0.187 x 10-*}}

[cm%Pa“] (12.01 g]
X X
£ mol

=1.56 x 10" cm® kPa ' mol™!
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It is convenient to convert the value of A G(p,) to the units cm? kPa mol*!

6 3
6) AG(p)=2.8678x10°] mol ™ x [mmqn ) N ( 1kPa ]

3 10°Pa
=2.8678 x 10° cm® kPa mol™

Setting y = p — p,, and dividing through by cm® mol-!, equs (2) and (3)—(6) give

2.8678 x 10°kPa — 1.92y + (7.80 x 108 kPa-l)y?> =0
when A,G(p) =0. One real root of this equation is

¥=1.60x106kPa=p—p,
or p=1.60x 10°kPa—100kPa=1.60 x 10°kPa = 1.60 x 10* bar|.
Above this pressure the reaction is spontaneous. The other real root is much higher, 2.3 x 107 kPa.

Question. What interpretation might you give to the other real root?



5 Simple mixtures

5.2

5.4

)5.6

=5.1(b}

Answers to discussion questions

For a component in an ideal solution, Raoult’s law is p = xp®. For real solutions, the activity, «,
replaces the mole fraction, x, and Raoult’s law changes to p = ap™®.

A regular solution has an excess entropy of zero, but an excess enthalpy that is non-zero and depen-
dent on composition, perhaps in the manner of eqn 5.28. We can think of a regular solution as one
in which the different molecules of the solution are distributed randomly, as in an ideal solution,
but have different energies of interaction with each other.

A theoretical plate in fractional distillation is one evaporation and condensation ‘step’. Imagine
collecting the first material to vaporize from a mixture and condensing it separate from the original
mixture. On a standard temperature—composition phase diagram, such as those shown in Figure 5.37
of the main text, one fractional plate changes the liquid composition from one point to another on
the curve that represents the boiling temperature of the liquid by moving horizontally (constant
temperature) to the vapour-composition curve and then vertically {constant composition) back to
the boiling temperature curve. (In the diagrams of Figure 5.37, the boiling temperature of the liquid
is on the left, the vapour composition is on the right; the two curves bound the liquid—vapour
coexistence region.) The number of theoretical plates required to achieve a given composition
depends on that desired composition, the initial composition of the mixture, and the shape of the
liquid-vapour coexistence region.

Solutions to exercises

Total volume V=n,V,+ngVay=n(x, Vi + x5 Vg), where n=n, + ny
Total mass m=n, M, + ngMp=n{x, M, + (1 — x )Mz}

. m
xa My + (11— x, )My

So,

_ 1.000 x 10° g
(0.3713) x (241.1 g mol™) + (1 - 0.3713) x (198.2 g mol™)
= 4.670 mol
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V = n(xsVs + x5V5)
={4.670 mol) x {{0.3713) > (188.2) + (1 — 0.3713) x (176.14)} cm? mol "'

s

Let W denote water and E ethanol. The total volume of the solution is
V=nyVy+nrVp
We are given ¥, we need to determine ny and mg in order to solve for V5, for

_ V —ngVe

Py

Yw

Take 100 cm? of solution as a convenient sample. The mass of this sample is
m=pV=(0.9687 gcem) x (100 cm?*)=96.87 g

80% of this mass is water and 20% is ethanol, so the moles of each component are

(0.80) x (96.87 ) (0.20) X (96.87 )
_ =4.3 mol d = = =042 mol.
¥ = 718.02 g mol! Mol AN e = e 07 g mol moe
V —nVe  100cm? — (0.42 mol) x (52.2 cm?® mol-')
Vo = = =18 cm® mol™!
W 3ol

Check whether py/xg is equal to a constant (Kp).

X 0.010 0.015 0.020
(p/kPa)/x 8.2x10° 8.1x10° 8.3 x 10°

Hence, Ky = p/x ={8.2 x10° kPa| (average value).

In Exercise 5.3(a), the Henry’s law constant was determined for concentrations expressed in mole
fractions; Ky = 8.2 x 10* kPa. Thus, the concentration must be converted from molality to mole
fraction

m, = 1000 g, corresponding to », = _100g =13.50 mol
74.1 g mol!
Therefore, x, = 0.25 mol 0.018

(025 mol) + (13.50 mol)

The pressure is
Pp= Kpxp=(0.018) x (8.2 x 10° kPa) =|1.5 x 10* kPa|.

‘We assume that the solvent, 2-propanol, is ideal and obeys Raoult’s law.

Pa 962 5004

x,{solvent) = —
4 ) Pt 50.00
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Since M,(C,H;0) = 60.096 g mol ™,

2
=208 4 16mol
60.096 g mol™!
¥a=— 2 50wyt mg=
nA+ Ry Xa

Hence, ng =nA[L- 1] =4.16 mol x[

Xa

_my 869g _ 3
and Moo= = 0 mor L8 mo!

B

! -1]=3.12 x102mol
0.9924

Let B denote the compound and A the solvent, naphthalene. K; = 6.94 K kg mol™ [Table 5.2]

1,
My=—2
g

A
np=m, by, Where by= AT [5.35]
K¢

meK,  (5.00 g) x (6.94 K kg mol-') -
Thus, M;= = = (178 g mol™
U M= AT (0.250 kg) x (0.780 K)

From the osmotic pressure compute the concentration, and from the concentration the freezing
point, According to the van’t Hoff equation [5.38], the osmotic pressure is

I Ny

MT=[BIRT Bl=—=—"
[BIRT so [B}=—= V.

The expression for freezing point depression [eqn 5.35] includes the molality by rather than the
molarity [B]. In dilute solutions, the two concentration measures are readily related:

m o my (Bl _ I

b, = =—=
? LN Vsolnpscln Proln RTpsoln

The freezing point depression is

K1 :
AT = Kby = Ri'ipm]n’ where K, =1.86 K mol-' kg [Table 5.2]

The density of a dilute aqueous solution is approximately that of water:
p=10gem?*=1.0x10F kgm™

- (1.86 K kg mol-') x (99 x 10° Pa)
(8.3145 ] K- mol™) x (288 K) x (10°kg m™)

Therefore, the solution will freeze at about |—0.077°C|.

So =0.077K
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E5.8(b) The Gibbs energy of mixing perfect gases is
A G=nRT(x, In x, + xp In x3) [5.16] = pV(x, In X, + x5 In x;) [ideal gas]

AnG=(pV)x(zIn1+int)=—pVIn2

3
=—(100><103Pa)><(250cm3)( Lm )xln2=—17.3Pam3=—17.3J

10%em?
AS=—nR(x, Inx, + x3Inx}[5.17] = Al 73T s TR
mix* — A A B B . - T = 273 K = .
E5.9(b}) ALG= nRTExJ Inx, [5.16] A,S= —nRZxJ Inx; [5.17]=
J h)

n=200mol and Xyu.= Xngame =0.500
Therefore,

A G =(2.00 mol) x (8.3145 T K'mol-') x (298 K} x 2 x (0.500 In0.500)

=-343x10°T =1-3.43kJ

A G +343x10°
A S=—"20" = =|+11.3J K
and Ay S =2 = S

For an ideal solution, A, H =0, just as it is for a mixture of perfect gases [Section 5.4(a)]. It can be
demonstrated from

AmH:AmG+TAmS=AmG+T[ = ]=@

E5.10(b}) (a) Benzene and ethylbenzene form nearly ideal sohitions, so eqn 5,17 applies.
A S=-nR(x, In x, + xz In x5) [5.17]

We need to differentiate eqn 5.17 with respect to x,, and look for the value of x, at which the deriva-
tive Is zero. Since xz = 1 — x,,, we need to differentiate

AS=—nR{xsIn x, + (1~ x,) In(i - x,)}

In 1
This gives (using dd X —J
X X

dA .S
Luin® __,Rilnx, +1-1In(l—x,)— I} =—nR In—2—
A 1-x,
which is zero when x, = . Hence, the maximum entropy of mixing occurs for the preparation of

a mixture that contains equal mole fractions of the two components.

(b) Because entropy of mixing is maximized when r; = #; (changing to notation specific to ben-
zene (B) and ethylbenzene (E),

Mg _ My

M, M,
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This makes the mass ratio
-1
ﬂ=%= 78.11 g mol —[07357
ny Mg 106.17 g mol™!

With concentrations expressed in molalities, Henry’s law [5.23] becomes py = by K.

Solving for b, the molality, we have by = Po . XoPoa
KB KB

]

where  p ., =1atm=101.3 kPa
For N,, Kz =1.56 x 10° kPa kg mol~* [Table 5.1]

_ 0.78x101.3kPa
"~ 1.56 x 10°kPa kg mol-!

For O,, K =7.92 x 10" kPa kg mol-! [Table 5.1]

by =[5.1x 10~ mol kg

021x101.3kPa

T 792 x10°KPa kgmol ' 27x10 *mol ke |

by

20 x101.3kP
As in Exercise 5.11(b), we have by = Do _ a a

- = 0.067 mol kg™,
K; 3.01x10°kPa kg mol! motEe

Hence, the molality of the solution is about 0.067 mol kg™'. Since molalities and molar concentra-
tions (molarities) for dilute aqueous solutions are numerically approximately equal, the molar

concentration is about [0.067 mol dm™|.

The ideal solubility in terms of mole fraction is given by eqn 5.37:

].nbe:—AmSH X( ! —l}

R \T. T
3 -1
_ 5.2 x103] mol 9 1 B 1 — _0.089
8.3145J K'mol! 600K 553K
Therefore, xp, =% =092
Hpp . . FpiXpy Mipi Xpp
= —— impl that L K ——
o Rp; + Hpy, plymg that - ey 1—xpm My 1-xp

Hence, the amount of lead that dissolves in 1 kg of bismuth is

1000 ¢ 0.92
= = 52 1
" 09 g mol  1-092 Lo

Or, in mass units, Mg, = #ipy X Mp, =52 mol x 207 gmol ' =1.1 x 10*g= .

COMMENT. A mixture of 11 kg of lead and 1 kg of bismuth would normally be regarded as a solution of
bismuth in lead, not the other way around. It is unlikely that such a mixture could be regarded as an ideal dilute
solution of lead in bismuth. Under such circumstances egn 5.37 ought to be considered suggestive at best,
rather than quantitative.




E5.14(b)

ES5.15(b}

104 INSTRUCTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

The best value of the molar mass is obtained from values of the data extrapolated to zero concen-
tration, since it is under this condition that the van’t Hoff equation [5.38] applies.

_ mRT _ cRT

ITV =nyRT[5.38), I =——
ngRT| l. so 1Y% I,

m
where ¢=—
V

But the osmotic pressure is also equal to the hydrostatic pressure

H=pghll.3], s0 A= (ﬂJc

hjcm

Figure 5.1

Hence, plot 4 against ¢ and identify the slope as Figure 5.1 shows the plot of the data. The

T
pgM’
slope of the line is 1.78 cm/(g dm™), so

RT 178cm
pgM  gdm

=178 cmdm’gi=1.78 x 102 m*kg™!

Therefore,

M= RT
T (pg) x {178 x 102 mkg ")

B (8.3145J K-'mol™") x (293 K) = _ 0 kg mol™'
"~ (1.000 x 10°kg m) x {9.81 m s2) x (1.78 x 102 m*kg™") —=

Let A = water and B = solute.

Pa 0.02239 atm
=22 15491 ——" " . ={0.9701
2= e 1= G 08 am
ay N
Ta Xa a L
920 g 122¢
=———= —=51.1mol = wer———=— = (J.506 mol
" 18.02 g mol™! Sl.lmol g 241 g mol™

s1.1 0.9701
=__m___°..._._=0'990 and = ———=10.980
S0, %a =T 0506 YA = 5990 [0.930)
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In an ideal solution, the chemical potential of benzene would be

g=u*+ RTIn x[5.22]

RTIn x=(8.3145 J K~ mol) x 353.3 K xIn 0.30 =[-3.5x 10°J mol-|.

Thus, its chemical potential is lowered by this amount.

p=ap* [5.49] =y xp* = (0.93) % (0.30) x {760 Torr) =|212 Torr|.
Question, What 1s the lowering of the chemical potential in the non-ideal solution with y=10.937
From Dalton’s law of partial pressures and y, we can compute the partial pressures:

__Pa__ Pa
Patps 1013kPa

Va =0.314

So, py=101.3kPax0.314=31.8kPa
and py=101.3kPa-31.8%kPa=69.5kPa

_ 69.5 kP
g =Pa3l8KPa ool and o =%=_i= 0.755
¥ o2,

pf 730kPa 92.1kPa
a, 0.436 az 0755
=A[551]=——=[198 and y;=—2=—"""=/0967
ra= BA=50 e Y=, T 080

The definition of ionic strength is

18,
I= EZ(F]Z" [5.76]

and if & is the molal concentration of an M, X, salt, the molal concentrations of the ions are

by=pxb and by=gxb
Hence I—l( z? + gz?) b
> “'2 Pz f]_ be

L NEAEEA
For KyFe(CN)l [ = 7(3x I +1x 3 )(bej—6£b§}

For KCl and NaBr (and any other compound of monovalent ions)

I:%(lxl+1x1)(£;]:(%}

Thus, for this mixture
I = I(K,[Fe(CN)g I} + F(KCI) + I(NaBr)
_ 6[b(K3[Fe(CN)61)] 4 PKCD) | b(NaBr)

b® b b*
= (6) x (0.040) + (0.030) + (0.030) =



E5.19(b}

E5.20(b)

E5.21(b}

106 INSTRUCTOR'S SCLUTIONS MANUAL: PHYSICAL CHEMISTRY

COMMENT. Note that the strength of a solution of more than one electrolyte may be caleulated by summing
the ionic strengths of each electrolyte considered as a separate solution, as in the solution to this exercise, by

summing the product %(s—;}zz for each individual ion as in the definition of / [5.76].

Question. Can you establish that the comment holds for this exercise? Note that the term for K™ in
a sum over ions includes ions from two different salts.

The original KNO; solution has an ionic strength of 0.110. (For compounds of monovalent ions,
the ionic strength is numerically equal to the molal concentration, as shown in Exercise 5.18(b}.}
Therefore, the ionic strengths of the added saits must be 0.890.

(a) The salt to be added is monovalent, so an additional 0.890 mol kg! must be dissolved. The
mass that must be added is therefore

(0.500 kg) x (0.890 mol kg ') x (101.11 g mol ) =(45.0 ¢

(b) For Ba(NOy), I=%(1x22+zx12)[%}5.%#3(%}

Therefore, the solution should be made 0.890 mol kg~'/3 = 0.297 mol kg™ in Ba{NQ,),. The mass
that should be added to 500 g of the solution is therefore

(0.500 kg) x (0.297 mol kg ") x (261.32 g mol™) =

The solution is dilute, so use the Debye—Hiickel limiting law:

log y, = —|z.z.| AIY2[5.75]

I= %z[:—;]z%= %{(0.020 % 12) + (0.020 % 12) + (0.035 x 22) + (2 x 0.035 x 12)}
=0.125

For NaCl:
log 7, =—1x 1 0.509 x (0.125)*=-0.180, s0 .=

The activities of the ions are

a(Na") = a(Cl") = y.b/b° = 0.66 % 0,020 = 0.013
Question. What are the activity coefficients and activities of Ca(NO,), in the same solution?
The extended Debye—Hiickel law [eqn 5.78], with the parameter C set equal to zero, is

Alzz | IV

logy, =
OBY:= T BIn

Sclving for B:

1 Alz,z_} 1 0.509
== —— == +
g [1”2 " Togr. J [(bfb")“z log7.
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Draw up the following table:

bi(mol kg™ 5.0x10° 10.0x 10° 50.0x 10°3
7 0.927 0.902 0.816
B 1.32 1.36 1.29

The values of B are reasonably constant, illustrating that the extended law fits these activity

coefficients with B = .

-22(b)  Let subscript 2 denote the 1,2 isomer and 3 the 1,3 isomer. The partial pressures of the two liquids
sum to 19 kPa:

Pyt Py = p=xp%+ x, p3 [Raoult’s law] = x; p + (1 - x;) p%

Solve for x;:

p-pt  (19-20)kPa
= = - 05
BT A pr T (18- 20)kPa 05

and x,=1-0.5=[0.3]
The vapour-phase mole fractions are given by Dalton’s law:

*
3=&= X3 _ (0.5) x18 kPa :
r P 19 kPa

xpt  (0.5)x200kPa  —=

and y,= 0.53).
7= 519 kPa

5.23{b) The partial vapour pressures are given by Raoult’s law:
Pa=xapa and  py=xgp}=(1-x3)p}
Dalton’s law relates these vapour pressures to the vapour-phase mole fractions:

__Pa _ Xala
Pow XaPk +(1—x, )PE

Ya

Solve for x,:

*
XaPa

A

i
Xy pﬁ—pﬁ—y— =~p}

A

xapa +(1=xs)p8 =

*
x=—— 32.1kPa =[0.662
68.8
s+ 28 pr [82.14-22 688 kP
e i [ 0.621 2

Ya

and x,=1-x,=1-0.662=[0.338]
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The total vapour pressure is

Prom = Xa Ph + xgph =0.662 x 68.8 kPa + 0.338 x 82.1kPa =|73.3kPa

(a) If the solution is ideal, then the partial vapour pressures are given by Raoult’s law:
P =x,px =0.4217 x 110.1 kPa = 46.4 kPa

and  p=xgp¥ =(1- xz)p¥ =(1-0.4217) x 76.5kPa = 44.2 kPa

(Note the use of the symbol ° to emphasize that these are idealized quantities; we do not yet know
if they are the actual partial vapour pressures.) At the normal boiling temperature, the partial
vapour pressures must add up to I atm (101.3 kPa). These ideal partial vapour pressures add up to

only 90,7 kPa, so the |solution is not ideal [

(b) We actually do not have enough information to compute the initial composition of the vapour
above the solution. The activities and activity coefficients are defined by the actual partial vapour
pressures. We know only that the actual vapour pressures must sum to 101.3 kPa. We can make
a further assumption that the proportions of the vapours are the same as given by Raoult’s law.
That is, we assume that

5 464kPa

= =10.512
2+ py {(464+442)kPa

Ya=Ya=

P2 442KkPa

= =04
P2+ o5 (46.4+442)kPa 88

and =)=

By Dalton’s law, the actual partial vapour pressures would then be

Pa=YaPwm=0512x101.3kPa=|51.9 kPa

and Py = VgD = 0.488 x 101.3 kPa ={49.4 kPa

To find the activity coefficients, note that

Pa_pa _S1OKPa L0 g = 2AKRR g

T gt pl 464 kPa 44.2 kPa

COMMENT. Assuming that the actual proportions of the vapours are the same as the ideal proportions arrives
at the answer by conjecture rather than calculation. The assumption is not unreasonable, however. It is
aquivalent to assuming that the activity coefficients of the two components are equal (when in principle they
could be different). Several facts combine to suggest that the error we make in making this assumption is fairly
small: the difference between ideal and actual total pressure is relatively small {in the order of 10%), non-ideal
behaviour is due to the inferaction of the two components, and the two compcnents are present in com-
paraple quantities.

(a) If the solution is ideal, then the partial vapour pressures are given by Raoult’s law:

Py = Xg Py =0.50 x 9.9 kPa =495 kPa
pr=xrpt=050x29kPa=145kPa

The tofal pressure is

Pt =Ps + Py = (4.95+1.45) kPa=|6.4 kPa
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(b) The composition of the vapour is given by

Py = P _4.95kPa=m

Pow 6.4 kPa
and yT=_PT_=ﬁ5£*“_= 0.23
Pow  64kPa

(c) When only a few drops of liquid remain, the equimolar mixture is almost entirely vapour.
Thus, yg = pr = 0.50, which implies that

Pe = Xpph = pr = % pF =(1- x5) p}

Solving for xg yields

¥ 29kPa

T rept 39)kpPa - 05
r+ry (99429 kPa

Ap

The partial vapour pressures are

Pr=xpph =023 %99 kPa =2.24kPa = p; [vapour mixture is equimolar] = p,,,,/2

The total pressure is

Drotal = 2Pp =

COMMENT. Notice that an equimolar liquid mixture vields a vapour compasition directly proportional to the
vapour pressures of the pure liquids. Conversety, an equimolar vapour mixture implies a liquid composition
inversely proportional to those vapour pressures,

=5.26(b) Add the boiling point of A to the table at x, =y, =1 and the boiling point of B at x; = y, = 0. Plot
the beiling temperatures against liquid mole fractions and the same boiling temperatures against
vapour mole fractions on the same piot.

The phase diagram is shown in Figure 5.2. The phase boundary curves are polynomial fits to the
data points,

160
155
145 et

14.()_ ..........

8/°C

135_ ...................

1304

125

120

Mole fraction A

Figure 5.2
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(@) Find x,=0.50 on the lower curve and draw a horizontal tie line to the upper curve, The mole

fraction at that point is |y, = 0.82|.

(b) Find x, = 0.67 (i.e. x5 = 0.33) on the lower curve and draw a horizontal tie line to the upper

curve. The mole fraction at that point is | ya=091(e. yp=0.09) |

The phase diagram is shown in Figure 5.3.

+10

arecC

| Solid NH, +N;H,

-90 —
0 x (N;H,) 1
Figure 5.3
See Figure 5.4 for labels.

(a) Solid Ag with dissclved Sn begins to precipitate at @), and the sample solidifies completely at a,.

() Solid Ag with dissolved Sn begins to precipitate at b;, and the liquid becomes richer in Sn as
the temperature drops further. At b, solid Ag,Sn begins to precipitate, and as cooling continues the
liquid becomes richer in Sn. At b, the system has its eutectic composition (a solid solution of Sn and
Ag,Sn) and it freezes without further change in composition.

(@) b a ““(_b)
ar LA ]
800 - Liquid v 7 |/ becooaao2d
L + Ag solid dz [ToIIZnsd
contaminated
o with Sn - 460°C
s BT T
2 A AgiSn -+ Ag
L+ Sn L+ Ag:Sn contaminated
solldg\ solid by wit j_S_r_z ,
e — \\
200 4 Sn + Ag:iSn solids a
Sn Ag;5n Ag Time

Figure 5.4
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See Figure 5.5. The feature denoting incongruent melting is circled. There are two eutectics: one at

Xg =,T = and another at x; = ,T =.

Temperature, T

T

0 0.33 0.67
A XB B

Figure 5.5

The cooling curves corresponding to the phase diagram in Figure 5.6(a) are shown in Figure 5.6(b).
Note the breaks (abrupt change in slope) at temperatures corresponding to points &, by, and b,.
Also, note the eutectic halts at a, and b,,

(2 (b)

T

Temperature, T

n \
0 0.33 0.67

A XB B
Figure 5.6(a) & (b)

—




E5.31(b)

112 INSTRUCTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

Refer to Figure 5.7. Horizontal lines have been drawn at the relevant temperatures.

500
O 400 \
&
g \ 5
g 300
8
£
£ Ty \/
[ 3]
=

o I 2 i i1
0 0.2 04 0.6 08 1
Mole fraction of B, xg
Figure 5.7

(a) At390°C, solid B exists in equilibrium with a liquid whose composition is circled and labelled
x, on Figure 5.7. That composition is xz = x) = 0.63.

(b} At point x,, two phases coexist: solid AB, and a liguid mixture of A and B with mole fraction
xg =X, =0.41. Although the liquid does not contain any AB, units, we can think of the liquid as a
mixture of dissociated AB, in A. Call the amount (moies) of the compound #, and that of free A n,.
Thus, the amount of A (regardless of whether free or in the compound) is

Ny =H, +H,
and the amount of Bis
Ry =2n,
The mole fraction of B is

<

Hy 2n, 2n
xa = x2 = = =
Aot ng  (mo+n)+2n,  n+3n

Rearrange this relationship, collecting terms in 7 on one side and », on the other:
X = (2 = 3x;)
The mole ratio of compound to free A is given by

n, X, 0.41

n, 2-3x, 2-3x041

0.53
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.32(b) The phase diagram is shown in Figure 5.8. Point symbols are plotted at the given data points. The
lines are schematic at best.

1100

1030

1000 -

950 -

0/°C
g

850

800 -

750 { . Solid

700

x{ZrFy)

Figure 5.8

At 860°C, a solid solution with x(ZrF,)=0.27 appears. The solid solution continues to form, and
its ZrF, content increases until it reaches x(ZrF,) = 0.40 at 830°C. At that temperature and below,
the entire sample is solid.

=6.33(b) The phase diagram for this system (Figure 5.9) is very similar to that for the system methyl ethyl
ether and diborane of Exercise 5.27(a). The regions of the diagram contain analogous substances.
The mixture in this exercise has a diborane mole fraction of 0.80. Follow this isopleth down to see
that crystallization begins at about 123 K. The liquid in equilibrium with the solid becomes progres-
sively richer in diborane until the liquid composition reaches .90 at 104 K. Below that temperature
the system is a mixture of solid compound and solid diborane.

140
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The cooling curves are sketched in Figure 5.10. Note the breaks and halts. The breaks correspond
to changes in the rate of cooling due to the freezing out of a solid that releases its heat of fusion and
thus slows down the cooling process. The halts correspond to the existence of three phases and
hence no variance until one of the phases disappears.

140

(a) (b) ) () (e)
A ] - A M —

Figure 5.10

The phase diagram is sketched in Figure 5.11.
54 r
52 r
30 F

o 48

=
46

4 F

42 F

40

a8 L 1 3 1 1 1 L L 3
01 02 03 04 05 06 07 08 09 10
xa

Figure 5.11

() When x, falls to 0.47, a second liquid phase appears. The amount of new phase increases as
x, falls and the amount of original phase decreases until, at x, = 0.314, only one liquid remains.

{b) The mixture has a single liquid phase at all compositions.
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Solutions to problems
Solutions to numerical problems

Let A stand for water and B for NaCl(aq).

Vg = [_B_I(_] [5.11= (%Z—] mol [x = b/h°]

dny o ”

=(16.62 + % x 1.77 x x12 + 2 x 0.12x) cm® mol™!

=(17.5 em*® mol~! when x = 0.100

For a solution consisting of 0.100 mol NaCl and 1.000 kg water, corresponding to 55.49 mol H,0,
the total volume is given both by

V = {1003 +16.62 x 0.100 +1.77 x (0.100)¥2+ 0.12 x (0.100)*} cm® = 1004.7 cm®
and by
V= ¥ans+ Venp[5.3]

_ T emd— 3 —
Therefore, ¥, = i = 1004.7 cm (;::gcm )IX (0.100 mo) =18.07 cm’ mol™!
.49 mo

R

COMMENT. To four figures, this resuit is the same as the molar volume of pure water at 25°C. {This agreement
may be fortuitous, however, because the calculation does not give four significant figures.)

Question. How does the partial molar volume of NaCl(aqg) in this solution compare to molar vol-
ume of pure solid NaCl?

Letting B stand for CuSQO,(aq), the partial molar volume of the dissolved salt is

We will determine F by plotting ¥ against #y while holding n, constant. We can find the volume
from the density:

_ mt V_mA+mB

v . S0 o

The data include the composition of the solution expressed as mass per cent (that is, m(CuS0O,)/g,
the mass in grams of B dissolved in 100 g solution, is numerically equal to w, defined as mass of B
over total solution mass expressed as a percentage). For our plot, we need ry per fixed amount of A.
Let us choose that fixed quantity to be m, = 1 kg exactly, so ny is numericaily equal to the molal
concentration. So,

such that —=2 — x 100 =w
My + My
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Solve for my:

Wi,

g = ————
27100 - w

Draw up the following table of values of g, n5, and V at each data point, using m, = 1000 g:

W 5 10 15 20

pl(gcm™) 1.051 1.107 1.167 1.23
nilg 52.6 1111 176.5 250.0
ng/mol 0.330 0.696 1.106 1.566
Viem? 1001.6 1003.7 1008.1 1016.3
Fg/(cm® mol) 2.91 8.21 14.13 20.78

A plot ¥ against #g is shown in Figure 5.12.

1018

Viem?

1008

1000 ; ; ; ; : E : :
0 02 04 06 08 1 12 14 16 18

ng/mol

Figure 5.12

To find the partial molar volume, draw tangent lines to the curve at each of the data points and
measure the slope of each tangent. Alternatively, fit the curve to a polynomial and differentiate the
fit equation. A quadratic equation fits the data quite well

Viem® = 7.226(n/mol)? — 1.851(ng/mol) + 1001.4

a¥lem?

Velfem® =| ——
S0 Teitm (anB/mol

J =2 x 7.226 x (ng/mol) — 1.851
Y

COMMENT. Selecting m, = 1000 g is arbitrary. If you chose a different value for m,, your table will have differ-
ent values for mg, ng, and V, but you should arrive at the same values for Vs,
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*32 M
AT = M [5.34], xp= g _ MeMa

ApeH n, 1000g
M RT¥  bM,RT¥

An H x1000 g ApH

_ b o[ (0:06005 kg mol™!) x (8.3145 ] K~ mol ) x (290 K?

B 11.4 x 10° ) mol-!

Hence, AT = {f is molality of solution]

=3.68 K x b/{mol kg™)

Thus, the apparent molality (based on measured freezing point depression} is

A
by = TG mol kg™ =vh
where b is the actual molality and v may be interpreted as the number of ions in solution per one
formula unit of KF. The apparent molar mass of KF can be determined from the apparent molality
by the relationship
b

1 1
MB‘app=b_XMB =;XMB =;><(58.1gmol“)

app

where My is the actual molar mass of KF. We can draw up the following table from the data:

bi(mol kg™) 0.015 0.037 0.077 0.295 0.602
ATIK 0.115 0.295 0.470 1.381 2.67
By /(mol kg™ 0.0312 0.0801 0.128 0.375 0.725
v =by,lb 2.08 2.16 1.66 1.27 1.20
Mg /(g mol™) 27.9 26.8 35.1 457 483

A possible explanation is that the dissociation of KF into ions is complete at the lower concentra-
tions but incomplete at the higher concentrations. Values of v greater than 2 are hard to explain,
but they could be a result of the approximations involved in obtaining eqn 5.34. See the original
reference for further information about the interpretation of the data.

{a) On a Raouit’s law basis, g = % [5.49] and @ = yx [5.5]1], s0 ¥ = L* On a Henry’s law basis,
p xp

a= % [5.57), s0y = LK The vapour pressures of the pure components are given in the table of
x.
data and are pf = 47.12kPa and p* = 37.38 kPa.

(b) The Henry’s law constant for iodoethane is determined by plotting the data and extrapolating
the low concentration data to x, = 1. (The Henry’s law constant for ethyl acetate can also be deter-
mined by extrapolating the low-x, data to x, = 1, i.e. x; = 0.) The data are plotied in Figure 5.13,
and both Henry’s law extrapolations are shown as dotted lines. The values obtained are K= 64.4 kPa
and K, = 56.1 kPa. (Note that the figure displays dashed lines, corresponding to Raoult’s law in
addition to the dotted Henry’s law lines and the solid experimental curves.)
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70

R

Figure 5.13

Then, draw up the following table based on the partial pressures given in the data:

X, 0 0.0579 0.1095 0.1918 0.2353 0.3718

p/kPa 0 3.73 7.03 1.7 14.05 20.72

pa/kPa 37381 35.48 33.64 30.85 29.44 25.05

HR) — 1.367 1.362 1.295 1.267 1.183 [p/x,pH]
7a(R) 1.000 1.008 1.011 1.021 1.030 1.067 [palxapt]
yH) 1.000 1.000 0.997 0.947 0.927 0.865 [py/x,K]
* 0.5478 0.6349 0.8253 0.9093 1
p/kPa 28.44 31.88 39.58 43 4712}
palkPa 19.23 16.39 8.88 5.09 0
#R) 1.102 1.066 1.018 1.004 1
¥a(R) 1.138 1.201 1.360 1.501 —
7(H) 0.806 0.779 0.744 0.734 0.731

*The value of p}; ‘the value of pf.

Question. In this problem both 1 and A were treated as solvents, but oniy I as a solute. Extend the
table by including a row for y,(H}.

The partial molar volume of cyclohexane is

av

v, =L
° [anJ
np

A similar expression holds for V. ¥, can be evaluated graphically by plotting V against n, (holding
n, constant) and finding the slope at the desired point. In a similar manner, ¥, can be evaluated by
plotting ¥ against n,. To find V,, ¥ is needed at a variety of #, while bolding », constant, say at
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exactly 1 mol; conversely, to find V, ¥ is needed at a variety of #, while holding #, constant. The
mole fraction in this system is

n X7 I—x)n
x,=——, so m=—2> and np=£—#
1

=
n.t+Hy - X, X,

From n, and n,, the mass of the sample can be calculated, and the volume can be calculated from

m n M +nM,
p P

Draw up the following table, using M, =84.16 gmol' and M, =212.41 gmol'. Note that the central
columns are the given data. The columns on either side hold one component constant at 1 mol and
compute the amount of the other component and the volume.

V=

nfmol (n,=1) Viem? X, plgem™ nyfmol (.= 1) Viem?
2.295 5294 0.6965 0.7661 0.4358 230.7
3.970 7122 0.7988 0.7674 0.2519 179.4
9.040 1264 0.9004 0.7697 0.1106 139.9

These values are plotted in Figures 3.14(a) and (b).
(a) ()]

1400 T 240 !
¥ =279.45 + 108.96x. ... ¥ = 109.00 + 279.28x
1200 | R2= 1.000- - 220 | RZ=1.000+
o0 : 200 |
E.. E 180 |-
= 800 | = -
160
600 140
400 - - - - - 120
2 4 6 8 10 0.1 0.2 0.3 0.4 0.5
n/mol np,’mol
Figure 5.14(a) & (b)

These plots show no curvature, so in this case, perhaps due to the limited number of data points, the
pariial molar volumes are constant over the range of concentrations.

V.=(109.0 cm*mol™![ and ¥,=1{279.3 cm®mol~!
The activity of a solvent is
_Pa _
a, =—_[549]1=x74 [5.51]
Pa

so the activity coefficient is

_ Pa _ ¥aP
LS —y
XaPa  XaPa
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where the last equality applies Dalton’s law of partial pressures to the vapour phase. Since the data
are given in terms of trichloromethane mole fractions, the last equation applies directly, changing
subscript A to T. For the other component:

o 2ep _ (=yop
xept  (1-x1)p

Substituting the data yields the following table of results.

p/kPa Xt Yr Tr Ye

23.40 0.000 0.000 — 1.000
21.75 0.129 0.065 0.418 0.998
20.25 0.228 0.145 0.490 1.031
18.75 0.353 0.285 0.576 1.023
18.15 0.511 0.535 0.723 0.920
20.25 0.700 0.805 0.885 0.725
22.50 0.810 0.915 0.966 0.497
26.30 1.000 1.000 1.00 —

§' = S,e”" may be written in the form ln S =InS, + %, which indicates that a plot of In § against 1/T
should be linear with slope  and intercept In S;. Linear regression analysis gives

T= (standard deviation=2 K)

in(S,/mol dm~) = 2.990, standard deviation 0.007; R =

s0 the linear regression explains 99.98% of the variation.

Sy = € mol dm~>=1{19.89 mol dm™?

Eqn 5.37 gives the ideal solubility in mole fraction units:

D V- § 5 WO | G - SO -
2=V T |\ T T[T Ry, SR RT
Comparing the ideal expression to the empirical § = Spe”” is not straightforward because of the
different units. For dilute solutions, mole fraction and molarity are directly proportional:

Hy Ry _ HpPa

Ay Mg
Xp = =-— and [B]= o v 7;
LN + Ry N selutien A LORL Y

Cleatly, however, the approximations involved here are not permissible for 20-molar solutions. Atsuch
high concentrations, ry is not negligible compared to r,; the amounts are comparable, Furthermore,
the solution is surely much denser than the solvent. If the approximations were justified, however,
we would identify S, with the temperature-independent part of eqn 5.37 and constants:

Sy = ‘D—Aexp Awtl
M, RT,
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Comparing the temperature-dependent portion, we would identify T = |-Ay H/R|. This identifica-

tion is problematic. The empirical 7 is positive, but so is A H. The empirical solubility decreases
with increasing temperature, but the ideal solubility increases. That the ideal expression fails to
capture the solubility behaviour of a highly concentrated ionic solution should not be surprising in
light of Section 5.13.

.16 According to the Debye—Hiickel limiting law

12
logy, =—0.509|z,z_| V2[5.75] = —0.509[5’%] [5.76]

We draw up the following table:

bf(mmol kg 1} 1.0 2.0 5.0 10.0 20.0

ne 0.032 0.045 0.071 0.100 0.141
vi(calc) 0.964 0.949 0.920 0.889 0.847
y{exp) 0.9649 0.9519 0.9275 (.9024 0.8712
log y.(calc) —-0.0161 -0.0228 —0.0360 —-0.0509 -0.0720
log y.(exp) —0.0155 -0.0214 —0.0327 —0.0446 -0.0599

-0.02
g
=]
=

-0.04

0 0.04 0.08 012 016
IIIZ

Figure 5.15

The points are plotted against I'? in Figure 5.15. Note that the limiting slopes of the calculated and
experimental curves coincide. A sufficiently good value of B in the extended Debye—Hiickel law
may be obtained by assuming that the constant 4 in the extended law is the same as A in the limiting
law and taking C=0.

_A|Z+Z_|1m Az

| 578 with C = 0]=—

log-= T+ BI7

Using the data at 20.0 mmoi kg!, we may solve for B,

4 1 _ 0509 | 143
logy. I 1og08712 (20x 1032

B=-
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0.50011?

Thus, logy,=———""7"—
By = T 143
In order to determine whether or not the fit is improved, we use the data at 10.0 mmol kg

logy, = —0:509) x (0.100) _
(1) + (1.43) x (0.100)

—-0.0445
which fits the data almost exactly. The fits to the other data points are also almost exact.

(a) The phase diagram is shown in Figure 5.16.

310

305

=
&= 300

295

290

0.0 0.2 04 0.6 0.8 1.0
Figure 5.16

(k) We need not interpolate data, for 296.0 K is a temperature for which we have experimental
data. The mole fraction of N, N-dimethylacetamide in the heptane-rich phase (call the point o, at
the feft of the tie line) is 0.168 and in the acetamide-rich phase (B, at right) 0.804. The proportions
of the two phases are in an inverse ratio of the distance their mole fractions are from the composi-
tion point in question, according to the lever rule. That is

nalng = Lil, = (0.804 —0.750)/(0.750 — 0.168) = |0.093

The smooth curve through the data crosses x = 0.750 at |302.5 K|, the temperature at which the
heptane-rich phase will vanish.

The phase diagram is shown in Figure 5.17(a). The values of xs corresponding to the three com-
pounds are: (1) P,S,, 0.43; (2) P,S;, 0.64; (3) P,8,,, 0.71.

The diagram has four eutectics labelled e, ¢,, €, and e,; eight two-phase liquid-solid regions, 7,
through #;; and four two-phase solid regions, $,, S,, S;, and S,. The composition and physical state
of the regions are as follows:

IliquidSand P

S,: solid P and solid P,S; S,: solid P,S, and solid P,S;
S;: solid P,S, and solid P,S, 8, solid P,S,; and solid S
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t,: liquid P and S and solid P t;: liquid P and S and solid P,S;
t, liquid P and S and solid P,S,  #,: liquid P and S and solid P,S,
ts;: liquid Pand S and solid P,S; ¢ liquid P and S and selid P,S,,
t;: liquid P and S and solid P,S,;,  #: liquid P and § and solid 5

350
300

250

200 ty

arC
I

150

100 fa
SZ 53 C4
50 S,
4 043 0.64 0.71

Faiie NI

0.4 0.6 0.8 1.0
Xs

o
o
[}

Figure 5.17(a)

A break in the cooling curve (Figure 5.17(b}) occurs at point b, = 125°C as a result of solid P,S;
forming; a eutectic halt occurs at point e, = 20°C,

300

250

200

8/°C

100

50

€

Figure 5.17(b)
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P5.22 See Figure 5.18(a). The number of distinct chemical species (as opposed to components) and phases
present at the indicated points are, respectively
Liquid A & B
Liquid A & B
Solid B
f
LiquidA & B hd
Solid A Liquid A & B
Solid AB,
& o [ k
Solid A Solid AB,
.4 and‘ and

Solid AB, Solid B

T Fr
16% 23% 57% 67% 84%
Xp —»
Figure 5.18(a)
T 0.16 0.23 0.57
T
0.67 0.84

—
Figure 5.18(b)

b(3,2), d(2,2), e(4,3), f14,3), g(4,3), k(2.2)
[Liquid A and solid A are here considered distinct species.]
The cooling curves are shown in Figure 5.18(b).
P5.24 (a) The A_, G(xp,) curves show that at 1500 K lead and copper are totally miscible. They mix to

form a homogeneous solution no matter what the relative amounts may be. However, the curve at
1100 X displays two distinct minima, and we expect two partially miscible phases.
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() F=C-P+2=2-1+2=[3at1500K

@) F=C-P+2=2-2+2=[2]at1100K

(b)(i) When a homogeneous, equilibrium mixture with xp = xp, = 0.1 is cooled from 1500 K to
1100 K, no phase separation occurs. The solution composition does not change.

(i) When a homogeneous, equilibrium mixture with xp, = 0.7 is cooled slowly, two partially mis-
cible phases appear somewhere between 1300 and 1100 K. The separation occurs because the com-
position lies between two minima on the A,; G curve at 1100 K and phase separation lowers the
total Gibbs energy. The composition of the two phases is determined by the equilibrium criterion
e} = p{ B) between the o and 8 phases. Since the chemical potential is the tangent of the A, G
curve, we conclude that the straight line that is tangent to A, G(x) at two values of x (a double
tangent) determines the composition of the two partially miscible phases. The two minima at 1100 K
appear to have the same value of A,;, G, namely —1 kJ mol™, so a horizontal line is tangent to both

at the compositions xp,(e) = and xp,(8) = . (Note that the tangent points and the minima

coincide in this case, but they need not. If the minima fall at different values of A,;, G, then the line
tangent to both of them is not horizontal and the points of tangency need not be the minima.)
The relative amounts of the two phases are determined by the lever rule [eqn 5.46).

n, I, 0.82-0.70
S AP ki [ 7
n, 1, 0.70-0.19 024

(c) Solubility at 1100 K is determined by the positions of the two minima in the A, G curve.
The maximum amount of lead that can be dissolved in copper vields a mixture that has x,, = 0.19;
any more lead produces a second phase. So, the solubility of lead in copper at this temperature is

. The other minimum in the curve occurs at xg, = 0.82; any Jess lead produces a second

phase. This lead-rich composition corresponds to the maximum solubility of copper in lead,

namely .

Question. Express these solubilities in g solute per 100 g solvent.

The data are plotted in Figure 5.19. Compounds specified on the phase diagram are solids. Note
that a few of the lines are slightly displaced so as to allow the smaller regions of the phase diagram
to be visible. In particular, the intersection of the KCl and K,FeCl, solubility curves is at a slightly
greater x(FeCl,) than given in the problem in order to emphasize that it is not continuous with the
vertical solid—solid phase boundary at x = 0.33. Likewise, the eutectic at 393°C and x = 0.54 is
shown at a slightly lower temperature so as to distinguish it from the KFeCl; melting temperature.
K,FeCl, melts incongruently at 380°C and K FeCl; melts congruently at 399°C.

At x =10.36, solid K,FeCl, appears out of the single liquid phase at around 370°C. The solution
becomes richer in FeCl, as more K, FeCl, freezes out until the melt reaches the eutectic composition
of 0.38 at 351°C, at which point KFeCly(s) also appears. Below 351°C the system is a mixture of
K,FeCl(s) and KFeCly(s).
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800

400 -

300

Figure 5.19

Solutions to theoretical problems

Begin with the Gibbs—Duhem equation [5.12a] and divide through by total moles:

Xpdps +xpgdup=0.

Dividing through by dx,:
dpy dug
+x5—=0
a dx, ® dx,

The mole fractions add up to a constant (namely 1), so dxp = —dx,, and we can write

xAd'u"‘ _deﬂz()
dx, dxg

*) _gﬁi_zdﬁ dlnx=d_x .
dinx, dlnxg x

Substitute the chemical potential of a real gas, namely

S

p=u° + RT In—— [5.14a with fugacity in place of pressure],

into the starred equation, bearing in mind that the derivatives in it are really partial derivatives at
constant pand T

dlnf, | (dlnf;
dlnx, ﬂ_ dlnxg T
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Now, go back to the starred equation and substitute into it the expression for chemical potential of
a solvent in a solution, namely

sa = it + RTIna, [5.48]= % + RTIn 22 [5.49),

oA
vielding [—amPA ] - (_a In py )
dhx, o dlnx, ot
If A satisfies Raoult’s law, we can write p, = x, p%, which implies that

[alnp,\} _dlnx,  dlnpy
T

= =1+0=1
dlnx, , dlnx, Jdlnx,

which requires {g}lnp 2

nxg
satisfy this requirement, as can be determined by differentiation. Indeed, Henry’s law can be con-

sidered the more general of the two; Raoult’s law can be considered a special case of Henry’s law in
which K = p}.

] =1as well. Both Racult’s law (pp = x; p}) and Henry’s law ( pg = x5 Ky)
T

Start with eqn 5.33:
pi(s)=pi() + RTInx,

Rearrange, analogous to Justification 5.1, to

_ B Ot _ -aG

Inx,
RT RT
So, dinx, _ i><i G | _ | Asnf [Gibbs-Helmholtz equation, 3.55]
dr R 4T\ T RT?
Integration yields
XA T T
dinx, = Ay HAT _AnH dr
. .~ RT? R |, 1°

|
or mxAzﬂx[l_l)j
|

The approximations Inx, = In(1 — x3) = —xy and T = T* then lead to eqns 5.34 here, just as (in
Justification 5.1) they lead to eqn 5.31.

Retrace the argument in Justification 5.3, leading to eqn 5.38 of the text. Exactly the same process
applies with a, in place of x,. At equilibrium

pHIr

HX(p) = palas, p+ Iy = uf(p+ 1)+ RT Ina, = #ﬁ(P)‘FJ Vudp+ RT Ina,

P

p+I
which implies that J V,dp=—-RTIna,.

]
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For an incompressible solution, the integral evaluates to [TV, so ITV, = —RT In a,.
In terms of the osmotic coeffictent ¢ (Problem 5.31)

X n X 1
IV, =wRT, where r="2=22 ¢=—"2lng,=-—Ina,
Xy M Xg r

For a dilute solution, V=nV, =n,V,,

Hence, ITV=nzeRT

. _tm ~
and therefore, with [B] = T IT = ¢[B]RT|.

Solutions to applications
P5.34 The 97% saturated haemoglobin in the lungs releases oxygen in the capillary until the haemoglobin
1s 75% saturated.
100 em? of blood in the lung containing 15.0 g of Hb at 97% saturated with O, binds
1.3d em’ g 15.0 g=20.1 c* O,
The same 100 cm? of blood in capillaries would contain

Q
20.1em?*O; x 5% =15.5em’
97%

Therefore, about (20.1 - 15.5) em?® or m of O, is given up in the capillaries to body tissue.

P5.36 (a) Implicit in the model we are exploring is that at most one small molecule A can bind to each
macromolecule, so the species are limited to free A, free M, and MA (no MA,, etc.). In that case,
the average number bound is also equal to the fraction of macromolecules that are bound to small
molecules. Therefore, [MA]=y[M], where [M] is the total concentration of M, bound and unbound.
Similarly, [M}g.. = (1 — #)[M]. Therefore,

[MA] _ v[M] _ v
Mlee[Akee (1~ )[MJ[Ale  (-2)Al’

where we use [Al,, = [Al,. In the last step.

K=

(b) At the risk of introducing more notation, let us rewrite the binding equilibrium in terms of
individual binding sites, S:

S+A=8A,
for which the equilibrium constant is

[SA]
[S)iee[Alree

The concentration of bound sites is the average number pet site times the number of sites per macro-
molecule tirnes the total concentration of macromolecules:

[SA] = (/N)N[M] = o[M]

*
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Similarly, the concentration of free sites is
[Slhee = (1 — ¢/ N)N[M] = (¥ - v)[M].

v[M]

Thus, K=——"—""—,
(N - v)M]A

which rearranges to the Scatchard equation

KN —vK =

v
[ALu

(c) The requisite plot is of t/[EB],, vs. v. If the Scatchard equation applies, the points should fall
on a straight line with slope —K and y-intercept XN. Use

=% and  [EBy.ng = [EB], - [EBLy

to draw up the following table:

[EB],./(pmol dm™) 0.042 0.092 0.204 0.526 1.150

[EBlyoue/(kmol dm™) 0.250 0.498 1.000 2.005 3.000

v 0.250 0.498 1.000 2.005 3.000

(W[EB],)/(dm® pmol™) 5.95 5.41 4.90 3.81 2.61
7

W/[EB]puo/dm® pmol™!)

Figure 5.20

A plot of v/[EB],,, against v is shown in Figure 5.20.

The slope is —1.168 dm? pmol-’ = ~1.168 x 10° dm’ mol™!, hence K =|1.168 x 10°|. {Note that Kis

conventionally defined as a dimensionless quantity when concentrations are given in mol dm™, but
one can specify units and say X =1.167 dm?® pmol . The intercept at v="01s

KN=612dm’ pmo!”, so N =523
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and this is the average number of binding sites per oligonucleotide. The close fit of the data to a

straight line indicates that the identical and independent sites |is applicablel.

P5.38 PX (s)=P{aq) +vX (aq)
This process is a solubility equilibrium described by a solubility constant K
K, =ap xa
Introducing activity coefficients and concentrations, b, we obtain
K = bp x b Xyt

At low to moderate ionic strengths we can use the Debye-Hiickel limiting law [eqn 5.75]) as a good
approximation for y,:

log y,=—|z.z,|AI'"?

Addition of a salt, such as (NH,),S0,, causes [ to increase, log y. to become more negative, and y,
to decrease. However, K is a true equilibrium constant and remains unchanged. Therefore, the
concentration of P* increases and the protein solubility increases proportionately.

We may also explain this effect in terms of Le Chatelier’s principle. As the ionic strength increases
by the addition of an inert electrolyte such as (NH,),80,, the ions of the protein that are in solution
attract one another less strongly, so that the equilibrium is shifted in the direction of increased
solubility.

The explanation of the salting out effect is somewhat more complicated and can be related to the
failure the Debye-Hiickel limiting law at higher ionic strengths. At high ionic strengths we may
write the extended Debye—Hiickel law [equ 5.78]

—|z,z_|ATY?

e T

logy. =
At low concentrations of inert salt, J'2 > [, the first term dominates, y, decreases with increasing I,
and salting in occurs, but at high concentrations, { > ', the second term dominates, ¥, increases
with increasing J, and salting out occurs. The Le Chatelier’s principle explanation is that the water
molecules are tied up by ion—dipole interactions and become unavailable for solvating the protein,
thereby leading to decreased solubility.

P5.40 We use eqn 5.40 in the form given in Example 5.4 with IT= pgh, then

Ez_}i]_"(l B J_RT RTB

—c ="+
c M\ M) T T ©

where ¢ is the mass concentration of the polymer. Therefore, plot I1/c against ¢. The intercept is
RT/M and the slope is RTB/M?.

The transformed data to plot are given in the table:

ol (mg cm™) 1.33 2,10 4.52 7.18 9.87
Ty (N m? mg cm?) 22.6 24.3 29.2 34,3 39.5

D —
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Figure 5.21

The plot is shown in Figure 5.21. The intercept is 20.1 N m%/(mg cm=). The slope is 1.975 N m™f
(mg cm~)2. Therefore,

_ RT

"~ 20.1N m?mg cm?

_83145TK-'mol x303.15K _ (107g) ( icm 3
2017 m™ mg e’ Img ) \10%m

M

=|1.25x10° gmol"—l

MZ

B T x 1.975 N m2/{mg cm)?

M
= x 1.975 N m~/(mg cm Y
RT

M
_ 1.25x10° g mol™! x 1.975 N m?/(mg em~)* y 1 mg
20.1 N m=2/(mg cm™) 103¢g

=1.23 % 107 e’ mol! = [1.23 x 104 dm® mol|

Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and a planar, rigid structure.
The amide group is expected to be like the peptide bond that connects amino acid residues within
protein molecules. This group is also planar because resonance produces partial double-bond char-
acter between the carbon and nitrogen atoms. There is a substantial energy barrier preventing free
rotation about the CN bond. The two bulky phenyl groups on the ends of an amide group are trans
because steric hinderance makes the ¢is conformation unfavourable. See Figure 5.22(a).
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N— -« N=C
/ Q resonance 7 D
H H
trans - trans
+ energy
H 0
AN '
o cis
Figure 5.22(a)

The flatness of the Kevlar polymeric molecule makes it possible to process the material so that
many molecules with parallel alignment form highly ordered, untangled crystal bundles. The align-
ment makes possible both considerable van der Waals attractions between adjacent molecules
and for strong hydrogen bonding between the polar amide groups on adjacent molecules. These
bonding forces create the high thermal stability and mechanical strength observed in Keviar. See
Figure 5.22(b).

hydmgen bond

05‘

5+ 2 i
hydrogen bond N C 5+
@ polar, covalent bonds
Q P
N—

H/ pola.r covalent bonds

Figure 5.22(h)

Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a speeding bullet,
through hydrogen-bond breakage and the transition to the cis conformation.




6 Chemical equilibrium

D6.2

Answers to discussion questions

Eqn 5.56, in the form of the following expression, provides the general definition of the activity for
species J, @y

=+ RT Ina, [5.56]

where ] is the value of the chemical potential of J in the standard state, i.e. the state for which
a; = 1. In fact, the standard state of a substance at a specified temperature is its pure form at 1 bar.
This means that the activity of a substance that is a either a pure solid (e.g. copper, sodium chloride,
naphthalene) or a pure liquid (e.g. bromine, water, methanol) equals 1 at, say, 25°C. Since the activity
of a pure solid or liquid is equal to 1, it can be conveniently ignored when presenting an equilibrium
constant expression.

Activities and activity coefficients are generally used to address questions that concern real, non-
ideal mixtures. It is well worth remembering several useful activity forms. Of course, both activities,
a;, and activity coefficients, y, of non-ideal mixtures are dimensionless and related by equations
that have the general form a; =y, X (concentration of J).

Perfect gas: a;=p/p®  (u depends on T alone; p° =1 bar)
Real gas: ay=yp/p° (17 depends on T alone)

Ideal solutions: a,=Xx;

Ideal-dilute solutions: ap =[B]/¢®, where ¢® = 1 mol dm™?

Solvent A of a non-ideal solution: a, =y.x4

Solute B of a non-ideal solution: a5 =1v3[B]/c”

(1) Response to change in pressure. The equilibrium constant is independent of pressure, but the
individual partial pressures of a gas-phase reaction can change as the total pressure changes. This
will happen when there is a difference, Av, between the sums of the number of moles of gases on the
product and reactant sides of the balanced chemical reaction equation.
Av=Ywv= 3 wv- X |ul
J J=product gases J=rezctant gases
The requirement of an unchanged equilibrium constant implies that the side with the smaller num-
ber of moles of gas be favoured as pressure increases. To see this, we examine the general reaction
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equation = 2 v,J [6.9] in the special case for which all reactants and products are perfect gases.
J

In this case, the activities equal the partial pressure of the gaseous species and, therefore,

Qyigas) =pilp° =x,pip®
where x, is the mole fraction of gaseous species J. Substitution into eqn 6.13 and simplification
yields a useful equation:

K=[Hﬂ¥’) =[Hx1“’(p/p°)“J
I equilibrium J equilibrium

= (ij” ] (H(p/p*’)"’ J = (H Xy J (plp™y™
] equilibrium \ 7 equilibrium J equilibrium

= K, (pip”y>, where K= [H Xy’ ]

I equilibrium
K is not an equilibrium comstant. It is a ratio of product and reactant concentration factors that
has a form analogous to the equilibrium constant K. However, whereas X depends on temperature
alone, the concentration ratio X, depends on both temperature and pressure. Solving for X, provides
an equation that directly indicates its pressure dependence:

K =K{p/lp*y?

This equation indicates that, if Av =0 (an equal number of gas moles on both sides of the balanced
reaction equation), K, = K and the concentration ratio has no pressure dependence. An increase in
pressure causes no change in K, and no shift in the concentration equilibrium is observed on a
change in pressure.

However, this equation indicates that, if Av < 0 (fewer moles of gas on the product side of the
balanced reaction equation), K, = K( p/p®)'*". Because p is raised to a positive power in this case, an
increase in pressure causes K|, to increase. This means that the numerator concentrations (products)
must increase while the denominator concentrations (reactants) decrease. The concentrations shift
to the product side to re-establish equilibrium when an increase in pressure has stressed the reaction
equilibrium. Similarly, if Av > 0 (fewer moles of gas on the reactant side of the balanced reaction
equation), K, = K(p/p®)1*". Because p is raised to a negative power in this case, the concentrations
now shift to the reactant side to re-establish equilibrium when an increase in pressure has stressed
the reaction equilibrium.

nK AH®

=— 6.21(a)], sh
7 RT [6.21(a)], shows
that K decreases with increasing temperature when the reaction is exothermic (i.e. A, H® < 0);
thus the reaction shifts to the left. The opposite occurs in endothermic reactions (i.e. A, H® > 0). See

Section 6.4 for a more detailed discussion.

(2) Response to change in temperature. The van *t Hoff equation,

D6.6 On a very basic level we observe that a concentration gradient establishes a chemical-potential
gradient and it is the potential gradient that can generate an electric current. The extreme example is
provided by the electrolyte concentration cell, which is by definition a galvanic cell consisting of two
electrodes of the same metal in different concentration of the same salt of that metal. The concen-
tration cell having two M"(aq)/M electrodes is M(s)| M"(aq, L) || M"(aq,R }| M(s) and the net reaction
is M'(aq,R) — M"(aq,L). For such a cell w1 = 0 and the Nernst equation gives the cell potential:

D —
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EB.1{b)

6.2(b)

.3{b}
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RT In0(6.27] = _RT | S

Epr = ESy — —
=T TR F a

M*(R)

With [M'(R)] = 10 x [M'(L)} and an assumption that Yy, = Yy )"
E. = ~(25.693 mV) x [m T%J = 59.16 mV

The ¢ell potential is half as large for the M(s)) M2+(aq,L) | M2+(aq,R) | M(s) cell.

The pH of an aqueous solution can in principle be measured with any electrode having an emf that
is sensitive to H'(aq) concentration (activity). In principle, the hydrogen gas electrode is the
simplest and most fundamental. A cell is constructed with the hydrogen electrode being the right-
hand electrode and any reference electrode with known potential as the left-hand electrode. A
common choice is the saturated calomel electrode. The pH can then be obtained by measuring the
emf (zero-current potential difference), E,, of the cell. The hydrogen gas electrode is not convenient
to use, so in practice glass electrodes are used because of ease of handling (see Impact 6.3).

Solutions to exercises

2A—>B

n; = m(0) + v;AE, where £ is the extent of reaction; v; is negative for reactants and positive for
preducts.

n,=1.75mol - 2 x(0.30 mol)={1.15 mol
np= 0.12 mol + 1 x (0.30 mol) ={0.42 mol
2A—>B AG=-24]kJmol?}
AG= [B_GJ [6.1]
o o
aG | AG

With the approximation that [EJ o= A_§° which is valid when A is very small, we find that
»T

AG = A,G x Af =(~2.41 kI mol) x (+0.051 mol) =|—-0.12 kJ

2 NOs(g) > N;O[g) A.G®=—-4.73 k]I mol”!
A.G=AG®+ RTInQ[6.10] = (-4.73 kJ mol) + (2.4790 k) mol") x InQ at 298.15K

Part o A G/kJ mol™!
(a) 0.10 -10.44
(b) 1.0 -4.73
{c) 10 +0.98
(d) 100 +6.69
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Figure 6.1 shows a plot of A.G against Q. K = O, uibrium When A,G = 0 so we find the equilibrium
constant by interpolating the plot to the point at which A, G =0 and read the value of Q at that point
to find that K ~ . Although the plot is very interesting and indicates a more exacting curvature,
the estimate for the equilibrium constant can also be made with a linear interpolation between the
points of parts (b) and (c). The graphical interpolation approximation agrees with the value calculated
with eqn 6.14:

K = e-&G°IRT [6.14]
— e—(—4.73k_1 mol=1)/(2.4790 k] mol-1) — 6.74

AGIT mol ™!

Figure 6.1

E6.4(b) NyO(g) =2NO,(g) T=298.15K,p=1bar=p", a=0.201 at equilibrium.
We draw up the following eguilibrium table (Example 6.2):

N,Oq(g) NOy(g)
Amount at equilibrium (1-a)n 2an
Mole fraction 1ze 22
| I+a
Partial pressure d-ap 2ap
l+e I+«

K= [H aj”) [6.13]= (H (pifp™) ) [perfect gas assumption]
equilibrium equilibrium

(2

(PNoo P°? P, - 1+ fo

Pro,dp” PN,o,,,P ((1 - a) p] o
l+a

_ar a? _ (0.201)2 _
{(1 —a) x(1+ a)} 4{(1 - 0201 x (1+ 0.201)} -

—
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E6.5(b) (a) Bry(g =2Br(g) T=1600K,p=1bar=p°, o =0.24 at equilibrium.
We draw up the following equilibrium table (Example 6.2):

BrAg) Br(g)
Amount at equilibrium (1-om 20n
Mole fraction l1-e 2
1+ e 1+«
Partial pressure d-a)p 20p
1+ 1+a
K= (Ha;’) {6.13] = (H( »ip® W ] [perfect gas assumption|
] equilibrium equilibrium
( 2ap Jz
Y ps _ \1ta
Peol?” e Pt ((-a)p) .
1+

4p o _4 (0.24)
(1-a)x(1+a) (1-0.24) x (1+0.24)

=[0.244]at 1600 K

(b mK,=InK, - ﬂ(i - J—J [6.23]

R \T, T,
AHC( 1 1
In Ky = In Kigpo g — — -
" oo R R (20001( 1600K)
— (+112x10%3 mol-! 1 1 =
= 1n(0.243) — - =0273
(0.244) [8.3145JK‘1m01—‘]x[2(}00K 1600K]

KZOOOK_ 60273 -

As expected, the temperature increase causes a shift to the right when the reaction is endothermic.

.6(b) CH,(g) + 3 Cly(g) == CHCL (1) + 3 HCl(g)
(a) Using data tables at 25°C, we find

A,G® = AG*(CHCL,) +3 AG*(HCLg) — AG (CH,g)
=(~73.66 KJ mol"") +(3)  (~95.30 KJ mol") — (-50.72 KJ mol"!)
={~308.84 kJ mol-!]

AH® = AH*(CHCL D) + 3 AH*(HCLg) - AH(CH, )
= (-134.47 kI mol™) + (3) x (-92.31 kJ mol") - (~74.81 kT mol ")
=-336.59 kJ mol"
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-AG® —(~308.84 x 103 mol)

K= [6141= (83145T K" mol ) x (298.15K) 246
(b) InK,=Ink - A*T{P(-le— - %] [6.23]
In Ksre=1In Ky~ Afe (323.115 K 298.115 K]
=In(1-30x10%) - (_ffifé }(Ilc()slin?ftl J . ( 323.115 K~ 298.115 K) =14l

As expected, the temperature increase causes a shift to the left when the reaction is exothermic.

AG®=-RTInK[6.14]

A Gl = —(8.3145 F K-'mol!) x (323.15 K) In(3.75 x 10°) = [~307 kJ mol-!

E6.7(b) 3 Ny(g) + Hy(g) » 2 HN;(g) For this gas phase reaction Av = ¥, v;= -2
J

K= [H a]") {6.13]= [Ijl(npjlp")"’]

equilibrium equilibrium

= [H vy ] (H(pj Ip®y J
J equilibriam \ equilibrium

=K,K,, where K,:[H}’FJ and KPZ[H(PJ/PQ)V’)
T 1

equilibrium equilibniun

Let us assume that the gases are perfect gases. Then, the activity coefficients equal 1 and X, = 1.
Additionally, p; = n,RT/V = [J|RT. Substitution gives

= (l:[([J]/c‘*)w}

(H(c"RT/p")w]
equilibrium \ F equilibrium

K=K,= [H([J]RT/p")"J]
i

equilibrium

=K, (¢*RTp*)*, where Kc=[H([J]/c°)VJ]
equilibrium

J

K=K x{(c°RTfp°)? because Av = -2 for this reaction

Since ¢*R/p®=0.083145] K\, this expression may be written in the form

|K = (144.653K?) x K,IT?|

Anhydrous hydrogen azide, HN,, boils at 36°C and decomposes explosively. A dilute solution can
be handled safeiy.

_
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E6.8(b)  Draw up the following table for the reaction equation A+ B=C+2D:

A B C D Total
Initial amounts/mol 2.00 1.00 0 3.00 6.00
Stated change/mol +0.79
Implied change/mol -0.79 -0.79 +0.79 +1.58
Equilibrium amounts/mol 1.21 0.21 : 0.79 4.58 6.79
Mole fractions 0.1782 0.0309 0.1163 0.6745 0.9999

(a) Mole fractions are given in the table.

() K.=]]xy
1
(0.1163) % (0.6745)?
K = = —_— =
¥ (0.1782) x (0.0309)
{c) p;=xp. Assuming the gases are perfect, 4, = p,/p®, 50

_ el X (polpF _ [iJzK
(Palp®) % (pslp®) 7 *

K =K,=[9.6]]

4
(d) AG°=-RTIn K=—(8.3145J K "' mol) x (298 K) x In(9.61) =|-5.61 kJ mol™!

when p=1.00 bar

E680b) At 1120 K, A,G"=+22 x 10° ] mol™!
AG® (22 x 10* T mol~)

InK,(1120K)=— = =-2.383
i ) RT (8.3145 ] K-'mol") x (1120 K)
K=¢2% =041 x 107
Kok, (11
R 1, T
Solvefor T, atln K, =0(X,=1)
-1 -1 _7 163 _
1 _RnK 1 _@3SIK mol)x(238) 1oz 0,
T, AH® T, (125 % 10° ] mol™) 1120K
T,=[L4x10°K
B C
.10(b) IhK=A4+ T + T where A=-2.04, B=-1176K,and C=2.1 x 10" K?
At450K:

AG*=-RTmK[6.14]=RT x| 4+ 2+ <
T T°

176K 2.1x 107K
450K~ (450K)}

=—(8.3145T K mol™) x (450 K) x (—2.04 - ]: +16.6 kJ mol™!
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o dinkK
AH*=-R—— ST [6.21(b)}

—R_d— A+£+—C— =-R X B+£
d(uT) T T T

2.1x107K?
(450 K)?

=—(8.3145J K'mol™) x {(—1176 K)+3x

=[+7.19 kJ mol™!

AG®=AH®-TAS®
& __ k-3 -1 _ -1
AS= AH®-AG® 719K mol” —16.6 kJ mol- _ (2057 Kmol|
T 450K

E6.11{b) 3 N,(g) + Hy(g) - 2 HN(g). For this gas-phase reaction Av =Y v;=-2
J

K= [H ay ) [6.13]= [H(hpj ) J = (Hﬁj (H(p; Ip° )y J
J equilbrium equilibrium 7 equilibrm, I equilibrium

=K,K,, where K = [Hy}”] and K, = (H(pﬂp“)"l J

J equilibrium I equilibrium
Fet us assume that the gases are perfect gases. Then, the activity coefficients equal 1 and K, = 1.
Additionally, p; = n,RT/V = [J]RT. Substitution gives

(o)

H(c“RT/p‘*)w]
equilibrivm

equilibrivm ( J

K=K,= (H({J]RTIP")VJJ

equilibrium

=K, (c®RTip®)**, where Kcz(H([J]/ce')"J)
J

equilibrium

K=K x{c®RT/p®)? because Av = -2 for this reaction.

Since ¢*R/p*=0.0831451 K-, this expression may be written in the form

|K = (144.653K?) x K, IT|

Anhydrous hydrogen azide, HN,, boils at 36°C and decomposes explosively. A dilute solution can be
handled safely.

E6.12(b) 3Ny(g)+Hy(g) > 2HN,(g). For this gas-phase reaction Av =3 v,=—
I
AH®=AH*(HN,;,g) =+294.1 kJ mol~!
AG® = AG(HN,,g) = +328.1 kJ mol™!

Also, from Exercise 6.11(b) we have the relationship

K.= K x T%(144.653 K?)
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(a) At25°C
Koo = €705 [6,14]
= @ 281k mol (24790 KT mol™) — | 3 308 x 10~

K.(25°C) = Kypoe x TY(144.653 K2)}

={3.308 x 1078} x (298.15 K)*(144.653 X*) =|2.033 x 10~

(b) At100°C

InK,=Ink,— éﬂ—(i - i} [6.23)

R \L, T
AHT( 1 1
In Kiggee = In Kygoe — — -
e (373.151{ 298.15 KJ

3 -1
=1n(3.308><10-58)—[+294'I"10 J mol ]X[ 1 1 ]

8.3145J K'mol™ 373.15K  298.15K
=-108.5

Kigpe=e%5=17.569 x 10~

K.(100°C) = Ky ppee: X T7/(144.653 K2)

=(7.569 x 107%) x (373.15 KPN(144.653 K5 =|7.286 x 10~%

The extremely small equilibrium constants tell us that hydrogen azide is not to be prepared directly

from the elements. It is interesting to contrast the calculations with those for the formation of

ammonia. The balanced reaction equation, N,(g} + 3 H(g) — 2 NH.(g), also gives Av = ZVJ =-2
T

so the relationship of Exercise 6.11(b) is identically applicable: K, = K x T%(144.653 K?). The
calculations are identical to those above and we find the following results:

AH® = AH (NH;,g)=—46.11 kJ mol™!

AG® =AG°(NH,,g) =-16.45 kI mol™

Kzsc = e~ GYIRT [6.14] = p-{(-1645 K mel~1yi(24790 k) mol ™) — 762

K.(25°C) = Kysee X T?(144.653 K2) = (762) x (298.15 K)2/(144.653 K2) = 4.68 x 10°

AR 1 1
In Ko = 10 Kpgoe — [ J

R (37315K 298.15K

= In(762) - (

-46.11 x 10* T mol! “ 1 _ 1
2.3145J K ' mol™! 373.15K 298.15K

J =6.632

K“mnc = e6'635 = 759
K(100°C) = K e X TH(144.653 K2) = (759) x (373.15 K)/(144.653 K?) = 7.31 x 10°
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The equilibrium constants for ammonia formation are large, which makes ammonia pro-
duction from the elements feasible. There are, however, kinetic difficulties with the direct
production that are resolved in the Haber process by using elevated temperature and pressure
along with a catatyst.

E6.13(b} The formation reaction is U(s) + 2 H,(g) = UH,(s).

1

= 3/2
%)

312
&
= [;H—J [aue = Gun,e = 1 and, assuming perfect gas behaviour, ay, = py, %]

_[105 Pa

n
=193 x10?
139 Pa

A,G®=-RTn K[6.14]
= ~(8.3145 Y K~ mol™!) x (500 K) x In(1.93 x 10%)

=|-41.0 kJ mol™!

E6.14(b) CH,OH(g) + NOCl(g) —» HCl(g) + CH,NO,(g). For this gas-phase reaction Av = Y v,=0
J

K=(I‘[a;f] [6.13]=(H(np:&7")“’) =(H7}’) [H(py’p“)”]
7 1 equilibrium J equilibrivm N J equiiibrium

equilibrium

=K,K, where K, = [H jf;"’] and K,= {H(PJ p* )y J
I J

equilibrium equilibrium

Let us assume that the gases are perfect gases. Then, the activity coefficients equal 1 and K = 1.
Additionally, p, = x;p. Substitution gives

K= Kp: (H(XJP'IPQ)VJJ = (H}c}’I] [H(plp'a)l’]
) equilibrium equilibrium

I I lquinbn'um
=K (p/p®)**, where K,.= (Hx}’)
J equilibrium
For this reaction: K=K x (p/p°)* =K, because Av=0
K is independent of pressure so we conclude by the above eqn that for this reaction K, is also

independent of pressure. Thus, the percentage change in X, on changing the pressure equals
for this reaction.

E6.15(b) Ny +O(g) =2NO(g) K=1.69x10" at2300K
50¢g

Initial modes: 1y, = ———=——— = 0.1785
oS N, = S 3 2 mol 1785 mot
o 20g —
Initial moles: ny, = ———~—2—— = 6.250 x 102
o, 32.00 g mol-t x 10 mol

D —
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N, 0, NO Total
Initial amount/mol ny, = 0.1785 ng, = 0.0625 0 n=0.2410
Change/mol -z -z +2z 0
Equilibrium amount/mol Ry, = Z Ro,— Z 2z n=0.2410
Mole fractions (nw, — 2)in (ng, - z)in 2zin 1

av
K=K, (L@] = K, [because Av = ZVJ =0 for this reaction]
P ]

@
(= 2) X (5, 2)

(1 - %)zz— BZ + Ay, Mo, =0

nt \jnz —4(1 - %)szno2
2{1-%)
0.2410 + \/0.24102— 41— 55=)(0.1785)(0.0625)
21~ o)

=-2.223x102% or 2121x107

Z=

=2.121x107* because the negative value is non-physical

2z 2(2.121x10°)
MWo=T ST 0aT m

Ee6l) R AL 1llgoy
X, R \7T T,

-1
AH®=Rx LI R N
n I K,

-1
—(83145J K- mol) x| —— - — | xin| &2
310K 325K K,

= (55.85 kJ mol') x m(ﬁ]
K,

(a) Ky/K =200

A H®=(5585k) mol™) x In{2.00) = [38.71 kJ mol™

(b) K,/K,=0.500

A H*®=(55.85 kI mol™!) x In(0.500) = |-38.71 kJ mol™




E6.17(b)

E6.18(b)
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NH,Cl(s) = NH,(g) + HCl(g)
Vapour pressures: Py = 608 kPa and pso.c=1115 kPa.
The gases originate from the dissociation of the solid alone s0 puy, = pya= 3 P.
(a) Equilibrium constants
K =(puu, 07 ) X (P Ip®) [perfect gas assumption]
=(3pip°) % (3p/P")
= (plp°y
Kigec =+(608 kPa/100 kPa)? =
Kisgee = +(1115kPa/100 kPa)? = 31.08
(b) AG*=-RTInK[6.14]

A,GEme=—(8.3145 T K-'mol™) x (700.15 K) x In(9.24) = [~12.9 kJ mol"

© mﬁz_ﬂi{L_LJ 623

X~ R\L T
1 1Y (K
AH =Rx|—-— 2
L T K
-1

i I 3108

= (8.3145J K~ mol” - | 22

( e )X(‘?OO.]SK 732.15KJ * (9.24}

- [GZmor]

e _ 23 1y _ [ -1
@ AS = AH TA,G _ (162K mol7()}0 1(5 i{zskj mol) _ T

The reaction is CuSQ, - 5 H,O(s) == CuS0,(s) + 5 H,O(g).

For the purposes of this exercise we may assume that the required temperature is that temperature
at which K= 1, which corresponds to a pressure of 1 bar for the gaseous products. For K=1,In K=0,
and A,G°=0.

AG =AH*-TAS*=0 when AH®-TAS®
Therefore, the decomposition temperature (when X = 1} is

o AH
AS®

AH® =Y viAg H® = {(=771.36) + (5) X (-241.82) - (-2279.7)} J mol~' = +299.2 k) mol-!
J

A8°= 3 v,S7 = {(109) + (5) x (188.83) — (300.4)} J K~ mol~* = 752.8 T K- mol-!
I
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209.2 x 10% ] mol-!
Therefore, T' = =[397%
erelore L = S S18 T K mol” 397 K]

Question. What would the decomposition temperature be for decomposition defined as the state at
which K =27

E6.19(b) Pbl,(s) = Pbl(ag) K,=1.4x10¢

AG®*=-RTInK,
=—(8.3145J X' mol™") % (298.15 K) x In(1.4 x 10-%) = +44.8 kJ mol!
= A;G®(Pbl,,aq) — AG*(PbL,,s)

AG®(Pbl,,aq) = A,G® + AG*(PbL,s)

=(44.8 — 173.64) k] mol! = (-128.8 kJ mol~!

E6.20(b) The cell notation specifies the right and left electrodes. Note that for proper cancellation we must
equalize the number of electrons in half-reactions being combined. For the calculation of the
standard cell potentials we have used Eg;= Eg — E}, with standard electroede potentials from

data tables.
Eﬁ
(a) R:Ag,CrO,(s)+2e —2Ag(s)+ CrO¥(aq) +045V
L:Cl{g)+2¢ - 2 Cl'{aqg) +1.36V
Overall (R — L): Ag,CrO,(s) + 2 Cl'(aq) — 2 Ag(s) + CrOZ (aq) + Cly(g) 091V
{b) R:Sn"(aq)+2e — Sn*(aq) +0.15V
L: 2 Fe™'(aq) + 2 e~ — 2 Fe™(aq) +0.77V
Overall (R — L): Sn*(aq) + 2 Fe™*(aq) — Sn™"(aq) + 2 Fe"'(aq) -0.62V
(&) R:MnO,(s)+4 H'(ag)+2 & — Mn™(aq) + 2 H,O() +1.23V
L: Cu™(ag)+2 e — Cu(s) +0.34V

Overall (R — L): Cu(s)+ MnOy(s) + 4 H'(ag) — Cu™"(aq) + Mn""(aq) + 2 H,O() +0.89V

COMMENT. Those cells for which E o, > 0 may operate as spontaneous gaivanic cells under standard condi-
tions. Those for which £ 5y < C may operate as nonspontaneous electrolytic cells. Recall that £, informs us
of the spontaneity of a cell under standard conditicns only. For other conditions we reauire £,

6.21(b) The conditions (concentrations, etc.) under which these reactions occur are not given. For the
purposes of this exercise we assume standard conditions. The specification of the right and left
electrodes is determined by the direction of the reaction as written. As always, in combining
half-reactions to form an overall cell reaction we must write half-reactions with equal numbers of
electrons to ensure proper cancellation. We first identify the half-reactions and then set up the

corresponding cell.
EQ
(a) R:2H,0()+2e¢ —20H (aq)+ Hig) ~0.83V
L:2Na'(aq) +2 e~ — 2 Na(s) =271V

and the cell is

Na(s)| NaOH(aq) | Hy(g) | Pt
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by R:IL(s)+2¢ —-21(aq) +0.54 V
L:2H{aq) +2 ¢ — Hy(g)
and the cell is

0
Pt|H,(2)| H'(aq), I'(aq}| L(s) | Pt +0.54V
(©) R:2H'(aq)+2e — Hyg) 0

L: 2 H,O() + 2 & — Hi(g) + 2 OH (aq) —0.83

and the cell is

Pt|H,(g)|OH (aq){| H'(aq) | H,(g) | Pt +0.83V

COMMENT. All of these cells have E5,> 0, corresponding to a spontaneous cell reaction under standard
conditions. If 55, had turned out to be negative, the spontaneous reaction would have been the reverse of
the one given, with the right and left electrodes of the cell alse reversed.
E6.22(b) Pt|H,{g,p*) | HCl(aq,0.010 mol kg 1) | AgCI(s) | Ag(s)
(@) R: AgCls)+e — Ag(s)+Cl (aq) E*=4022V
L: HCl(ag)+e — 3 Hyg)+ Cl'(aq) E*=+0.00V
2xR-2xL: 2AgClis)+ H,(g) = 2 Ag(s)+ 2 HCl(ag) E;=+022Vandv=2

The cell reaction is spontaneous toward the right under standard conditions because £y > 0. The
Nernst equation for the above cell reaction is:

Eur=E% - XL 1nQ[6.27]
vF

2 2 2z 22
Q — (aHCi(a.q)) — (aH"(aq)aCl'(aq)) - (Yt(bHCl/b ) ) - y;(bHCI-Ibe)4 (1e p — pe)

e, ) L) pip®
Thus,
o RT o 2RT °
Egy=Egq - E In{yi(bua/b®Y'} or |Euq=Eg - T In{y, (buci/6°)}

(b) A,G°=-—vFEZ, =-2>(9.6485 % 10* C mol} x (0.22 V) = {-42 kJ mol™
{c) Theionic strength and mean activity coefficient are:
I= %Z 27 (b,/b%)[5.761= +{1(0.010) + 1(.010)} = 0.010

log y,=~|z.2. | AIV? [5.75] = —1x (0.509) x (0.010)"2 = ~0.0509
v.=0.889

Therefore,

o 2RT .
Eg=Eeq — T In{y. (b 5°)}

2% (8.3145 T mol" K-y x (298.15 K)
9.6485 x 10°C mol™

=0.22V-

S

n{(0.889) x (0.010)} =022 V +0.24 V
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. FE?,
£6.23(b) In each case the equilibrium constant is calculated by the expression In K = V—R—Tﬂ [6.28].

(a) Sn(s)+ CuSO,(aq) = Culs) + Sn80,(aq)

R: Cu™ + 2 e~ — Cu(s) +0.34V
L:Sn’(aq)+2e" —=Sn(s) -0.14V

VEES (6 ogy - DXO8Y) 0
RT 25.693 mV

(b) Cu(s)+Cu*(ag) =2 Cu'*(aq)

}E;u =+0.48V

InkK =

R:Cu*'+e > Cu’(aq) +0.16V]| . 036V
L:Cu'(aq)+e- = Cu(s) +0.52Vv[ =
K = YEEe [6.28] = Mx(036V}y_ .5

RT 25.693mV

b24(b) R: 2 Bi’'(aq) + 6 e — 2 Bi(s)
L: Bi,S,(s) + 6 & — 2 Bi(s) + 3 $7(aq)
Overall (R — L): 2 Bi**(aq) + 38* (aq) » Bi,S;(s) and v=6,E5=+096V

vFEZ,

6281= —809V) g
RT

(a) InK= = 7 =
(25.693 x 107 V)

K=e®=19x107

The solubility equilibrium is written as the reverse of the cell reaction, therefore the solubility product

of Bi,Sy(s) is K= K-'= /1.9 x 1077 = [5.3 x 10~

(b) The solubility product of Bi,S,(s) is very small. Consequently, the molar solubility, s, of
Bi,S.(s) must also be very low and we can reasonably take the activity coefficients of the aqueous
ions toequal 1.

K, =[Bi™ PIS" P/c®Y = (25)°(35)*/(c™) = 108(s/c*y

s = (K, /108)"%¢® = (5.3 x 10*%/108)"* mol dm~ = |1.4 x 10" mol dm—or 7.2 ag dm™>

Solutions to problems
Solutions to numerical problems

-2 CH(g) = C(s) + 2 Hy(g)
This reaction is the reverse of the formation reaction. Consequently,

AG®=-AG® =—(AH® - TAS®)
=—{-74.85kJ mol" — (298 K) x (—80.67 J K~! mo!"")}
=+50.81 kJ mol™!
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(@) K =e 20 RT[6.14]

= e—(SDSixlO"J mol—14{8.3145 T K~ mol-1x298 K)

- [0

b) AH®=-AH®=7435k] mol"!

aH( 1 1
InK(50°C) = In K(298 K) - = - 2
nRErO =l KK - =% [3231{ 298Kj[6 °l
7.4850 x 10*J mol-i

=-20.508 - (

K(50°0)=[1.29 x 107

(c) Draw up the equilibrium table.

23125 TR mol ) % (=2.597 x 10-%) = —18.170
- moit-

CH,(g) Hy(g)
Amounts {(1-an 2an
More fractions l-o 2o
l+ l+ea
Partial pressures Ima 2o
1+a)? 1+a )’

[#5))
(pufp*y _\\+a) jp”

K =T]a%[6.13]= =
1;[ ! Peu P l-—a) p
1+a/p°
da’pip® ;
= P,t; = 4a?p/p® [since K <« |, we expect o << 1]
-«

% 12
o=
4plp®

/2
1.24 x 10°
== " | =18x10
Feo

(d) Le Chatelier’s principle provides the answers. As pressurc increases, « decreases, since the
more compact state (less moles of gas) is favoured at high pressures. As temperature increases the
side of the reaction that can absorb heat is favoured. Since A_H?® is positive, that is the right-hand
side, hence ¢ increases. This can also be seen from the results of parts (a) and (b), K increased from
25 to 50°C, implying that « increased.

CO,(g) = CO(g) + 7 O:(g)

Draw up the following equilibrium table and recognize that, since o < 1, & may be neglected when
compared to 1 within mole fraction factors.
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Co, Co 0,
Amounts (1-a)n on %an
1
Mole fractions Dl = i
1+ %a 1+ =& 1+ T
Approximate mole fractions 1 o Jo

o ov1/2
K= Ha [6.13] = {(Peolp )(F;oifp)

[perfect gases]

x
_ Feoo, 2% (plp® )2 [py = xpp]

o,

K12
_ XcoXo,

=———[p=p"]

Aoy

- (x(%a)uz
=(ta?)" (i)
AG®=—RTInK[6.14] (ii)

The calculated values of K and A, G® are given in the table below. From any two pairs of Kand T,
A H* may be calculated.

InK,=Ink, - ﬂ[i - i] [6.23]

Solving for A, H*:

-6
er{%—} (8.3145J K-'mol™") x m(m
AH® '

1.22 x 108 ]
He= - =[300 kJ mol-’]
1_1 :
T, T

1
(13951{ 1498 K]
AH®-A,G"

Ages B -840
: T (iit)

K, A.G*, and A, S* are calculated using equations (i), (i1}, and (iii).

T/K 1395 1443 1498
a/107 1.44 2.50 4.71
KNo* 1.22 2.80 7.23
A.G°/kJ mol™ 158 153 147
AS®/J K mol™! 102 102 102

COMMENT. A S° is essentially constant over this temperature range but it is very different from its value at
25°C. AH*®, however, is only slightly different.

Question. What are the values of A H* and A 8™ at 25°C for this reaction?
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A.G®(H,CO,g) = A,G*(H,CO,]) + A, G°(IL,CO,1)

-4

For H,CO(l) = H,CO(g), K(vap) = i, where p=1500 Torr = 2.000 bar and p° =1bar
p

A,G°=—-RTInK(vap)= RTln%
r

vap

2.000 bar

=—8.3145T K" mol ) x (298 K) x In
1 bar

J =-1.72 k] mol™!

Therefore, for the reaction CO{g) + Ha(g}) = H,CO(g),
A.G® = {(+28.95) + (~1.72)} kT mol ' = +27.23 kJ mol-!

Henc@, K= B(—27.23x103J mol-1)/(8.3145 T K~ mol—F)x(298 K) — e-10.99 =11.69 % 10—5 i

Draw up the following table for the reaction: Hy(g)+ 1, =2 Hl(g) K=3870.

H, I, HI Total

Initial amounts/mol ny, = 0.300 ry, = 0.400 = 0.200 n=10.900
Change/mol -z -z +2z

Equilibrium amount/mol Ay, — 7 m,— 2 P+ 22 r=10.900
Mole fraction (ry,— z)in (m, — 2)in (g + 22)In 1

(Palp®y
= ———=——[perfect gases, py=x;p]
(Pre/p" X1, J0°) T
(X ) _ (g + 22)

- (tz)(xlz) N (m, — Z)(”‘l2 -z)
(K -4z — {K(ny, + m,) + dmy }z + Kng iy, — ng=0
86622 — 60980z +104.36=0

609.80 + /(—609.80)* — 4 x (866) x (104.36)
i=
2 X (866)

=10.293 because z cannot exceed ny, so we reject the 0.411 value.

=04110r0.293

The final composition is therefore [0.007 mol H, ], [0.107 mol I, |, and [0.786 mol HI.

If we knew A_H* for the reaction CLO(g) + H,O(g) — 2 HOCI(g), we could calculate A H® (HOCI)
from

A H®=2AH*(HOCLg) ~ AH®*(CL,0,g) - A H*(H,0,g).
We can find A, H*® if we know A_G*® and A_S*®, since

A G =AH-TAS
And we can find A, G® from the equilibrium constant.

K=exp(-A,G*/RT} so AG*=-RThK
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AG®=—(8.3145x 103 kT K" mol!) x (298 K) In(8.2 x 10°2)
=6.2 k] mol™!

AH =AG*+TAS®
=62k mol + (298 K) x (16.38 x 103 kJ K- mol!)
=11.1 kJ mol™

Finally,
AcH®(HOCLg) = 3[A H® + A H®(CL,0,8) + A H*(H,0,g)]

= L[11.1+ 772 + (~241.82)] kJ mol ' = [~76 8 kJ mol~

P6.12 The equilibrium to be considered is (A = gas)

(cfe®) s

(plp®) s

A(g,lbar) = A(soln}) K =

: 3

AH =—Rx 3K 6 o1y

T
K = m[ie] =2.303 log[ie]
8 S

AH(H,)=—-(2.303) x (R) x d (—5.39 - @J
7)

=2.303R x 768 K = [+14.7 k] mol™!

S
-

AH®(CO)=—(2.303) x (R) x d [_5,93 - %J

T
7]
=2.303R x 980 K =|+18.8 kJ mol-!

.14 (a) The cell reaction is

|

H,(g) + 7 O(g) - H,0)
A G = AG H,0,1) =-237.13 kY mol~' [data table]

AG® +237.13 kJ mol”!
ESy =—" . [6.26]= =[+123V
w =g [6:26] (2) % (96.485 kC mol)

(b) CiHyo(g) + 7 Oy(g) — 4 CO,(g) + 5 H,O(1)

AGT = 4A.G7(CO,,8) + 5AG*(H,0.1) - A,G°(C,H,,,2)

N

I

—2746.06 kJ mol™!

[(4) X (=394.36) + (5) x (~237.13) — (~17.03)] kJ mol-! [data tables)

151
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In this reaction the number of electrons transferred, v, is not immediately apparent, as in part (a).
To find v we break the cell reaction down into half-reactions as follows:

R:20,(g)+ 26 + 26 H'(aq) > 13 H,O()
L: 4 CO,(g) + 26 e+ 26 H' (aq) — C,H ,(g) + 8 H,0()
R~L:C,H,{g) + % 0,(g) = 4 CO,4(g) + 5 H,0(1)

Hence, v = 26.
~AG® _ +2746.06 kJ mol”
Therefore, £ = ———— = =9 v
CeOT B TR T (26) x (96.485 kC mol 1)

Hg,Cly(s) + Zn(s) — 2 Hg() + ZnCl{aq) and v=2

693 mV
(@) Ey= E5— 22003 4 01627,25°C)
Vv

O = a(Zn**)a*(Cl)
= {y. B(Zn*) %} x y2{b(CI)B°Y, where MZn**)=b,b(Cl")=2b, and y,y2 =y3

Therefore, @ = y X 4b* [b = b/b” here and below]

256931V | 4piy3) = B2y — 3 x (25.693 mV) x In(@Pby,)

cell —

and Ece” = Ee

=[E2y - (38.54 mV) x In(#"*) - (38.54 mV) In(y. )|

(b) E2, = E°(Hgi/Hg) — E*(Zn*/Zn)=+0.2676 V —(-0.7628 V) =[1.0304 V
© AG=—vFE = —(2) x (9.6485 x 10 C mol~) x (1.2272 V) = |~236.81 kJ mol™!

AG® = —vFEZy=—(2) x (9.6485 x 10* C mol) x (1.0304 V) =|-198.84 kJ mol-!

AG* 1.9834 % 10° J mol™
K =20 —80.211 K =684 x10%
& RT (83145 K-'mol ) x (298.15 K) i
(d) From part (a):
12272 V =1.0304 V — (38.54 mV) x In(4" x 0.0050) — (38.54 mV) x Iny,

(1.2272 V) - (1.0304 V) — (0.1864 V) _
ny, =-0. o v, =10.76
lny, 0.03854V 0.2698 so 7.

(e) logy, =—|z_z,| AIV*[5.75]

=13 2b16°)[5.76]

where 5(Zn"") = b= 0.0050 mol kg! and &(Cl")=25=0.010 mol kg
Thus, 7 = 2[(4) x (0.0050) + (0.010)} = 0.015

log 7. = —(2) X (0.509) X (0.015)2= ~0.123 so 7.=[0.75]
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This compares remarkably well to the value obtained from experimental data in part (d).

G
() AS= —(a—Tl

= vp[g—f,] [6.36]=(2) x (9.6485 x 10* C mol™') X (—4.52 x 104V K )
P

=|-87.23 K- mol-!]

AH=AG+TAS=(-23681kJ mol™")+ (298.15K) x (-87.2 J K-"mol")
=(-262.4 kJ mol”!

P6.18 Pt|Hx{g.p")|NaOH(agq.0.01000 mol kg"),NaCl(aq,0.01125 mol kg )] AgCl(s)| Ag(s)
H,(s)+2 AgCl(s) » 2 Ag(s) + 2 CT(aq) + 2 H(aq), where v=2
2-) RT + —312
E=Ey- >F In{a(H" )a(Cl )} [6.27 and 6.12(b)]

- B2, _Egln{a(ﬂqa(@—)}:Ee_ElnM_ go_ BT | Koy:b(CT)

F  a(OH) ~ F  7.b(CH)
o AL N e T ST O
=E% + (2.303)% X pK,, — ";—T in b?((():;_)) [pKw =-logK, = :51‘.‘;‘01‘(3&]
o)
Hence P = e+ — S~ s 00914

Using information from the data tables we find that:
E. =Ef - E] =E°(AgCLAg) - E°*(H'/H,)=+0.22V-0=+022V
This value does not have the precision needed for computations with the high precision data of this

problem. Consequently, we will use the more precise value found in the CRC Handbook of Chemistry
and Physics (7Tlstedn): £, =0.22233 V.

We then draw up the following table:

8/°C 20.0 250 30.0

E vV 1.04774 1.04864 1.04947

In(1QRTFYV 0.058168 0.059160 0.060152

pK, 14.02 13.80
dinK, AM*

ar R—T2 [62 1(0’)]
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Hence, A, H” = ~(2.303)RT? a%—, (pK.,)

then with ——==——=
£11 W1 dT AT
13.80 - 14.
A H®=—(2.303) x (8.314] K 'mol™") x (298.15 K)* x —%

= [+74.9 kJ mol™
AG*=-RTInK,=2303RT x pK, =|+80.0 k] mol™

pgen AH"=AG
T

=[-17.17 K- mol-|

P6.20 The method of the solution is first to determine A.G®, A H®, and A S” for the cell reaction
%Hz (g) + AgCl(s) > Ag(s) + HCl(aq)

and then, from the values of these quantities and the known values of A,G°, A ®, and S°, for all the
species other than Cl-(aq), to calculate AG*, AH®, and §° for Cl'(aq).

AG®=-vFE*®
At 298.15 K (25.00°C)

E°IV = (0.23659) — (4.8564 x 10-%) x (25.00) — (3.4205 x 10-) x (25.00)?
+(5.869 x 10-) x (25.00)} = +0.22240 V.

Therefore, A,.G® = —(96.485 kC mol!) x (0.22240 V) =-21.46 k) mol"!

NG dE° 3E*) °C
oo [ 9AGT N _ 25N = [d6°C = dT/K
AS [BT lv[arl"(ae]PK[ I @

(BE°108),/V = (-4.8564 x 1074/°C) - (2) x (3.4205 x 10-°0/(°C)*} + (3) x (5.869 x 10-26%/(°C))
(IE°108),(V°C) = (—4.8564 x 107%) — (6.8410 x 10-°(8/°C}) + (1.7607 x 107%(6/°C¥)
Therefore, at 25°C,
(OE®/06),=—6.4566 x 107* V/°C
and

(QE/26), = (~6.4566 x 10-* V/°C) x (°C/K) = ~6.4566 x 10~ V K~!

Hence, from equation (a)
A,S?=(—96.485 kC mol) X (64566 x 10V K1) =-62.30 J K-Tmol™!
and A H®=AG"+TAS*
=—(21.46 kJ mol ™) + (298.15 K) x (—62.30 ] K-'mol™) = —40.03 kJ mol!

For the cell reaction 3 H,(g) + AgCl(s) — Ag(s) + HCl(aq)

AG®=AG(H )+ AGP(Cl) - A, G7(AgCl)
= AG(CI) - AG*(AgCl) [AG*(H)=0
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Hence, 8:G°(C1 ) = A,G* + A,G°(AgCl) = (-21.46 — 109.79) kJ mol-!
=[-131.25kJ mol!
Similarly, AH®(C") = A, H® + A.H*(AgCl) = (~40.03 — 127.07) kJ mol-!
=|-167.10 kJ mol-]

For the entropy of CI in solution we use
AS°=S5%(Ag)+S*(H")+ 8°(Cl") — 7.5 (H,) — $°(AgCl)
with S°(H)=0. Then,
S°(CI)= A8 - 8°(Ag) + 3 8°(H,) + S*(AgCl)
= {(—62.30} — (42.55) + 1 x (130.68) + (96.2)} T K" mol~'=|+56.7 J K- mol!

Solutions to theoretical problems

We draw up the following table using the stoichiometry A +3 B — 2 Cand An, = €.

A B C Total
Initial amount/mol 1 3 0 4
Change, An;/mol £ -3 +2&
Equilibrium amount/mol 1-¢ 31 -¢) 2% 22-¢)
Mole fraction 1-¢ (-9 5 I
22-9) 2(2-8) 2-¢

@y @ X(giTz 5 xza—é)xzxz~®3x[giT
(ool as \p ) @-8 1% 3A-& | p

_ 162 -gpg x(i J
270-2¢ " p

Since K is independent of the pressure

— EY2E2 2
(2-&)y¢& _az[_%J . where a2=%K,aconstant

a-o

Therefore, (2 — £)¢ = a(p—{} x{1-&y

[1+a_€)§2_2(1+a_1:]§+a_£=0
2 Iy s

12
which solvesto|&=1— {;0] .
1+ aplp
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We choose the root with the negative sign because £ lies between 0 and 1. The variation of & with p
is shown in Figure 6.2.

<
apip
Figure 6.2

For a gas-phase reaction the equilibrium constant is given by the expression

K=[HG?J [6-13]=[H(1'Jp;/p°)”J =[Hr¥’} (l—[(m/pe)”]
I I equilibrium I equilibrium equilibrium

equilibrium J

=K,K,, where KF[HY;J] and KP=(H(pJ/p")”J)
] ¥

equilibrium equilibrium

Let us assume that the gases are perfect gases. Then, the activity coefficients equal 1 and K, = 1.
Additionally, py = n,RT/V = [J|RT. Substitution gives

K=KP:[H([J]RT[PG)VJ] ={H(IJ]ICG)V_TJ (H(CGRTIP{»)VJ
J equilibrium equilfbrium

I J lqumbrium

=K (c®RTip*)®, where K, = (H([J]/c")"l} and Av=Yv,
b 1

equilibrium

Thus, (K, = K x (¢*RTIp*) .

The above relationship gives the temperature dependence of K, provided that the temperature
dependence of K is known. In the case for which we know A H®, and it is a constant, and we know
the value of the equilibrium constant at the temperature T, we use eqn 6.23 to calculate the value
of K at temperature T

_Arﬁe[l* 1 ]
)[6.23] or K=K, e ®\T T

K =InKy=~"—| ==
ref

AH(1 1
R

Alternatively, if we know (a) the coefficients a, b, and ¢ for reactants and products in the expression
for the molar heat capacity listed in Table 2.2, (b) A;G*(T'), and () ArS*(Tp), we calculate A, G(T)
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with the expression derived in Problem 6.23. This gives us K(7") through the expression K = e-3G"/RT
[6.14] after which we calculate K (7'} with the above relationship. Recognize, however, that this
finely tuned effort may not be justified in face of the perfect gas assumption.

Solutions to applications: biology, environmental science,
and chemical engineering
AG=AG®+RTIn Q[6.10]

In eqn 6.10 molar solution concentrations are used with 1 M standard states (¢® = 1 mol dm~).
The standard state (°) pH equals zero in contrast to the biclogical standard state (®) of pH 7. For
the ATP hydrolysis

ATP(aq) + H,0() » ADP(aq) + P} (aq) + H,0" (aq)

we can calculate the standard state free energy given the biological standard free energy of about
=31 kJ mol™! (Impact 6.1).

AG®=AG®+ RTIn Q9 [6.10]

AG°=AG®-RTIn Q%
=-31kJmol' - (83145 FK ' mol ") x (310 K) In{10' M/1 M)
=+11 kJ meol™

This calculation shows that under standard conditions the hydrolysis of ATP is not spontaneous!
It is endergonic.

The calculation of the ATP hydrolysis free energy with the cell conditions pH = 7, [ATP] =
[ADP] =[F;]1=1.0x 10-% M, is interesting.

[ATP] x (I M)?

=+11kJ mol-'+ (8.3145F K- mol™") x (310 K)In(10-5< 10-7)
= —-66 kJ mol-!

AG=AG +RTIQ=AG"+ RTIH([ADP]x [PFIXIH*]J

The concentration conditions in biological cells make the hydrolysis of ATP spontaneous and very
exergonic. A maximum of 66 kJ of work is available to drive coupled chemical reactions when a
mole of ATP is hydrolysed.

Yes, a bacterium can evolve to utilize the ethanol/nitrate pair to exergonically release the free energy
needed for ATP synthesis. The ethanol reductant may yicld any of the following products:

CH,CH,0H — CH,CHO — CH;COOH — CO, + H,O
ethanol ethanal ethanoic acid

The nitrate oxidant may receive electrons to yield any of the following products:

NO; - NO; - N, — NH,
nitrate nitrite  dinitrogen ammonia
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Oxidation of two ethanol molecules to carbon dioxide and water can transfer eight electrons to
nitrate during the formation of ammonia. The half-reactions and net reaction are:

2 [CH,CH,OH(l) — 2 CO4(g) + H,O0() + 4 H'(aq) + 4 ¢7]
NO;(aq) +9 H'(aq) + 8 e — NH(aq) + 3 H,O())
2 CH,CH,OH{]) + H"(aq) + NOj(aq) — 4 CO,(g) + 5 H,O{1) + NH;(aq)

A,G®=-2331.29 kJ for the reaction as written (a data table calculation). Of course, enzymes must
evolve that couple this exergonic redox reaction to the production of ATP, which would then be
available for carbohydrate, protein, lipid, and nucleic acid synthesis.

{2) The equilibrium constant is given by

K=ex —4.6° =ex —AH” ex AS”
=P\ TR TP TR PP TR

SAH® | AS®
RT R

A plot of In K against 1/T should be a straight line with a slope of ~A H°/R and a y-intercept of
A.S®/R (Figure 6.3).

so mK=-

20 y=-17321+87119x |

RE=0993

13

16 f-erd

i :
e O (it it STt [P [
14 }
12 e
10 H : H b H : H H : H H
32 34 3.6 38 4.0 472 4.4
1000/(T/K)
Figure 6.3

8o, A, H®=-R x slope = —(8.3145 x 107 kJ mol' K) x (8.71 x 13 K)
=,-72.4 kJ mol

and A.S® = R x intercept = (8.3145 J K-'mol} x (~17.3) = [-144 J K-! mol*!
(b) AH®=AH((ClO),)-2AH"(CIO), so AH({(ClO),)=AH®+2AH*CIO)

AcH?((ClO),) =[-72.4 + 2(101.8)] kJ mol™ = |+131.2 kJ mol~!

S°(CI0);) = [~144 + 2(226.6))J K- mol~* =[+309.2 T K~'mol-|
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7Na(8) + 7Ha(g) = NHy(g) Av= ;VJ= -

This is the ammonia formation reaction for which we find the standard reaction thermodynamic
functions in the text data tables:

AH®(298K)=-46.11kJ and AS®(298K)}=-99.38 JK!

Use text data tables to establish functions for the constant pressure heat capacity of reactants
and products. Define a function A,C;(T') that makes it possible to calculate A,C, at 1 bar and
any temperature {(eqns 2.36b and 2.25}. Define functions that make it possible io calculate the
reaction enthalpy and entropy at 1 bar and any temperature (eqns 2.36a and 3.22).

T
AH(T)= A H*(298) +J AC(T)AT

298.15K

T

ACH(T)

298.15K T

AS°(T) = A,S°(298) +J dr

(i) For a perfect gas reaction mixture A f is independent of pressure at constant temperature.
Consequently, A, H(T, p)=A_H*(T). The pressure dependence of the reaction entropy may be evaluated
with the expression:

ssp=asmr 3 | (2]

Products—Reactants.i 1 bar aP

=ASY(T) -

Producls—Rcamanls i

=AS(T) - f
1 bz

Produc!s—Reamanrs i

( J dp (Table 3.5)

R

o P

= AS%T)— [ vl} Rln( ] AS(T)—(-1) Rm(LJ
Producls Reactants,i 1 bar

o p
=AS°(T)+ Rl
ST+ n[lb ]

ar

The above two equations make it possible to calculate A G(T,p):

ArG(TuD) = A‘I‘H(T’p) - TArS(T’p)

Once the above functions have been defined on a scientific calculator or with mathematical software
on a computer, the root function may be used to evaluate pressure, where AG(T,p)=-500T at a
given temperature.

(a) and (b) perfect gas mixture:
For T'=(450+ 273.15)K =723.15 K, root{A,G(723.15 K,p) + 500 J) = 156.5 bar

For T'= (400 + 273.15)K = 673.15 K, root(A,G(673.15 K,p) + 500 J) =|81.8 bar
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(i) For a van der Waals gas mixture A H does depend on pressure. The calculation equation is:

AHTH=AHT+ % v J [BI;J o

Products—Reuctants.i { bar

[the sum involves the 1=1, 2, 3 gases (NH;, N,, or H,}]

. ? Vi
=AH(T)+ Y, v, Vi = T| == |dp
Products-Reactantsi ) | par aT A

[the equation of this substitution is proven below™]

whete (0V,,/01),= RV pi— b)Y (RT(V,p;— )2 = 2aV 22 )" for each gas i (NH;, N, or Hy)

RT a
andV_(T,p)=root| p— - —
milT.p) =T (p v.oh Vﬁm]
The functional equation for A S calculations is:

ASTp=AS8T)- Y v j (a:r ldp

Products—Reactants,i 1bar

where (9V,,;/9T), and V,,;(Tp) are calculated as described above. As usual,
ArG(Tap) = ArH( Tsp) - TArS( Tsp)
(a) and (b) van der Waals gas mixture:

For T=723.15 K, root(A,G(723.15 K,p) + 500 J) =|132.5 bar

For T=673.15 K, root(A,G(673.15 K,p) + 500 J) =|73.7 bar

van der Waals gas approximation
1000 o . . . .

8

L 673K 73K

AG/%I mol !
o
i

d
8

—1000 —_ 3 L L
60 80 100 120 140 160
plbar

Figure 6.4

(¢) AG(T,p)isotherms (see Figure 6.4) Le Chatelier’s principle. Along an isotherm, A,G

decreases as pressure increases. This corresponds to a shift to the right in the reaction equation and
reduces the stress by shifting to the side that has fewer total moles of gas. Additionally, the reaction
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is exothermic, so Chatelier’s principle predicts a shift to the left with an increase in temperature. The
isotherms confirm this as an increase in A,G as temperature is increased at constant pressure.

Note: There are many thermodynamic equations that are very useful when dertving desired com-

putation equations. One of them (used above} is: [aaﬁ) =-T (g—;] + V. To prove this relationship,
P Jr

P
first use an identity of partial derivatives that involves a change of variable

SLEE) 5

dp j. \ oS A dp ).\ dp )

‘We will be able to identify some of these terms if we examine an expression for d / analogous to the

fundamental equation of thermodynamics [3.46]. From the definition of enthalpy, we have:
dH=dU+pdV + Vdp=TdS - pd¥[3.46] + pdV + Vdp=TdS— Vdp

Compare this expression to the exact differential of H considered as a function of S and p:

oH oH
dA=|— | dS +| —
(95} +[3P]dp
P s

Thus, _BE =T, il{ =V {dH exact]
a8 ap
» by

Substitution yields B_H =T Eﬁ +V =|-T B_V + V| [Maxwell relation]
ap . o ), oT A
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Quantum theory:
introduction and principles

D7.4

Answers to discussion questions

A successful theory of black-body radiation must be able to explain the energy density distribution
of the radiation as a function of wavelength, in particular the observed drop to zero as A — 0.
Classical theory predicts the opposite. However, if we assume, as did Planck, that the energy of the
oscillators that constitute electromagnetic radiation are quantized according to the relationship
E = nhv = nhc/A, where the quantum number r can equal zero or any positive integer, we see that at
short wavelengths the energy of the oscillators is very large, This energy is too large for the walls to
supply it, so the short-wavelength oscillators remain nnexcited. The effect of guantization is to
reduce the contribution to the total energy emitted by the black-body from the high-energy short-
wavelength oscillators, for they cannot be sufficiently excited with the energy available.

By wave—particle duality we mean that in some experiments an entity behaves as a wave, while in
other experiments the same entity behaves as a particle. Electromagnetic radiation behaves as a
wave in reflection and refraction experiments but it behaves as particulate photons in absorption
and emission spectroscopy. Electrons behave as waves in diffraction experiments but as particles
in the photoelectric effect. Consequences are especially important for small fundamental particles
like electrons, atoms, and molecules. One consequence is the impossibility of precisely and simul-
taneously specifying complementary observables like position and momentum for fundamental
particles. It is also impossible to specify the simultaneous energy and timing of an event, Rather,
the roultiplied uncertainties of complementary observables, such as x and p, or £ and ¢, must always
be greater than, or equal to, #/2 (i.c. the Heisenberg uncertainty principle of eqn 7.3%a). Quantum
theory shows that, because of wave-particle duality, it is necessary to specify the wavefunction y of
fundamental particles and to use the tenets, which we call postulates, of quantum mechanics to
interpret their behavior and observable properties. The basic postulates are:

Postulate I, Section 7.3. The state of the system is described as fully as possible by the wavefunction
y(ry, r, ...), where r, r;, ... are the spatial coordinates of all particles (1, 2, ...) in the system.

Postulate T1, the Born interpretation Section 7.4. For a system described by the wavefunction y(r),
the probability of finding the particle in the volume dr is proportional to |y |*dr = y*ydr. The

constant of proportionality, the normalization constant, is chosen so that the integral f " [yl?dr
all space

equals 1.
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Postulate 11, Section 7.5. For each observable property £ of a system there is a corresponding
operator £2 built from the following position and linear momentum operators.

X=xx and p.= Ei [7.29]
1dx

Postulate 1V, eqns 7.27a and 7.28b. If the system is described by a wavefunction w that is an
eigenfunction of €2 such that £2y = my, then the outcome of a measurement of £2 will be the eigen-
value &.

Postulate V, Section 7.5e. When the value of an observable £2 is measured for a system that is
described by a linear combination of eigenfunctions of £2, with coefficients ¢,, each measurement
gives one of the eigenvalues @, of £ with a probability proportional to | ¢, |%.

If the wavefunction describing the linear momentum of a particle is precisely known, the particle
has a definite state of linear momentum; but then according to the uncertainty principle (eqn 7.39a),
the position of the particle is completely unknown. Conversely, if the position of a particle is pre-
cisely known, its linear momentum cannot be described by a single wavefunction. Rather, the wave-
function is a superposition of many wavefunctions, each corresponding to a different value for the
linear momentum. All knowledge of the linear momentum of the particie is lost when its position
is spectfied exactly. In the limit of an infinite number of superposed wavefunctions, the wavepacket
turns into the sharply spiked packet shown in Figure 7.30. But the requirement of the superposition
of an infinite number of momentum wavefunctions in order to locate the particle means a complete
lack of knowledge of the mormentum.

Solutions to exercises

The de Broglie relationship is A = L [7.16]= i
D my

-3
Hence, v = A 6.626 x 1077 s ) =113 x 1075 m s7!|, which is extremely slow!

mA (1673107 kg)x (3.0 x 102 m

The momentum of a photon is

B 6.626 % 10T s
g2 XS 010 7 kg m s
p= = 107 m 189 gms|

The momentum of a particle is p = mw so the speed of a hydrogen molecule that has the above
momentum is

P ? 1.89 x 10 kg ms™! 0.5 ”
-4 - = =[0.565ms
v My /N, (2016 % 10~ kg mol 1/6.022 x 10% mol-) [o.565m 7]

The desired uncertainty in the electron momentum is

Ap=1.00x10" p=1.00x 10-° mp
= (1.00 x 10-%) x (9.109 x 10" kg) x (995 x 10°m s7)
=906 x10%kgms
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Thus, the minimum uncertainty in position must be

n 1,055 x 10 J 5
Ax=——107.393] = = -5.82
= 3ap U T G 06 x 10 kg m s ) [5:82 ]

. -4 998 x 10, ms') 1.986 x 105
4(b) E=hv=E[7.14and7.l]=(6626XI0 T5)x{(2.998 x10° ms™) _ X Jm
A A A
E,=N.E= Nphe _0.1196Jm
A A
We can therefore draw up the following table:
A El E (kT mol")
(2) 200 x 10-° 9.93x 10 598
(b) 150 x 10 1.32x 10713 7.97 % 10°
() 1.00x 102 1.99 x 10-% 0.012

E?.5(b) On absorption of a photon by a free helium-4 atom, the law of conservation of energy requires

that the acquired kinetic energy, £,, of the atom equal the energy of the absorbed photon:
E = Eppoion= %mHevz. The values of Ej;., are calculated in Exercise 7.4b so the atom is accelerated
to the speed

= 2Ephomn = 2Ephomn
My, 4.0026 x u

2E hoton
= = (17347 X 10¥ m sy x JE /]
\j4.0026x(1.66054x10—27kg) ( % $7) %y Ephoon

‘We can therefore draw up the following table:

A Eopoonld vi(km s™)
(a) 200 x 10~ 9.93x 107 17.3

(b) 150 x 1012 1.32x 10715 630

(c) 1.00x 102 1.99 % 102 0.0774

E7.6(b)  The total energy emitted in time Az is PA¢, where P is the power of the emission. The energy of each

emitted photon E = h¢/2 [7.1]. The total number of photons emitted in an interval At is then the
total energy divided by the energy per photon.
PAt _ PAL

N=22
E ke

Assuming that de Broglie’s relationship applies to each photon, and recognizing that the law of
conservation of linear momentum requires that the loss of a photon imparts an equivalent momen-
tum (in the opposite direction) to the spacecraft, the total momentum imparted to the spacecraft in
time Az is
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Nk PAtA  h  PAt
= Npppoon = — [7.16] = —= 5 2 . 220
P pphomu i [ ] hC 7 c

Since p = (M) uceerans the final speed of the spacecraft is

_ PAL (L50X10°W) x (10 y) X (3.1557 x 1075 y°1) _ -
- - (29979 x 10°m s 1) x (10.0 kg) =

spacecrafl

The total energy emitted in time At is PAt where P is the power of the emission. The energy of each
emitted photon is given by E = Ac/A {7.1]. The total number of photons emitted in an interval Az is
then the total energy divided by the energy per photon.

N= E: PArA
E he

_ (1.00 5) x (700 x 10~° m)
T (6.626 x 1073 T 5) x (2.998 x 108 m s7!)

(2) When P=0.10W, N =[3.52x10"7|.
(b) When P=1.0W, N =|3.52x10%|.

E =hv-®= % - @[7.15] and,since E, = 1mu?, v=+2E/m,

P=(3.52x10%)x P/W

$=2.09eV=02.09x{1.602x10")=3.35x10"%]J
(a) For =650 nm

(6626 x 107 ] 5) x (2.998 x 10°m s7")

—-335x10°F=306x107"J-335x10°°]J
650 x 10~ m

Ey

Inspection of the above equation reveals that the photon energy of the radiation is less than the

work function and we conclude that Ino electron ejection] occurs.

(b) For A=195nm

_ (6.626 x 10T 5) x (2.998 x 10* ms™)
B 195 x 10°m

=[6.84 x 1027
v =2 x (6.84 x 107 1/(9.109 x 1071 kg) = [1.23 Mm 5

AE=hv=h/T [T=period=1/v] and AE, =NAE

~335x1079T=1.02 x 1078y - 335 x 10-]

Ey

(a} For T=250fs
AE = (6.626 x 107 T s)/(2.50 x 10-58) =(2.65 x 10717

AE, =(6.022 x 10® mol~') x (2.65 x 107 J) =160 kJ mol~'
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(b) For T=221fs

AE = (6.626 x 10 T )/(2.21 x 10-535) = {3.00 X 1077 J
AE_=(6.022 x 10% mol™") x (3.00 x 10-? J) = [181 kJ mol ™!

(c}) ForT=10ms

AE =(6.626 x 10T )/(1.0 x 1035 =

AE,, = (6.022 x 10%mol) x (6.6 x 10 J) = 4.0 x 10~ kJ mol !

The de Broglie wavelength is l=£[7.16]. The kinetic energy acquired by an electron on
2

2
acceleration through a voltage of E equals ¢Z. Thus, since E, = zp— p=2m E? = (2meE)”?
¥
h

CmeEr)V?’

(-

and A =

6.626 x107J s

A=
(@) {2%(9.109 x 10 kg) x (1.602 x 10~ C) x (100 V)}12

=(123 pm

e 6.626 x 10 s
T 2% (9.109 x 10kg) x (1.602 x 102 C) x (1.0 x 103 V)12

6.626 X107 s
A= =[3.88 pm)|
© 12 % (9.109 x 10~ kg) x (1.602 x 10-5 C) x (100 x 10° V)}12 ik

The normalized wavefunction is y{x) = N sin(2nx/L), where N is the normalization constant.

(b) =39 pm

2n
J y*y dop =1[7.20a]

0

=1

L . x=£ 2
sz sin?(2mx/L) dx = N? {i _ sm(4mx/L)} - N2L

2 8n/L 2

x=0

The normalized wavefunction is y(x) = (2/L)* sin(2nx/L) so y(x)|* = (2/L)sin*(2rx/L). Thus, the
probability of finding the electron in an infinitesimal volume element at x = /2 is

lw(L/2)Pdx=(2/L) sin2nL/2L) dx = (2/L) sin’(m) dx = (2/L) x 0 dx =0

The probability of finding the electron in an infinitesimal volume element at the centre of the carbon

nanotube equals .
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172
E7.13(b) The normalized wavefunction is v = [%] sin{2mx/L).

Lr2
Probability that L/d<x < L2 = J w¥y dx

[2 ) j sin?(2mx/L) dx = ( 2 J{i _ sin(4mx/L) }
2 )12 swL
(2 £ _sin@rLi2L)| [L _ sin4nL/4L)
2 87/l 8 8wl
_y1 sin@mp| 1 sin(my 1 1 1
2" an 4 Tan | |2 4
~

E7.14(b) The upper sign in the following equations represents the math using the A +iB operator. The lower
sign is for the 4 — B operator. 7 is a generalized coordinate.

x=L{2

x=L/4

[y¥14 £iBly,do = [yF 1Ay, de zify?|Bly,do

* *
={jw;!=|A“|u;r,.dT} ii{jw;némdf} A and B are hermitian [7.33]
-~ -~ * - ~ *

~{futidtvaszifus i) ~{Jorrizisiv,a)

This shows that the A + iB operators are not hermitian. If they were hermitian, the result

*
woddbe{jwﬂziiiéw,df} :

E7.15() The minimum uncertainty in position is 100 pm. Therefore, since AxAp > %ﬁ

-34
N JLOSA6X10TS oo oo o
2Ax  2(100 x 102 m)

—25 -1
=Ap.=5.3><10 kgms _[s8x10°m st
9.11x 103 kg

m
1 5 he 5
E7.16({b} Eyinging = Eppoon ~ Ex = hv —sm* = 7 Fm
he
Ebinding = T - ';‘mevz
(6626 X107 5) x (2998 x 10° ms™)

—+(9.109 x 10 kg) X (5.69 x 107 m s°')?

121 % 10?m
=(1.67 x 10716 J) x {1_66’23;%} =11.04 keV | without a relativistic mass correction
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Note: The photoelectron is moving at 19.0% of the speed of light. So, in order to calculate 2 more
accurate value of the binding energy, it would be necessary to use the relativistic mass in place of

the rest mass.
m, 9.109 x 103 kg

_ e . —928 x 107k
(A= (@IcP)?  (1—(5.69x 10" m 57/2.998 x 10°m s )12 £

he |
= 2
Einding= 1 — gy

(6626 10" J ) (2.998 x 10° m 571
121 x 1072 m

={1.39 x 10715 J} x (160%0_-?;}] =10.870 keV | with the relativistic mass correction

7.47(b)  The quantity [€,,Q,] = Q,€2, — 0, [7.41] is referred to as the commutator of the operators £, and
0, 1In obtaining the commutator it is necessary to realize that the operators operate on functions;
thus, we find the expression for [€2,,£,]w(x) = @2, w(x) — 2,2,y (x).

—1(9.28 x 101 kg)  (5.69 x 107 m s71)?

x by . A d .
[a,a'w(x)= [ 2”2117, Zmlp}w(x}-— % +ip.% — iplw(x), where F=Tqs and £=xx
= 3[% lﬁ £ — Plw(x) = ${( + ip)E - i) — (£ — P)E + P (x)
= +{(® +ip% - 5ip— 2% ~ (82 - ip£ + £ip - i pz)}w(X)
= (ipX — Apw(x)=h ix xi (x) =k —xw(x)~ xi (x)
7 iy dx dx ¥ d Xy L4
d
( (x)+ x— w(x) - x—v(X)] Ty (x)
Thus, [a,a") =.
Solutions to problems
Solutions to numerical problems
P7.2 Since 4,,,, T = :—’Z by Wien’s law, we find the mean of the A,,,, 7' values and obtain 4 from the equation
= %(lmT)m. We draw up the following table:
8/°C 1000 1500 2000 2500 3000 3500
K 1273 1773 2273 2773 3273 3773
Agax/MM 2181 1600 1240 1035 878 763

A T/(10° nm K) 2.776 2.837 2.819 2.870 2.874 2.879
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The mean is 2.84 x 10° nm K with a standard deviation of 0.04 x 10¢ nm K. Therefore,

(5) x (1.38066 x 102 J K-') x (2.84 x 10~ m K)
2.99792 x 108 m 5! 6.54x10*]s

COMMENT. Planck’s estimate of the constant £ in his first paper of 1900 on black-body radiation was
6.55 x 10 erg s{1 erg = 1077 J) which is remarkably close to the current value of 6.626 x 10-% Js and is
essentially the same as the value obtained above. Also from his analysis of the experimantal data he obtained
values of k (the Boltzmann constant), N, (the Avogadro constant), and e {the fundamentai charge). His values
of these constants remained the most accurate for almost 20 years.

172
2 ” . . .
P7.4 w= (z) sin (%} and the probability that the particle will be found between a and b is

b 2 (* X
= dx=—| sin®—dx
P(a.b) J widx LJ sin 7

a a

L 2n L L
L=10.0nm
0.10 1{ (@mx(505 . (@m)x(495)
LU - =10.020
@ PA95505) =10 {sm I e 10.020]
0.10 1{. @mx(205) . (2m)x(1.95)
= — - =[0.007
{b) P(1.952.05) 100 27t[sm 0.0 sin 100

(© P©.90,10.0)= 2% l{sin (2m) x (10.0) _ . 2w x (9'90)} =[7x10°

100 2n 10.0 10.0

() P(5.010.0)=[0.5] [by symmetry]

2
(© P{%L, %LJ L L[sini’“ - sin—EJ _[0.61

P7.6 y(x)= N e~

(a) J [yr(x)] dx = 1 [normalization condition, 7.20a]

N? J e idx =1
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Nt= ! = ! [standard integral, see any mathematics handbook]

o= anl.’!
J e—.\'llaldx

1 12
N= [an—lﬂ ]

(b) The probability P(—a,a) that the position is such that -a< x <ais

&

P(-a,a)= [ lp(x) dx = NzJ' e ety

-

: J e dx = erf(1) =

aml.‘z

12
w(g) = {%J e where m=0,+1,+2,%3,...

The average position (angle) is given by:

(¢)=J'vf*¢wd'r:£ {[%} e""‘"} ¢ {[%} ei’”"}d@*
(" e g emage | [ pae (YN
(5], e eemao=(55)] o=z ][5 ):

\
\
|
|

Note: This result applies to all values of the guantum number m, for it drops out of the
calculation.

The normalized wavefunction is y = (2a)'? e, where 0Sx<eo

The expectation value of the commutator of position and momentum is:

0 a

. 5D = J yi%, Py = f y(%p— pwdx, where %=xx and f= 5—5; [7.29]
1

b 0

_(ml, 4 _d _(2\ [ Qv _dew)
_[iHﬂ“’[xdx dxx)wdx_[iJLW[xdx dx ]dx
A T N P EA T I
—(i)Lw[xdx v xdx]dx_ [iJLW!dx

b3
= —(7) [because y is normalized to 1]
i

=1k [thisis in agreement with eqn 7.42 and Justification 7.6]
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Notice that this result only depends on the quantum-mechanical definitions of the position and
momentum operators along with the normalization of the wavefunction to 1. The details of how
the wavefunction depends on position are irrelevant to this result. Because this commutator is non-
zero, position and momentum are complementary observables and it is not possible to simultane-
ously measure both of them with arbitrary precision. This is emphasized by the general form of the
Heisenberg uncertainty principle (eqn 7.43), which stipulates that AxAp > ALUEN N

Solutions to theoretical problems

&nhe

P7.12 The Planck distribution is p(l, T) = AS—(e;m-_—l)

[7.8].

We look for the value A = 4,,,, at which p is a maximum, At this point dp/dA = 0 so we find the deriva-
tive and evaluateitat A=4,,,.

dp d
o el 875,1 A._S helfAET _ 1 ~1
a4 Bmacd(e I
-5
=8rwhe {(ekc!ﬂcT . 1)—1 d—jf + A5 a%(ekdzki" — l)l}

he
= th _51% helAkT _ 1 =1 + 1—5 chcﬁ.kT_ 1 -2[ Jeﬁdﬁc‘f}
C{ (e ) ( ) P

= 8held T (ehHT — [y {_5)" + (ﬂ)chcmr(ehcmr _ I)—I}
kT
Thus, at A=A4_,,

he - he KT { ehicAma kT |
_51 + | heldmaxk T ckc,’lmxk]" _ 1 1— 0 or - ( Jehc.’lmu (C CAmax kT _ 1)

This is a transcendental equation, which can be written in the form
he
-~

Using the root function or the numeric solver of a scientific calculator to solve for x,,,. we find
Kooy = 4.965 and

he
T=
Arnax o

_(6.626 x 10T 57') x (2.998 x 10 m 5™})
B 4965 % (1.381 x 1073 J K

=12.898 x 10 *m K| Prediction of the Planck distribution

This agrees with Wien’s law in that it specifies that A, 7 = constant.

Xpae (e == — 1)1=5, where x,,.=
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{a) With a little manipulation, a small-wavelength approximation of the Planck distribution can
be derived that has the same form as Wien’s formula. First, examine the Planck distribution,

_ 8nhe
PPlanck = AS(eheiT — 1)’

for small-wavelength behaviour. The factor A3 gets large as A itself gets small, but the other factor,

namely , gets small even faster. Focus on that factor, and try to express it in terms of a
e

heldkT _ |

single decaying exponential {as in Wien’s formula), at least in the small-2 limit. Multiplying it by
e-hn’l.k]" —helikT

one in the form of . , vields ;

where e™7 s small, so let us call it £. The factor,

—helAkT — e—thAkT ?

£ P -

then, becomes T which can be expressed as a power series in gas &(1 + ¢ ...). For sufficiently small
- £

wavelengths, then, the Planck distribution may be approximated as:

8mhce  8mhoe T
as - As

Prianck =

This has the same form as Wien’s formula:

Comparing the two formulas gives the values of the Wien constants: a = andb=

Brhe
A5 (eheiT _ 1)
is found by setting the derivative of the distribution function with respect to wavelength equal to
zero and solving the resulting transcendental equation with the numeric solver of a scientific calcu-
lator {sec Problem 7.12). This gives

(b) The wavelength at which the Planck distribution, p(1,7) = [7.8], i3 a maximum

he

AT = 19655 2.898 x 10 m K  Prediction of the Planck distribution

Following the same procedure with the Wien distribution gives a very similar result.

dpwen _ d [ 8rhe ehetikT | = @uye __5_c—hc.’JI.kT + 1 _he @-helAkT
da da\ as A8 AN AkT

=8mheA Te hMT 150 + he.
kT

This derivative equals zero when the distribution is a maximum at A = &,,,, and inspection of the
factors reveals that this occurs when

e

kTJ =0 or AnJd = ;1—; Prediction of the Wien distribution

wSJ.W+[

Thus, the maximum of the Wien distribution agrees well with that of the Planck distribution. The
only difference being a factor of 1/4.965 in the expression for 4., T in the Planck distribution and
a factor of 1/5 for the Wien distribution.
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The Stefan-Boltzmann law gives the energy density  as a function of temperature. According to
the Planck distribution (see Problem 7.13), the energy density of black-body radiation is

- 4
Eblanck =J Prlanck (‘&')dﬂ' = [;J ol
Q

2kt

T 5671 x 10%kg s K is the Stefan-Boltzmann constant
e

where o =

The energy density of the Wien distribution is

= * o —helAET
Even = f Pwiea(A) dA = 81:th grrdr
0 0 2-5
2
Let x= £ Then, dx =—£dﬂ. orda= _/l de_x
AT AT he
* axq2 * x 3 pos
sz-m = {nkT eAMx =8nkT e dx =8nkT k_T xle=xdx
0 A? o Al he 0

3
= STC]CT(};;—T] (6) [standard integral]
¢

4
= (ij Owial |, where oyg, = Izs—m’f =5.239x10*kg s K+
¢ c?

Comparing the energy densities of the Planck and Wien distributions, we see that both predict that
the energy density is proportional to 7% However, the Wien distribution predicts a constant of
proportionality that is low by about 8%.

P7.16 In each case the normalization constant N2 = J Jwtdr [7.19] must be evaluated by analytically

determining the integral over the whole space of the wavefunction. The normalization integrals are
best evaluated using the spherical coordinates (r,8,¢) for which0 <7 <oo, 0 £8<x, and 02 ¢ £ 27,
It is helpful to recognize that, when a wavefunction has the separation of variables form y({r,6,¢) =
R(r) x (@) x ®(¢), the integral over the space of all variables is

o R 2n
NZ= f|l;l|2 d’L':J' J' J' Iy r? sin@ dr d6 d¢ [note that dr = r*sinf dr d6 d¢]
r=0

6=0J =0

e " n
= J J J r2 % (R(r) x ©(8) x P(¢)y* sin6 dr db d¢

g=0 J =0
In

= J 2 x R(rydr x J sin(6) x O(6)*d8 x J e(9)’de

r=0 a=0 =0

In the special case (i) for which ©(#) =1 and @(p) = 1:

« 2

2n

do = [—cosbl;_, x [‘?’]:o =4

p=0

[ sin(8) x ©(8)>d6 x J' Do)y dg =J sin(#)de xj

8=0 =0 =0
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and the normalization integral is

N2 = 47:J' r? x R(ry*dr
r=0

In the special case (ii) for which &(8) =sin # and ®(¢) =cos ¢-

I n n

sin®{(6\de XJ cos?(¢)de

¢=0

J sin(6) x ©(6)*d8 xj

=0

¢y de = J

¢=0 6=0

2n
== 1:]" [1L' ]“zi
—[ COSG+3COSBH>< 5 +78in2¢ 0= 3T

and the normalization integral is

N-l= %TEJ i x R{r)2dr
r=0

2
(a) (i) The unnormalized wavefunction is ¥ = (2 - L] e and y?= [2 - LJ g2
a, Gy

2= 41:[ r? x R(ry*dr
r=0

- 2
= 411[ r?x [2 - LJe""“ﬂ dr
r=0 ao

= 4m3[ 22 x{(2- perPdy, where x=rlq
=0

o0

= 4M5'J fdy? —Ax® + y*e2xdy |:use the standard integral J xre dy = n!/a’”‘}
x=0

]
= dnadfd x 201221 — & x 3127 + 41/2%} = na

1z
. .. 1 r
Hence, and the normalized wavefunction is w = (—J (2 - —) g,
Ty ay

(iiy The unnormalized wavefunction is y = rsinfcose e "?% and y?=r? sin’ Bcos? pe .

N-2= %E,[ 2 x R(r)2dr
r=0

= %n:f 1 x {re~2)2dr
r=0

= gmgf ye*dy, where y=rig,
=0

= ($mai) x (41) [uss the standard integral [ xre T tdy = n!/a"“} = 32na}

[

177
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12
. L 1 ]
Hence, | N = (32na;) “?| and the normalized wavefunction is y = [ ey J rsinBcospe'2%
, —

(b) Since normalization constants do not affect orthogonality, we use the unnormalized wave-

functions to examine the integral f vy,d7. The wavefunctions are orthogonal if the integral
proves to equal zero.

J%W:df = J{@ - L)e”ﬂo }{rsinﬂ cosg e"2% }dr
aO
= J’ j J {(2 - L] e~rie }{r sinf cosp €2 tr2sinf dr d@ d¢
r=0J 5=0J ¢=0 a,
- rt x 2n
= J {[27‘3— —J g ¥ri2a }dr XJ sin? 846 XJ cosg dp
r=0 ao 8=0 o=0

in

=sin(2x) —sin(0)=0-0=0

2n

The integral on the far right equals zero: I cos¢ dg =sing
¢=0

0
Hence, j w,w-dt = 0 and we conclude that the wavefunctions are orthogonal.
Operate on each function f'with i (the inversion operator, which has the effect of making the replace-

ment x — —x). If the result of the operation is fmultiplied by a constant, fis an eigenfunction of §
and the constant is the eigenvalue [7.28a, 7.28b, and 7.28¢].

(a) f=x*-kx
e —kxy=—x*+kx=—f
, fis an eigenfunction with eigenvalue .
(b) f=coskx
icos kx=cos(—kx)=coskx=f
, fis an eigenfunction with eigenvalue .
(© f=x*+3x-1
#{x?+3x—1y=x>-3x—1=constant x f

, fis not an eigenfunction of £

The quantum-mechanical operators are constructed by first writing the classical expression for the
observable and then making operator substitutions for position and momentum. The operators for
the x components of position and momentum are

f=xx and pg,= E% [7.29]
i
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The operator for p? is

2
pPr=p.p. = {?%J[?%J =-p c;ixz for one-dimensional systems

2

=-H? [aa - J for three-dimensional systems

2
s

(a) Kinetic energy in one dimension:

2 g2
El mod

“ T o T | Im e

Kinetic energy in three dimensions:

.1 w (& & g
E =— 23 =y “% = -
k 2m(pX+py+p') zm{(aszy:+[ay2}x1+(aZZJXyJ
" > » ¥ *? ¥ &
2m V ’ Where [axl Jv,: * [ayz Jx,z ’ (azz ]-’f-y axz ' ay2 i 822

(b) The inverse separation, 1/x:

i |1
—=|—X
X X

The inverse separation in three dimensions is determined by the vector magnitude of the position
vector 7= x1+ i + zK:

LI I S
r {x2+y2+zl}ln'l

(c) The electric dipole moment operator for J point charges O, at the vector positions 7 is
A ~ ~ 7 2 - =
i+ iy + k= YOI +20m] + ZQJZJk
H i) i)

The magnitude of the electric dipole moment, 4, is

142

u={ui+ ﬂi +pit= {(; Orx; ]_"' [;QJJ"J J-*’ [;QJZJJ'}

(d) The root mean square deviation of position in one dimension is

Ax = [{(x?) = ()12 [7.39b]

The root mean square deviation of momentum in one dimension is

A <[?%J2>‘<?%>2 ) [7.390] = ?K%)_(%)T
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P7.22 The wavefunction y =(cos y)e™ + (sin y)e = ¢,e"* + ¢,e ¥** is a superposition of the functions e
and e**, We first demonstrate that the functions ¢+ and e are eigenfunctions of the linear

momentum operator, A = ﬁ% [7.29], that have the eigenvalues +k#% and —&#, respectively.
1

5 otk = f’_ieﬂkr = { hJ » (ke = +khe it

. i dx i
pe = Efx—e*““ = [EJ X (—ik)e ¥ = —fhe i
1 1

Because these functions are eigenfunctions of the momentum operator and the system wavefunction
is a superposition of them, by the principle of linear superposition of eigenfunctions (Section 7.5(e},
Justification 7.5) the probability of measuring a particular momentum eigenvalue in a series of observa-
tions is propertional 1o the square modulus (|¢?) of the corresponding coefficient in the superposition
expression of .

(a) The probability of observing the linear momentum +k% 1is|¢ [*=
(b) The probability of observing the linear momentum —k%  is|e;|* =
(©) e [*=0.90 and, taking ¢, to be positive, ¢, =0.95.

Since the sum of the probabilities must equal 1, | ;=1 —|¢,F =0.10 and, therefore, ¢, =+0.32.

Hence, the wavefunction is |y = 0.95 e+ 0.32 e~ |

P7.24 (a) The function e is an eigenfunction of the linear momentum operator, g = E;— [7.29]. It
*o1dx
has the eigenvalues +k7:
p‘e-t-ikx — iieﬂkx: [EJ % (ik)e*““r +khe+ikx
idx 1
Consequently, the particle has the linear momentum

(b) The wavefunction w = N cos kx is not an eigenfunction of the linear momentum operator so
we find the expectation value for linear momentum with eqn 7.37.

1

=N? [E)J' coskx(%)coskxdx =—kN? {E]I coskxsinkxdx
i), it

#). [sinkx " .
=-kN?| — |lim [standard integral]
i) 2k

(px)=J w*ﬁxwdx[7.37]:N2J coskx[ﬁ%]coskxdx

X==x

2k 2k 2k 2k

bt

1 ) x—

kN (ﬁ ] h-m[sinz(kx) _ st(—«kx)]z_sz (g ] lim{sinz(kx) ) sinz(kx)]z@
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(¢) y=Ne=

d d 2
e N ae‘”‘ = 2aNxe ™ = -2axy

The wavefunction is not an eigenfunction of the linear momentum operator, so we find the expecta-
tion value for linear momentum with eqn 7.37.

(Px> =J W*ﬁxwdx [737] = NZJ e‘w‘?‘ [zi]e—aﬂdx
oo - idx

=-2aN? (E}J xe 208y
l —r

The integrand of the above integral is an odd function so, when it is integrated around its centre of

symmetry at x =0, the integral equals zero. Thus, {p. )= @

The normalized ground-state hydrogenic atom (a one-electron atom of atomic number Z) is a gen-
eralization of the wavefunction of text Example 7.4:

23 2
w(r)=(u—3] L
d

0

The expectation values are best evaluated using the spherical coordinates (r,8,¢) for which0<r < es,
0<8<x,and 0 < ¢ <2x. Itis helpful to recognize that, when a wavefunction has the separation of
variables form w(r,6,0) = R(r) x @(8) x &(s), the expectation integral of the function f{r) over the
space of all variables is

(f’{i’))=Jf‘(i’)l'\lfl2 de

—_—J J J F(#)|w| risinf drd8d¢ [note that dr = r? sind dr d@ do]
r=0

6=0J ¢=0

J J’ Jun r?2 F(ry x (R(r} x &(8) x &{¢))’ sin® dr dé do

6=0J ¢=0

x 2n

sin(8) x ©(F)*dé x J o(9)*de

=0

J r?f(r) x R(r)*dr x J
r=0 8=0
In the special case of the ground state of the hydrogenic atom for which @(8) = 1, &(¢) =1 and
Riry=yl(r):

T

2n

sin(6)do x J de¢

o=0

2n

J sin{) x &(8)*dd x J P(¢)de= J

4=0 ¢=0 6=0

=[-eose ], % [0],
=4n
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and the expectation integral of f{r) is

oo o

rrf(r) x R(r¥dr = 4ch’ r2F(r) x w(ryrdr

r=0

{frp= 41!:J

r=0

(a) The Coulomb potential energy of interaction between the hydrogenic electron and the nucleus
2

. Z . . S
of charge +ZeisV(ry=- 2 ¢ Themean potential energy of the interaction is given by the expec-

REGF
tation value of ¥(#).

o

V= 4‘rtJ' r2V(r) x w(ridr

r=0
2
oo 2 3 172
=4r Xl - Ze X Zz e~Zha o dy
o 4meyr 7

Ze2 \ (7
=|- xe 2% dy | x = rla,; use the standard integral
=0

ey

[ Z%e? N 1 1 | Z%
REy 47 2 41'5&'0(10
(b) The kinetic energy operator for the hydrogenic electron is the sum of the kinetic energy opera-
tors (see eqn 7.31) in the x, y, and z directions.

xrerdy = n!/a”“:|
0

. . . . hl , ) 82 aZ aZ
Ek=Ek,x+ Ek,y"'Ek;:*zmeV . where V2= a? yz+ a_yz x:'f‘ a? .

The operator V2 is called the Laplacian and, when written in spherical polar coordinates, it has the
form (see a mathematics textbook):

Vz—ii rZi + 19 sinGi + L
“rrarl 9r) r*sin® oo 38 | risin?f 9¢°

Luckily, when the Laplacian operates on a function of r alone, the last two terms vanish because

W), Ly )

96 a¢
Consequently,
14 d 1 d 92 1{,d a?
2 LI I T = |2 L N I PR
Viv() r* or (r Br}y(r) r? [Zr dr T ar? ]u/(r) r[z or * rarz)"’(r)

AR 5 d F | z2 V"1 ) e Zrie dte Tl
= — — —_—tr— e = —— —
mal ] ri or "or © Tag | ¥ or tr or?

72V 122z ze z\"1 z
= —_ _ e—Zn’ag + _re—Zr,’ag = — _ _ze-Zr.'au + _re_ZrIag
17 H ryoa a3 na; r a,
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The above relationship is useful when evaluating the expectation value of E,.

oo

>

7l
2 _
riy(r) x[ m

(E.y= 41:J rzqr(r)Ekw(r)dr = 471J VZJ X y(r)dr

r=0 r={ e

=Y 1 172 5 1z
= 2nh? 2 Z_. g Zrisy | 5 ———Z l —DeZrim 4 E1"6'2”""'3 dr
m, )] g nag ) r %

N z .
J (—ZreZZ”“O + —ple 27 Jdr [substitute y = ria,]
r=0 a(}

3

x"e~*dy = nlja™! jl
)

2 1 mZz?
x| - +—|=
4722 477 2mag

For the hermitian operator £ (22) = [y*@2yde = [y* U Dy)de = {[(Dyy* ydey [7.33]

2R2Z4N\ (7 ) ) .
=|- (—2xeZ + Zye % )dy | use the standard integral
z=0

The integrand on the far right is a function times its complex conjugate, which must always be a
real, positive number. When this type of integrand is integrated over real space, the result is always
a real, positive number. Thus, the expectation value of the square of a hermitian operator is always
positive.

Solutions to applications: nanoscience, environmental science, and astrophysics

The wavelength A, at which the spectral distribution of the sun is a maximum is nicely estimated
with Wien’s law (see Problem 7.14)

he (6.626 X 10 5) x (2.998 x 108 m s
=" Wien’s lawl=
mas = g LW leD s law ] = e IX 107 T K1) x (5800 K)

=496 x107"m= 1493 nm, blue-green‘

We begin by reviewing the Stefan—Boltzmann law, derived in Problem 7.13, that relates the total
energy density £ of black-body radiation to the temperature T of the body:

153

. ai 4 "
= [ plA)da = thcfum [7.8]= [;JO’T

0

SI-4

where o = 2n =5.671 x 10* W m~? K is the Stefan-Boltzmann constant.

15k%c?
The power emitted by a region of surface divided by the area of the surface is called the exci-
tance M and it can be shown (though it is difficult) that according to the Stefan-Boltzmann
law: M = SE=0T"
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Let I, (= 343 W m?) be the solar energy flux at the top of the Earth’s atmosphere and let a
(= 0.30) be the albedo, the fraction of the solar flux that is reflected back into space by the
Earth or the atmosphere. The solar energy absorbed by the Earth is (1 — a)f,,- The radiation
energy emitted by the Earth is the Earth’s excitance. Since the average temperature of the
Earth changes but little over tens of thousands of years or more, we surmise that there is
a steady-state balance between the energy absorbed by the Earth and the radiation energy
emitted (and lost into space} by the Earth. That is

(I - a)Isolar =oT*

1/4 4

- al (1-0.30)(343 W m™?) — _
T = SOIAT — _ 255 1 OC
[ 5671% 10 W m=2K~* __K or 18

o

Wien’s law, which is derived in Problem 7.12, relates the temperature to the wavelength of the most
intense radiation

he (6626 x107*735)x(2.998x10°ms!)
A= = _ =--11
m T ST T 5w (1381 % 105 K1) x (253 K) s

See Problem 7.27 for the free-particle superposition of cos(nx) functions where the quantum num-
ber # can take on the vatues 1, 2, 3, ... , etc. The particle of the current problem, an electron, is not
entirely free. It is trapped in a nanotube of length L. The diameter of the nanotube is about 1 nm
and we will take the length to be about 1 um. Since the diameter is very much smaller than the
length, the problem is conveniently approximated as involving motion in one dimension only. That
is, there is a 100% probability that the electron is between x = and x=L, where the coordinate x
starts at one end of the nanotube.

It is possible to construct a superposition of cosine functions but it is somewhat more convenient
to choose the option of superpositioning sine functions. The two functions differ by a phase,
sin 6 = cos(8 — n/2), and the choice of sine function allows us to satisfy the boundary conditions on
the trapped electron without the necessity of incorporating a non-zero phase. The wavefunction of the
trapped electron must equal zero at the two boundaries so we guess that acceptable wavefunctions
have the form N x sin(ax), where a is a constant that is determined by the boundary conditions and
N is a constant determined by the normalization of the wavefunction to a probability of 1 within
the nanotube. Since sin(() = 0, the state N x sin{ax) satisfies the boundary condition at x = 0.
The function will satisfy the boundary condition at the other end of the nanotube provided that
sin(¢L) = 0 and this equality is satisfied provided that ¢ = an/L, where n =1, 2, 3, ... The quantum
number » appears, as always, because of the restrictions of boundary conditions! The normalization
constant is

L L
N2 = sine| B ldx = i—isin x| L
o L 2 4nm L | 2

2
Thus, the normalized wavefunctions are y,(x) = (%J sin(%{], where n=12,3,...
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(These wavefunction will be studied extensively in Section 8.1: A particle in a box.)

Itis well worth the time to examine these wavefunctions so we have developed the following Mathcad
worksheet to show that they are normalized and that wavefunctions of different quantum numbers
are orthogonal. Useful expectation values are also reported.

{2 Y (e
yn.x,L) '—(f) sm( T )

. L
Normality check: [ P2, x,LpPdx =1

a

L

Orthogonality check: I P2 xL) - g5 xL)dx =0
0

L

2.0 om2—m-L-n-sinf?-m-
Ex ion of x: l x-m(n,x,L)zdx—)L sinfn-n+m?-L-n—n-L-n-sinf2-m-n)

o 2-m?-n?
Expectation of x*:
L -12.ef “ T . A2-P=8B-12-12-n2- 5 - —8-737-12. .‘ “TT -
l e e — SR TR+ 4oLz 6 :2!-rr;:lnﬂsm(2 )= 6-1-12:n-cos(2-m-n)

- sinfr- n)?

Expectation of first derivative: I Wwin,x,L)- (Ed; tp(n,x,l.)]dx -

o

L

2
Expectation of second derivative: J win,x,L)- :?w(n.x,L)dx —
0

T-n~{sin(2 -7 -n)—2:1-n}
212

The above section of the worksheet reveals that, because sin(integer x &) = 0, expectation values of
the nth state include

(), = L2, {x%), = {3—1(nm)H?, (dldx), =0, and (d*/dx?), =—(nm/L)
and, since g, = (A/i) x (d/dx) [7.29],
{Px2a=0, (pi),=(nmhiLy

Neither the mean position, nor the mean momenturn, of the nth state depend on n. Before we exam-
ine superpositions of these states, we need to check that the Heisenberg uncertainty principle,

Ap Ax = {p) = {p VI = ()} 2 35 [7.39],

is satisfied and we must also take a careful look at the dependency of w, on x.

2 12 /2
(Y r D 11
Ap,Ax), = P A e s
(4p, A, { 2 3 2w 4 2 |

The product (Ap, Ax), /% equals 0.57, 1.67, 2.63, and 3,56, respectively, for the states nequals 1, 2, 3,
and 4, which demonstrates that the Heisenberg uncertainty principle is satisfied.
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Mathcad plots of the wavefunctions for # equals 1, 2, and 3 are presented in Figure 7.1. They show
a progressive increase in their curvature so we immediately conclude that the higher the value of n,
the greater the energy of the state. Furthermore, they show a particular type of symmetry around

the point x = L/2, the centre of symmetry in this exercise. If you compare the value of y, (% +48 ]
. L . . L L
with the value of y, 3~ 8 |, where & is any length, you will find that y, 0 +4d|=vy, 5 § | for

L L
odd values of nand v, [E +8 J = -, (-2— - 8] for even values of n. When the sign of the equality

is positive under this so-called inversion operation through the centre of symmetry, the wavefunc-
tion is said to have either even parity or gerade symmetry. When the sign of the equality is negative
under the inversion operation, the wavefunction is said to have either odd parity or ungerade sym-
metry. Odd-numbered eigenstates have gerade symmetry while even-numbered eigenstates have

ungerade symmetry.

2 T T T T

w(l,x, Ly- 1073 m®3

w2, x, L) 1073 . m03

w3, x, L)- 1073 - m®3

0 02 0.4 0.6 0.8

=

Figure 7.1

This eigenstate property of gerade or ungerade symmetry has arisen because of the conditions
imposed by the boundary conditions, conditions that must also be satisfied by a wavefunction ¥,
that is a superposition of r eigenstates, each of which has the form w,. However, to satisfy the parity
requirement ¥, must be a superposition of either gerade eigenstates alone (those with odd values of
n) or ungerade eigenstates alone (those with even values of ). This will provide ¥, with a unique
gerade or ungerade symmetry. The following is a section of the Mathcad worksheet for the study of
gerade superpositions in which the electron has an equal probability of being found in any one of
the eigenstates of the superposition because the coefficient of the eigenstates are equal. The factor
(1//)" is the normalization constant for the superposition of r eigenstates and the probability that
the electron will be found in a particular eigenstate is 1/r.
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L

142 A
Yir,x,L)= GJ - le(z -n-1xl) Nommality check: [ WS, L Pdx =1
n=1

0

Nanotube length: L=1-10¢m  Axisrange: x:=0,0.001-L-L

Mathcad plots of the probability density ¥? are shown in Figure 7.2 for the superposition of 2, 4,
and 8 eigenstates. Examination of the probability density plots reveals that, when the superposition
has few terms, the particle position is ill-defined. There is a great uncertainty in knowledge of posi-
tion. When many terms are added to the superposition, the uncertainty narrows to a narrow space
at each end of the nanotube (x=0 and x = L). When the electron state is the superposition of a great
many eigenstates, there is a probabilty of % that a measurement will find the electron at an end of
the nanotube!

10 T T T T

W2, x, L2105 m ¢
W4, x, L2108 m

W8, x L7210 m 4

Figure 7.2

The plot of probability density against position clearly indicates that the superposition is symmetrical
around the centre of symmetry, i.e. at the point x = L/2. Consequently, the expectation position for
all superpositions is x = L/2. The expectation value for position is independent of the number of
terms in the superposition.

The square root of the expectation value of x? is called the root-mean-square value of x, x,,..
It depends on the number of terms in the superposition, r, so we write it as a function of r, x,,(r):

L L
1 r r 1 ror
xﬁms(”)=<x2)=l[ x2|%|2dX=;22J xz'lfzp-iwzqqu=;221pq
Q

Plg=1}0 P=lg=1

L L

2
Xy, W, pdx = EJ x2sin{(2p— Dmx/L}sin{(2g — Dmx/L}dx
0

where [, = J’

0
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The above double summation over p=1,2, ...,rand g=1, 2, ..., r can be placed intc summations
that reduce the possibility of term omission. This is accomplished by imagining the double sum

ZZI ", Lo be arranged into rows such that the first row consists terms for which p =1 and succes-
=lg=1
sive terms in the row have g =1, 2, ..., r. The second row consists of terms for which p =2 and suc-

cessive terms in the row have ¢ = 1, 2, ... , . The last row consists of terms for which p = r and
successive terms in the row have g=1, 2, ..., r. This ‘matrix’ of elements consists of a diagonal and
two off-diagonal triangular areas ... an upper triangular area that is above the diagonal and a lower
triangular area that lies below the diagonal. The above definition of ,, shows that there is no change
when g is interchanged with p. Consequently, 1,, = [, and the sum of terms in the lower triangle
equals the sum of terms in the upper triangular. These observations prompt a rearrangement of the
double sum into a sum of diagonal elements plus twice the sum of terms in the upper triangle.

xfms(r)——{z +222 }

p=lg=p+l

N £ 2r*(2p— 1) . B2p—-Di(2g-1)
T {Z{ 6m2(2p — } gqa{ﬂ{ap— P - (2g - 17 H

The Figure 7.3 Mathcad plot of g, against r (where x. is defined to equal x,,,./L}) indicates that
this expectation value depends on the number of terms in the superposition. Moreover, as r

approaches infinity, x,,,. approaches \E L2,

0.75 T ; T T

x.rms (?’) 0.65 4

06 1

1 1 1
0.55 0 20 40 60 &0 100

Figure 7.3
In the limit of an infinite number of superpositioned eigenfunctions the uncertainty in the ¢lectron
position is

172

A= {(o) = (e} = [—ﬁi] —[5] -

2




Quantum theory:
techniques and
applications

Answers to discussion questions

The correspondence principle (Section 8.1) states that in the limit of very large guantum numbers
quanturn mechanics merges with classical mechanics. The harmonic oscillator provides an example.
A classical harmonic oscillator’s range of motion is restricted by classical turning points, which are
determined by the oscillator’s total energy; that energy can take on any real positive value. By con-
trast, a quantum harmonic oscillator can tunnel past classical turning points into the classically
forbidden region with a non-zero probability. The total energy of a quantum harmonic osciflator is
quantized; not every real positive value is allowed. At high quantum numbers, the probability of
tunnelling beyond the classical turning points falls {approaching the zero probability of classical
harmonic oscillators). Furthermore, the most likely place to find the oscillator is near the classical
turning points. (This is true of the classical oscillator as well: because the speed of the oscillator
vanishes at the turning points, the oscillator spends more time near the turning poinis than else-
where in its range.) See Figure 8.23, particularly for » = 20, to see the probability distribution for
large v approach the classical picture. Finally, although the spacing between discrete allowed energy
levels 1s the same size at large quantum numbers as at small ones, that spacing is a smaller fraction
of total energy at large quantum numbers; in that sense, the allowed energy levels are more nearly
continuous at large quantum numbers than small.

The physical origin of tunnelling is related to the probability density of the particle, which accord-
ing to the Born interpretation is the square of the wavefunction that represents the particle. This
interpretation requires that the wavefunction of the system be everywhere continuous, even at bar-
riers. Therefore, if the wavefunction is non-zero on one side of a barrier it must be non-zero on the
other side of the barrier and this implies that the particle has tunnelled through the barrier. The
transmission probability depends on the mass of the particle (specifically m'?, through eqns 8.15
and 8.19): the greater the mass the smaller the probability of tunnelling. Electrons and protons have
small masses, molecular groups large masses; therefore, tunnelling effects are more observable in
process involving electrons and protons.

Macroscopic synthesis and material development always contains elements of molecular random-
ness. Crystal structures are never perfect. A product of organic synthesis is never absolutely free of
impurities, although impurities may be at a level that is lower than measurement techniques make
possible. Alloys are grainy and slightly non-homogeneous within any particular grain. Furthermore,
the random distribution of atomic/molecular positions and orientations within, and between,
macroscopic objects causes the conversion of energy to non-useful heat during manufacturing
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processes. Production efficiencies are difficult to improve. Nanometre technology on the 1 nm to
100 nm scale may resolve many of these problems. Self-organization and production processes by
nanoparticles and nanomachines may be able to exclude impurities and greatly improve homo-
geneity by effective examination and selection of each atom/molecule during nanosynthesis and
nanoproduction processes. Higher efficiencies of energy usage may be achievable as nanomachines
produce idealized materials at the smaller sizes and pass their products to larger nanomachines for
production of larger-scale materials.

The directed, non-random, use of atoms and molecules by nanotechniques holds the promise for
the production of smaller transistors and wires for the electronics and computer industries. Unusual
material strengths, optical properties, magnetic properties, and catalytic properties may be achiev-
able. Higher efficiencies of photo-electronic conversion would be a boon to mankind. There is hope
that science will devise nanoparticles that destroy pathogens and repair tissues. See Jmpact 8.1 for
discussion of nano-quantum dots that have unusual optical and magpetic properties. See Impact
8.2 for discussion of scanning probe microscopy, a technology for the examination of atom posi-
tions on a macroscopic surface and for pesitioning atoms on a surface.

Solutions to exercises

nh?

E =
8m L7

[8.4a]

2 -34 2
R (6.626 x 10T s) 68X 10
Sm. L2 8(9.109 x 10°'kg) x (1.50 X 10 m)?

The conversion factors required are

1eV=1.602x10"], 1cm'=1986x10%];, 1¢V=296.485k]I mol”

(@) E,—E=(9~ 7 =868 X100 )

=214 x 10491| ={1.34¢V]=[1.08 x 10*cm'| = [129 kJ mol-!|

2

h
(b) E,— E;=(49 - 36) oy

=13(2.68 x 10~ J)

=[3.48 x10°] = [2.17 ¢V] = [1.75 x 10* em '] = [210 kJ mol-'|

The wavefunctions are

12
v, = [%J sm["”x] 8.4b]

The required probability is

P=JW*de=%Jsin2[ 7 }dx~2—iis 2( Lx}
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where Ax =0.02 L and the function is evaluated at x =0.66 L.

(a) Forn=1 P= %shﬁ(o.%n) =10.03T

2(0.02L) . _
(b) Forn=2 P==——"sin(2(0.667)]=

The expectation value is
()= I y*pydx

but first we need py

172 142
sy =—in 2] in[ P L 2] P o] P
dx\ L L L) L L

- L
so ({p)= —Zf;nzr J Sm[mrTx] COS[%J dx = @ for all n.

0

2.2

and  (p?) = 2m(H) = 2mE, = """

YE forall n.

So,forn=2

hZ

The wavefunction is

2 " .| nEx
Wn—(EJ SIH[TJ {8.4b]

L
Hence, (x)= JW*de = %J xsmz[%{de

a
An integral table gives

- x?  xsin2ax cos2ax
xsinfaxdx=—— - n
4 4a 8a

o (x>_£ x—z—ﬁsin 2nmx 3 I? cos 2nax
T Ll 4 dnn L 8(nr)? L

{x*) = EJ x? sinz[nLﬁde

"l
0 =foralln.

191



E8.5(b)

E8.6{b}

192 INSTRUCTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

An integral table gives
3 2 1
xzsinzaxdx=x_ B [ sin2ax—M
6 4a 8a° 4a?

© <x2>_£ x_3_ L_xz_ I ¢in 2nnx B I?x cos 2nmx -
TLl 6 \dnr (2nm) L (2nx)? L Jj],
e L _pll_o_ 1
Ll 6  (2nr)? 3 2n'x?

11
Forn=2, {(x*)= Lz[g - QJ

The zero-point energy is the ground-state energy, that is, withn, =n,=n, = L:

_ (n +nl +n2)R? 342

E P [8.11b with equal lengths] = =

Set this equal to the rest energy m¢? and solve for L:

172 12

32 3 h 3

21— L=Z] ===
me 8ml? S0 (8) mic (8) Fe

where A is the Compton wavelength of a particle of mass m.

172
W= (%J sin(s%x] [8.4b]

P(x) oy oesin? [S%x]

dP(x) _
dx

2
%P(x) x% ocsin(sﬂ]cos(s%x} ocsin{wzxj [2sinecosa = sin2a)]

Maxima and minima in P(x) correspond to 0

L

Now, sin 8 =0 when 8 =0, &, 2x, etc. (i.e. when # = ', where #” is an integer).

107x n'L

Thus, =n'n forn' <10 so x= 0

x=0and x =L are minima. Maxima and minima alternate, so maxima correspond to

. RPN
w=135709.5 x=110-75 2" 10" 10
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COMMENT. Maxima in ¢ commespond to maxima and minirma in i itself, so one can also sclve this exercise

d
by finding all points where E% =0.

In the original cubic box

E=(nm+ni+nl)x B_K K= 2+2+2)><h—2
\={ni+ i+ n3) Smlz | I2° =(ni+ni+n; &m

In the smaller cubic box

K
ST oLy’
Kf 1
Hence, AE:E[W—I]’

and the relative change is

AE 1 _0235=[23.5%
E (097

E= %kT is the average translational energy of a gaseous molecule (see Chapter 17).
(ni+n3+n3)R:  n*h?
8mlI? " 8miI?

,_ (L2KTmp L
-

3
E=3kT =

Before we evaluate this expression, we need the mass of a nitrogen molecule:

_ 2x14.01x10* kg mol™!
6.022 x 10 mol !

_(12x1.381x 102 JK-'x 300 K x 4,653 x 10-*kg)"*x 1.00 m _
6626 x107%J s -

=4653x 10 %kg

Now, # 7.26 x 101°

The difference between neighbouring levels is

2 a2vp2 2
AE,=E,. .- F,= {(r+1Y—nth =(2n+l)h )
8mi? 8ml?

So here,

_(2x726x 10+ 1) x (6.626 x 10-#J 5>
8x4.653x10%kgx(1.00m)*

AE 1.71x103J

The de Broglie wavelength is obtained from

z,=—=—h—[7.16]
p mw
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The velocity is obtained from

Eg=1m?=3kT =2(1.381x 102 T K1) x (300 K) = 6.21 x 102! ]

iz 112
2F, 2% 6.21x10°4]
So, p=|K} (22222 T —91 -1
o {m} [4.653x1026kg] 7ms

6.626 X 1047 s
d A= =276 x 10-1m =[27.6
an (4.653x10%kg) x (317 ms 1) m

COMMENT. The conclusion to be drawn from all of these calculations is that the translationai motion of the
nitrogen molecule can be described classically. The energy of the molecule is essentially continuous,

AE
— a1
E

12
E= [v + l]hm, o= (ﬁ] [8.24]
2 m

The zero-point energy corresponds to v = 0, hence

172 J Lied
k i 285Nm )’ -
EO =%h&)=%h(——} =%(1-0546X 107347 S)X[mj =(3.92 x102]

m

The difference in adjacent energy levels is

ki

72
AE = E,, - E,= ho[8.25] = h[—} [8.24]
m

m(AEY  (2.88 x10™2kg) x (3.17 x 10~ J)? 5 5
= = =260 kgs?=|260 N m
so ki K2 (1.0546 x 107 J s)? g _
The requirement for a transition to occur is that AE(system) = E(photon),

he
so AFE(system) = fiw [8.25]= E(photon) = kv = e

172
he  ho h k;
—_— = — x| —
Therefore, 1 a2 (27:} ( - J [8.24]

m
A=2rc (k—

f

=1.32x10°m =132 pm]

The frequency of a harmonic oscillator is

112
=
m

15.9949 x 1.6605 x 1027 kg)”2

2
— 3 —1
} = (27) % (2.998 x 10°m s )x( N



ES.13(b)

E8.14{(b)

QUANTUM THEORY: TECHNIQUES AND APPLICATIONS 195

'H (H) and *H (T) are 1sotopes, so we expect that the force constant is the same in H; and T,. They
differ in mass, so the frequencies are inversely proportional to the square root of the mass:

"2
My
Wy = mH[w]
My

But the mass is not the mass of the molecule. We need a result from Chapter 12 to incorporate the
mass (eqn 12.32). The appropriate mass for the oscillation of a diatomic molecule is

i m
meft‘=m=?[ml=m2=m]
-27
ForHy my= % _ 1.0078 x (1.66205 x 10~ kg) =[8.3673 % 10 * kg

27
For T mm=%=3.0160x(1.6305x10 k) 500 % 107 kg
142
83673 x 108 kg
1319 THz x| o0 2 X0 X8 | _ 65 THz
@r z {2.5040x10'27kg)

AE=ho=hy

(a) AE=hv=(6.626x10*JHz")x (33x 10'Hz) =[2.2 x 10 ]

(b) TFor a two-particle oscillator g, replaces m in the expression for e. (See Chapter 12 for a more
complete discussion of the vibration of a diatomic molecule.)

i/2 142
AE:EG):E( ki J [824]=ﬁ[2k]
nt

off m

The last equality uses eqn 12.32 for two equal masses, as in Exercise 8.12(b).

12
i ()x (1177 N m™) __—
=(l. 1074 =(3.14x10-2]
AE =(1.055 x 10 JS)><[(16_00)><(I.6605><10‘27 kg) .

The first excited-state wavefunction has the form

wvi=2Ny exp(—%yz) [8.30]

112
where N, is a collection of constants and y = x (%J . To see if it satisfies the Schrddinger equation,

we apply the energy operator to this function

. K2 dhy
Hy =————% + tmolx?
Ve o e v
We need derivatives of y

142
dy dydy [me
dx  dydx [?] (2N} % (1 - ?) x exp(-1y?)
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2 2
and ccilxq‘l fiy [gﬁ} (?i ]X(le)X(—3y+y’)><exp(——y) [hw] (3= 3y

So, Hw=—-2—h;—x( P )x(y By + s mo’xiy
=—%ha)><(y2—3)><w+%hwyzly=%hww

Thus,  is a solution the Schrédinger equation with energy eigenvalue E = %ha).

The harmonic oscillator wavefunctions have the form

h 2
mikee

114
w,()= NH () exp(-p) with y=— and a=[ ] [8.27]

The exponential function approaches zero only as x approaches tee, so the nodes of the wavefunc-
tion are the nodes of the Hermite polynomials.
Hy{(y)=32)°~-1601° + 120y = 0 [Table 8.1]= 8y (4y* - 20y + 15)

S0, one solution is y = 0, which leads to x = 0. The other factor can be made into a quadratic equa-
tion by letting z = y*

~20z+15=0
o o bEyP-dac 2020 4x4xIS 52410
- 2a - 2x4 2

Evaluating the result numerically vields z = 0.92 or 4.08, so y = £0.96 or +2.02. Therefore

COMMENT. Numerical values could also be obtained graphically by plotting H(y).

The most probable displacements are the values of x that maximize 2. As noted in Exercise 8.6(b),
maxima in w? correspond to maxima and minima in y itself, so one can solve this exercise by finding

all points where % = (), From eqn 8.27 and Table 8.1, the wavefunction is

vi(x) = NyHy(p)exp (—3y?) with y=

Q=

2 1/4
,a=£"—k] , and Hy()=8)° 12y

I
S - B T4 - 12 exp(- 1) - @ - 1)y explh)) =0
Dividing through by constants and the exponential functions yields
—8y4+3612-12=0
Letting z = y? (and dividing through by —4) yields the quadratic eguation
-9z+3=0

~b + /b~ dac _ 9+, /0 _2x3x4 9+J_
2x2

2a

50 zZz=
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Evaluating the result numerically yields z = 4.14 or 0.363, so y ==%2.03 or £0.602, therefore
x = [0, £2.03a, or £0.602¢.

.17(b) The zero-point energy 1s

172
Ey= ~h0[8.26]= E[LJ 8.24]
2 2\ mg

e = 14.0031 x (1.6605 x 102 kg)/2 = 1.1626 x 10 kg

LOSAGX 107 [ 2295 N "
- =[23422x 1077
£ 2 8 (1.1626 x 10-26ng x

8.18(b) Orthogonality requires that

J v, dr=071.34
ifm=n.

Performing the integration

2r

2
J vy, dr= J Ne i Nei dgp = NZJ git-mie d g

0 0

If m#n, then

2n 4
- _a-p=o0

i(r—m)

o, dr = - M cioms
i(n — m)

0

Therefore, they are orthogonal.

8.19(b)  The energy levels of a particle on a ring are given by eqn 8.38a:

mif:  mif
21 2mr?’

m=0,%1,42, . ..

We set this quantity equal to the classical energy and solve for |m,|:

_mift kT
T 2mrt 2

_ r(kTm)”
I
{100 x 1072 m) x {(1.381 x 10-2 T K1) x (298 K) x (1.6726 x 10-2" kg)}2

1.0546 x 107 J s
-

Of course, m, must be an integer, so #; =12 is the closest energy level.

50

my|

COMMENT. The correspondence principle {Section 8.1) states that quantum systems behave classically in
the limit of large quantum numbers. One manifestation of classical behaviour is the smalliness of excitation
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energies compared to typical system energies, which makes system energies appear to take on a continuum
of values rather than a set of discrete values. The systern in this exercise is not nearly as classical as the one
described in Exercise 8.8(b), but it is much more classical than that of part (b} in Exercise 8.13(b}.

In Chapter 12, we will see that the results on rotational motion developed in this chapter apply
to rigid rotors of various shapes, not just to point masses. So, we can use the quantum expression
for angular momentum, J, = m,%, and set it equal to the classical expression, J. = o = mrinf2.
Solving for m, yields

- mrie  mriav _ (0.130 kg) x (15 x 102 m)* X & x 33 min~! 9 1 min
Y S 1.0546 x 107#J 5 60s

[sxi07]

In Chapter 12, we will see that the results on rotational motion developed in this chapter apply
to rigid rotors of various shapes, not just to point masses. The rotor in this case is not a disk-like
object (as in Exercise 8.20(b)), so we use results derived for rotation in three dimensions. The energy
levels are

M+

E E
21

[=0,1,2, ... [8.53]

The minimum energy to start it rotating is the minimum excitation energy, the energy to take it from
the motionless / =0 to the rotating /=1 state:

1x2x(1.0546 x 1073] 5)?
AE=E= =(3.62 x 107*#]
1 2 % (3.07 x 10-*5kg m?)

The energy levels are

RV
Y

E , 1=0,1,2,...[8.53]

So, the excitation energy is
(3x4-2x3)x(1.0546 x10-*J 5)? -
AE=E,— F= =]1.09 x 10-3]
2 1 2 % (3.07 x 10~ kg m?)

The energy levels are

G

i=0,1,2,...18.53
TR {8.53]

So, the mininmum energy allowed for this system is zero—but that corresponds to rest, not rotation.
So, the minimum energy of rotation occurs for the state that has /= 1. The angular momenturm in
that state is

J = {i(l + D5 [8.54a] = =24 % (10546 x 10T 5) = [1.49 x 10T s

COMMENT. Note that the moment of inertia does not enter into the resutt. Thus, the minirmum angular mementum
is the same for a molecule of CH, as for a molecule of Cy, as for a football,
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The cones are constructed as described in Section 8.7(d) and Figure 8.37(b) of the text; their edges
are of length {6(6 + 1)}'? = 6.48 and their projections are m, =+6, +5, ..., ~6. See Figure 8.1(a).

The vectors follow, in units of %. From the highest-pointing to the lowest-pointing vectors (Figure

8.1(b)), the values of my,are 6, 5,4, 3,2, 1,0,-1,-2, -3, -4, -5, and -6.

(a) ()

Y

Figure 8.1(2) & (b)

Solutions to problems

Solutions to numerical problems

@ = ki “2824
o [8.24]

Also, w=2av= Z%C = 2mcV

2,252
Are? P mm,

Therefore, k; = w?mg = 4n2c* Ve =
m + m,

We draw up the following table using isotope masses from the data section:

]H35C1 IHSIBI- IHIZTI IZCIGO 14N160
¥/m! 299000 265000 231000 217000 190400
107 m)/kg 1.6735 1.6735 1.6735 19.926 23.253
107 m,/kg 58.066 134.36 210.72 26.560 26.560
KI(Nm™") 516 412 314 1902 1595

Therefore, the order of stiffness, is|HI < HBr < HCl < NO < CQ|.
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I+ D Il + DA
E=—FT"[853|=—F— = uR?
Y; [8.53] R [ = uR?]
- I+ 1) % (1.055x 1037 s)? y 1 1
{2) x (1.6605 x 10~ kg) x (160 x 1012 m)? 1.008 * 126.90
Therefore,

E=II+1)x (1.3l x10%27T)
The energies may be expressed in terms of equivalent frequencies with

v= % =(1.509 x 108 F s ) E

Hence, the energies and equivalent frequencies are

! 0 1 2 3
102 EfT [o] 2.62 7.86 15.72
vIGHz 0 396 1188 2376

Mathematical software can animate the real part or the imaginary part of ¥{x,?), or you may wish
to have it display |¥{x,0}|>. Try a “pure’ state, that is, let c= 1 for one value of m;and 0 for all others.
This ‘packet’ does not spread; in fact, |¥(x,7)|* does not change, which is one reason why pure states
are sometimes called stationary states. Also, try making all the coefficients in the sum equal (all 1,
for example). Whatever your choice of coefficients, the pattern will repeat with a period T that
makes all the time-dependent factors equal to the exponential of (27i X an integer). Because the
energy 1s

E, =folv + %),
then, the exponent is equal to 2z1 x an integer when
i ifw(v + )t . 2 4
EE:M:memtcger, so T= ”1 = id
ki % ov+3) ol2v+l)

Thus, a component of the packet returns to its initial value when ¢ = 7 and at intervals of T there-

after. For a harmonic oscillator, T = hi is the period for the ground state and it is a period for any
@

dz . . . 4z N
other state (because 2 isan integral multiple of ————— for all positive integers v.
o

av+1)

The following figures show the evolution of a wavepacket composed of the first eleven harmonic
oscillator wavefunctions equally weighted. That is, we have set all coefficients equal to 1.

10
‘P(x,t) — 2 ly,,(x)e‘iE"””
v=0

Note: The resulting time-dependent wavefunction is not normalized; however, | ¥(x,?)[* is propor-
tional to the time-dependent probability of finding the oscillator ‘at’ {x,?).
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Figure 8.2(2) & (b)

Figure 8.2(a) is a three-dimensional plot of the evolution of |%(x,#)|? as a function of x and ¢, and
Figure 8.2(b) is a contour plot of the same function. In both plots, x is graphed in units of « (i.e. x
is really x/a) and ¢ in units of l/e (i.e. ¢ is really wr). Notice that this wavepacket is fairly localized.
At time 0 it is most likely found between x = 3 and 4. As the wavepacket moves, it hangs together
more or less, that is, its height and breadth do not change by much. Notice that the track repeats
itself after a period of ¢ (or rather w?)=2x.

() ;
(@ 6

54 54

4 4 -

34 34

2 4 2 A

14 1 1

' Rt
T T El T T 1 T I T h T T
-4 -2 0 2 4 -4 -2 0 2 4

X X

Figure 8.3(a) & (b)
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(@

Figure 8.3(c) & (d)}

Figures 8.3(a)—(d) show four snapshots of the wavepacket’s spatial distribution, at =0, 1,4, and 6,
during which time we can see that the peak moves across the graph and almost all the way back again.

Solutions to theoretical problems

The text defines the transmission probability and expresses it as the ratio of {A"[Y/| A]%, where the
coefficients 4 and 4’ are introduced in eqns 8.13 and 8.16. Eqns 8.17 and 8.18 list four equatiens
for the six unknown coefficients of the full wavefunction. Once we realize that we can set B’ to zero,
these equations in five unknowns are:

(a) A+B=C+D

(b) Ce + De™t=A'c*

(¢) ikA-kB=xC—-xD

(d) xCert—xDe" =ikA’e*l

We need 4’ in terms of A alone, which means we must eliminate B, C, and D. Notice that B appears only
in eqns (a) and (c). Solving these equations for B and setting the results equal to each other yields:

xC «xD
B=C+D-4d=A——+—
ik ik

Solve this equation for C:

2A+D[,i—1]
ik _ 24ik + D(x - ik)
B X+ 1k

C=

X
51
ik

Now, note that the desired 4" appears only in (b) and (d). Solve these for A" and set them equal:

—ikL

A’ = e R (Ce 4+ Dert)= —“’ik (Cet — De~)
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Solve the resulting equation for C, and set it equal to the previously obtained expression for C:

(,ﬁ + 1J De-t
ik _(x+ik)De?  24ik + D(x — ik)

C=
x—ik K+ ik

K
—-1
ik
Solve this resulting equation for D in terms of A4:
(x +ik)e ™ — (k—ik)? = 2dik
(x — k) (x + ik) Cx+ik’

2 Aik(xc — ik)
(xc + kY e — (x — ik)?

so D=

Substituting this expression back into an expression for C vields:

_ 24ik(x + ik)e
(x+ ke — (x — kP

Substituting for C and D in the expression for A” yields:

] ok,
A e (e De ) = ik)fif:f_ L+ e (e - )

A dikxe <te _ dikre it
A (c+ik)Pe—(k—iky (c+ik)ye L — (x—ik)eL

The transmission probability is:

poAF Hikoce-kL —difoxcei
[AR ~ i (c+ik)e™t — (x — ik)Pest )\ (x — ik)?e L — (k + ik)tert

The denominator is worth expanding separately in several steps. It is:

{x+ )2 — ik)e - (k- k)~ (x + )*+ (x — ) (x + ik)Pe??
=(x2+ k2){e? + e L) — (k- 2ixk — k2) — (2 + 2ixk — K?)?
= (k%4 2%k + kYY) (e + e ) — (26t — 12x2k2 + 2k%)
If the 12«2k* term were —4x%? instead, we could collect terms still further (completing the square),
but of course we must also account for the difference between those quantities, making the
denominator:
(c*+ 22k + k(™ — 2 + e ¥ 1) + 1667k = (x? + k2)2 (e — e7L)2 + 1 6x2k2
So the probability is:
= 16k%c?
- (2 + k2 (e — e <L ) + 16x2k?

We are almost there. To get to eqn 8.19a, we invert the expression:

T _ (K'2+ kZ)Z(CKL_ e—ncL)2+ I6K2k2 _l_ (K1+ kZ)Z(GxL_ e—xL)Z +1 -1
- 16k2k? B 16k2x2
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2 AV
Finally, we try to express % in terms of a ratio of energies, € = E/V. Eqgns 8.13 and 8.15
K

define k and k. The factors involving 2, #, and the mass cancel, leaving x =< (V' — E}Y? and « e E'?, s0:

(x2+ k2 [E+(WV-E} v 1
ki  E(V-~E) EV-E) el-g)’

which makes the transmission probability:

®L _. a—xLy2 !
| EEe™
16e(l — &}
If L > |, then the negative exponential is negligible compared to the positive, and the 1 inside the
parentheses is negligible compared to the exponential:

e\ 16e(l—¢)
(163(1—5)} e el - ek

We assume that the barrier begins at x =0 and extends in the positive x direction.

oo

@ P= j wide = f Nie2sdx =
barrier

0

N2
2ic

B - N2 | N?
— 2 — 2 —2Kx - = | m_——
o) (x) J 0 xyldx=N L xe2dx o7 |2

Question, [s N a normalization constant?

<EK>=J w*Eyy dx

. B d? B 42 fio d? ]
o= & gy S 0Ty et —
T om dxz[ | 2mo? dy? 2 dy? [x o mm]
which implies that
- ho| diy
Fuy=-=2
k¥ 7 (dyZ]

We then use v = NHe 2, and obtain
2 2
WY N ey = NUHY 2y H - H + 2 He "
dy? dy?
From Table 8.1
H”—2yH’ = —2vH,

VH,= yGH, o+ vH, )= 1G H,p+ 0+ DH) + oG H,+ (v - DH,;)

v+l
=5H,tv(v-DH, ,+ v+ DH,
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Hence, i =N|i1H .+ -DH, - +—1 H, e
t] ]y2 2 v+2 I)(l) ) -2 v 2 v <
T'herefore,

(Ex)=N? (—%UJ J H, {%sz +u(v-1H, ,— (v + %]Hv}e}'zdx [dx = ady]

=aN? (—%hm){O +0 - (v + 3)="22*01} [Hermite polynomials orthogonal]

= l{v+%}‘zw [NZ—;, Example 8.3:|

2 YT ant22ep

A N
P8.14 (a) 0= L (E] sin[—}:—]x(zJ sin(Tde = (IJL xsin? ax dx [a = nfn}
(2 y x* xsin2ax  cos2ax L_ 2 N r
L 4 da gaz ] - L 4
[by symmetry also]
L 5 5
(x2)=£ x?sinfax dx = 2 w| X _ »_ 1 Sinzax_XCOSthx
L L 6 4a 8a® dq?
3 3
NEANE NN R
L 6  4rin? 3 a2

7
)
12 2z%°

{py=0[by symmetry, also see Exercise 8.3]

L

0

nZhZ PZ .
(Pt = Ve [from E = p also Exercise 8.3(b)]
Iy
w22\ [ nh
Ap= =12
P=\ar ] 2L

172 142
wh (11 nh 1 n
Appx =" L - Sy L
PAX=AL (12 271:2an 2,/3( 24;:2;12} 2

{(b) {x)=0][8.32, or by symmetryj

1z
and {(x¥)= (u + %) b {%) [8.32]= [p + %J X (ﬁ] [8.24]
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N A 12
so Ax=l§jv+—-|—
{[ 2]wm}

{p) =0 [by symmetry, or by noting that the integrand is an odd function of x]

and {p*)=2m(Ex)=(2m) X [%J X (v + %J x Fw [Problem 8.12]

12
50 Ap= {(v + -;—Jﬁcom}

Aprz(v-é-lin 2 z
2 2

COMMENT. Both results show a consistency with the uncertainty principle in the form AphAqg 2 gas given in

Section 7.6, egn 7.39%a.

P8.16 The turning points in terms of the displacement x are

12 2 1 h 1z 112
Xp= J_r[%EJ = J_r[fszﬁJ = i((—f%},)ﬂ [8.24] = £(2v + )2 [8.27]

In terms of the dimensionless variable y = x/a, y, = £(2v + 1)¥2.

The probability of extension beyond one classical turning point for 2 harmonic oscillator with
quantum number v is

o

- - 1
F,= J widx =aN; J " {H,(y)Perdy= WJ {H,(y)}erdy

1yl (2v+1) (2u41)?

This expression can be evaluated for an arbitrary integer v. Mathematical software packages such
as Maple, Mathcad, and Mathernatica have the Hermite polynomials built in, so the above expression
can be entered in a relatively straightforward manner. Here is what it looks like in Mathcad:

v=0.40" _

N2(v) = 11

The table of results is

v 0 1 2 3 4 5 6 7 8 9 10
Pw)% 7.90 561 479 431 398 373 3.54 338 325 314 3.04

where P(v) is expressed as a percentage (i.e. as P(v)/100).
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The points are plotted (as probabilities, not percentages) in Figure 8.4.

0.08

0.06

0.05

0.04 +

P

0.03 +

0.02 H

0.01 ~

0 f ; : :
0 2 4 6 8 10

Figure 8.4

COMMENT. P{v) decreases with increasing v, albeit very slowly after the first few states. According to the
correspondence principle, the quantum result reduces to the classical resuit in the limit of very high quantum
numbers. 50, the probability of finding a displacement beyond the classical turning point must vanish in the
limit of very high v.

P8.18 As expressed in the problem, the potential energy function assumes that ¢ is defined as we would
expect; that is, ¢ = 0 corresponds to an eclipsed conformation. Thus, ¢ = 0 is #ot a stable equilibrium
point, and small displacements from this point are not harmonic; in fact, ¢ = 0 is a position of
unstable equilibrium, and small displacements from it would grow larger. We must express the
potential energy in terms of displacements from a stable equilibrium position. One such equilib-
rium position is the staggered conformation directly opposite ¢ = 0, namely ¢ = 7. So, let the dis-
placement x = ¢ — x. In terms of x, the potential energy function is ¥'=—-¥, cos 3x. Conventionally,
the potential energy in harmonic motion is measured with respect to that stable equilibrium posi-
tion. Note that the potential energy at the stable equilibrium position is V' =—V,. We can redefine
the potential energy function to measure energy relative to the stable equilibrium by letting

V'=Vy+ V=V,—- Fycos3x= V(1 —cos 3x).

Use the first two terms of the Taylor series expansion of cosine:

3x)? M,
V' =Vy(l-cos3x) =¥, 1—1+ﬂ =Ly
2 2
The Schrédinger equation becomes
K? g* ¥ )
——?——q:- + 9—0'.7{2')(! = FEy [8.40 with a non-zero potential energy]
2Fax* 2

This has the form of the Schrodinger equation for the harmonic oscillator wavefunction (eqn 8.23).
The difference in adjacent energy levels is:

172
E, - E,=hw[8.25], where w= (gjﬁ} [adapting 8.24]
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If the displacements are sufficiently large, the potential energy does not rise as rapidly with the
angle as would a harmonic potential (1.e. the cosine potential energy is not well approximated by the
first few terms of its expansion). Each successive energy level would become lower than that of a
harmonic oscillator, so the energy levels would become progressively closer together.

TV .
© x*. Treat this as a

. . . .2
Question. The next term in the Taylor series for the potential energy is —

perturbation to the harmonic oscillator wavefunction and compute the first-order correction to the
energy.
e2

V=- -1[9.4wich=1]=axf’ withb=-1[x—r]
dgey ¥

Since 2{Ey)=H{V} [virial theorem, 8.35] = (V") [virial theorem, 8.35]

Therefore, (Ey )= —%(V}

The elliptical ring to which the particle is confined is defined by the set of all points that obey a

certain equation. In Cartesian coordinates, that equation is
x2 yZ

a72+A5;:1

as you may remember from analytical geometry. An ellipse is similar to a circle, and an appropriate
change of variable can transform the ellipse of this problem into a circle. That change of variable is
most conveniently described in terms of new Cartesian coordinates (X,Y") where

X=x and Y=ay/b

In this new coordinate system, the equation for the ellipse becomes:
x2 yz X2 YZ ) 2 2
a_Z+F=1 = ?-F-&?:l = X*+Y - as,

which we recognize as the equation of a circle of radius a centered at the origin of our (X,Y) system.
The text found the eigenfunctions and eigenvalues for a particle on a circular ring by transforming
from Cartesian coordinates to plane polar coordinates. Consider plane polar coordinates (R,®)
refated in the usual way to (X,Y):

X=Rcos® and Y=Rsin®d

In this coordinate system, we can simply quote the results obtained in the text. The energy levels are

mii
E=——38.
Y [8.38a]

where the moment of inertia is the mass of the particle times the radius of the circular ring
I=md®
The eigenfunctions are

eim;ql

W [8.38b]
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It is customary to express results in terms of the original coordinate system, so express ® in the
wavefunction in terms first of X'and ¥, and then substitute the original coordinates:

Y
—=tan®, so ®=tan’ 1 =tan™ @
X X bx

Call the integral I

4 2r ] 2z
I= [ J Yi.Y,;sin6ddde = [6—” X [EM sin"’BsianBJ d¢ [Table 8.2]
ia

0 4 0 0

Integration over d¢ yields a factor of 2x. Noting that sin @ d& =d cos €, and that sin* 6 =1 —cos? 8,
the integral becomes

1
o -

Letting x = cos 8 and expanding the integrand, we have

1 1
I= %J (1-3x4+ 3x*- x%)dx = %(x -+ ix - 2x7)

35 32
=5 % 35~

-1

82 aZ al
= —+—[Table 7.1
ox? * ay? - oz? [Table 7.1]

2

»
@f =—a?cosaxcosbycoscz = —a*f

aZ a?.
L e
ayZ f f ayZ

so £ is an eigenfunction with eigenvalue .

On making the operator substitutions

Similarly,

r=-¢f

_Bo 4, 00
I P S

into f. we find

j_B 9 _ 9
il oy yax

4. &9 + I + z29 [chain rule of partial differentiation]
op dgox Ipdy dfodz

—aﬁ = i(rsin@cosq)) =—rsinfsing = -y

op o0

But
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g—:;=§a—(rsin93in¢)=rsin9c:os¢=x
oz
-0
¢
d d ]
Thus, —=—-p—+x—
%R

joho_ 9
ide d¢
P8.30 (a)} Suppose that a particle moves classically at the constant speed v. It starts at x=0at =0 and
atz=risatpositionx=L.v=—and x=ut.
T
1 T T T L 2
(x>=—J xdt=l[ wdt=£J. rde=2p =~li=v—r=
), ) ), 27 |, 2 2 2
T 2 {7 2 |F 2 2
(x2)=lj xzdf=v—f pa=lp| XL
) 7 ) It |, 3 3
L
so  (x)i= 3]7

nrx

12
o y,= (%J sin[T] for0 < x < L [8.4b]

‘ 2 (* HIX
{x}, = J vExy,dx = —J xsin?l —— [dx
x=0 L ¢ L

x=L

. | 2nax 2nnx

2 xsin cos| ——
=71x L L 2 _
4 Anr/L) 8um/LY || o LL4) |2

=0

This agrees with the classical result for all values of ».
£ 2 [t HITX
1y — * 2y dx = — 2gin?| 222 |4
{x),= J wixty, dx LL_ux sin ( 7 J x
2nmx
xcos
1 ] . [Zmrx}_ L

4(mr."L) T8y )L 8(nlL)?

t-«im

x
6

x=0

_e_ ¢ o 1
AN S(mr/L)Z 3 AnmalLy
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. 2
0 (x2)2= L 1
8 3 Ama/Ly

This agrees with the classical result in the limit of large quantum numbers:

ﬁm(xz)gz=_f[‘_

o U2

Solutions to applications

The rate of tunnelling is proportional to the transmission probability, so a ratio of tunnelling rates
is equal to the corresponding ratic of transmission probabilities {given in eqn 8.19a). The desired
factor is T,/T, where the subscripts denote the tunnelling distances in nanometres:

xln _ a—xla2
1+ ————-(B e
N - 16e(1 - )
TZ (exL] _ e—xL; )2 )
16&(1 — &)

(eng _ c“-’-z )2

=
162(1 — £)

klp _ a-xia)2
then £ = u — le(Ll—L1)= el(?lnm)(Z.O—l.B}nm: 1.2 % 106
T‘z (em'_] _ B—KLI )2

That is, the tunnelling rate increases about a million-fold.

Note: If the first approximation does not hold, we need more information, namely £ = E/V. If the
first approximation is valid, then the second is also likely to be valid, namely that the negative expo-
nential is negligible compared to the positive one.

Assuming that one can identify the CO peak in the infrared spectrum of the CO-myoglobin com-
plex, taking infrared spectra of each of the isotopic variants of CO-myoglobin complexes can show
which atom binds to the haem group and determine the C=0 force constant. Compare isotopic
variants to '2C'%Q as the standard; when an isotope changes but the vibrational frequency does not,
then the atom whose isotope was varied is the atom that binds to the haem. See the table below, which
includes predictions of the wavenumber of all isotopic variants compared to that of ¥ ("*C0).
(As usual, the better the experimental results agree with the whole set of predictions, the more con-
fidence one would have with the conclusion.)}

Wavenumber for isotopic variant If O binds If C binds
F12C10) = v(2CISO)t (16/18)25(12C1$0)
g(lsclSO) = (12/13)”29(12C160) g(IZCusO)T
wBCBO) = (12/13)"25(12C0) (16/18}25(12C1%Q)

+That is, no change compared to the standard.
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The wavenumber is related to the force constant as follows:

172
k,
w=2rcV = (——fJ , $0 ke=m(2rc)?
m

Hence, k= (mim)(1.66 x 10-7 kg)[(27)(2.998 x 10 cm s1)#(2CO)R,
and  ki/(kg s) = (5.89 x 10-)(mim,)[#(2C150)em' T

Here, mtis the mass of the atom that is not bound in atomic mass units, L.e. 12m, if O is bound and
16m,, if C is bound. (Of course, one can compute k; from any of the isotopic variants, and take &;
to be a mean derived from all the relevant data.)

First, let f=n/N, therefore fis the fraction of the totally stretched chain represented by the end-to-
end distance.

_ kT (N+n)_ kT [(N(1+)) KT {1+ f
F==y 1“( —n] ln(N(l—f)] o h{l—fJ

- _% (In(1+ f) —In(1 - £

When n <« N, then f < 1, and the natural log can be expanded: In(l + f) = fand In(1 — f} = —f.
Therefore,

L
[f = v -

In the last step, we note that the disiance x between ends is equal to u/, so n = x/I. This 1s a Hooke’s
law force with force constant KT/N/2.

The root mean square displacement is (x?}'. For a harmonic oscillator

2 12
<x2>:(v+%]x(n:’k] [8.32]

Therefore, putting in the appropriate values for the ground state (v =0) of this model

W L (o NeY wm (N
<x>-5><(m k_Tj 2 mkf]

1/2 Ha
il N
d 2yz | 12 -
and {(x?) (2] x(kaJ

(a) In the sphere, the Schrddinger equation is

2 2
_r (a_ EaiJrlAZJw Ey [8.49 and 8.51a]
F or

where A? is an operator that contains derivatives with respect to & and ¢ only.
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Let  w(r,6,0)=u(*}Y(6,9)

Substituting into the Schrédinger equation gives

2 2.
F (P D )y
2m\ ot r or

Divide both sides by u Y-

2
__(18 X LAZYJ E

2mluort wurodr ¥r?

The first two terms in parentheses depend only on r, but the last one depends on both r and angles;
however, multiplying both sides of the equation by 2 will effect the desired separation:

i (:8— Lo, lAzYJ Er?

2m\ u o u or

Put all of the terms involving angles on the right-hand side and the terms involving distance on the
left:

AY

2 (2 3
_h_[r Fu 2rau) Erie 4

2m ?87 u ar 2mY

Note that the right side depends only on 6 and ¢, while the left side depends only on . The two sides
can be equal to each other for all ».8, and ¢ only if they are both equal to a constant. Call that

2
constant _Ri+D (with / as yet undefined) and we have, from the right side of the equation:
144
A Bi(l+1D
— _Ay=-277 Y =l + 1Y
2mYAY T so A KI+1)

From the left side of the equation, we have

_E{ri Fu +ga_uJ_Er2:_rzl:(z+1)

2ml u o u or 2m

After multiplying both sides by u/r? and rearranging, we get the desired radial equation

_ﬁ 0%u %% +f11([+1)
or’ ror

2mr?
Thus, the assumption that the wavefunction can be written as a product of functions is a valid one,

for we can find separate differential equations for the assumed factors. That is what it means for a
partial differential equation to be separable.

{b) The radial equation with /= 0 can be rearranged to read:

Fu +2%__2mEu
ot ror R
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Form the following derivatives of the proposed solution:

ou _ (2R)" cos(nar/R)( nm | sin(nar/R)
¥ R ¥

r

o*u B
and i (2rR) ”2{

_sin(mrr/R) nx Z_ZCOS(?’IJU‘I'R) nm +23in(m'cr/R)
r R r? R ¥

Substituting into the left side of the rearranged radial equation yields

. 2 )
(2zR) _sin(ur/R)( pm ) 2c08(nar/R)( nx ) 2sin(nar/R)
r R r2 R #3
+(2rR) 2 2cos(nrr/R)( nr | _ Zsin(nzr/R)
r? R 3

——QrRY2 sin{prr{R) nm 2__ nx Zu
ST ; R)T\R

Acting on the proposed soluticn by taking the prescribed derivatives yields the function back multi-
plied by a constant, so the proposed solution is in fact a solution.

{c) Comparing this result to the right side of the rearranged radial equation gives an equation for
the energy

m) _mE o _(m) B _ ni B Y
R| IR 2m 2mR*\ 2z BmR?
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Atomic structure and
atomic spectra

D9.2

D9.4

D9.6

Answers to discussion questions

The Schrédinger equation for the hydrogen atom is a six-dimensional partial differential equation,
three dimensions for each particle in the atom. One cannot directly solve a multidimensional dif-
ferential equation; it must be broken down inte one-dimensional equations. This is the separation
of variables procedure. The choice of coordinates is critical in this process. The separation of the
Schrodinger equation can be accomplished in & set of coordinates that are natural to the systemn,
but not in others. These natural coordinates are those directly related to the description of the
motion of the atom. The atom as a whole (centre of mass) can move from point to point in three-
dimensional space. The natural coordinates for this kind of motion are the Cartesian coordinates
of a point in space. The internal motion of the electron with respect to the proton is most naturally
described with spherical polar coordinates. So, the six-dimensional Schrodinger equation is first
separated into two three-dimensional equations, one for the motion of the centre of mass, the other
for the internal motion. The separation of the centre of mass equation and its solution is fully dis-
cussed in Section 8.2. The equation for the internal motion is separable into three one-dimensional
equations, one in the angle ¢, another in the angle 6, and a third in the distance r. The solutions of
these three one-dimensional equations can be obtained by standard techniques and were already
well known long before the advent of quantum mechanics. Another choice of coordinates would
not have resulted in the separation of the Schrédinger equation just described. For the details of the
separation procedure, see Sections 9.1a and 8.7.

The selection rules are:
An=%142, ... Al=%1 Am=0z1

In a spectroscopic transition the atom emits or absorbs a photon. Photons have a spin angular
momentum of 1, therefore as a result of the transition the angular momentum of the electromag-
netic field has changed by £1%, The principle of the conservation of angular momentum then
requires that the angular momentum of the atom has undergone an equal and opposite change in
angular momentum, hence the selection rule on Al = £1. The principle quantum number r can
change by any amount since # does not directly relate to angular momentum. The selection rule on
Am, is harder to account for on the basis of these simple considerations alone. One has to evaluate
the transition dipole moment between the wavefunctions representing the initial and final states
involved in the transition. See Justification 9.4 for an example of this procedure.

See Section 9.4(d) of the text and any general chemistry book, for example Sections 1.10-1.13 of
P. Atkins and L. Jones, Chemical Principles, 2nd edn, W. H. Freeman, and Co., New York (2002).
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In the crudest form of the orbital approximation, the many-electron wavefunctions for atoms are
represented as a simple product of one-electron wavefunctions. At a somewhat more sophisticated
level, the many-electron wavefunctions are written as linear combinations of such simple product
functions that explicitly satisfy the Pauli exclusion principle. Relatively good one-electron functions
are generated by the Hartree—Fock self-consistent field method deseribed in Section 9.5. If we place
no restrictions on the form of the one-electron functions, we reach the Hartree—Fock limit, which
gives us the best value of the calculated energy within the orbital approximation. The orbital
approximation is based on the disregard of significant portions of the electron-electron interaction
terms in the many-electron Hamiltonian, so we cannot expect that it will be quantitatively accurate.
By abandoning the orbital approximation, we could in principle obtain essentially exact energies;
however, there are significant conceptual advantages to retaining the orbital approximation,
Increased accuracy can be obtained by reintroducing the neglected electron—electron interaction
terms and including their effects on the energies of the atom.

(1) Doppler broadening. This contribution to the linewidth is due to the Doppler effect, which shifts
the frequency of the radiation emitted or absorbed when the atoms or molecules involved are
moving towards or away from the detecting device. Molecules have a wide range of speeds in all
directions in a gas and the detected spectral line is the absorption or emission profile arising from
all the resulting Doppler shifts. As shown in Justification 9.8, the profile reflects the distribution of
molecular velocities parallel to the line of sight, which is a bell-shaped Gaussian curve.

(2) Lifetime broadening. The Doppler broadening is significant in gas-phase samples, but lifetime
broadening occurs in all states of matter. This kind of broadening is a quantum-mechanical effect
related to the uncertainty principle in the form of eqn 9.39 and is due to the finite lifetimes of the
states involved in the transition. When 1 is finite, the energy of the states is smeared out and hence
the transition frequency is broadened, as shown in the Brief Hlustration in Section 9.6(b).

(3) Pressure broadening or collisional broadening. The actual mechanism affecting the lifetime of
energy states depends on various processes, one of which is collisional deactivation and another is
spontaneous emission. Lowering the pressure can reduce the first of these contributions; the second
cannot be changed and results in a natural linewidth.

Doppler broadening and pressure broadening are expected to be of significance only in the gas
phase, but in condensed phases there are other kinds of interactions that exist because of the close-
ness of the species to each other that can result in the broadening of spectral lines.

Solutions to exercises

Eqn 9.1 implies that the shortest wavelength corresponds to #, = e, and the longest to n, = 6. Solve
eqn 9.1 for A:

- At ~ Uyt
Ry

(/5% = Voo?)!

S e oo = 22719 X107 em
cm

Shortest: A=

(U5 -6

= 109677 - = 7.460 x10-*cm
i

Longest: A
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.2(b)  For atoms A, eqn 9.9 may be rewritten in terms of the Rydberg constant R, as

. Z%heR..

- 2

AN

E = >
m.n n

n

where to within 0.01% the ratio u,/m, is unity. Eqn 9.1 can then be rewritten as

7=9x%109737 cm"(4—12 - 5%] =[2222x10*em™| 2=[4.500x10cm

1 -
ve 29978 x10%cm s —[6.662 x 1075
4,500 x 10~ cm

9.3(b)  The energy of the photon that struck the Xe atom goes into liberating the bound electron and giv-
ing it any kinetic energy it now possesses

Epion=1+ Eg. {=ionization energy

The energy of a photon is related to its frequency and wavelength

he
Ephoton =hy=—

A

and the kinetic energy of an electron is related to its mass and speed, s
E kinetic — %mesz

b

h h
So,—c=1+%mesz=:-lz—c——ms
A i

_ (6.626 x10"*J 5) x (2.998 x 10*m s~!)
B 584 x10°m

=(1.94 x 10-%J

=12.1eV

I

—1(9.11% 107 kg) x (1.79 x 10° m s~y

E9.4(b)  The degeneracy g of a hydrogenic atom with principal quantum number » is g =#*. The energy E of
hydrogenic atoms is

_ heZ?Ryiom

E= 5

p:
heZ’R,,..

g
s0 the degeneracy is

. hCZZRAtom
E
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he(2) Raom
a R e —1
(@) —4hcR,m
he(4) Ry
b) g=—"S Saem _fo
( ) 8 _i—hCRAmm

he(5)* Ratom
c =-———"20 =25
( ) £ _hCRAtom
Normalization requires
w R r2n
JIVIF dr=1 :I J J [N(2 - rlay)e "2 d¢ stnfd8ridr

040750

Zn
sinfde J de

0

1= NZJ e (2 — rlay2r2dr f

0 0

Integrating over angles yields

o=

l= 4JIN2J’ e (2 — play Y ridr

0

=4rN*? J' e (4 — drfay + r*fad)ridr = 4xN*(8ad)

a

[~y

e~ ridr = 6k*, and J ekt dr = 24Kk,

0

oo =

In the last step, we used J e ridr = 23, J

0 0

1

4y2ra3

The radial wavefunction is [Table 9.1]

so|N =

2Z . .
Ryy= A(6 - 2p+ 5p*)e™, where p = —r, and A is a collection of constants.
2y

(Note: p defined here is 3 X p as defined in Table 9.1.)
Differentiating with respect to p yields

dR;,

W - 0= A6~ 2p+5p?) X (—De #5+ (=2 + 2 p)de—+*
P

= Ae'P"s(——% +ip-3)
This is a quadratic equation

O0=ap*+bp+c, where a=—si4, b=g—, and ¢ =-3.
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The solution is

—b+ (B2 — dge)V?
95M315i3ﬁ

2a
2
sor= Ei—@ EQ.
2 2 Z

Numerically, this works out to p = 22.94 and 7.06, so r =|11.5a,/Z |and [3.53a,/Z|. Substituting

Z=1anda,=5.292x 10" m, r= and [187 pm].

The other maximum in the wavefunction is at . It is a physical maximum, but not a calculus

maximum: the first derivative of the wavefunction does not vanish there, so it cannot be found by
differentiation.

The radial distribution function varies as

4
P =drriy?= —rieie [9.17]
ey
The maximum value of P occurs at r = a, since
dp ( 2

4
—ocf 2r - —Je'z”"ﬂ =0 at r=g,and P, =—¢e?
dr a, ay

P falls to a fraction fof its maximum given by

2
ie-lh'an
a; r?
— 0 = a2a—Zrda
f= y) =—¢e
_ @)
—e2
&

and hence we must solve for r in

172
f_ = Le—rlao
e iy
(@) f=050

0.260 = — e~ solves to 7 = 2.08a,=:110 pm| and to r = 0.380g,=(20.1 pm
dy

(b)  f=0.75

0.319 = e solves to r = 1.63q,= and to r = 0.555¢,=129.4 pm

Iz

In each case the equation is solved numerically (or graphically) with readily available personal com-
puter software. The solutions above are easily checked by substitution into the equation for . The
radial distribution function is readily plotted and is shown in Figure 9.1.
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0.15 v

0.10

Pf{4nN?)

0.05

0.0 0.5 1.0 [.5 2.0 25

Figure 9.1

The complete radial wavefunction, R, ; is not given in Table 9.1, but by consulting other references,
such as Introduction to Quantum Mechanics by Pauling and Wilson, we learn that R, is propor-
tional to

2Zr

na,

(20-10p + p*)p, where p=

The radial nodes occur where the radial wavefunction vanishes, namely where
(20— 10p + p2)p = 0.

The zeros of this function occur at

=0,
and when

(20-10p+pH)=0, withroots p=2.764, and p=7.236

_dpay  4pa, 11.056a, 28.944a,
then r = 27 =3 5 =|5.528a, | and —s - 14.472a,

orr= 12.92 X 10'1°m} and '7.66 x 10710 mJ

The average kinetic energy is

()= [w*Expdr

12
. 1 z?
where w = N(2 - ple? with N = Z(Zmﬂ) .
0

(Note: p is defined here as in Table 9.1.)

2 3 2
Ee=-2 v dr=risinedrdpdy = D2 5n04pd6de
2m 73

In spherical polar coordinates, three of the derivatives in V2 are derivatives with respect to angles,
so those parts of V4 vanish. Thus,
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iy o P, 20 aw(ﬁ]l 22 (ﬂ}a_p{z)zx [az_m@]

T oo rg_a_p? o] paylop)or la ap*  pdp
oy Ly ampf2 -pl2 1 -pl2
35~ N@- P XN = NG p- D
azllf 1 1y —pi2 1 wpld 3 1 -pi2
apz :N(Ep——Z)x(—E)eP +3Ne P-=N(5—;p)e

2
= [5) Ne—(~4ip + 512 — pl4)

&
and
xr2r 2 52
<EK>=J J J N(z—p)e-ﬂ(ﬁ] x(iJ
eJodo a, 2m
3 3 2
x Ne-o(—dlp + 5/2 — pl4) 2 d¢sm;3dgp dp

The integrals over angles give a factor of 4z, so

(Ex)=4aN? [%) x (—%J [ (2= p)x (=4 +3p—3pP)pe?dp

an

The integral in this last expression works out to -2, using J erp"dp=n!forn=1,2, and 3, so

Q
. 2\ (a) () [rze
EN=4 = —|=
() ’{nmgjx(z]x[m) Sma

The average potential energy is

2 Z2p2
= J.w*der, where V=- Ze =- ¢
dne,r dreqayp

i 2,2 3.0
and (') = J J J N(zﬂp)evf?-[—fe JN(2—P)e'P’2———~a°p sinfdpdhds
odols Ry Z

The integrals over angles give a factor of 4, so

Z2gt ai ©
VY=4aN? — = 2 - p)perd
{V)=4n {4”50a0)x(23}J0( p)rperdp

o

The integral in this last expression works out to 2, using J erprdp=ntforn=1,2,3,and 4, so
0

3 252 3 2.2
(V}=4r:3223x—ze x%x@):—ze
way dreqay, Z 16me,a,
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The radial distribution function is defined as

P=Azrty? so P=4nr (Y Rs)

3
1 1 A
PS=4 2 — 2y a—
G = dar (4ﬂ]x[243]x[%} X (6~6p+ p*yer

2Zr 2Zr

where pJ' = here
na, 3ag

We want to find the most likely radius, so it would help to simplify the function by expressing it in
terms either of r or p, but not both. To find the most likely radius, we could set the derivative of P,
equal to zero, therefore we can collect all multiplicative constants together (including the factors of
a,/Z needed to turn the initial #? into p?) since they will eventually be divided into zero:

Py = C?pH6 - bp+ p'ye

Note that not all the extrema of P are maxima, some are minima, but all the extrema of (P,)"?
correspond to maxima of Py, so let us find the extrema of (P,)"%:

12
BT 529 o6 6p + p2)e"
dp dp

= Clp(6 —6p+ p*) X (=3} + (6~ 12p + 3p?)e "
0=C(6-15p+6p°—1pMe?? s0 12-30p+12p°—p*=0
Numerical solution of this cubic equation yields
p=049,2.79 and 8.72
corresponding to

r=|0.74a,/Z, 4.19a,/Z, and 13.084,/Z

COMMENT. If numerical methods are to be used to locate the roots of the equation that locates the extrema,
then graphical/numerical methods might as well be used to locate the maxima directly, that is, the student
may simply have & spreadsheet complte P, and examine or manipulate the spreadsheet 1o locate the
maxima.

The radial distribution function is defined as

P=rR(r¥ so B,=r(Ry),

[Po=C2x 94~ p pe”|

2Zr 27
where p = Er = ?r here.
0 0

We want to find the most likely radius, so it would help to simplify the function by expressing it in
terms either of r or p but not both. To find the most likely radius, we could set the derivative of P,
equal to zero, therefore we can collect all multiplicative constants together (including the
factors of a,/Z needed to turn the initial #* into p?) since they will eventually be divided into zero.
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Note that not all the extrema of P are maxima, some are minima, but all the extrema of (P; )" cor-
respond to maxima of P, so let us find the extrema of (P, )V

1/2
d(})Sp) — U — isz(4 _ p)e_p,lz
dp dp

=C[p(8 - 5p + p*/2)je""
s0 8-3p+p2=0
The numerical solution of this quadratic equation yields
p=2,and 8§
corresponding to
r=3a,/Z and 12a,/Z

P(r) is larger at 12g, than at 3a,, so the most probable position is{r =12a,/Z.

COMMENT. If numerical methods are to be used to locate the roots of the equation that locates the extrema,
then graphical/numerical methods might as welf be used to locate the maxima directly, that is, the student
may simply have a spreadsheet compute ~,, and examine or manipulate the spreadsheet to locate the
rmaxima.
Orbital angular momentum is

L2y = Rl + )

There are ! angular nodes and # ~ [ — 1 radial nodes.

(a) n=4,1=2, s0{L?)"> = 6"2}; =|2.45 x 10-3*J 5||2| angular nodes radial node
(b) n=2 1=1so{L2)V2 =22} =149 x 10" ] s||1l angular nodes @ radial nodes
(€) n=37=1 so(L)2=212f=|] 49 x 10-*] 5||1| angular node |1| radial node

See Figures 8.35 and 9.16 as well as Table 8.2 of the text. The number of angular nodes is the value
of the quantum number /, which for d orbitals is 2. Hence, each of the five d-orbitals has two angu-
lar nodes. To locate the angular nodes look for the values of 6 that make the wavefunction zero,

d.. orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The nodal planes are difficult to picture.

¢ =0.95532] is the angular node for both planes.

d,, orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes are the

|xz and yz planes i, and |9 = O| is the angular node for both planes.

d,. orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes are the

|xz and xy planes|, and Pi‘ =0and m’Z], respectively, are the angular nodes of these planes.

d,. orbital: sece eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes are the

yz and xy planes|, and |8 = 0 and #/2|, respectively, are the angular nodes of these planes.

d,._,. orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal
, respectively, and is the angular node of both of these planes.

[planes at¢ =x/4 and ¢ =3rn/4
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ES.14{b) (a) 5d —2sis an allowed transition, for A/ =-2 (Al mmust equal £1).

(by 5p—3sis , since Al =-1.

{c) Sp—3fis allowed, for A/ = +2 (Al must equal £1).

EQ.15(b) A source approaching an observer appears to be emitting light of frequency:

v
Vypproaching — ﬁ [9'37b]

Since v ocl, Ao = (1 - E]Z
y3 ¢

For the light to appear green the speed would have to be

s=f 1o 2o | 2 (2,908 x 108 m sy x | 1— o0 P} (6T X107 m s~
A 680 nm

or about 1.4 x 10 mph.

(Since 5 = ¢, the relativistic expression

. 12
[1+_]

Vobs = ¥ v
-

should really be used. It gives s = 6.02 x 10" m 7.

E9.16(b) The linewidth is related to the lifetime ¢ by

-1 Cm—]
&V = %ﬁ— [equation in Brief Hlustration in Section ¢.6(b)] so 7 = %:ﬁ——ps
/p: v

(a) We are given a frequency rather than a wavenumber

R -1 . 1 10 -1
Fovle, 5o T=(5310m )2>S[§ZX919086:_10 cm s )ps= 796 % 10 ps
5.31cm™
b =————ps=|2.14
® o= 20

E9.17(b) The linewidth is related to the lifetime 7 by

-1 -1
&V = 23lem” [equation in Brief illustration], so dv = G3lem e
t/ps T/ps

(a) If every collision is effective, then the lifetime s I/(1.0x 10° s )= 10X 10 s = 1.0Xx 10° ps

-1 10 -1
gy B31lem )’;(3'991%;‘10 M) _ | 6 10° s =160 MHz
U X
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(b) If only one collision in 10 is effective, then the lifetime is a factor of 10 greater, 1.0 x 10* ps
(5.31cm ™) x (2.998 x 10" cm s71) _
= =16x107s"!=|16 MHz
o e X107

Y. [Kr]5s4d!
Zr [Kr]5s4d?

Nb:  [Kr]5s%4d? or [Kr]5s'4d? (most probable}
Mo: [Kr]5s'4d’

Te:  [Kr]5s%4d’

Ru:  [Kr]3s%4dS or [Kr]5s'4d’ (most probable)
Rh: [Kr]5s'4d?

Pd:  [Kr]5s'4d® or [Kri4d!® (most probable)
Ag:  [Kr]5s'4d'®

Cd:  [Krj5s4d®

V1 152272p%3s23pf3d? = [Ar]3d

The only unpaired electrons are those in the 3d subshell. There are three, § = || and % ~-1= .
For S =1, M, =
Forl>0,j=1%+1/2,50

(@ I=1, so j=|l/20of 372
(by /=5, so j=|92o0rll2

Use the Clebsch—Gordan series in the form

ro|—

|

J=jith ith—1 Rl
Then, with j, =5 and j,=3

J=187,65432

The letter F indicates that the total orbital angular momentum quantum number L is 3; the super-
script 3 is the multiplicity of the term, 25 + 1, related to the spin quantum number § =1, and the
subscript 4 indicates the fotal angular momentum quantum number J.

(a) Possible values of S for four electrons in different orbitais are |2, 1, and 0; the multiplicity is

25 + 1, so multiplicities are |5, 3, and 1|, respectively.
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{b) Possible values of S for five electrons in different orbitals are |5/2, 3/2 and 1/2|; the multipli-
city is 25 + 1, so multiplicities are |6, 4, and 2|, respectively.

The coupling of a p electron (/=1) and a d electron (! = 2) gives rise to L = 3 (F), 2 (D}, and 1 (P)
terms. Possible values of S include 0 and 1. Possible values of J (using Russell-Saunders coupling)
are3,2,and 1 (§=0)and 4, 3,2, 1,and 0 (§=1). The term symbols are

TFy; 3Fy, °Fs, °Fi; 'Dy; *Da, °Dy, 'Dy; 'P, *Py, °R, 3P0|

Hund’s rules staie that the lowest energy level has maximum multiplicity. Consideration of spin—
orbit coupling says the lowest energy level has the lowest value of J(J+ 1) = L{L + 1) - 8(S+ 1). So,

the lowest energy level is .
(a) *DhasS=1and L=2,s50J =3, 2, and 1|are present. /=3 has | 7| states, with M, =0, £1, 2,

or £3; =2 has|5|states, with M, =0, 1, or £2; J= 1 has | 3| states, with M, =0, or £1.

(b) ‘Dhas §=32and L=2,30J= J'H2, 5/2,3/2 and llﬂ, are present. J = 7/2 has |8 possible
states, with M, = £7/2, £5/2, £3/2 or £1/2; J = 5/2 has @ possible states, with M, = £5/2 £3/2

or *1/2; J = 3/2 has |4| possible states, with M, =£3/2 or £1/2; J = 1/2 has |2 | possible states, with
M,=%1/2,

(¢) *GhasS=1/2and L=4,soJ=9/2and 7/2 are present. J = 9/2 had possible states, with
M,=19/2, +7/2, £5{2, +3/2 or £1/2, J= 7/2 has 8| possible states, with M, ==7/2, +5/2, £3/2 or £1/2.

Closed shells and subshells do not contribute to either L or S and thus are ignored in what
follows.

(a) Sc[Ar)3d4s:§=1 L=2,7=23 % sothetermsare .

(b) Br[Ar]3d¥¥4s?4p®. We treat the missing electron in the 4p subshell as equivalent to a single
‘electron’ with /=1, § =+. Hence, L=1,§ = 1, and J = 1, , so the terms are .

See eqn 9.46 for the selection rules. (a) LallowedL (b) |a]lowcd!, (c} | forbiddenJ.

Solutions to problems

Soiutions to numerical problems

All lines in the hydrogen spectrum fit the Rydberg formula:
1 L | -
== RH(E - —){91 with ¥ = ﬂ Ry=109 677 cm!

. . " 1 1 1
Find n, from the value of A,,,, which arises from the transition n, +1 9> n ———=— -
A’maxRH L (RI + 1)2

_ 2m+
nE(m+ 1)
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_mm+ 1)

Agan Ry = =(656.46 x 10 m) x (109 677 x 102 m~}}=7.20
2m+1

and hence #, = 2, as determined by trial and error substitution. Therefore, the transitions are given by

izj n,=3,4,5,6
n

1
g=t o 109677 em ) x| -
A 4 nl

The next line has », =7, and occurs at

.1 . 1 13
v—;—(109677cm ])X[Z_:@}_ 397.13nm

The energy required to ionize the atom is obtained by letting n; — es. Then,

Fu= ll = (109 677 cm™) x [i - 0) =27419cm™, or [340eV

em

(The answer, 3.40 eV, is the ionization energy of an H atom that is already in an excited state, with
n=2)

COMMENT. The series with 7, = 2 is the Balmer series.

The lowest possible value of #in 1s?zd! is 3, thus the series of D terms correspond to 1s73d, 1s%4d,
etc. Figure 9.2 is a description consistent with the data in the problem statement.

— 15254
lsl4d}2]:)
1s%3d

E| B| B
o8l e
1 I ¥
1s22p%P
E
=
o
=
=
1522528

Figure 9.2

If we assumme that the energies of the d orbitals are hydrogenic we may write

h 4
E(ls?nd!,?D) = — Cf
H

[n=3,4,5_.]

Then, for the °’[> — 2P transitions

\7:

2901 2 ’
l:M_E. AE:hv:E:hcﬁ,ﬁ;A_E
A he n? i he
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from which we can write

;'ﬁ'i’ (a)
61036 x 10 7em 9
2 12 ' ’
E(s2p, 2P 1 R _ 1R o
he A w2 146029 x107cm | 16
1 R
—+_
41323 x107cm 25 ©

(b) ~ (a) solves to R’ =109 886 cm !
Then, (a) - (c) solves to R"=109%10 cm™ ; Mean =109 920 cm™!
(b) - (c) solves to R’ =109 963 ¢cm™

The binding energies are therefore

Rr

E(1s23d,°D) =— 5 =-12213cm™

1

m —-12213em™ = -28 597 cm™!

E(1s?2p',?P)=—

1
670.78 x 107 cm

E(ls*2s',78) = —28597cm™ =—-43 505 cm™

Therefore, the ionization energy is
I{1s?25',28) =43 505cm™, or [5.39eV

The ground term is [Ar]ds' ®S;;, and the first excited term is [Ar]4p' *P, The latter has two levels, with
J=1+1=2 and J=1-1=1, which are split by spin-orbit coupling (Section 9.9), therefore

ascribe the transitions to [2P3,2 — 28,,;| and | Py, — 28, | (since both are allowed). For these values

of J, the splitting is equal to 34 (Example 9.5). Hence, since

(766.70 x 10~ em)™ — (770.11 x 10”7 cm)™ = 57.75 cm!

we can conclude that 4 =|38.50cm™|.

The Rydberg constant for positronium (Rp,) is given by

R-. R = lR‘,;, [9.15; also Problem 9.7; m( positron) = m_ ]

Rp.= = =
PUe 141 2
e

=54869cm™ [R=109737cm]

Hence,

1 1
V=—={54869 cm™ ——— | n=34..
v 2 { cm)x(4 nZJ n

=[7621cro 1], [10 288 em1|, [11522 em1|, ...
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The binding energy of Ps is
E=—heRy,, corresponding to {(-)54 869 cm™

The ionization energy is therefore 54 869 cm™', or|6.80 eV .

If we assume that the innermost electron is a hydrogen-like 1s orbital we may write
52.92
=20 [Example 9.3]= 2272 P 9420 pm
zZ 126
On the assumption that every collision deactivates the molecule, we may write

112
1 ET [ mm
I=—=|— ——
z |4op\ KT

For HCl, withm =36 u,

. (1381 x 10 BT K1) x (298 K) [_mx(36) x (1661 % 10 ke) "
(4) % (030 x 105 m?) x (1.013 x [0°Pa) ) | (1.381 x 102J K) x (298 K)

=23%x10%g
/]
SE = hév == [9.39]
T

The width of the collision-broadened line is therefore approximately

i 1
v~ — = ~[700 MHz
Y w2 x(23x100%)

The Doppler width is approximately 1.3 MHz (see the following calculation).

To calculate the Doppler width we need the relationship

1z
62 2(2kTIn2
== ;( J 9.38]
~ 2 [(22x(1.381x10) K~) x (298 K) x (In2) " 123710
12998 x 108 ms™ (mfa) x (1.6605 x 10~ kg) (mfu)?

For 'H¥CI, m = 361, so% =|2.1x10%

For HC, v(rotation) = 2 B¢ = (2) x (10.6 cm™) % {2.998 x 10Y cm s71)
= 6.4 x10Us™ or 6.4 x [01 Hz

Therefore, Sv{rotation) = (2.1 x 10-%) x (6.4 x 10" Hz) =
Since the collision width is proportional to p [§v « 1/7 and 7 = 1/p], the pressure must be reduced by
a factor of about ?10%— = 0.002 before Doppler broadening begins to dominate collision broadening.

Hence, the pressure must be reduced to below

(0.002) x (760 Torr) =



P9.14

230 INSTRUCTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

Solutions to theoretical problems

In each case we need to show that

f viy,dr=0
all space

w ' r2n
@) f J J vt drsindéde = 0
Q

oJa

12
v = Rio¥og }Yo,o = [l] [Table 8.2]
vy, = Ry ¥, 4

Since ¥, is a constant, the integral over the radial functions determines the orthogonality of the
functions.

J R yRy ot dr
0

‘Rl,O oe P2 = pZrieg |:p = _Z.E:l

y
Ry =< (2 - pf2)erit = [2 - _Z.J:.Je—zwzo i:p - &jl
a a

) - z
J Ry gRyor? dr ocJ e Zria (2 _ _iJe—erzaorz dr
0 0 Q)

= J DD Zriagp2 qp — J' Ee—(smzm‘)r: dr

(2] 20

Hence, the functions are orthogonal.

(b) We use the p, and p, orbitals in the form given in Section 9.2(g), eqn 9.22

ProcX, Py
Thus,

Heu 4o Fhos
J p.p,dxdydz OCJ [ J' xydxdydz
all space —ea J oo J —os
This is an integral of an odd function of x and ¥ over the entire range of variables from —e to +ec,

therefore the . More explicitly we may perform the integration using the orbitals in

the form (Section 9.2(g), eqn 9.22):
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p,=fr)sinBcos¢ p,=f(r)sinfsing
2z

sin? @ de J cos¢ sing d¢

¢

J p.p, r*drsing df d¢ =J’ f(r)zrzdrj
all space , ,

. . . . . . T
The first factor is non-zero since the radial functions are normalized. The second factor is 5 The

third factor is zero. Therefore, the product of the integrals is and the functions are orthogonal.

We use the p, and p, orbitals in the form (Section 9.2(g))

p,=rf(r)sinfcos¢ p,=rf(r)sinfsin ¢

and vse cos g = %(cia +e¢*)and sing = %(e" —¢"#) then
1

B,=y7f()Sn6 (9 +e#) p,=2-1f()sing (e —e¥)

[= E a¢ [Problem 8.28, Section 8.6, and eqn 8.46]

i 9

. #i . K .
{Lp.= Erf(r)sinﬂ el — Erf(r)sin@ e”*=ifp, # constant X p,

L rf{r)sinf e = —ikip_ + constant X p,

- b4 } )
lp,= Erf(r)smﬁ e+ T

Therefore, neither p, nor p, are eigenfunctions of L. However, |p, + ip , and p, — ip,, | are eigenfunctions:

p.+ip,=rf{r}sinfe?® p, —ip,=rf(r)sinfe®

since both e and e are eigenfunctions of /. with eigenvalues +4 and —h.

b 27H

l 12
w13=[——3] e [9.17]

The probability of the electron being within a sphere of radius " is

orx f2n
J [ J wir’ dr sinfdode
oJoJto

We set this equal to 0.90 and solve for #'. The integral over 6 and ¢ gives a factor of 4x, thus

4 ("

0.90=— j rie~ dr
ay ],

r r

aore—2rlao

—2FH r
Laf _ame
2 2 2

o 0

- o . a, r2 C-Zr.’an
rie~2r%adr is integrated by parts to yield — T —
0

2 a—2rlag 2.7 3 3
B G0 i AP .

2 2 4 4
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L 4 . .
Multiplying by — and factoring e >
ag

PRt ’ S \2 ,
0.90= _2[r_J - Z[L] —1le20 41 0r 2(f_J + 2("_] +1
& dy @) @&
= 0.10e% e

It is easiest to solve this numerically. It is seen that satisfies the above equation,

Mathematical software has powerful features for handling this type of problem. Plots are very

convenient to both make and use. Solve blocks can be used as functions. Both features are demon-
strated below using Mathcad.

Let z = r/a,: The probabillity; Prob(z);, that a 1s slectroris within a sphere of radius z is: L

z
- Probiz):= 4 ! e e 2x gl ' ‘
- e T LT S ‘Z~ " o t
Variables needed for plot: ; Nu=800., 1:=0.N | Zuy:=5. 2= ";" . .
M 1= . a t. ¥ 4 A I : ® o - - T N g - ’ ®
081 ‘

X-¥ Trace

Brobzp) {7 r 47 T e Yialue {-U.amw
00‘4.; ﬂ‘ . | ¥ Track Data Points l
5

02F

B A # ' < B
1 1 1 Il |
K 0‘b 5 T I T N * 4" o o
: A I & e % E RN . e ® A e
P L " T S N doe s

The plot indicatess that the pobibility oFfinding the electron in‘a sphere of radius z is sigmoidal. Tbe'trace
feature of Mathcad is used to firid that withz =2.66 [ = 2.66 a,) there is a 90.0% probability of finding the
glectron in the sphere. - : : '
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The following Mathcad document develops a function for calculating the radius for any desired
probability. The probability is presented to the function as an argument

z:=2 Estimate of z needed for computation within followihg Given/Find solve block for the function
Z{Probability).
Given

z

Probability := 4 J x2 ce 2% dx

0
z{Probability) ;= Find(z)

7.9} = 2.661

Zer 1

P9.20 The attractive Coulomb force =

2
dre, r

(angular momentum)®  (nf)?

The repulsive centrifugal force = - — [postulated]
m,r m,r
The two forces balance when
ze? X L_rr implying that r= Ao e,
e, 1 omrt’ plymg T ZeMm,
The total energy is

(angular momentumy Ze? 1 #%H? Ze?
- X—= - [postulated]
27 dze, v 2mar?  dmer

[ n*n? o Zelm, 2_ Ze? y Zelm, \ | Z%'m, ><1
“2m, drn’hle, 4ng, dnnihle, | | Raiein? T n

P9.22 Refer to Problems 9.8 and 9.20 and their solutions.

E=Eg+V =

=, [, = mass of proton]
m, +m,
mcmws 1,
== = mass of proton = m,
Hps ot 2 (72,05 s of proton = mr,]
hl
@=rn=1)= 4:2;" [9.11 and Problem 9.20]

. . . o . m,
To obtain ap, the radius of the first Bohr orbit of positronium, we replace m, with tp, = Tc, hence

ahe
- 2

e’m,
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The energy of the first Bohr orbit of positronium is

Eypy=—hcRp,= —-{;ERW [Problem 9.8]

Thas

Question. What modifications are required in these relationships when the finite mass of the hydro-
gen nucleus is recognized?

(a) The speed distribution in the molecular beam is related to the speed distribution within the
chamber by a factor of v cos @, as shown in Figure 9.3. Since an integration over all possible § must
be performed, the cos 8 factor may be absorbed into the constant of proportionality:

Freaml?) = Ctf cpamie(V),  Where C s to be determined

3 Molecular beam

Figure 9.3

By normalization over the possible beam speeds (0 < vpeyy <)

fbeam = Cy(yze—(muzlzk]"]) = Cvzem(mullzkr)

- " 1
duv=1=C e (mHUT dp = O e
J Jocamdv L_O” © v {2(m/2kT)2}

=0

C=2(mf2kT)

1 }_ L (mi2kTY _ 4T

2y 2 =C Sa-(mA2KT) dg) = - -
@ J v foan(V) 0 J ve v C{(mfzkf)3 (m2kTY  m

p=0
(B =202 2T ]

(by Ax= {_—Z#BLZ ]d—(B

4E, |dz

dB _4EAx _ 42KT)Ax _ 4kTAx _ 4(1.3807 x 102 T K1) x (1000 K) x (1.00 x 10~ m)
dz 2 l? 2ugl? pglr (9.27402 x 101 T-) x (50 x 102 m)?
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Solutions 1o applications

A stellar surface temperature of 3000—4000K (a ‘red star’) doesn’t have the energetic particles and
photons that are required for either the collisional or radiative excitation of a neutral hydrogen
atom. Atomic hydrogen affects neither the absorption nor the emission lines of red stars in the
absence of excitation. ‘Blue stars’ have surface temperature of 15 000-20 000K. Both the kinetic
energy and the black-body emissions display energies great enough to completely ionize hydrogen.
Lacking an electron, the remaining proton cannot affect absorption and emission lines either.

In contrast, a star with a surface temperature of 8000-10 000K has a temperature low enough to
avoid complete hydrogen ionization but high enough for black-body radiation to cause electronic
transitions of atomic hydrogen. Hydrogen spectral lines are intense for these stars.

Simple kinetic energy and radiation calculations confirm these assertions. For example, a plot of
black-body radiation against iv/I, where I is the ionization eneregy, is shown below (Figure 9.4).

6 T T T

500K

20000 K

Black-body radiation density
104 sm3 7

15000K

hvfl
Figure 9.4
It is clearly seen that at 25 000K a large fraction of the radiation is able to ionize the hydrogen (hv/T).

It is likely that at such high surface temperatures all hydrogen is ionized and, consequently, unable
to affect spectra.

Alternatively, consider the equilibrium between hydrogen atoms and their component charged
particles:

H=H"+e

The equilibrium constant is:
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According to Problem 9.29, the Doppler effect obeys

i
1-slc
Vinceding = Uf, Where [ = ( 7 slc}

This can be rearranged to yield:

1- 72
1+ f2

We are given wavelength data, so we use:

c

f=@=i
v Astar

The ratio is:

p=53420m 6 0560
706.5 nm

- 092602
== -0.0768 =230x107ms™!
YT 1092607 ¢ < s
The broadening of the line is due to local events (collisions) in the distant star. It is temperature
dependent and hence yields the surface temperature of the star. Eqn 9.38 relates the observed

linewidth to temperature:

172 2
aﬂ,obs=2_l(2len2] , SO T=[ﬂj M

¢ m 24 ) 2kIn2

7= (2998 x 10°m 57 ){61.8 x 10712 m) ’ (47.95u)(1.661 x 10 kg u)
B 2(654.2 x 107) 2(1.381 x 102 J K-1}in2

See Figure 9.5.

First three ionization energies of group 13

40
5 35 1
?B 30 h
§ 25 -
S 20 A b
(=}
E 15 A
2 10 -
'9‘ 5 -4 k\‘e— A g . 2 — ]3
0 T T T T
0 20 40 60 50 100

Atomic number, Z
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Trends:
(i) [, <L, < I because of decreased nuclear shielding as each successive electron is removed.

(i) Theionization energies of boron are much larger than those of the remaining group elements
because the valence shell of boron is very small and compact, with little nuclear shielding. The
boron atom is much smaller than the aluminium atom.

(iil) The ionization energies of Al, Ga, In, and T are comparable even though successive valence
shells are further from the nucleus because the ionization energy decrease expected from large
atomic radii is balanced by an increase in effective nuclear charge.



O Molecular structure

D10.2

D10.4

D10.6

Answers to discussion questions

Consider the case of the carbon atom. Mentally, we break the process of hybridization into two
major steps. The first is promotion, in which we imagine that one of the electrons in the 2s orbital
of carbon (2s22p?) is promoted to the empty 2p orbital giving the configuration 2s2p®. {(Note: This
promotion is imagirary; there is no actual promotion of an electron from a filled 2s orbital into an
empty 2p orbital.) In the second step we mathematically mix the four orbitals by way of the specific
linear combinations in eqn 10.3 corresponding to the sp® hybrid orbitals. The number of orbitals is
conserved. If we mix four unhybridized atomic orbitals we must end up with four hybrid orbitals.
In the construction of the sp? hybrids we start with the 2s orbital and two of the 2p orbitals, and
after mixing we end up with three sp? hybrid orbitals. In the sp case we start with the 2s orbital and
one of the 2p orbitals. The fustification for all of this is in a sense the first law of thermodynamics.
Energy is a state function and therefore its value is determined only by the final state of the system,
not by the path taken to achieve that state, and the path can even be imaginary.

See Section 10.1 and Justification 10.1 for details on spin pairing in the valence bond (VB) theory.
In the VB approach to H,, two expressions were contemplated for the part of the wavefunction that
depends on spatial coordinates, namely A(1)8(2) + A(2)B(1) and A(1)B(2)— A(2)B(1). The former
has the lower energy. The Pauli principle requires the total wavefunction to be antisymmetric with
respect to interchange of the electrons’ labels. The spin factor that goes with the lower-energy spa-
tial factor is e 1)B(2) — e(2)B(1). This spin wavefunction requires the two electrons to be in different
spin states (i.e. their spins are paired). This is a side-effect of the lower-energy spatial portion of the
wavefunction being symmetric with respect to interchange. This side-effect is true of simple VB
wavefunctions in general.

In the molecular orbital approach, spin pairing is common, but not ubiquitous. (The paramagnet-
ism of O,, which is correctly predicted by molecular orbital (MO) theory, is a well-known example
of unpaired spins.) Here, the spin-pairing comes from the non-degeneracy of ¢ molecular orbitals.
If two electrons occupy the same orbital (whether atomic or molecular), the Pauli principle requires
their spins to be different (i.e. paired). Valence electrons only occupy different orbitals when those
orbitals are degenerate. So in MO theory, we have unpaired electrons only if we have an odd num-
ber of electrons or if the highest occupied orbitals are = (or 8, etc.) MOs,

These are all terms originally associated with the Hiickel approximation used in the treatment of
conjugated x electron molecules, in which the # electrons are considered independent of the o elec-
trons. z-¢lectron binding energy is the sum of the energies of each x electron in the molecule. The
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delocalization energy is the difference in energy between the conjugated molecule with n double
bonds and the energy of n ethene molecules, each of which has one double bond. The #-bond
formation energy is the energy released when a x bond is formed. It is obtained from the total
w-electron binding energy by subtracting the contribution from the Coulomb integrals, .

See Section 10.7(a). A Hartree—Fock (HF) wavefunction for a closed-shell species that has N, electrons
is a Slater determinant (eqn 10.54) of N,/2 distinct one-electron molecular orbitals (MOs), y,,, each
doubly occupied. The HF equations [10.55] for the MOs are a set of one-electron Schrédinger equa-
tions. Each HF Hamiltonian contains a term for the kinetic energy of the electron, terms for the
attraction of the electron to each of the species’ nuclei, and terms for the repulsion of the electron
from each of the other electrons (both direct Coulombic repulsion and electron-exchange terms
that represent spin-correlation effects); see Further Information 10.1. The Coulomb and exchange
portions of each HF Hamiltonian need the MOs occupied by the other electrons of the species: in
other words, to solve for any MO, we need to know the other MOs. The HF method circumvents
thisdifficulty by usinginitial guesses for the MOsas part of the Hamiltonians, using the Hamiltonians
to find improved estimates of the MOs, and putting those MOs back into the Hamiltonians for
another round of solutions; this iterative procedure is followed until the MOs converge. Finally, the
form of the MOs is typically a linear combination of atomic orbitals (LCAO-MO, eqn 10.56).
Scolving for the MOs, then, amounts to finding the optimal coefficients of the LCAO-MOs by
means of the variation principle. The atomic orbitals in an LCAO-MO are called the basis set.
Selection of the basis set (i.e. how many functions and of what form) can influence the amount of
computational time needed Lo obtain an HF wavefunction as well as the quality of the result.

Solutions to exercises

Let 4 and B represent H1s atomic orbitals centred on the two different H nuclei. Labelling the two
different O muclei C and D, we let C, and C. represent two different O2p orbitals centered on O
mucleus C, etc. Then, the (unnormalized) spatial portion of wavefunction (for the bonding electrons
only) would be

¥ = {ADCLA2) + AQCD} X {C.(3)D.(4) + C.(4)D,(3)} x {B(5)D,(6) + B©6)D,(5)}]
H,-O; bond O-0 bond Hz-0Oy bond

Note that there are other possible correct answers. For example, the two O2p orbitals in the
0O-0 bond term must have the same orientation (e.g. p, orbitals by convention); however, the O2p
orbitals in the two different O—H bonds need not have the same orientation (although they must be
different from the orbitals in the O-O bond). Also, the numbering of the electrons need not be
exactly as shown here: two different electron labels must appear in each linear combination (i.e.
in each bond); within each bond, the two labels must be interchanged.

COMMENT. This simple VB function embadies two perfectly covalent O—H bonds and one O-0 bond. The
H-0-0 bond angles would be 90° because that is the angle that the O2p corbitals make.

Question. Write a VB spatial wavefunction using sp® hybrid orbitals on the oxygens.

Let s represent the Hls atomic orbital and p, an F2p orbital centered on the F nucleus. Then, the
spatial portion of wavefunction {for the bonding electrons only) would be

s(Dp2) + s(2)p (1)
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The spatial factor is symmetric with respect to interchange of the electrons’ labels, so the spin factor
must be antisymmetric:

o(DB(2) — e(2)B(1).

So, the total (unnormalized) wavefunction for this bond would be

v =[{5().Q2) + 5@)p.(D} x {a(DB(2) — a2)B()}]

COMMENT. This simple VB function embodies a perfectly covalent H-F bond.

Let A, B, and C represent appropriately oriented F2p atomic orbitals centred on the three different
F nuclei, and A,, #,, and 5, represent the three hybrid sp? orbitals on B. Then, the (unnormalized)
spatial portion of wavefunction (for the bonding electrons only) would be

y= l{A(l)hl(Z) + A (1)} x {B(3)h,(4) + B(4),(3); X {C(5)A,(6) + C(6)h3(5)}|

COMMENT. This simple VB functicn embadies three perfectly covaient B-F bonds involving the same B
nucleus.

QOuestion. This wavefunction does not include terms for the lone-pair electrons on the F atoms,
‘Would the basis used for this exercise treat the lone-pair orbitals equivalently? What kind of fluorine
orbitals weuld treat the lone pairs equivalently? Repeat this exercise using such a basis.

3 12 1 2 3 1z 1 172
hF“{gJ px_[EJ p, and h3=5—(EJ px_[EJ p,

We need to cvaluate

o o3 o o) 3

We assume that the basis atomic orbitals are normalized and mutually orthogonal. We expand the
integrand, noting that all cross terms integrate to zero (because the basis orbitals are orthogonal).
The remaining terms integrate to one, vielding

3 1 31
thi’h d'l' = Jszdf - EindT + EJPidT =] 5 + 5 = 0

Refer to Figure 10.24 of the text for H3 and 10.33 for the others. Place twoe of the valence electrons
in each orbital starting with the lowest-energy orbital, until all valence electrons are used up. Apply
Hund’s rule to the filling of degenerate orbitals.

(a) Hj; (Gelectrons)|loilol,b=0.5

(b) N, (20 electrons} ﬁc@loﬁlnﬁch, b= 3|

(©) 0, (12 electrons) 1621032031 Inl, b = 2|
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Refer to Figure 10.33 of the text. CiF is isoelectronic with F, and CS with N,; note, however, that
the 6 and & orbitals no longer have u or g symmetry, so they are simply labelled consecutively for
these molecules.

(2) CIF (14 clectrons) 162262361742

(b) CS (10 electrons) | 16?2621 n%30?

(©) O (13 electrons)|Io3 1032621 niIn}]

Decide whether the electron added or removed increases or decreases the bond order. The simplest
procedure is to decide whether the orbital involved (i.e. the one to which an electron is added or from
which one is taken) is a bonding or antibonding orbital. We can draw up the following table, which
denotes the orbital involved, using a * to denote antibonding orbitals:

N, NO O, G, F, CN
(a) AB- In¥ 2n* In} 20, 20¥ ic
Change in bond order -1/2 —1/2 -1/2 +1/2 -1/2 +1/2
(b) AR’ 20, 2r* Ix} Ix, In} 3o
Change in bond order -1/2 +1/2 +1/2 -1/2 +1/2 -172

(a) Therefore, |C, and CN| are stabilized (have lower energy) by anion formation.

(b) |NQ,0O,,and F,| are stabilized by cation formation; in each of these cases the bond order

increases.

Figure 10.1 here is based on Figure 10.32 of the text but with Cl orbitals lower than Br orbitals.

Br BrCl Cl

4p
3p

dg
3s

Figure 10.1
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For BrCl we insert 14 valence electrons. The bond order is decreased when BrCl is formed from
BrCl because an electron is added to an antibonding orbital, therefore BrCl will have a shorter
bond length than BrCl™.

Q. (11 electrons) loiloRollntln,  h=2.5
O; (12 electrons) leilo2ailniini  b=2
0, (13 electrons) loilo2o;lniln,  b=15
OJ (14 electrons) Iolle20lniln  h=1

Each electron added to O3 is added to an antibonding orbital, thus increasing the length. So, the
sequence |05, O,, 05, 07 | has progressively longer bonds.

Normalization requires

Juﬂ dr=1=N? [(WA + Ayy Y dr = N? J(w% Awgt+ 2Ay,yp)dr

Use the normalization of the basis functions and the definition of the overlap integral (eqn
10.18):

Jvﬂdr=l=N2(1+lz+2/lS)

1 142
Hence, N =|| ————
oo [1 F S+ A2 ]

We seek an orbital of the form aA + bB, where a and b are constants, which is erthogonal to the
orbital N(0.1454 + 0.844 B). Orthogonality requires

j (aA+bB)N(0.1454 + 0.844B)dr =0

N[{0.145a.4 + (0.145b + 0.844a)AB + 0.844bB*}d = 0

The integrals of squares of orbitals are 1 and the integral j AR dr is the overlap integral S (eqn
10.18), s0

_0.1455 + 0.844b

0=(0. 0.844 0.1455 +0.844)b, =
(0.145 + 0.8445)a +( + )b, so a 0145 £ 0.8445

This would make the orbitals orthogonal, but not necessarily normalized. If § =0, the expression
simplifies to

0844,
0.145

and the new orbital would be normalized if @ =0.844N and 5=-0.145N. That is

[N(0.8444 - 0.145B)]
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Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part
of it overcomes the binding energy (ionization energy) and the remainder is manifest as the kinetic
energy of the now freed electron,

Ephoton =TI+ Ekinetic
he (6.626 x 10T 5) x (2.998 x 108 m s7})
Eic=E -J=—-]= —-4.69eV
30 Fkinetc = Sphoton A (584 x 10 2 m) x (1.602 X 1097 eV-1) ©
=12119 eV
-
Epnoton = I+ Eyinenic [Exercise 10.12(b)]

The energy of He(I} photonsis 21.22 eV [Section 10.4(e)]

2
bR

I= Ephulon - Ek.im:lic = Epholon— 3

(9.11 x 10 kg) x {0.00501 x (2.998 x 108 m s )2

=21.226V -
H22e 2% (1602 x 1097 eV-1)

-[aey
-Eamxa]

We use results derived in Section 10.5(c) for heteronuclear molecules and no overlap of atomic
orbitals. The energies of the molecular orbitals are

5 172
Ey=| Gt ®xe |y @00 )y (2P [10.32¢]
2 2 Oo— Oy,

Taking the Coulomb integrals to be equal in magnitude and oppesite in sign to the ionization ener-
gies, we have

3 12
Ereyo[T136+C120) (~136+12.1Y ] f 2x(-12)
* 2 2 —13.6+12.1

The coefficients are given by eqn 10.38:

o= {I + [%J-} and ¢y = —(%J%

So, in the bonding orbital

2 ~1/2
_{I[M}} 087 and cxez_[M}xomm

-1.2 -1.2
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and in the antibonding orbital

2 -1/2
co=11 Z136+114 =048 and =~ 136+ 114%, (45— 087
-12 -1.2

Thus, the bonding and antibonding orbitals are, respectively,

v, =087+ 048y | and y =048y~ 0.87xx

We use results derived in Section 10.5(c) for heteronuclear molecules with overlap of atomic orbitals,

E10.15(b)
The energies of the molecular orbitals are

_ Qo+ ox,—2BS | {{@o+ ox.— 2BS) — M1 — S Neg0. — FE)} [10.32a]

E =
* 2(1-57) 2(1- 8?)
~13.6-12.1+2%x1.2x0.20
E.JeV =
= 2(1 - 0.20%)
L AC136 12142 % 1.2 % 0.20)* - 4(1 - 0.202)13.6 x 12.1 - 1.22))¥2
h 2(1- 0.20%)

Thus, taking the lower energy to be that of the bonding orbital, we have

The coefficients are given by eqns 10.36 and 10.34, respectively,

2 ~1/2
Co— E aq— E oy—- E

=<1 — | - = — | =2
<o {+(ﬁ—ESJ 2'5{,6— SJ} and ¢y, (,B—ESJCD

So, in the bonding orbital

w-E __ -136+148 o
B—ES ~12+148x020
co=(1 +0.66'—2x0.20x 0.66)2 =092 and cy,=-0.66x0.92=-0.61

In the antibonding orbital

w0-E __ -36+115 oo
B-ES -12+115x020

co=(1+18924+2x0.20x1.89)"2=043 and cy.=1.89x043=0.82

Thus, the bonding and antibonding orbitals are, respectively,

Viord =!0.9270— 0.61xy. | and y,.;=|043x0+ 082y,

E10.16{b) The moiecular orbitals of the fragments and the molecular oribitals that they form are shown in

Figure 10.2,




E10.17(b)

E10.18(b)
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Figure 10.2

In setting up the secular determinant we use the approximations of Section 10.6:

a—F B 0
B a—E B 1=0
0 B a—E

The atomic orbital basis consists of unhybridized 2p._ orbitals centred on each carbon atom. We
ignore overlap between the terminal carbon atoms because they are not neighbouring. To find the
energies, expand the determinants:

(@-E)x {(a - E)a~ E) - f% - Bx fla— E) =0,
0=(ox— E)x {(ct = EXa— E)— 28 = (& — E)a — E +2"B)a — E—228)

The roots {the orbital energies) are £ = &, & = 2'8. The binding energy is the sum of the orbital
energies of the occupied orbitals:

E,=2(a+2"f)+a=

COMMENT. The secular determinant and the expression for binding energy are formally the same as for linear
H, {Exercise 10.17(a)). The parameters o and  would have different values, however.

3
The structure of naphthalene is numbered to match the row and column 10 2 4
numbers shown in the secular determinant.
9 2 5
8 2]
1 2 3 4 5 6 7 8 9 10
l|e-E B 0 0 0 0 0 0 0 B
2 B ac—-FE B 0 0 0 B 0 0 ]
3 0 B a—E B 0 0 0 0 0 0
4 0 0 B a—F B 0 0 0 0 0
s 0 0 0 B a-E B 0 0 0 0
6 0 0 G 0] B a—E B 0 0 0
7 b Ji] 0 0 0 B a—FE B 0 0
8 0 0 o 0 0 0 B a—F B 0
9 0 0 0 0 0 0 0 B a—FE B
10 B 0 0 ¢ ¢ b 0 0 B a—FE




E10.19({b}

248 INSTRUCTOR’S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

The secuiar determinant can be diagonalized with the assistance of general-purpose mathematical
software. Alternatively, programs specifically designed for Hiickel calculations (such as the Simple
Huckel Molecular Orbital Theory Calculator at the University of Calgary, http://www.chem.
ucalgary.ca/SHMO/, or Hiickel software in Explorations in Physical Chemistry, 2nd edn, de Paula,
Walters, and Atkins, hitp://ebooks.bfwpub.com/explorations.php) can be used. Application of
such software yields 10 non-degenerate  orbitals, whose ‘energies’ are given in the following table
(What the table actually lists is (F — er)/f):

Level 1 2 3 4 5
(E-w)if 2.303 1.618 1.303 1.000 0.618
Level 6 7 g 9 10
(F—a)ig -0.618 —1.000 -1.303 -1.618 -2.303

As usual, we fill the orbitals starting from the lowest energy orbital, obeying the Pauli principle and
Hund’s rule.

(a) C,H; (11 electrons): E1122n23n24n251t26n‘i
E =2(a+2.3038) + 2(a + 1.6188) + 2(cx + 1.303B8) + 2(x + )
+2(0+0.6186) + (2~ 0.6188) =11 + 13.066]
(b) C\oH; (9 electrons): | 1n?2n23n24n257 |
E,=2(cc+2.3038) + 2(cx + 1.6188) + 2ex + 1.303B) + 2(ct + B)

+(a+0.6188) = 90 + 13.0668

The structure is numbered to match the row and column numbers shownin g 210 5
the determinants: Q
7
- 3
8 5
1 2 3 4 5 6 7 8 9 10
1| a—E B 0 0 0 0 0 0 o B
2 B P B 0 0 0 0 0 0 0
3 0 B o—E B 0 0 0 0 0 0
4 0 0 B a—FE B 0 0 0 0 B
5 0 0 0 B a—E B 0 0 0 0
6 0 0 0 0 B a—-F B 0 0 0
7 0 0 0 0 0 B a—F B 0 0
8 0 0 0 0 0 0 B oa—-FE B 0
9 0 0 0 0 0 0 0 B «—FE B
10 B 0 0 B o 0 0 0 B a—E

Azulene has 10 © electrons, which fill five orbitals. The energies of the filled orbitals are o + 2.3108,
o+ 1.6528, a + 1.3568, o + 0.8878, and & + 0.4778. Thus, the total r-electron binding energy is

10 + 13.3648|.
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Solutions to problems
Solutions to numerical problems

P10.2 Figure 10.3 is a sketch of an s orbital and a p orbital at various internuclear separations, beginning
with zero separation. From these crude sketches, we can anticipate how the overlap integral would
vary. At zero separation, the overlap would be zero by symmetry: the overlap of the s orbital with
the positive and negative parts of the p orbital are equal and opposite. As the s orbital overlaps the
positive lobe of the p orbital, the overlap integral increases. Eventually, however, the orbitals are
too far apart for any significant overlap.

Figure 10.3

The expression given in the text for the overlap integral between a hydrogenic 1s and 2p, orbital is
plotted in Figure 10.4. Note that it displays a maximum overlap not when the nuclei are coincident
(for there they are orthogenal) but at an intermediate separation.

0.6

Riay

Figure 10.4
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From the graph, we can see ihat maximum overlap occurs at about R = .
Question. Find the position of maximum overlap analytically by differentiating S and setting the

derivative equal to zero.

We obtain the electron densities from p, = w? and p. = w?, with w, and w_ as given in Section 10.3.
We then calculate with

112 y2
A= [L} ewm and y.= N{—I—J {e + greian} [10.9)
T

mad g

Measuring both r, and r from nucleus A, along the internuclear line, we have

112
w.= N, —1~w {g1Va £ g-ls-Riag )
dy

0

with z measured from A along the axis toward B. We use the normalization factors from
Example 10.1:

v (i)
21+ S)

We first calculate the overlap integral, S, at R =106 pm =2a,.

S= [1 +2+ %(2)2}:-2: 0.586[10.13a]

I 172 1 12
Then, N,= = =0.561
21+ 8) 2(1 + 0.586)

N_=[ L ]:[ L ):1.096
2-5)) |20-0586))

1 y
Hence, p.=XN i[—s]{c"*“ﬂ + ele-Rifap )2
zag

We evaluate the factors preceding the exponentials in w, and y_

1 172 ]_ 172 1
N |— | =0561x =
wa 7 % (52.9 pm)? 1216 pm*

172
Likewise, N_[L) 1

wal ) 621 pm™

1

W{e—lzh’% + e-lszp’ag }2

Then, p,.=

1
d = — —izlfag _ e-lz—Ri.’ao 2
and p (621 v fe }
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The ‘atomic’ density is

= l{WIJ(A)Z + WIS(B)Z} = l x L {e—ZrAIao + e'Z’Bfao}
2 2\ zad

g2l 4 a-2rlag
9.30 x 10° pm3
e—ZI:E,’ag + e—2!:—RIJ‘a0

= 7930 x 10° pm®

The difference density is 8p, =p. — p.
We draw up the following table with R = 106 pm and a,=52.9 pm:

z/pm -~100 —80 —60 -4) =20 0 20 40

P, x 107pm™3 0.20 0.42 0.90 1.92 4.09 8.72 5.27 3.88
p_x 107pm 0.44 0.94 2.01 4.27 9.11 19.40 6.17 0.85
px 107/pm= 0.25 0.53 1.13 241 5.15 10.93 547 3.26

Sp,x107pm® 005 —011 -023 -049 105 -220 -0.20 0.62
Sp_x 107/pm™ 0.19 0.41 0.87 186  3.96 8.47 070  -2.40

z/pm 60 80 100 120 140 160 180 200

p.x 107/pm’ 3.73 471 7.42 510 2.39 112 053 0.25
p x 107por> 0.25 402 1441 1134 532 2.50 1.17 0.55
p X 107/pm 3.01 4.58  8.88 6.40 3.00 1.41 0.66 0.31

dp, x 107pm 0.70 0.13 ~1.46 -1.29 —0.61 -0.29 -0.14 -0.06
dp_x 107/pm™ -2.76 -0.56 5.54 4.95 2.33 1.09 0.51 0.24

The densities are plotted in Figure 10.5(a) and the difference densities are plotted in Figure
10.5(b).

-100

Figure 10.5(z)
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ép x 107 pm?

z/pm
Figure 10.5(b)
P=|y]? dr = |y &7, §v=1.00 pm’
(a) From Problem 10.4
y(z=0)=p(z=0)=8.7x 107 pm

Therefore, the probability of finding the electron in the volume &7 at nucleus A is
P=86x107pm?x1.00 pm*=

(b) By symmetry (or by taking z = 106 pm), P = 8.6 x 10~ |.

(¢) From Figure 10.5(a), y2(3.R)=3.7x 107 pm™3, so P= .

Figure 10.6

{d) From Figure 10.6, the point referred to lies at 22.4 pm from A and 86.6 pm from B.

2241528 | 865529 (0,65 +0.19
1216 pm*? 1216 pm3?

wi=49x107pm2, so P=|49x107

For the antibonding orbital, we proceed similarly.

(a) wi(z=0)=194x107 pm™[Problem10.4], so P=
(b) By symmetry, P =

(© ¥iR)=0, so P=[0]

=6.98 x 10~*pm="~

Therefore, . =
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{d) We evaluate y_ at the point specified in Figure 10.6:

0.65-0.19
y. = 0652019 541« 10~ pm—>2
621 pm3?
w:=549x107pm~, so P=|55x107
P10.8  Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part

of that energy overcomes the binding energy of the electron (ionization energy) and the remainder

is manifest as the kinetic energy of the now freed electron.
Enoton = L+ Eviories 30 F= Epygion — Eiinesic

s0 the first three ionization energies are:

I =2121eV-11.01eV=(10.20eV
L=2121eV-823eV={1298¢V
and 5,=2121eV-522eV=|1599¢V

Figure 10.7 displays the energy level diagram.

0
F 3
& -1, =-10.20eV
2
3]
I,=-1298 ¢V
1, =-15.99 eV
Figure 10.7
2
2> 2" . .
P10.10 E,= on=12.. and y,=|=| sin| = |[Section 8.1]
8mi? L L

Two electrons occupy each level (by the Pauli principle), and so butadiene (in which there are four
7 electrons) has two electrons in y, and two electrons in y,:

= 3 ; sin x and = 2 Uzsin 2Lx
Y= I3 I3 V= I3 L

These orbitals are sketched in Figure 10.8(a).
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L4
Compared
with

with

Figure 10.8(a)

The minimum excitation energy is

hz
AE=E~E=5 —
B &%B

In CH=CH—CH=CH- CH=CH —CH=CH, there are eight = electrons to accommeodate, so the
HOMO will be y, and the LUMO y;. From the particle-in-a-box solutions
h? 9h?
Sm7 SmL*
_ (9) X (6.626 x 1073 ] s)?
(8) % (9.109 x 10~*' kg) x (1.12 x 10~ m)?
=43x10"77J

AE =E,~ E,= (25-16)

which corresponds to . The HOMO and LUMO are
17z
_[2 sin| 22X
Y I I
with =4 and 3, respectively; the two wavefunctions are sketched in Figure 10.8(b).

Ws
W

VAV

Figure 10.8(b)
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COMMENT. Ht follows that

he (8626107 Js) % (2.998 x 108 ms™)
A=—s= =46x107"m, or |[460nm
i B0 ]

The wavelength 460 nm corresponds 1o blue light; so the molecule is likely to appear in white light
because blue is subtracted.

(a) Inthe absence of numerical values for e and j, we express orbital energies as (E, — a)/f for the
purpose of comparison. Recall that & and B are negative, so the orbital with the greatest value of
(E,— &)/f has the lowest energy. Draw up the following table, evaluating

E —
E-a_, JZKE
B N

Energy (E, - o)/

Orbital, k C.H, C.H,
+4 ~2.000
+3 ~2.000 ~1.414
12 ~1.000 0

+1 1.000 1414
0 2.000 2.000

In each case, the lowest and highest energy levels are non-degenerate, while the other energy levels
are doubly degenerate. The degeneracy 1s clear for all energy levels except, perhaps, the highest:
each value of the quantum number k corresponds to a separate MO, and positive and negative
values of & therefore give rise to a pair of MOs of the same energy. This is not the case for the high-
est energy level, however, because there are only as many MOs as there were atomic orbitals (AOs)
input to the calculation, which is the same as the number of carbon atoms; having a doubly degenerate
top energy level would yield one extra MO.

(b) The total energy of the = electron system is the sum of the energies of occupied orbitals
weighted by the number of electrons that occupy them. In C;H,, each of the first three orbitals is
doubly occupied, but the second level (k =*1) is doubly degenerate, so

E.=2E,+2x2E=2(a+28cos0) + 4(0: + 2,6cos2?ﬂJ =6a + 88
The delocalization energy is the difference between this quantity and that of three isolated double
bonds:

Euoe= E,~ 6(c+ ) =60 + 86— 6(c+ ) = [28]
For linear hexatriene, E,;, = |0.9885], so benzene has considerably more delocalization energy

(assuming that § is similar in the two molecules). This extra stabilization is an example of the

special stability of compounds.
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{c) In CgHq, each of the first three orbitals is doubly occupied, but the second level (k = +1) is
doubly degenerate. The next level is also doubly degenerate, with a single electron occupying each
orbital. So, the energy 1s

E =2E,+2x2E +2x1E,
=2(a +2Bcos) + 4[0: + Zﬁcoszgf] + 2[0: + 2Bcos%]

=8c + 9.6578

The delocalization energy is the difference between this quantity and that of four isolated double
bonds:

Eqgoe = E,~8(c+ B) = 8a + 9.6578 - 8(c+ ) =[1.637p]

This delocalization energy is not much different from that of linear octatetracne (;1.5188|), so

cyclooctatetraene does not have much additional stabilization over the linear structure. Once again,
however, we do see that the delocalization energy stabilizes the = orbitals of the closed-ring con-
jugated systemn to a greater extent than what is observed in the open-chain conjugated system.
However, the benzene/hexatriene comparison shows a much greater stabilization than does the
cyclooctatetraene/octatetraene system. This is a demonstration of the Hiickel 4z + 2 rule, which
states that any planar, cyclic, conjugated system exhibits unusual aromatic stabilization if it con-
tains 4n + 2 = electrons, where # is an integer (but not a quantum number). Benzene with its 6 &
electrons has this aromatic stabilization, whereas cycloctatetraene with 8 « electrons doesn’t have

this unusual stabilization. We can say that it is , consistent with indicators of aroma-
ticity such as the Hackel 4# + 2 rule.

See Figure 10.9. In all of the molecules considered, the HOMO is bonding with respect to the
carbon atoms connected by double bonds, but antibonding with respect to the carbon atoms con-
nected by single bonds. (The bond lengths returned by the modelling software suggest that it makes
sense to talk about double bonds and single bonds. Despite the electron delocalization, the nominal
double bonds are consistently shorter than the nominal single bonds.) The LUMO had just the
opposite character, tending to weaken the C=C bonds but strengthen the C—C bonds. To arrive at
this conclusion, examine the nodal surfaces of the orbitals. An orbital has an antibonding effect on
atoms between which nodes occur, and it has a binding effect on atoms that lie within regions in
which the orbital does not change sign. The #* « & transition, then, would lengthen and weaken
the double bonds and shorten and strengthen the single bonds, bringing the different kinds of poly-
ene bonds closer to each other in length and strength. Since each molecule has more double bonds
than single bonds, there is an overall weakening of bonds. (See Figure 10.9.)




Figure 10.9

Solutions to theoretical problems

P10.16  The explicit form of the /i, sp? hybrid is

3 12 1 142
hy= - - = .[10.5
JRE) T g

MOLECULAR STRUCTURE
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The unhybridized orbitals are put together from the radial and angular functions listed in Tables 9.1
and 8.2:

3/2 vz 142 32
iz 1 1 VA
28 = RZOYO{) = 817[;] X (2 - p)e“”z x [5] = [EJ (;J (2 - p)f:_"’f2

1
2p,.= _ZlTRzl(Yl,u -Y,1){9.22]

3/2 172
1 1 ({Z 3 . ‘ .
=§'er ”[8_} sinf(-e™ - e™)

1z n
=[-321_n'] [%J peP2sinBcosg

i
2p,= 57 Rt + 111) 9:22)

. L (7 2 3\
! - 3 +1 —i
= g x 412 [;) pe [E} sinf(—e™*+ e™*)

1 12 7 2
=[E] [_Q_J pe“’”sinﬂsinqﬁ

2Zr  Zr
where p=—/—"=—
2a a

142 3
In forming the hybrid, pull out the factor of [%J (E] ¢™*2 common to each component:
n a

/2 32 %2 172
b= (551;} [%} e P2 {2 -p+ (%] psinfcos¢ — (%) psinesinq)}
32 vz e
—_ L _é e-—pl'z 2 + Ie} Msine _ 1
2x )i a 212

To find the angles at which &, has maximum amplitude, differentiate with respect to angles:

3f2
dh 1 Z [ psin@ .
La.j =0= (E] [;) e P’Z(—zm )(—3”2 sing — cosg)

¢ __ 1 g or ¢=5u/60r 11a/6 (150° or 330°).
COS¢ 31.'2

32 cosg — sing

Fvaluating the functions at these angles shows that S

sin# ~ | has a positive maxi- ‘

mum at ¢ = 112/6 and a negative minimum at 5x/6. Recall that the sign of an orbital or wavefunction
does not matter; the direction of maximum amplitude is the one where 4# is greatest. For this func-

tion, that corresponds to j112/6 (330, the positive maximum, because the terms that depend on
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angles then add to positive constants rather than diminish them. Differentiating with respect to 6
yields

32
oh, 1 )2 3 cosg ~sing
— == - || = ~pf2| T8 T F
P [32;:]{ p } pe [ Iz cos

s0 8 =x/2 (90°). Thus, the orbital has its maximum amplitude in the xy plane, as expected.

The LCAO-MOs are
w.=N.(4+£ B)[10.8]

with Ni= [Example 10.1]

21 8)
The Hamiltonian is

2 2 2 2
H:—h—Vz—e-l e 1+e

i1 B ho_h b
2m drgey 1, dme, ny  dag,

2m rn mn R

1
< 110.7}=~

. - e
where we have introduced the abbreviation j,= )

L,

Hy = Ey implies that

Jo Jo Jo
—— Vi — 2y — 2y + Sy = Ei
o YT YT VT RY S

Multiply through by w* (which is equal to v} and integrate using

) .
—;—Vu _h 4= E4
i T [4 and B are solutions for the H atom]
h? 7
-Z_wvp_-Lp-pB
2m [
Let’s work first with y:
Jo Jo Jo _
N, ly,| Eyd+ ExB-22B -2 4+22(4+B)|dr=E,
A s R

hence, Ey Jwidr + %’Jwidr _ joN+[w+(£ + i}d’c -E,
F,

A T
j B B A A

andso, Ey+ b _ joNiJ(A—_ +B—+ A—+ B-—Jdr =F,
R Fa I 'y s

B A
Now, use j, JA—d’c = j J'B_dt (by symmetry); call this integral (including the factor of j) k.
Ta 4

Similarly

Jo JAﬁdr = JBEdT (by symmetry); call this integral j.
Ta

s
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Putting all the terms together, we have
jO . _].g _] + k
Eg+—-N%x2 ky=E =FEy+<-—+—,
H R X (] + ) + gt R 1+ 8
which iseqn 10.12.
The analogous expression for E_is obtained by starting from
Jop_Jo . S _
N |y |EgqA-E,B+—B-—=A+—(A-B)|dt=E_
ry g R

Foliowing the same steps as above leads to

i
E=E+%2 172
R 1-8

which is eqn 10.15.

Differentiate eqn 10.30 with respect to one of the coefficients, say ¢,. (The steps would be identical
for ¢z.)

_ Ciat CRo + 2eacpf
e+ g+ 2eacyS

E

0E _ 2chma+2cB choa+chunt 2eacef

= — X (Zea+ 2epS)
dey, i+ ch+2c,08 (R4 i+ 2c,405)

Hence,

_ Heaan+cgf) 2ep+ 2¢58 —l2 Calin— CoE + ¢pff — cpSE
€i + i+ 2¢4S ex+ ¢h + 2ca658 ci+ e+ 2c,055

Define a parameter 8 by letting

28

O, — Qg

=tan26

1 6= %arctan( ]; thus,

oy — g

Note: a, — g, not the other way around as in the main text.

We are to prove that the solutions may alsc be expressed in terms of this parameter more simply as
E.=g,+ptan6 and E =op—ftané

If these latter expressions are true, then these expressions for £ must obey the secular determinant
equations. That is,

(an—E)og—E)-f=0 and (os—ENes—E)-f=0
Expanding the E, equation yields
0=(-ptan O)(ey — a, — fran b)) — F2 = tan’ O + (o, —op)f tan 6 — §°

Solving for tan 6 yields

) tno G BBV PF 4B apman ] 1+( 2 }2

2p? 28 Oy — Oy
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Purely for convenience, define ¢ = aBz_ﬁa" sotanf=ci1%,[1+ [lJ =ct e+ 1.
\J ¢

Expanding the E_equation yields

O=(a,~ap+ftanB)Btan f— F =R tan’ O+ (a, —az)ftan 6 — f*
the same equation as before, leading to the definition of tan 6 in eqn (2) above.
To see whether the definitions (1) and (2) are consistent (1.e. to see whether the 8 defined in equation

(1) is actually the 6 that appears in the expressions for the energies), we substitute expression (2) into
the trigonometric double-angle identity for tangent:

2tané 2(ci1,‘c1’-+1) Z(Ci‘]m)

tan26= i 7=
I—tan®6 1—(c¢\/;ﬁ) 1—(5212(:\/(:2‘+‘1+c2+1)
2(ci,;‘c2+1) -1 28

—2C(cicm)— ¢ a-a

This matches eqn (1), therefore the energies given in terms of tan 8 as defined in eqn (1) are
solutions of the secular determinant.

Finally, we must solve for the coefficients in the wavefunction. The coefficients of the wavefunction
can be obtained from eqns 10.36 and 10.34 (both with S=0):

1 i 1
= ! = =cosf

1+(QA_E+J2 ; 1+(_ﬁtan9}2 " (+an’e)  sech
B B

and ¢p= _[EA-;&]CA: —(_ﬁt;nelcosﬁ =siné

Thus, w,=Acos8+ Bsiné.

For the coefficients of E_, we will find it convenient to work with analogues of eqn 10.34 derived
from the second of the secular equations (10.27b), namely

€= _[an— EJcB and cp= ] —
b 1+[aB—ET
B

Substituting £_into the latter expression, we have

1 1 1
Cg= = = =cosé

ﬁtan@zm (I+tan®)?  secd
1
1 (552]]
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Btané

and cA=—( ]cosﬁ=—sin€

Thus, w,=-Asiné+ Bcosh.

P10.24  The Roothaan equations are FC = Sce or, writing the matrices explicitly,

(FAA FABJ (CAa CAbJ - [1 S) [CAA CAb) (Ea 0 J

Fon Fep/\Cma  Cmo S 1)\ cm/\0 &

Refer to eqn MB6.5 and Figure MB6.1(b) for matrix multiplication. Multiplying out the final two
matrices on the right (eg) turns the equations mto

{FAA FAB] (CAa CAbJ - [1 S) [EacAa EhcAbJ
¥ S S AN T S 1 j\&Cs Efm
Carrying out the remaining multiplications yields four equations, one for each component of the

matrices:

1,11 FuauCag+ Faptna=E€.6as + 86,05, (@s shown in the main text)
1,20 Faslap+ Fappn = E,Can + SELCH

2,1: FyaCa,+ Faplp, = SE.Ca, + E:Cp,

2,20 FpaCap+ Fpplo, = S€uCap + £uCab

Solutions to applications

P10.26 (a) The secular determinant for cyclic H; is

c—E B B
B a-E B |=0

B B a— E
Expanding the determinant yields:
_ple-E B |8 B | glE «-E|
@-EX 5 ok Plp a—E'HB‘ﬁ B [ 0

(- E)x{(@—EV-p}-B{Bla-E)-p} +B{F° - (- E)B} =0
(- EXa—E-Bla—E+f)-2p{ac-E-B)=0
(— E—B)o2-20E+af+ F2—BE-2p)=0

At this point, we have a factor linear in E, from which we find a root E= & — §, and a quadratic fac-
tor. One can put the quadratic factor in standard form, remembering that we are solving for E, or
one can attempt to factor it further, obtaining

O=(a—E-BAE~a+BKE—o-20)

Therefore, the desired roots are F= la — B (twice) and @ + 2 | The energy level diagram is shown in
Figure 10.10,
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Energy a-p

o+28

Figure 10.10

The binding energies are shown in the following table:

Species Number of ¢ Binding cnergy

I 2 2a+28) =2 +4B

H, 3 A +28)+{a—-B=3a+38
H, 4 a+28)+2a—-B)=4a+28

(b) Set up the following set of chemical reactions:

Hi(g) > 2H(g)+ H'(g) AH, =+849 k]I mol!
H'(g) + Hy(g) - Hi(g) AH,=1

Hy(g) — 2 H(g) AH, = {2(+217.97) — 0} kJ mol"!

AHy=AH,— AH, = {2(+217.97) — 849} kJ mol~' =[—413 kJ mol-!].

This is only slightly less than the binding energy of H, (435.94 kJ mol™)
() 20+48=-AH =-849 kfmol!

S0 f=—

%‘2‘", where AH, = +849 kJ mol!

263

Species Binding energy

H; Do+ 48 =—AH, =|-849 kJ mol ™!

H, sa+3p=3{a- 20200 o L AR ) 637 ki mol ]
4 27 4
H; da+2p=da- 22 3 B[ 3510 ol

As e is a negative quantity, all three of these species are expected to be stable,
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(a) The orbitals are sketched in Figure 10.11(a). y, is a bonding orbital, showing no nodes between
adjacent atoms, and v, is antibonding with respect to all three atoms. v, is non-bonding, with
neither constructive nor destructive interaction of the atomic orbitals of adjacent atoms.

0 C N

gl
| v

Figure 10.11(a)

(b) This arrangement only works il the entire peptide link is coplanar. For starters, the O, C, and
N atoms in the peptide link must be in the same plane (call it the xy plane) if all three atorms are to
contribute unhybridized p orbitals (p, orbitals) to make the three MOs sketched above. If the pep-
tide N and C atoms contribute p, orbitals in the x system, then all of the o bonds they make must
be in the xy plane. Hence, the peptide O and H atoms as well as the non-peptide C atoms bound to
the peptide C and N atoms must also lie in the xy plane, that is, the entire peptide linkage plus the
ends of the carbon chains that they connect.
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+
5.1
N | - o N v
N 1
H
11 12

{c) The energy order of the orbitals and their occupancy are shown in Figure 10.11(a). There are
four electrons to be distributed. If we look at the neutral representation of the peptide link (on the
left side of the resonance structures shown here), the two electrons represented by the C=0 n bond
are obviously part of the x system, leaving the two lone pairs on O, the C-O ¢ bond, and the two
other ¢ bonds of C as part of the ¢ system. Turning now to the Lewis octet of electrons around the
N atom, we must assign two electrons to each of the ¢ bonds involving N; clearly they cannot be
part of the & system. That leaves the lone pair on N, which must occupy the other orbital that N
contributes to the molecule, namely the p. orbital that is part of the & system.

Figure 10.11(b)
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(d) The orbitals of the non-planar alternative are sketched in Figure 10.11(b). w, is a bonding
orbital with respect to C and O, and w, is antibonding with respect to C and O. w; is non-bonding,
involving only the N atom. There are four electrons to be placed in this system, as before, two each.
in a bonding and non-bonding orbital.

(¢) This system cannot be planar. As before, the end of the chain connected to the peptide C must
be in the xy plane. As before, the atoms bound to N must be in 2 plane perpendicular to the orbital
that N contributes to this system, which is itself in the xy plane. Only one of the N atom’s ¢ bonds
¢an be in both the xy plane and a plane perpendicular to it (because only a line can be in two per-
pendicular planes). Thus, the bonding partners of N other than the peptide C are forced out of the
xy plane.

(f) The bonding MO w, must have a lower energy than the bonding MO y,, for v, is bonding
(stabilizing) with respect to all three atoms, while y, is bonding with respect to only two of them.
Likewise, the antibonding MO v, must have a higher energy than the antibonding MO v, for y is
antibonding (destabilizing) with respect to all three atoms pairwise, while v is antibonding only
with respect to two of them. The non-bonding MOs y, and y; must have similar energies, not much
different than the parameter e, for there is no significant constructive or destructive interference
between adjacent atoms in either one.

(g) Because bonding orbital y, has a lower energy than y,, the planar arrangement has a lower
energy than the non-planar one. The total energy of the planar arrangement is

E

P

lanar — 2E1 + 2E2
Compare this to the energy of the non-planar arrangement:
Enon—planar = 2E4 + ZES > 2E‘l + 2E2 = Eplauar

The fact that E, > E; is immaterial, for neither of those orbitals is occupied.




1 Molecular symmetry

Answers to discussion questions

D11.2 The point group to which a molecule belongs is determined by the symmetry elements it possesses.
Therefore, the first step is to examine a model (which can be a mental picture) of the molecule for afl
its symmetry elements. All possible symmetry elements are described in Section 11.1. We list all that
apply to the molecule of interest and then follow the assignment procedure summarized by the flow
diagram in Figure 11.7 of the {ext.

. D11.4 The permanent dipole moment is a fixed property of a molecule and as a result it must remain

‘ unchanged through any symmetry operation of the molecule. Recall that the dipole moment is a
vector quantity; therefore both its magnitude and direction must be unaffected by the operation.
That can only be the case if the dipole moment is coincident with alf of the symmetry elements of
the molecule. Hence, molecules belonging to point groups containing symmetry elements that do
not satisfy this criterion can be eliminated. Molecules with a centre of symmetry cannot possess a
dipole moment because any vector is changed through inversion. Molecules with more than one C,
axis cannot be polar since a vector cannot be coincident with more than one axis simultaneously, If
the molecule has a plane of symmetry, the dipole moment must lie in the plane; if it has more than
one plane of symmetry, the dipole moment must lie in the axis of intersection of these planes. A
molecule can also be polarif it has one plane of symmetry and no C,. Examination of the character
tables at the end of the data section shows that the only point groups that satisfy these restrictions
are C, C,and C,,.

D116 A representative is a mathematical operator (usually a matrix) that represents the physical symmetry
operation. The set of all these mathematical operators corresponding to all the operations of the
group is called a representation. See Section 11.4(a) for matrix examples.

11.8 Selection rules tell us which transition probabilities between energy levels are non-zero, namely,
which spectroscopic transitions will have a non-zero intensity. This occurs when at least one of the
vector components of the transition dipole moment, i, between the states f and i is non-zero. Each
component of this vector is defined by a transition dipole moment integral, which we illustrate with
the z component of the transition dipole moment:

io=—e [yFzy;dr(1L11]
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E11.1(b)

E11.2(b)
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where —¢ is the charge of the electron. Group theory tells us that, if the decomposition of the direct
product for the symmetry species of w#zy; (the integrand of the transition moment integral)
includes the totally symmetric representation A,, the dipole transition moment is non-zero and,
therefore, the spectroscopic transition has a non-zero probability. That is, the symmetry of the
transition dipole moment integrand must either span A, or contain the symmetry component A,
for an allowed transition.

Character tables provide a way to: (a) assign symmetry symbols for orbitals, (b) know whether
overlap integrals are non-zero, (c) determine what atomic orbitals can contribute to a LCAO-MO,
(d) determine the maximum orbital degeneracy of a molecule, and (e) determine whether a transi-
tion is allowed.

Solutions to exercises

CCl, belongs to the point group T,. It has (each C-Cl axis), (bisecting

C1-C~Cl angles), (the same as the C, axes), and [six dihedral mirror planes| {each
C1-C-Cl plane). A sample of each symmetry element is shown in Figure 11.1.

C2 and S4

Figure 11.1

See Figure 11.2.

(a) Sharpened pencil: E, C., ., therefore .

(b} Propellor: E, C,, three C,, therefore .

(c) Square table: E, C,, four a,, therefore ; rectangular table: E, C,, two a,, therefore .

{d) Person: E, o, (approximately), therefore .
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C.
@) é (b)

Cs

<,

© Cs @ %l

Figure 11.2

E11.3(b) We identify the symmetry elements and follow the flow chart in text Figure 11.7 to find the point
group of each molecule.

(a) Naphthalene has the symmetry elements shown in Figure 11.3. There are axes, a

centre of inversion EI, and mirror planes. It belongs to the point group .

T

Ty

Th

Figure 11.3
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(b) Anthracene, like all linear polycyclic aromatic hydrocarbons, has a set of symmetry elements
that is identical to that of naphthalene. There are axes, a centre of inversion B, and

mirror planes. It belongs to the point group .

{¢) Dichlorobenzene isomers:

()  1.2-dichlorobenzene: [£, Gy, two o,
(i) 1,3-dichlorobenzenc:[E, C,, woo,],

(i) 1,4-dichlorobenzene: | E, three C,, three oy, i, | D |

E11.4(b) The following responses refer to the thought progression while proceeding through the flow chart
of text Figure 11.7. Molecular structures are shown in Figure 11.4 below.

(a) HF: linear, no ¢, so .
(b) IF.: non-linear, fewer than 2C, with n > 2, C,, five C, perpendicular to C;, oy, 50 .

(¢) XeO,F,: non-linear, fewer than two C, with n> 2, C,, no G, perpendicular to C,, no oy, two o,

(d) Fe{CO),: non-linear, fewer than two C, with n > 2, G, three C; perpendicular to C;, oy, s0 .
(e) cubane (C;H,): non-linear, more than two C, with n> 2, {, no C;, so .

(f) tetrafluorocubane: non-linear, more than two C, with z > 2, no i, s0 .

F F oC
IF.,. D % /CO
.|F 50 Lsh "
I XeOF,, G, /‘F%’ Fe,(COY, Dy,
\ /F /Xe\ oC OC‘ CO
F L3 © ° \F:as
L L oc/§ co
oC -
L] F 1] \\\\\\
S T SO N
cubane, CgHs, O, tetrafluorocubane, T,
F

Figure 11.4
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Only molecules belonging to C,, C,, and C,, groups may be polar, so:

{a) CH.CI(C,,)|may be polar| along the C-Cl bond
by HW,(COY(Dy) Imay not be po]ari

() SnClL(T) 1may not be polarl.

napthalene, Dy; anthracene, Ds,; 1,2-dichlorobenzene, C,,; 1,3-dichlorobenzene, C,,; 1.4-dichlore-
benzene, D.,; HF, C_,; IF,, Dy, XeO,F,, C,,; Fe,(CO),, Dy,; cubane, G,; tetrafluorocubane, 7.

A molecule cannot be chiral if it has an axis of improper rotation—including disguised or degener-
ate axes such as an inversion centre (S,) or a mirror plane (5,), In Exercises 11.3b and 11.4b, all the

molecules have mirror planes, so can be chiral.

A molecule cannot be chiral if it has an axis of improper rotation. The point group T, has
and [mirror planes (5 = Sl)|, which preclude chirality. The T, group has, in addition, a centre of

inversion (i = S,).

The group multiplication table of group C,, is constructed by successively applying the group sym-
metry operations to the object shape provided in text Figure 11.8. The rotational operations are
around the z-axis of the figure (i.¢. the axis perpendicular to the object shape).

E Ci C; C; o(x) aly) ai(xy)  o4(-xy)
E E Cy C; G, o{x) o) olxy)  o—xy)
& Ci G, E C; oyxy)  ol-xy}  oly) o (x)
oy oy E C, Ci oi—xy)  o(xy) o.(x) o)
G, G Cs i E o, () ox)  ol=x¥)  adxy)
o,(x) o,(x) as(—xy) o4(xy) o(¥) E G 4 94
o3 oly) oyxy)  of-xy)  oUx) G, E i i
os(xy) | o4lxy) o(x) ofy)  o4=xp) s &y E G,
a4(—x3) | o4-xy) o, () o,(x) o4(xy) Cs a G E

The p, orbital spans E,, of the Dy, point group, while z and p, span A,,. Following the procedure
discussed in Section 11.5(a), we write a table of the characters of each function and multiply the
TOWS.

Dy E 20 20 G 3C; 3¢y i 28, 28, o, 3o 30, Species
Py 201 1 =2 0o 0 -2 - {1 2 0 0 E,
z 11 1 -1 -1 -1 -1 -1 -1 0 0 A,
D, 11 1 -1 -1 -1 -1 -1 -1 0 0 A,
pzp, 2 1 1 =2 0 0 -2 -l 1 2 ¢ 0 E,

The characters of the product p, zp, are those of E,, alone, so the integrand does not span A,. It follows

that the (integral must be zero|.
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For a Dy, molecule, x and y span E,, while z spans A,,. Thus, the x and y components of the dipole
moment [11.11] have transition integrands that span E,,x E,,x A,, for the A,,—>E,, transition.
By inspection of the Dy, character table we find the decomposition of the direct product to be:
EuX E\ % Ay, =By, +B,, + E,,. Since it does not span A, the x and y components of the transition
integral must be zero. The transition integrand for the z component spans E,, x A, x A, = E,,
for the A,,—E,, transition. Consequently, the z component of the transition integral must also

equal zero and we conclude that the transition is |forbidden]|.

Should these considerations prove confusing, write a character table with rows that correspond to
the functions of the transition integrand and multiply. Here is the table for the x and y components
of the dipole moment:

E 2C, 20, ¢ 3¢ 3y i 25 28 o, 30 3o,

A, 1 1 1 1 1 i 1 1 1 1 1 1
E. 2 -1 -1 2 0 0 -2 1 1 -2 0 0
(x, %) 2 1 -1 -2 0 0 -2 -1 1 2 0 0
Integrand 4 -1 1 -4 0 0 4 -l 1 -4 0 0

To see whether the totally symmetric species A, is present, we form the sum over classes of the
number of operations times the character of the integrand (11.8b]:

NAD =@+ 2D 42+ D+ 30+ 30+ (D +2(-D+ 2D+ (=) + 3(0) + 3(0) =0

Since the species A, is absent, the transition is (forbidden| for x- or y-polarized light. A similar

analysis leads to the conclusion that A, is absent from the product A E,,z, therefore the transition
15 forbidden.

We first determine how x, y, and z individually transform under the operations of the D, group.
Using these results we determine how the product xyz transforms, from which we extract the sym-
metry character y.

Under each operation the functions transform as follows:

E C; c; C;

X X X —X -X

y y 4 ¥ -y
z 4 —Z —Z z

xyz xyz xyz xyz xyz
X 1 1 1 1

From the D, character table, we see that this set of y characters belongs to the totally symmetric A,
species.

NO; and SO, both belong to the D, group. It is often helpful to visualize the possible bonding
patterns, so before using the D, character table we first use our knowledge of the wavefunction
behavior in the view of simple molecular orbital theory.
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With three O atoms providing valence p, orbitals (perpendicular to the molecular plane) in the
combination 2p.(A) — p.(B) — pA{C) only z bonding is possible with the N atom. This means that

| only the valence p. orbital of N‘ can have a non-zero overlap with this O combination. Furthermore,

[only the p., thed,. and the d,. orbitals of SI have non-zero overlap in this x system. To see this, look

for non-zero overlap between Op. and Np, orbitals in Figure 11.5(a). (The orbital has a positive
wavefunction sign in shaded lobes and a negative wavefunction sign in unshaded iobes.) Clearly,
the overlap of positive lobes (constructive interference) is exactly cancelled by the overlap of a
negative lobe with a positive lobe (destructive interference) to give a net zero overlap. The same
thing happens with the p,/d,:, overlap shown in Figure 11.5(b). The p./d,. overlap shown in Figure
11.5(c) yields a net non-zero overlap because both the overlap of positive lobes and the overlap of
negative lobes results in constructive interference.

{a) p./p; overlap (b) p./d.: overlap (c) p./d,. overlap

Figure 11.5

The Dy, character table provides the same solution. To see this, we must find the irreducible
representations (symmetry species) spanned by the oxygen p, orbitals. The nitrogen orbital must
belong to one of these representations to achieve a non-zero overlap because the totally symmetric
overlap integrand is only achieved when an irreducible representation is multiplied by itself
(Section 11.5(a)).

To find the symmetry species spanned by the oxygen p, orbitals, we use a quick rule for determining
the character of the basis function under each symmetry operation of the group: count 1 each time
a basis function is left unchanged by the operation because only these functions give a non-zero
entry on the diagonal of the matrix representative. In some cases there is a sign change, (... = ...)
«{...f...); then —] occurs on the diagonal, and so count —1. The character of the identity is always
equal to the dimension of the basis since each function contributes 1 to the trace. Figure 11.6 is used
to evaluate the effect of the operations on the oxygen p, orbitals of 2p,(A} - p.(B) - p.(C).

Figure 11.6
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E: All three orbitals are left unchanged, hence y =3
&, Sign changes on all three orbitals, hence y = -3
C,: No orbital is left unchanged, hence y =0

S5: No orbital is left unchanged, hence y =0

C;: Sign changes on one orbital, hence y =-1

a,: One orbital is left unchanged, hence y = 1

Here is a tabulated summary of the characters:

3o,

D,, E
2p,(A)-p(B) - p,(O) 3

(e 2C,
-3 0 0

25, 3C;

-1 1

Inspection of the Dy, character table reveals that the oxygen p, orbitals span A7 + E” because the
sum of their characters yields those of the table. Further inspection of the Dy, character table
reveals that z belongs to A7 and both xz and yz belong to E”. Consequently, only p,, d,., and d,,
orbitals of the central atom have non-zero overlap with the oxygen combination. This is exactly
what is expected.

The product [; x T'(z) x T; must contain A, (Section 11.6). Then, since I'; =B, T(1) =T (y) =B (C,,
character table), we can draw up the following table of characters.

E Cz g, O':
B, 1 -1 1 1
B, 1 -1 1 1
B, xB, 1 1 1 “1 = A,

Hence, the upper state is , because A, x A, =A,.

D, h=4 E C; ) C;
A, 1 1 1 1
B, 1 I =1 -1
B, 1 .| 1 -1
B, 1 -1 -1 1

N, = %% 2@ (R)x(R) [11.8b], where y(R) = (6,~2,0,0)
Np, = R x 6)+ K1 x (=2)) + K1 x 0) + 11 x 0)} = 1

N, = 1{1(1x 6) + {1 x (=2)) + 1(=1x 0) + (-1 x O)} =1
Np,=+{HIx6)+ (-1 X (2} + I X 0} + I{-1x 0)} =2

Np, = +1(1x 6) + (-1 x (=2)) + 1(=1 X 0) + (I x 0)} =2

Thus, this set of basis functions spans |7AI + B,+ 2B, + 2B, l
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(a) Anthracene belongs to the D,, point group.

(I

The components of p span By, (x), Bo,(y), and B, (z). The totally symmetric ground stateis A,
Since A_x T =T in this group, the accessible upper terms are (x-polarized), { y-polarized),

and (z-polarized).

(b) Coronene, like benzene, belongs to the Dy, group. The integrand of the transition dipole
moment must be or contain the A, symmetry species. That integrand for transitions from
the ground state is A, gf, where g is x, y, or z and fis the symmetry species of the upper state.
Since the ground state is already totally symmetric, the product ¢f must also have A, sym-
metry for the entire integrand to have A, symmetry. Since the different symmetry species are
orthogonal, the only way gf can have A, symmetry is if g and f have the same symmetry.
Such combinations include zA,,, xE,,, and yE,,, therefore we conclude that transitions are

allowed to states with symmetry.

Consider the integral =J' z(3z2- Ndx = 3J' zidx —J zdz = 31, - I,. (We have used z as the

dummy variable in the integration because the o, plane inverts this axis in the C, group.) z spans A”
of the C, group. Consequently, [, is necessarily zero because it does not span the totally symmetric
species A’. The integrand of 1, is the product z x z x z, which spans A" X A” X A”= A’ x A" = A",
Consequently, 7, is also necessarily zero and we conclude that integral I is necessarily zero.

Solutions to problems
Solutions to numerical problems

The operations for construction of the C,, group multiplication table are illustrated in Figure 11.7.
Note that R? = E for all the operations of this group, that ER = RE = R, and that RS = SR. Since
Coo, =i, oyi = C,, and iC, = o, we can draw up the following group multiplication table:

E C, oy, i
E E Cz [22% i
C, C, E i Oy,
e o i E C,

i i oy C, E
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Gy,

Figure 11.7

The ( trans-CHCI=CHCI| molecule belongs to the group C,,.

P11.4 Refer to Figure 11.3 of the text. Place orbitals #, and £, on the H atoms and s, p,, p,, and p. on the
O atom. The z-axis is the C, axis; x lies perpendicular to o, y lies perpendicular to o,. Then, draw
up the following table of the effect of the operations on the basis:

E C, oy o,
h, h, A, h hy
hy By A, h, By
S 8 ;] S S
Px Px —Px Px —Ps
Py Py Py _py Py
P: p p: b: Pz

Express the columns headed by each operations R in the form
(new) « (original)D(R)
where D(R) is the 6 x 6 representative of the operation R. We use the methods set out in Section
11.4(a).
() E:(h, k5, D Py P.) < (A, 1, 5, Pss s P-) 18 reproduced by the 6 x 6 unit matrix.
(11) CZ: (th hls 8 —Pxs -'py’ pz) “— (hla th 5 P pya pz) is repr()duced by

010 0 00
100 0 00
001 0 00
D(C,)=
(2)000—100
000 0 -10
000 0 00

0100 00
1000 00
0010 00
D=
©@)=lo 001 00
0000 10
00060 00

|
|
|
I
|
|
|
|
|
|
(iliy o,y hy, s, Py, —P,, D) < (B, A2, 8 Do D), D) is reproduced by
|
|
|
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(].V) O-::: (hl} hZ, §, — px! py’ p:) A (hl! h29 §, px" py’ p:) iS rcprf’dumd by

0
0
D)= 0

[ R e B e S e B e
O o O
[ e B e B o B e o)

0
1
0
0
0
0

DO O OO -

-1
0
0

(a) To confirm the correct representation of C,0, = &, we write

0 10 0 0o0fo 100 00] 100 00O
100 0 oolltooo 0o/ 010 000
601 0 ool loo10 oof_|00o1 000

DIEIDEI=10 00 1 0o0fooo01 00| |ooo 100
000 0 -10lo0oo0oo-10| (000 o010
000 0 0 1Joooo o1 looo 001
= D(o))

(b) Similarly, to confirm the correct representation of o,0;, = C,, we write
0100 00100 000] [0 10 0 00
1000 00/0c 10 000l 100 0 00

~.l0 010 oolloo1 oo0o0j_joo0o1 0 00
D(c,)D(c’) = -
D=0 66 1 o0 allo oo -100l"looo-1 0o

0000 -10l000 010 {000 0120
0000 o0 1looo 001l o000 0o o001
= D(C,)

(a) The characters of the representatives are the sums of their diagonal elements:

E C, c oy

6 it 2

(b) The characters are not those of any one irreducible representation, so the representation is
reducible.

(c) The sum of the characters of the specified sum is

E ; o, a.,
3A, 3 3 3 3
B, 1 -1 I3 -1
2B, 2 -2 -2 2
3A,+B,+2B, 6 0 2 4

which is the same as the original. Therefore, the representation is 3A, + B, + 2B,.
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Representation 1: D{CHYNC) =1x1=1=DC,)

and from the C,, character table this s either A, or A,. Hence, either D(c,) = D(0,) = [+ o~ 1},
respectively.

Representation 2: D{C;)D(C) = 1 x (1) =-1 = D(Cy)
and from the C, character table this is either B, or B,. Hence, either

D(0,)=-D(c) =|1] or D(0,)=~D(c) = |~ 1], respectively.

A quick rule for determining the character without first having to set up the matrix representation
is to count ] each time a basis function is left unchanged by the operation, because only these func-
tions give a non-zero entry on the diagonal of the matrix representative. In some cases there is a sign
change, (... —f...) &« (... f...), then—1 occurs on the diagonal, and so count —1. The character of the
identity is always equal to the dimension of the basis since each function contributes 1 to the trace.

E: All four orbitals are left unchanged, hence y =4
Cy: One orbital is left unchanged, hence ¥ = 1

C,: No crbitals are left unchanged, hence y =0

o,: Two orbitals are left unchanged, hence y =2
S,: No orbitals are left unchanged, hence y =0

The character set[4, 1,0, 2, 0] spans . Inspection of the character table of the group T,
shows that an s orbital spans A, and that the three p orbitals on the C atom span T,. Hence,
the orbitals of the C atom may form molecular orbitals with the four His orbitals. In
T,, the d orbitals of the central atom span E + T, (character table, final column), and so only

the T, set|(d.,,d,.,d..)| may contribute to molecular orbital formation with the H orbitals.

The most distinctive symmetry operation is the -axjs through the central atom and aromatic
nitrogens on both ligands. That axis is also a —axis. The group is .

(a) Working through the flow diagram (Figure 11.7) in the text, we note that there are no C,-axes
with # > 2 (for the Cj-axes present in a tetrahedron are not symmetry axes any longer), but it does
have C,-axes; in fact it has 2C,-axes perpendicular to whichever C, we call principal; it has no g,

but it has 2¢,. So the point group is .

(b) Within this point group, the distortion belongs to the fully symmetric species m for its
motion is unchanged by the S, operation, either class of C,, or o,.

{c) The resulting structure is a square bipyramid, but with one pyramid’s apex farther from the
base than the other’s. Working through the flow diagram in Figure 11.7, we note that there is only
one C,-axis with n > 2, namely a C,-axis; it has no C;-axes perpendicular to the C,, and it has no &,

but it has 4o, So the point group is .

(d) Within this point group, the distortion belongs to the fully symmetric species . The trans-
lation of atoms along the given axis is unchanged by any symmetry operation for the motion s
contained within each of the group’s symmetry elements.
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{a) xyz changes sign under the inversion operation (one of the symmetry elements of a cube),

hence it does not span A,, and its integral .
(b) xyzspans A, in T, [Problem 11.13] and so its integral .
(¢) xyz— -xyzunder z — —z (the o, operation in Dg,), and so its integral .

‘We shall adapt the simpler subgroup C, of the full Dg, point group. The six p_ orbitals span A, + B,
+E, +E,, and are

1
a= _(pzl+ Pt Pt Poat Post pzﬁ)
J6

b= \/—lg(pzl_ Pazt Pe3a— Pza® Pus= Pus)

1 .
E(zpzi ~ Pz~ Pst 2pz4 — Pz~ pzé)

e, =1

‘%(pzl-' P:st Pos~ p:é)

r

1
E"(zp:l tPa— P~ 2pz4 — Pt sz)

€=

%(p:2+ P Pus— pzﬁ)

The Hamiltonian transforms as A,, therefore all integrals of the form Iw’der vanish unless y’

and w belong to the same symmetry species. It follows that the secular determinant factorizes into
four determinants:

Al: Halal = %j(pzl +o pzﬁ)H(pzl t-et pzé)dT =a+ 218

By Hyp=1[(pa=pat )H(py—p.o+-)dr=a-28
Ey Hepem=0 =B Hoyp,iy = — B, Hop, = 0

c—f-¢ 0

Hence,
0 a-f—¢

=0 solves to £ = & — B (twice)

E: Hypqw=o+ B Hopom=a+ 8 Hygen="0

a+pf-¢ 0

Hence,
0 a+f-—¢

= 0 solves to £ = a + § (twice)

(a) Fora photon to induce a spectroscopic transition, the transition moment () must be non-zero.
The transition moment is the integral f v ¥y, dr, where the dipole moment operator has components
proportional to the Cartesian coordinates. The integral vanishes unless the integrand, or at least some
part of it, belongs to the totally symmetric representation of the molecule’s point group. We can
answer the first part of the question without reference to the character table, by considering the
character of the integrand under inversion. Each component of g has u character, but each state has

g character; the integrand is g x g X u=u, so the integral vanishes and the |transition is not allowed |.
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{(b) However, if a vibration breaks the inversion symmetry, a look at the [ character table shows
that the components of y have T, character. To find the character of the integrand, we multiply
together the characters of its factors. For the transition to T;:

E 126, 12C2 20C, 15C,
A, 1 1 1 1 1
u(T) 3 1a+45) H1-V5) 0 -1
T, 3 L1++5) L1=5) 0 -1
Integrand 9 13+45) 13-5) 0 1

The decomposition of the characters of the integrand into those of the irreducible representations
is difficult to do by inspection, but when accomplished it is seen to contain A, therefore the transi-
tion to T, would become allowed. It is easier to use eqn 11.8b to determine the coefficient of A, in
the integrand:

N, = %;x‘Al’(R)Z(R) ={9+ 12[5(3 + \/g)] +12[+(3- x/g)] +20(0) + 15(1)}/60 = 1

So, the integrand contains A,, and the ltransition to T, would become allowedl.

For the transition to G:

E 12€, 12¢3 20, 15C,
A, 1 1 | 1 1
u(T) 3 F(1+5) 1=+ 0 -1
G 4 -1 -1 1
Integrand 12 ~11++5) ~la-5) 0

Eqn 11.8b, the little orthogonality theorem, gives the coefficient of A, in the integrand as

Na = %EZ‘A‘)(R)Z(RF 121221+ V5] + 12[- (1 = V/5)] + 20(0) + 15(0)}1/60 = 0

R

So, the integrand does not contain A, and the [Lransition to G would still be forbidden |

Solutions to applications: astrophysics and biology

The shape of this molecule is shown in Figure 11.8.
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(a) Symmetry elements |E, 2C,, 3C,, 0y, 25y, 30, |

Point group

100
by P(E)Y=|0 1 0|=D(oy)
00 1
0 0 1 010
DC)=1 0 0| DCH=D¥CH=|0 0 1
01 0 1 00

D(83) = D(Cy),  D(85)= D¥Sy) = D(C)

€5 and 87 are counter clockwise rotations.

o, is through A and perpendicular to B—C.
o, is through B and perpendicular to A-C.
oy is through C and perpendicular to A-B,

1 0 0 o 01 010
Dis)=[0 0 1) Dei)=|0 1 0] DleD=|1 0 0
010 1 00 0 0 1
D(C)=D(o,), D(C})=D(o;), DC)=D(o)).
(c) Example of elements of group multiplication table
60 0 1y1 0 0 010
DICIDC)=|1 0 0[j0 0 1[=|1 0 0l=D(o))
¢ 1 oAO 1 O 0 0 1
0011 0 0 010
D(c))D(o)={0 1 00 0 1|=[0 0 1|=DC)
1 ¢ 0)lo 1 0 1 00
D3h E C3 Cz o, O': Oy
E E C3 Cg a, 0‘; Oy
C C, C; (s 544 ol o, C,
0 C, a. E E C C,
a, 7. o, E E C; G,
o, o, oy <, C; E o,
E

2
S
H
<Q\

(d) First, determine the number of s orbitals (the basis has three s orbitals) that have unchanged
positions after application of each symmetry species of the Dy, point group.

D3h E 2C3 3C2 ay, 2S3 30",

Unchanged basis members 3 0 1 3 0 1
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This is not one of the irreducible representations reported in the Dy, character table but inspec-
tion shows that it is identical to A{ + £’. This allows us to conclude that the three s orbitals span

A £
COMMENT. The multiplication table in part (¢} is not strictly speaking the group muftiplication; it is instead the

multiplication tabie for the miairix representations of the group in the basis under consideration.

(a) Following the flow chart in Figure 11.7 of the text, note that the molecule is not linear (at least
not in the mathematical sense); there is only one C, axis (a C,), and there is a &,. The point group,

then, is .
b d f h j k' i’ g e ¢’ a
Z N N TN N TN N NN N

a c e g i k j 1] f d b’

r .

(b) The 2p. orbitals are transformed under the symmetry operations of the Cy, group as follows.

| a a’ b b’ c ¢ ] i k K x
E a a b b’ c ¢ j 7 k k 22
G, ! a b’ b < c i ] ¥ k 0
i -a -a -b’ b —' - -’ —j Xk 0
O —-a —a’ -b -b —c -’ = -’ -k -k’ 22

To find the irreducible representations that these orbitals span, we multiply the characters of orbitals
by the characters of the irreducible representations, sum those products, and divide the sum by the
order # of the group (as in Section 11.5(a)). The table below illustrates the procedure, beginning at
left with the C,, character table.

\ E C, I o | Product E C, i oy Sum/k
A, 1 1 1 l 22 0 0 -22 0
A, 1 1 - -1 22 0 0 22 11
B, 1 -1 1 -1 22 0 0 22 11
B 1 -1 -1 1 22 0 0 -22 ¢

u -

The orbitals span [11A,+ 11B,|.

To find symmetry-adapted linear combinations (SALCs), follow the procedure described in
Section 11.5(c). Refer to the table above that displays the transformations of the original basis
orbitals. To find SALCs of a given symmetry species, take a column of the table, multiply each
entry by the character of the species’ irreducible representation, sum the terms in the column,
and divide by the order of the group. For example, the characters of species A, are[1, 1,1, 1],
50 the columns to be summed are identical to the columns in the table above. Each column
sums to zero, so we conclude that there are no SALCs of A symmetry. (No surprise: the orbitals
span only A, and B,). An A, SALC is obtained by multiplying the characters 1, 1, -1, -1 by the
first column: 4(a+a’+a’+a)=1{a+a’).
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The A, combination from the second column is the same. There are 11 distinct A, combina-
tions in all: | 1(a +2"), 2(b + b"), ... 1(k + k)

The B, combination from the first column is: ;(a —a’—a’ +a)=+(a —a’).

The B, combination from the second column is the same. There are 11 distinct B,combinations
inall:[1(a -2, 2(b-b),...3(k - k')
ZeT0.

. There are no B, combinations, as the columns sum to

(¢c) Thestructure is labelled to maich the row and column numbers shown in the determinant. The
Hiickel secular determinant is:

a b c i ] k k ¥y < b a
a |a—-E B 0 0 0 0 0 0 0 0 0 0
b B e«e-E B ... O 0 0 0 0 0 0 0 0
c 0 B e-E ... 0 0 0 0 0 0 0 0 0
i 0 0 0 a-E B 0 0 0 0 0 0 0
j 0 0 0 B a-E B 0 0 0 0 0 0
k 0 0 0 0 B o-E 8 0 0 0 0 0
kK 0 0 0 0 0 B ao-E B 0 0 0 0
i 0 0 0 0 0 0 B o-E p .. 0 0 0
i’ 0 0 0 0 0 0 0 B a-E 0 0 0
¢ 0 0 0 0 0 0 0 0 a—E 8 0
b’ 0 0 0 0 0 0 0 0 B a-E B
a’ 0 0 0 0 0 0 0 0 0 6 B a-E

The energies of the filled orbitals are o + 1.981378, a + 1.925838, o + 1.834428, o + 1.708848, a +
1.551428, o + 1.365114, o + 1.153368, & + 0.920138, o + 0.669768, o + 0.406915, and & + 0.1364843.
The x energy is 27.307298.

(d) The ground state of the molecule has A, symmetry by virtue of the fact that its wavefunction
is the product of doubly occupied orbitals, and the product of any two orbitals of the same
symmetry has A, character. If a transition is to be allowed, the transition dipole must be non-zero,
which in turn can only happen if the representation of the product ¥*u¥, includes the totally
symmetric species A,. Consider first transitions to another A, wavefunction, in which case we need
the product A x u X A, Now A, x A, = A,, and the only character that returns A, when multiplied
by A, is A, itself. No component of the dipole operator belongs to species A, 50m0 A, « A, transitions
are allowed. (Note: Such transitions are transitions from an orbital occupied in the ground state to
an excited-state orbital of the same symmetry.) The other possibility is a transition from an orbital
of one symmetry (A, or B,) to the other; in that case, the excited-state wavefunction will have
symmetry of A,x B, =B, from the two singly occupied orbitals in the excited state. The symmetry
of the transition dipole, then, is A, x u x B, = # x B, and the only species that yields A, when
multiplied by B, is B, itself. The x and y components of the dipole operator belongs to species B,
so these transitions are allowed.




Molecular spectroscopy 1:
rotational and vibrational
spectra

12

D12.2

D12.4

D12.6

Answers to discussion questions

The gross selection rules tell us which are the allowed spectroscopic transitions. For both microwave
and infrared spectroscopy, the allowed transitions depend on the existence of an oscillating dipole
moment that can stir the electromagnetic field into oscillation (and vice versa for absorption). For
microwave rotational spectroscopy, this implies that the molecule must have a permanent dipole
moment, which is equivalent to an oscillating dipole when the molecule is rotating. See Figure 12.14
of the text. In the case of infrared vibrational spectroscopy, the physical basis of the gross selection
rule is that the molecules have a structure that allows for the existence of an oscillating dipole
moment when the molecule vibrates. Polar molecules necessarily satisfy this requirement, but nos-
polar molecules may also have a fluctuating dipole moment on vibration. See Figure 12.25.

See Section 12.7, and in particular Justification 12.1, for a thorough discussion of the principles
that govern the influence of nuclear spin and nuclear statistics on the appearance of molecular
spectra. Here, we will only summarize the basic principles involved and illustrate the effect on the
rotational spectra of molecules with a couple of examples. Nuclear spin determines the sclective
occupation of molecular rotational states that stems from the requirement of the Pauli principle
and the presence of identical nuclei. If the rotation of a molecule results in the interchange of iden-
tical nuclei, the wavefunction must change in accord with the Pauli principle (stay the same for
bosons; change sign for fermions). Hence, certain rotational states are forbidden. In the case where
the interchanged nuclei are bosons, this restriction eliminaies occupation of states with J odd. So
for CO, where the interchanged O nuclei are bosons of spin 0, only even values of J are permissible.
Consequently, in the Raman spectrum of CO, only alternate lines appear. For molecular hydrogen
and fluorine both with nuclei of spin 3 fermions, the situation is more complicated, as explained in
Justification 12.1. The population of the odd J and even J states is in the ratio of 3:1, as given by
eqn 12.26, hence the intensities of transitions originating in these levels will be in the ratio of 3:1.
See Figure 12.20 of the text for an illustration of the effect of nuclear spin on the appearance of the
rotational Raman spectra of these molecules.

Isotopic substitution can change the spin of the nuclei in the molecule, and as explained in the
answer to Discussion question 12.4 above, the appearance of the rotational spectra of molecules
is determined by the nuclear spin of the atoms in the molecule. Hence, in general we expect that
isotopic substitution will change rotational spectra. Vibrational frequencies are determined by the
effective masses of the group of atoms participating in the mode of vibration. Since isotopes have
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different masses, isotopic substitution changes the effective mass of the molecule, hence, in general,
the vibrational frequencies are changed and the vibrational spectrum will be (slightly) different.
Not all vibrational frequencies are necessarily changed by isotopic substitution, however. For
example, since the mass of 1*C is greater than the mass of 1*C, in general we expect that vibrational
frequencies would be slightly different in *CO, than in 2CQ,. However, in the symmetric stretch of
CO,, the C atom is stationary, and the effective mass of the mode depends only on the O atoms.
Consequently, we expect that the vibrational frequency of this mode would be independent of the
mass of the carbon atom.

Solutions to exercises

Polar molecules show a pure rotational absorption spectrum, therefore select the polar molecules
based on their well-known structures. Alternatively, determine the point groups of the molecules
and use the rule that only molecules belonging to C,, C,., and C, may be polar, and in the case of C,
and C,, that dipole must lie along the rotation axis. Hence, all are polar molecules.

Their point group symmetries are

(@ HO.C. (b)) H0,C, {0 NH,G, (@ NOC.,
show a pure rotational spectrum.

A molecule must be anisotropically polarizable to show a rotational Raman spectrum; all molecules

except spherical rotors have this property, so |£H2CI 2J, LCH3CH3
Raman spectra; SF, cannot.

L and | N20| can display rotational

Si'H, is a tetrahedral molecule, hence its moment of inertia is given by
I =%m,R*[Table12.1]= £ x 1.0078 x 1.66054 x 102" kg x R?
The distance R(Si-'H) is given as 147.98 pm. The above formula then yields

1=9.772 x 10~ kg m?|

The moment of inertia of 8i?H, is given by the same formula. We assume R remains unchanged by
the isotopic substitution, but the mass is different. The moment of inertia changes by the factor

my, 20140 m,
=2 _ 11 9984
= 107,

H"™C*Cl, is a symmetric rotor; its moments of inertia are given by the formulas [Table 12.1]

B =2mc (1 —cos B)R* and
I =mg(l—cosf}R? + m(mC + my X1+ 2cosH)R?
n

+ 8 (B, + m )R+ 6ma RS (1+ 2cos )23 R?
m
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We substitute the following data into the above formulas and then perform the calculations:
miy = 1.0078 r1, = 1.0078 % 1.66054 x 107 kg
M = 34.9688 m, = 34.9688 x 1.66034 x 107 kg
me=12.0000 x m, = 12.0000 x 1.66054 x 10-¥ kg
m =y +mc+3me =117.9142 m, = 117.9142 x 1.66054 x 10-* kg
R=177pm=177x10""m
R=107pm=1.07x10"%m
#=110°

Since the factor m, is common to each term in the formulas, multiplication by its value need not be
performed until the end of the calculation. The results are:

1,= 2 x 34.9688 (1 — c05110°) x (1.77 x 107° m)?
=[4.88 x 10 kg m?|

Substitution of the data in a similar manner into the above formula for 7, gives

[1,=2.54 > 10% kg m?|

We use eqns 12.13 to calculate the rotational constants in wavenumbers.

A= R 5.74 m~'=|0.0574 cm™
41‘[(2‘1"

. B )

8= =11.02m™" =[0.1102 cm"!
drel|

In frequency units we have

A ,
A= =172x10°s"=[1.72 x 10°Hz

i
B=4h[ =330%10%s"'=(3.30 x 10°Hz
Tl

The frequency of the transition is related to the rotational constant by
hv = AE=heAF=heBIAJ +1) - (J - 1)J1=2hcBJ
where J refers to the upper state (= 3). The rotational constant is related to molecular structure by

B o F
" dmcl  4memg R
where Tis moment of inertia, 71, is effective mass, and R is the bond length. Putting these expres-
sions together yields
#J

v=2cBl =——
2ﬂmeﬂ'R2
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The reciprocal of the effective mass is

(12p2,)71+ (15.9949m,)!
1.66054 x 10-*" kg n15!

(8.78348 x 105 kg 1) x (1.0546 x 10-# T 5) % (3) -
So, v= P25 510 ) =[3.4754 x 1015

() The wavenumber of the transition is related to the rotational constant by

mg=mg'+ mg'= =8.78348 x 10% kg

hetr = AE = heAF = he BIJ(T + 1) — (J— 1)J] = 2hcBT
where J refers to the upper state (J = 1). The rotational constant is related to molecular structure by

b
drcl

E =
where [is moment of inertia. Putting these expressions together yields

RJ o = Al {1.0546 x 103 T s) x (1)
2mel’ T 2mev 2m(2.998 x 10 cm s ) x (16.93 cm)

=287 =

<1

I=[3.307 x 10" kg m?|

(b) The moment of inertia is related to the bond length by

I 172
I=myR* so R= (—J
Rlyr
(1.0078 p2, ) '+ (80.9163 m,) !
1.66054 x 10~ kg my

M= ny + my; = =6.0500 x 1026 kg

and R = {(6.0494 x 10% kg~!) x (3.307 x 10~ kg m2)}V2
=1414x10"°m =

The wavenumber of the transition is related to the rotational constant by
hev = AE = heAF = he BT + 1) — (J— )] = 2hcBJ

where J refers to the upper state. So, wavenumbers of adjacent transitions (transitions whose upper
states differ by 1) differ by

Aﬁ=2E'=L, so I= 7
2rel 2rcAV

where Jis the moment of inertia, m.; is the effective mass, and R is the bond length.

e (10546 x 10J 5)
27(2.9979 x 10 cm s™) x (1.033 cm™")

So, =[5.420 x 10 % kg m?

The moment of inertia is related to the bond length by

112
I
I=mgR? so R={ J

Mg
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mgh= mg' + mg

_ (189984 my )™ + (34.9688 m,, )

166054 X 107 kg =4.89196 x 105kg"!

and R = {(4.89196 x 102 kg™ x (5.420 x 10~ kg m?)}2

=1.628 x 109 m =[162.8 pm]

E12.8{b} The rotational constant is

172
B= ho_ i , s0 R= R
drel  dre(2moR?) 8rcmy B

where 7 is the moment of inertia, m,; is the effective mass, and R is the bond length.

87(2.9979 x 10 crn 51) x (15.9949 m,) x (1.66054 x 102" kg m;'¥(0.39021)

~1.1621x 10" m =

E12.9(b) This exercise is analogous to Exercise 12.9(a), but here our solution will employ a slightly different
algebraic technique. Let R = Ryc, R'= Re5, 0=10,C="C.

_ ( (1.0546 x 101 5) ]‘”

I= ~—h—— [see the comment after eqn 12.8]
4nB

105457 x 10T s
1OC™S) = =1.3799 x 10~ kg m? = 8. 3101 x 10~ m, m?
(OC) = ) = 6.0815 x10°5 1) £m a1

1.05457 x 10 J s
1(0C*s) = =1.4145 x 10~ kg m?=8.5184 x 10-"* m, m?
O = < 59328 x 10°5 1) Em y

The expression for the moment of inertia given in Table 12.1 may be rearranged as follows.
Im=mymR2+ mcmR'*— (mu R - mcR'Y
= mamRI+ momR™? — mi R+ 2mam RR - miR”?
(Mg + me )R+ mc(ms + mg )R+ 2mameRR’

Let te = Py and mi = igeg

Im  my

— m—c(mn+ me )R+ (my + mp)R'2+ 2m,  RR'  (2)
Im"; = %(m“ + MR+ (mp+ )R+ 2m,RR’ (b)
Subtracting
n 7. Hﬂ](mﬁ me) - (’i’f](mﬁ m’c)}Rz
e Mg M me
Solving for R?
RI- (:ﬂlc — %) _ medm —mcI'm’

[(2)ma+me) — (2 ) + iy | rama =)
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Substituting the masses, with m, = mg, mg = Mg, M = My, and m(’;.= Mgy
m={15.9949 + 12.0000 + 31.9721)m, = 59.9670 m,
m’ =(15.9949 + 12.0000 + 33.967%)m, = 61.9628 m,
, . (33.9679 ) x (8.3101 x 10~ m, m*) X (59.9670 m,)

~ (12.0000 r1,) x (15.9949 m,,) x (33.9679 my— 319721 my)

(31.9721 m,) x (8.5184 x 10" m, m?) x (61.9628 m,)
(12.0000 rm,)  (15.9949 m, )  (33.9679 m, — 31.9721 n,)

516446 x 10 °m?
- 383.071
R=1.1611x10"m=|116.1 pm|= Roc

Because the numerator of the expression for R? involves the difference between two rather large
numbers of nearly the same magnitude, the number of significant figures in the answer for R is
certainly no greater than 4. Having solved for R, either equation (a) or (b) above can be solved for
R’ The result is

R =1559%10"°m=|1559 pm|= R

E12.10(b) The wavenurnber of a Stokes line in rotational Raman is

=1.3482 x 10 m?

Vsiokes = Vi — 2B(2T + 3) [12.253]

where J is the initial (lower) rotational state. So
Vorokes = 20623 cm™ — 2(1.4457 cm ') % [2(2) + 3] =|20603 cm™!

E12.11{b) The separation of lines is 45, so B= % x (3.5312 cm~!) = 0.88280 cm !

7

12
m} [Exercise 12.8(a)]

Then, we use R = [

with mg = Tm(¥F) = 1 x (18.9984 m,) x (1.6605 x 107 kg m;') = 1.577342 x 10P kg

_ 1.0546 X 10 s v
47(1.577342 % 10 kg) x (2.998 x 107 cm s 1) x (0.88280 cm ')

=1.41785 x 10 m = (141.78 pm

E12.12(b} The centrifugal distortion constant is given by

. 4B
D, =—-112.17, also see Problem 12.21]
v

=133
p,=2 ?;gf;‘ojn‘f‘f;z Y 2028 %10 cm™

D,=<B B w}_ I o< iy, [Table 12.1]
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D,(Br) M (78.9183m,) _ 0.9277

and

Therefore, 1}, = !
" my DB m_ (809163m,y

We have assumed that the internuclear distance remains constant on substitution.

E12.13(b) Seeeqn 12.22 and Problem 12.26.The most highly populated rotational level is given by

12
kT 1
Jom =l —= | —-=[12.22

(thBJ 2[ 1

For Br, after substituting for the constants this expression becomes

J ~ T/K U'Z_l
102328 2

12
208.15/K)" 1
°C = . J = — —— =436
(@) At25°C=298.15K, Jpn., (o.zssz 5 =136]

172
373.15KY 1
b) AL100°C =373.15K, Jyp = | i | ===
®) e [ 0.2328 ] 2

Answers are rounded off to the nearest integer.
E12.14(b} The angular frequency is

V2
w= [55-} =2zv s0 k=02nv)Pm=02xP x(3.087)2x{2.0x107kg)

m

k 142 k 172
E12.15(b) o =[ £ ] w'= [M—fm] [prime = 2H>CI]

’
L L%

The force constant, k;, is assumed to be the same for both molecules. The fractional difference is
[i 1.'2_ (ijlﬂ [_I-JIQ ] ]112
o' - o M ey _ iy Higy Mg "
P = ( ke }uz [ ) ]112 =7 | ~
My L

Mg
, 2 12
m—w;{me&-] _1={ Mg x(mQH""mﬂc,)} _

Myt ma (P )

_ [(1.0078 my) x (34.9688 my) (20140 m,) + (36,9651 my) "
~ 1 (1.0078 m,) + (34.9688 my,) . (2.0140 m,) X (36.9651 my }

=-0.284

Thus, the difference 15 [28.4%|.
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E12.16{b) The fundamental vibrational frequency is

12

k,

o= (—1—] =2nv="2mc?V, $0 ke=(2rcV)’my
My

We need the effective mass

w7 = m7+ m' = (78.9183 m, )1+ (80.9163 nz, ) = 0.0250298 e’

ot

_ [27(2.998 x 10 em s7') x (323.2 e~ )] x (1.66054 x 1027 kg mg))

0.0250298 ;!
=[2459 N m™!

E12.17{b) The ratio of the population of the second excited state (V) to the first excited state (V) is

M _ ol 2 2 exf 27
N, P r TP T

ki

N, ~(6.626 x 10-*J 5) X (2.998 x 10°° cms~) x (321em-1)
—*F= =[0212
@ 7 EXP( (1381 X102 J K) x (298K)
N —(6.626 x 107 Js) x (2.998 x 10®cm s ") x (321cm™!)
b) —*= =lo.561
® 5 CXP( (1381 x 102 ] K-') x (800 K) [o.s61

E12.18(b) The relationship between vibrational frequency and wavenumber is

112 172 _1N02
m=[.&] 2= 2mch, 5o ﬁ=_1_[£] _ Uam)y”

Miyr 2rc\ my 2rc

The effective masses of the hydrogen halides are very similar, but not identical
mgt = mp! + my!

We assume that the force constants as calculated in Exercise 12.18(a) are identical for the deuterium
halide and the hydrogen halide.

For DF

-1
eff

(2.0140 m, )"+ (18.9984 m, )"
T 1.66054 x 10 kg my!

 {(3.3071 X 10%kg™) x (967.04 kg s-2)}2
- =[3002.3 cm™"
Y 272(2.9979 % 10 cm s )

=3.3071x10*%kg!

For DCI

-1 —1
g = (20140 )7+ (34,9688 )
1.66054 x 107" kg mg!

{31624 X 10% kg 1) x (515.59 kg s2))1°
_ = [2143.7 em™
Y 27(2.9979 x 109 cm 57

=3.1624 x 102 kg !
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For DBr

-1 -1
= 20140 )+ (80.9163 m,)
1.66054 x 107 kg g’

_ {(3.0646 x 102 kg™) x (411.75 kg s2)2
= =[1885.8 cm!
4 27(2.9979 x 10°cm s

For Di

=3.0646 x 10% kg!

(20140 m, ) + (126.9045 m,)"!
1.66054 x 10" kg nry!

. {(3.0376 x 10%kg™") x (314.21 kg 572)3'2
= =[1640.1cm™!
Y 27(2.9979 x 10" cm s71)

-1
eff

=3.0376 x 10% kg’

Data on three transitions are provided. Only two are necessary to obtain the value of ¥ and x,. The
third datum can then be used to check the accuracy of the calculaied values.

AG(r=1« 0)=9 - 29x, =2345.15 cm " [12.40]
AG(v=2 « 0) =27 — 69x, =4661.40 cm ' [12.41]

Multiply the first equation by 3, then subtract the second.

7 = (3) x (2345.15 cm™!) — (4661.40 cm™) = [2374.05 om-'

Then, from the first equation

§-2345.15cm-  (2374.05 - 2345.15) cm™!
_ - ~[6.087 x 10
e 27 (2) X (2374.05 cm)

x, data are usually reported as x.7, which is

x,v=14.45 cm™

AGr =3« 0=39 - [20x,= (3) x (2374.05cm ") - (12) x (14.45 cm™)
=6948.74 cm™!

which is close to the experimental value.

AG,. n=V =2+ Dx. i [12.40], where AG,,.»=Glv+1)— G1)
Therefore, since
AG,..n=(1=2x)0 - 2ux¥

a plot of AG..,, against v should give a straight line, which gives (1 — 2x_)¥ from the intercept at
v=0and -2x. from the slope. We draw up the following table:

v 0 1 2 3 4

G(v)em 1144.83 3374.90 5525.51 7596.66 9588.35
G, pfem 2230.07 2150.61 2071.15 1991.69
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The points are plotted in Figure 12.1.

2200

\.]
—
o=
=]

AG, 412 fem™!

:

Figure 12.1
The intercept lies at 2230.51 and the slope =—76.65 cm™!, hence x,¥ = 39.83 cm™.
Since ¥ — 2x,¥=2230.51 cm™ it follows that ¥=2310.16 cn™!.

The dissociation energy may be obtained by assuming that a Morse potential describes the
molecule and that the constant D, in the expression for the potential is an adequate first approxi-
mation for it. Then,

v v -2
Y 2agye V- @31016em™)
* x5 @x (983 em )

However, the depth of the potential well D, differs from Dy, the dissociation energy of the bond, by
the zero-point energy, hence

D,=D.— 17 =(33.50 x 10*em™) - (1) x (2310.16 cm™")

£

D,= =3350x10Fcm'=4.15¢eV

(]

=[3.235x10%cm™| = [4.01 eV

The dissociation energy may be obtained by assuming that a Morse potential describes the mole-
cule and that the constant D, in the expression for the potential is an adequale first approximation
forit. Then,
" v v
D.= 12.38], then x, = —

4 [ ] 4D,

(< e

However, the depth of the potential well D, differs from D,, the dissociation energy of the bond, by
the zero-point energy; hence,

D.= B,- 17 [Figure 12.26]

Data in Table 12.2 for D, is given in kJ mol™' and the value for '"H*'Br is 362.7 kJ mol ™. The conver-
sion factor is 83.593 crr VkJ mol-'. Hence,

D, = Dy+ 1% =362.7 kJ mol~' x 83.593 cm~/kJ mol~'+ 1 X 2648.98 cm™' = 31644 cm™' = 3.923 &V
¥ 2648.98 ¢cm!

—=————"—=|0.02093
4D, 4x31644em™!

Then, x,=
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The anharmonicity constant is inversely proportional to the square root of the effective mass of the
molecule since it is proportional to ¥ [12.34]

e
v Mgy

Therefore,

x,CH"Br) _ [me('H"BD]"? _ (0.9954 my)”? 0.7117
*(HUBD)  [meCHOBO”  (1.9651m)" =

The wavenumber of an R-branch infrared transition is
Vg =¥+ 2B(J + 1)[12.45¢)

where J is the initial (lower) rotational state. So,
P =2308.09 cm™ + 2(6.511 cm™) x (2 + 1) =|2347.16 cm ™

See Section 12.9. Select those molecules in which a vibration gives rise to achange in dipole moment.
it is helpful to write down the structural formulas of the compounds. The infrared active com-
pounds are

(@ CH,CH, (b) CH, () CH)(CI

COMMENT. A more powerful method for determining infrared activity based on symmetry considerations is
described in Section 12.16.

A non-linear molecule has 3V — 6 normal modes of vibration, where N is the number of atoms in
the molecule; a linear molecule has 3N - 5.

(a) C,H, has 3(12) - 6 =[30| normal modes.
(b) C,H,CH, has 3(16) — 6 =[42| normal modes.
(¢ HC=C-C=CHislinear;ithas 3(6) ~5= normal modes.

(a) A planar AB, molecule belongs to the Dy, group. Its four atoms have a total of 12 displace-
ments, of which 6 are vibrations. We determine the symmetry species of the vibrations by first
determining the characters of the reducible representation of the molecule formed from all 12 dis-
placements and then subtracting from these characters the characters corresponding to translation
and rotation. This latter information is directly available in the character table for the group Dy,.
The resulting set of characters are the characters of the reducible representation of the vibrations.
This representation can be reduced to the symmetry species of the vibrations by inspection or by
use of the little orthogonality theorem.

Dy, E o, 20, 285, c, 3o,
% (translation) 3 1 0 -2 -1 1
Unmoved atoms 4 4 1 1 2 2
x (total, product) 12 4 0 -2 =2 2
x (rotation) 3 -1 0 2 -1 -1
x (vibration) 6 4 0 -2 0 2

¥ (vibration) corresponds to A{+ A+ 2E".
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Again referring to the character table of Dy, we see that E’ corresponds to x and y, A to z, hence

| 7and E" are IR active.| We also see from the character table that E” and A correspond to the

quadratic terms; hence [A{ and E’ are Raman active.

{(b) A trigonal pyramidal AB, molecule belongs to the group C,,. In a manner similar to the analysis
in part (a) we obtain

Cyw E 2G; 3oy
x {total) 12 0 2
x (vibration) 6 -2 2

x (vibration) corresponds to 2A, + 2E. We see from the character table that are infrared
active and that are also Raman active. Thus, all modes are observabie in both the infrared
and the Raman spectra.

{b) The boat-like bending of a benzene ring clearly changes the dipole moment of the ring, for the
moving of the C-H bonds out of the plane will give rise to a non-cancelling component of their

dipole moments. So, the vibration is .

(a) Since benzene has a centre of inversion, the exclusion rule applies: a mode that is infrared
active (such as this one) must be .

The displacements span A, + 2A,, + 2E,, + E,. The rotations R, and R, span E,,, and the trans-

lations span E;, + A|,. So the vibrations span .

Solutions to problems

Solutions to numerical problems

B= A [12.7;, I=mgR% R= L
4rcl 4rem ;B
ey = meto [ (12.0000 m,) x (15.9949 m, ) « (1.66054 x 107 kg miz))
Me+mg | (12.0000 m,) + (15.9949 m, )
=1.13852 x10%kg

i
—=2.79932 x 10 ¥ kgm

ac

—44 _

R 2.79932 x 10-%* kg m —1.27303 x 10 m2

T (113852 x 10-% kg) x (1.9314 x 10 m-1)

R,=1.1283x10""m =(112.83 pm



P124

P12.6

296 INSTRUGTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

Rom 2.79932 x 10 kg m
"7 (113852 x 102 kg) x (1.6116 x 102 m)

R=12352x10"%m =|123.52 pm

COMMENT. The change in internuclear distance is roughly 10%, indicating that the rotations and vibrations
of molecules are strongly coupled and that it is an oversimplification to consider them independently of each
other.

=1.52565 x 10 m?

The separations between neighbouring lines are
20,81, 20.60, 20.64, 20.52, 20.34, 20.37,20.26 mean: 20.51 cm™!
Hence, B=(3) % (20.51cm™) =10.26 cm™' and

h 1.05457 x 107 Is

I= == =(2.728 x 10* kg m?
dtcB  (4m) x(2.99793 x 10% cm s7') x (10.26 cm™) I X e i

12
R= [LJ [Table 12.1] with mg=1.6266 x 107 kg [Exercise 12.6(a)]

Mo
172
2728 x 10V kg m?
= =(129.5 pm
COMMENT. Ascribing the variation of the separations to centrifugal distortion, and not by just taking a simple

average, would result in a more accurate value. Alternatively, the effect of centrifugal distortion could be mini-
mized by plotting the observed separations against J, fitting them to a smaoth curve, and extrapolating that

- 1 — N -
curve to J=0. Since B 7 and f o< My, B o< " Hence, the corresponding lines in 2H¥CI will lie at a factor
eff

M (H=C)  1.6266
My (BHECH) ~ 3.1622

=0.5144

1o low frequency of 'H%Cl ines. Hence, we expect lines at|42.9,53.6,64.2,...cm™|.

172
R= [ i ~] and v=2cB(J +1) [12.2]a, with v = c¥]
druchB
(63.55) x(79.91)
B2 AAAY

Wi CuBr) =
e use w(CuBD) =<3 55y + (79.91)

W= 3540 m,

and draw up the following table:

J 13 14 15

viMHz 84421.34 90449.25 96476.72
Blem™ 0.10057 0.10057 0.10057

1.05457 x 10~ Js "
(@7) = (35.40) x (16605 x 10 kg) X (2.9979 x 10" cm 5 ') x (0.10057 cm)

i)

Hence, R = [
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P12.8 Plot frequency against J, as in Figure 12.2.

260000 "
i y=83002+8603.2x
R%=1.000

S

250000 |-

[ ]
Ul B
=] §
§ [=]

Frequency/MHz

220000 |-

210000

23 24 25 26 27 28 26 30
J
Figure 12.2

The rotational constant is related to the wavenumbers of observed transitions by

§=2B(J+)=2, so v=2Be(J +1)

c
A plot of v versus J, then, has a slope of 2B¢. From Figure 12.2, the slope is 8603 MHz, so
- 8603 x 10%s!
B= =|14.35m™
20958 X 10+

The most highly populated energy level is roughly

172
Jm=[ kT J 1

2hcB 2

1/2
(1381 x 102§ K-) (298 K) 1
Jon= — - =[26]at 298k
ma [(6.626x1034Js)x(8603x1065~1) 2 [26]

S [ 38110 2T K 1)x(100K) ”2_1_at100K
x| (6626 x 1011 5) X (8603 x 1055 1) | 2

1210  The Lewis structure is
[Q=N=Q}
VSEPR indicates that the ion is and has a centre of symmetry. The activity of the modes is
consistent with the rule of mutual exclusion; none is both infrared and Raman active. These transi-
tions may be compared to those for CO, (Figure 12.37 of the text) and are consistent with them.
The Raman active mode at 1400 cm™ is due to a symmetric stretch (%)), that at 2360 cm™ to the

antisymmetric stretch (¥;} and that at 540 cm™! to the two perpendicular bending modes (¥,).
There is a combination band, ¥, + ¥, = 3760 cm™ = 3735 cm™, which shows a weak intensity in

the infrared.
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P12.12 D,=D,-v  with = 1¥ — L x.¥ [Section 12.10]

1 1
2 4

(a) 'HCL = {(1494.9) - (1) x (52.05)} cm = 1481.8 cm™!, or (.184eV

Hence, D,=5.33-0.18 =|5.15¢V

2m gwx, - 1 . - e
ST = 4?[12.38], 50 ¥x, o« — as ¢ is a constant. We also have D, = ——
m

ol X,V

(b) ?HCL

[Exercise

1
12.20(a)}, so ¥ = o ,implying v «« —. Reduced masses were calculated in Exercises 12.18(a) and

eff e
(b), and we can write

o (CHCL)

2
v('HCl) = (0.7172 2989.7cm™")=2144.2 cm™!
mem(Zch} x F(HCI) = (0.7172) x (2989.7 cn™) cm

#(CHCI) = (

e 'HCT)

X JCHC)) = [meﬁ(ZHC )

] x x,#(HCT) = (0.5144) x (52.05 em ™) = 26.77 cm™!

V(HCD = (1) x (2144.2) - (4) % (26.77 cm™) = 1065.4 cm™, 0.132 ¢V

Hence, Dy(PHCD) = (533~ 0.132) eV =

P1214  (a) Inthe harmonic approximation
D,=Dy+3v so v=2(D.-D,)

21.51x 102T -2 x 1075 )
= =152 m™
(6.626 x 1074 T 5) % (2.998 x 10 m s°)

<

The force constant is related to the vibrational frequency by

172
w= { ki J [12.33]1=2av =2mc¥, so ky=(Crcv)ymg
My

The effective mass is
e e -;-(4.003 my) X (1.66 x 1027 kg mgt) = 3.32 x 107 kg
= [2m(2.998 x 108 ms™) x (152m~)F x (3.32 x 107 kg)

=12.72 x10~*kgs?

The moment of inertia is

I=mgRE=(3.32 x 107 kg) x (297 x 1012 m)?=[2.93 x 10-% kg m? |

The rotational constant is

5__h 1.0546 x 107 s
B = = _ 3
drel 475(2.998 X 108 msfl) x (293 » 10—46 kg 2) 95.5m

(b) Inthe Morse potential

v e A N A A
R U

e

Ko =

e
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This rearranges to a quadratic equation in ¥

1 1ya_ HD—Do)
z (2) 165,

2(16D,)"

)
~ 4(1.51 X 102 J) | [2x10%)

T (6626 X 10T 5) x (2.998 x 10, m 5 ) 1511027
-

(293 m!) X (6.626 x 10 J 5) x (2998 X 108 ms™')

d x,
anex A151x1027)

(a) Follow the fiow chart in Figure 11.7 of the text. CH,Cl is not linear, it has a C;-axis {only one),
it does not have C;-axes perpendicular to C,, it has no a,, but does have three o, planes, so it belongs

to|Cy. |-

(b) The number of normal modes of a non-linear molecule is 3N — 6, where ¥ is the number of
atoms, sc CH,Cl has normal modes.

(¢} To determine the symmetry of the normal modes, consider how the Cartesian axes of each
atom are transformed under the symmetry operations of the C,, group; the 15 Cartesian displace-
ments constitute the basis here. All 15 Cartesian axes are left unchanged under the identity, so the
character of this operation is 15. Under a C, operation, the H atoms are taken into each other, so
they do not contribute to the character of C;. The z-axes of the C and Cl atoms are unchanged, so
they contribute 2 to the character of .. For these two atoms

¥ 3lf2x

311'2
24 and y 5> ~=+ \
2 2

x— -+
2

5o there is a contribution of —31 to the character from each of these coordinates in each of these
atoms. In total, then y =0 for C,. To find the character of o,, call one of the o, planes the yz plane;
it contains C, Cl, and one H atom. The y and 7 coordinates of these three atoms are unchanged, but
the x coordinates are taken into their negatives, contributing 6 — 3 = 3 to the character for this
operation. The other two atoms are interchanged, so contribute nothing to the character. To find
the irreducible representations that this basis spans, we multiply its characters by the characters of
the irreducible representations, also multiplying by the number of operations of each kind, sum
those products, and divide the sum by the order 4 of the group (as in Section 11.5(a)). The table
below illustrates the procedure.

E 20, 3, E 26, 3, Sur/h
Basis 15 0 3
A 1 1 1 Basis x A, 15 0 3 4
A, 1 | -1 Basisx A, 15 0 -3 1
E 2 -1 0 Basisx E 30 0 0 5
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Of these 15 modes of motion, three are translations (an A, and an E) and three rotations (an A, and
an E); we subtract these to leave the vibrations, which span

3A, + 3E| (three A, modes, and three doubly degenerate E modes).

(d) Any mode whose symmetry species is the same as that of x, y, or z is infrared active. Thus,

[all modes are infrared active|.

(e) Only modes whose symmetry species is the same as a quadratic form may be Raman active.

Thus, (all modes are Raman active|.

Solutions to theoretical problems
The centre of mass of a diatomic molecule lies at a distance x from atom A and is such that the
masses on either side of it balance
Max =mp(R — x)
and hence it is at

T,
X=—"2R m=m,+my
besd

The moment of inertia of the molecule is

2 p2 -
I =m,x*+my(R - x)*[12.2)= mamgR® mpghi R _ My o,

e m? m
. R
M+ g

The virial theorem states that if the potential energy of a particle has the form ¥'=ax* then its mean
potential and kinetic energies are related by 2(£,) = (V") [8.35]. For the harmonic oscillator poten-
tial energy & = 2 and {E,) = 1 E,{8.34b] = 1(v + Dhw[8.24]. Hence, (V) = (Ey) = 3E,= (v + )ho

1
= 3k(x*)and |(x?) = 7('(0 + 2)he.| We see that as v increases, (x) increases and (R?) = R? + (x?)
F

[Solution to Problem 12.19] increases. As {(R? increases, the moment of inertia / increases

[Table 12.1]. As Jincreases the Lrotational constant B decreasesl [eqn 12.7] as the oscillator is excited

to higher quantum states. Anharmonicity results in greater average values of R* as v increases

[Figure 12.27]; hence, [B decreases with increased anharmonicity |

The Morse potential is ¥ (R)=hcD.{l - e%R9}2[12.37]. Rewrite this expression as V(R) =
D{1 - e*}*withx = R— R, and D = heD,. The force constant is obtained from

d?¥
ke=| —= .
¢ (dxz ]X_O[IZ 30]

= {-2Da(ae ™~ 2ac%)) _ =
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The energy levels of a Morse oscillator, expressed as wavenumbers, are given by:
G) =W+ — @+ Wx b=+ 1w -+ 014D,

States are bound only if the energy is less than the well depth, D., also expressed as a wavenumber:
Gv)<D, or (v+I)W—(v+2yv4D,< D,

Solve for the maximum value of v by making the inequality into an equality:
v+ 2944D,— (v+ o+ B,=0

Multiplying through by 4D, results in an expression that can be factored by inspection into:

~ ~ 2 C A e
[v+37-2D0T=0 so v+1=2D/0 and v=|2D-1]

Of course, v is an integer, so its maximum value is really the greatest integer less than this quantity.

N = ge~F*T {Boltzmann distribution, Chapters 2 and 15]
N, oc gre 5l oc (2] + 1) eBI+DRT [¢ =2 J 4+ | for a diatomic rotor]

The maximum population occurs when

d heB
SN e d 2 + 102 x| | e-hetrisinr —
ar { @7+ [ kT J}c

and, since the exponential can never be zero at a finite temperature, when

heB
2T+ 1)2ix] — =2
(J+)x[kT)

1/2
orwhen J .= _f‘_j:'_: - l
2heB 2

.. kT .
For ICI, with o 207.22 cm™! (inside front cover)
vz
207.22 cm™! |
J=|o=em 23
e [0.2284 cm™! ] 2
For a spherical rotor, N; oc (20 + 1)2e #eB/U+DAT [0 — (2 ] 4+ 1)2]

and the greatest population occurs when

dn;

heB(2J + 1)
o | BF+4 - —— 1
dJ (

kT

Je—ﬁcfj(.Hl}.'kT =0

which occurs when

heBQJ + 1

=
427+ 1) T
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/12
kT i
tJ =\l —= -
or {th] 2

/2
207.22 cm™! 1
ForCH, J .=|———| —-==
or ‘ [ 5.24 cm™ ] IEI

Solutions to applications

(a) Resonance Raman spectroscopy is preferable to vibrational spectroscopy for studying the

O—O stretching mode because such a mode would be , or at best only weakly

active. (The mode is sure to be inactive in free O, because it would not change the molecule’s dipole
moment. In a complex in which O, is bound, the O-0 stretch may change the dipole moment, but
it is not certain to do so at all, let alone strongly enough to provide a good signal.)

(b} The vibrational wavenumber is proportional to the frequency, and it depends on the effective
mass as follows,

sl k)T 0y me(40) V7_(160m)"_ o0
ma) W0 mg(Chm0y)) \180m, )

and ¥(180,) = (0.943)(844 cm™) =

Note the assumption that the effective masses are proportional to the isotopic masses. This assump-
tion is valid in the free molecule, where the effective mass of O, is equal to half the mass of the
O atem; it is also valid if the O, is strongly bound at one end, such that one atom is free and the
other is essentially fixed to a very massive unit.

(¢) The vibrational wavenumber is proportional to the square root of the force constant. The
force constant is itself a measure of the strength of the bond (technically of its stiffness, which
correlates with strength), which in turn is characterized by bond order. Simple molecular orbital

analysis of O,, O,, and 0;’ results in bond orders of [2, 1.5, and 1, respectively | Given decreasing

bond order, one would expect decreasing vibrational wavenumbers (and vice versa).

(d) The wavenumber of the O — O stretch is very similar to that of the peroxide anion, suggesting

i)

(¢) The detection of two bands due to '*0'*0 implies that the two O atoms occupy non-equivalent
positions in the complex. Structures 9 and 10 are consistent with this observation, but structures 7
and 8 are not.

The question of whether to use CN or CH within the interstellar cloud of constellation Ophiuchus
for the determination of the temperature of the cosmic background radiation depends on which
one has a rotational spectrum that best spans black-body radiation of 2.726 K. Given Bj(CH) =
14.190 cm™!, the rotational constant that is needed for the comparative analysis may be calculated
from the 226.9-GHz spectral line of the Orion Nebula. Assuming that the line is for the 2C*N iso-
topic species and J+ | «- /=1, which gives a reasonable estimate of the CN bond length (1174 pm),
the CN rotational constant is calculated as follows,
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Black-body radiation at 2.726 K may be plotted against radiation wavenumber with suitable trans-
formation of eqn 7.8.

Brhev®

pv) = ehotkT _ ]

Spectral absorption lines of C™N and '2C!N are calculated with eqn 12.21a.
W+l N=2BJ+) J=0,1,2,3...

The cosmic background radiation and molecular absorption lines are shown in Figure 12.3. It is
evident that only CN spans the background radiation.
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Figure 12.3

21232  (a) The H; molecule is held together by a two-electron, three-centre bond, and hence its structure
15 expected to be an equilateral triangle. Looking at Figure 12.4 and using the law of cosines

R*=2R2 — 2RZcos(180° - 26)
=2R(1—cos{120) = 3RZ
Therefore,

Re=RI3
Io=3mR2 = 3m(RI3 )= mR?
Ty =2mRy = 2m(RI2): = mR2/2

Therefore,

IC = 213
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2mcMyB 2x(2.998 x 108 ms~!) x (0.001008 kg mol!) x (43.55cm™)

~8.764 x 10~ m =

Alternatively, the rotational constant € can be used to calculate R.

h R
dncl.  dmemR?

R_[ 5 )uz: AN, 12
" dremC dzeM C

B [ (10546 x 10T 5) x (6.0221 x 10 mol-') x (1=

C= [12.13]

41(2.998 x 108 ms) x (0.001008 kg mol™!) x (20.71 em™)

=8986x 10 m =

|

|

The values of R calculated with either the rotational constant € or the rotational constant B differ
slightly. We approximate the bond length as the average of these two.

|

87.64 + 89.86) pm
(ry = ELA= BV _[e5 7 ]

PR (10546 x 107 T 5) x (6.0221 x10% mol!) x (X=m)
T 2memR? | 2m(2.998 x 10°m s7') x (0.001 008 kg mol-') x (87.32 x 10-2m)?

s

B=|2193cm™

(©
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(d) 1.3 or mg=im
oy m

Since mp, = 2my, Mg = 2my/3

142
(DY) = [MJ 7,(H2) [12.34]

meﬁ"(D;)
112
= My /3 ~ (H"’) - ﬁZ(H;)
2my/3) VR

-1
= % =[1783.0 cm™!

Sinces and € = -1—, where m = mass of Hor D
m

" - M 1.008
B(D) = B(H)y x —2 =43 .55cm™! =121.80 cm™!
(DY) (Hy) < M, cm x[2.014) cm

C(Dy)= C(Hi) % %ﬂ =20.71 cm™ % (;008 J ={10.37 cm™

D




Molecular spectroscopy 2:
electronic transitions

D13.2

D13.4

D13.6

Answers to discussion questions

The Franck-Condon principle states that, because electrons are so much lighter than nuclei,
an electronic transition occurs so rapidly compared to vibrational motions that the internuclear
distance is relatively unchanged as a result of the transition. This implies that the most probable
transitions v, « v; are vertical in the sense that bond lengths do not change during the transition.
This vertical line (text, Figure 13.7) will, however, intersect any number of vibrational levels ¢, in the
upper electronic state. Hence, transitions to many vibrational states of the excited state will occur
with transition probabilities proportional to the Frank--Condon factors, which are in turn propor-
tional to the overlap integral of the wavefunctions of the initial and final vibrational states. This
creates the band structure, a progression of vibrational transitions, that is observed in electronic
spectra. The band shape is determined by the relative horizontal positions (text, Figure 13.8) of the two
electronic potential energy curves. The most probable absorption transitions are those to excited
vibrational states with wavefunctions having a large amplitude at the internuclear position R..

Question. You might check the validity of the assumption that electronic transitions are so much
faster than vibrational transitions by calculating the time scale of the two kinds of transitions. How
much faster is the electronic transition, and is the assumption behind the Franck—Condon principle
justified?

Colour can arise by emission, absorption, or scattering of electromagnetic radiation by an object.
Many molecules have electronic transitions that have wavelengths in the visible portion of the elec-
tromagnetic spectrunt. When a substance emits radiation the perceived colour of the object will be
that of the emitted radiation and it may be an additive colour resulting from the emission of more
than one wavelength of radiation. When a substance absorbs radiation its colour is determined by
the subtraction of those wavelengths from white light. For example, absorption of red light results
in the object being perceived as green. Scattering, including the diffraction that occurs when light
falls on a material with a grid of variation in texture or refractive index having dimensions com-
parable to the wavelength of light, for example, a bird’s plumage, may alsc form colour.

The overall process associated with fluorescence involves the following steps. The molecule is first
promoted from the vibrational ground state of a lower electronic level to a higher vibrational-
electronic energy level by absorption of energy from a radiation field. Because of the requirements
of the Franck—Condon principle, the transition is to excited vibrational levels of the upper electronic
state. See text Figures 13.21 and 13.22. Therefore, the absorption spectrum shows a vibrational
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structure characteristic of the upper state. The excited-state molecule can now lose energy to the
surroundings through radiationless transitions and decay to the lowest vibrational level of the
upper state. A spontaneous radiative transition now occurs to the lower electronic level and this
fluorescence spectrum has a vibrational structure characteristic of the lower state. The fluorescence
spectrum is not the mirror image of the absorption spectrum because the vibrational frequencies of
the upper and lower states are different due to the difference in their potential energy curves.

(a) Continuous-wave (CW) laser emission is possible when heat is easily dissipated and popula-
tion inversion ¢an be continuously maintained by pumping. The red laser pointer is an example of
a CW laser. Typically, the light amplification by stimulated emission of radiation is continuous in the
optical cavity and one of the two mirrors, the output coupler, at the ends of the cavity is partially
transparent so that only a fraction of the cavity radiation can continuously escape. The gain medium
is pumped to the excited state by electricity, a flash lamp, or another laser.

(b) The pulsed laser periodically emits a pulse of high peak power radiation, which is much higher
than can be achieved with a CW laser because the average laser power is released in a pulse of short
duration. Pulses may be achieved by Q-switching or mode locking. In Q-switching, the laser cavity
resonance characteristics are modified to make the cavity conditions unfavourable for lasing,
during which time a healthy population inversion is achieved; the cavity is then suddenly brought
to resonance, releasing the radiation pulse. The electro-optical Pockels cell or a saturable absorber
may be used as Q-switching devices that give pulses of about 5 ns duration. Picosecond pulses can
be achieved by the technique of mode locking in which a range of resonant modes of different
frequency are phase locked and superimposed. Interference of the modes gives rise to short, regular
bursts of radiation. Mode locking is achieved by varying the Q-factor of the laser cavity periodically
at the frequency ¢/2L. The modulation can be achieved by linking a prism in the cavity to a trans-
ducer driven by a radiofrequency source at a frequency ¢/2L. The transducer sets up standing-wave
vibrations in the prism and modulates the loss it introduces into the cavity.

Solutions to exercises
The reduction in intensity obeys the Beer-Lambert law introduced in Section 13.1.

I I
log— = —log =% = —¢[J]L [13.3and 13.4]
Iy 1

={-327 dm?*mol'cm™) x {2.22 x 103 mol dm~3) x {0.150 cm)
=-0.109

I
Hence, T =10"1%=0.778, and the reduction in intensity is |22.2 %|.

0

I 1
log 7 =~log "= ~e[JIL [13.3,13.4]

{ log(0.655)
. —7.0 % 10? dm’ mol-' em-!
gIO (6.67 X 104 mol dm%") e (0'35 crn) X 10 dm mOl cm

(7.9 % 102 dm3 mol-" em-1) x (10 em dm~")'= 7.9 x 10° em? mol™!|
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E13.3(b) logT = -4 =—¢[JJL[13.2,13.3,134]

[J]_—-—Ll ogT = —log(1-0.523)
el (323 dm’* mol~'em™') x (0.750 cm)

=(1.33 mmol dm

E13.4(b) A parabolic lineshape is symmetrical, extending an equal distance on either side of its peak. Itis
well known, and proven in the note below, that the area under a parabola equals 2 x base width x
height. Let ¥, and ¥; be the initial and final wavenumbers of the absorption band. Then, the base of
the band has the width A¥ = ¥, — ¥, and the integrated absorption coefficient is the area given by

r

ﬂzJ e(\"/)d\”/[13.5]=J () d¥ = X (¥~ V) X £
band

Stnce ¥ =2"! and ¥/em™! = 107/ A/nm),
vilem™ = 107/(275)=3.64 x 10° and ¥dem ' =107/(199)=5.03 x 10¢

2 :% x(5.03x10*cm™ - 3.64 x 10*cm™) x (2.25 x 10*dm* mol~' cm™")

= L2.09 % 108 dm?® mol~ cm‘2|

Note: The formula for the area of a parabola can be derived with the equation for a parabola (see
Figure 13.40 of the text):
6(‘7) = gmax{l - K-(i7 - ~max)2}

The symmetry of the parabola means that ¥,,, = ¥+ + AV = ¥: — 2 AV. Since &(%) = £(¥) =0, the con-
stant « is easily determined by examination of the parabola equation at either &(¥)) or &(¥;):

= {1 = KT~ Py} = Sl = K7y = Ty $A7P) = gucll = 5892} 01 =

Thus,

¥

2 =f £(¥) dff[13.5]=j £(v) dv

Y

S
. 4
{l: 3A~2 = P )? jf [vi— 3A92 N VM){”
——Av))3 : 4 —(#— (V+ AP))?
ma.x 3A~2 (Vf (Vf 1 3A 2
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Note: The given data are not consisient with a parabolic lineshape when plotted as a function of
either wavelength or wavenumber, for the peak does not fall at the centre of either the wavelength
or the wavenumber range. The integrated absorption coefficient can be estimated with the given
data assuming a triangular lineshape as a function of wavenumber. If the peak is triangular, the
area is

A= %(base) x (height)
= 2[(199 x 10®° m)~" - (275 x 10~ m)~] x (2.25 x 10* dm* mol~ cm™")

158 % 10 drm® m~' mol-! cm- (1.56 x10°dm’ m~' mol-'cm™) x (100 cm m™)

10°dm3m-3
=1.56 x 10°m mol = 1.56 x 10% dm?® mol' cm™2
1 I .
e=———log—[13.3,134] with L =0.250 cm
UIL "L

We use this formula to draw up the following table:
[dye)/mol dm™ 0.0010 0.0050 0.0100 0.0500
I, 0.73 0.21 0.042 1.33 x 1077
&/(dm mol™' cm™) 547 542 551 550 mean: 548

Hence, the molar absorption coefficient is e = |5.5 x 102 dm® mol~' cm™ F

| I -1
~[13.3,13.4]=
ML "1, [ | {0.0155 mol dm?) x (0.250 cm)

10g(0.32) = [128 dm® mol ' em |

The transmittance in a 4.50 mm cell is

=L 10 131,132
1y

= IO(rO.OlSSmoldm'J)x(12§dm3mo]'lcm‘i)x(0.450cm)= 0.079. or
. . . .

The Beer-Lambert law [13.3, 13.4] s

I 1 I
log—=—¢[JIL so L[J]=-—log—
I, £ I

1

Li]=-
@ 1=~y i mol et

xlog%=|0.010 mol dm-* cm|

(b) L[N)= — x 10g(0.10) =|0.033 mol dm "~ cm|

" 30 dm® mol~' cm

The integrated absorption coefficient is the area under an absorption peak

2= J (V) d¥[13.5]
band
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We are told that £ 1s a Gaussian function, L.e. a function of the form

—x2
£ = Enay CXP —
a

where x =¥ — ¥, and a is a parameter related to the width of the peak. The integrated absorption
coefficient, then, is
2

A= [ & ax exp[inx = sma\/;

az

We must relate g to the half-width at half-height, x,:

2 2
1 _ —Xiiz 1 _ —Xin _ Xin
TEmux = Equ €Xpl —=~ |, 80 Img=—7= and a= ?
a a In2

T

i72 112
So, ﬂ=smx1,2[—J = (1.54 x 10" dm® mol~' em™) x (4233 cm')x[iJ
m2 In

=[1.39 x 10* dm’* mol- em 2

The valence ground electronic state of the dinitrogen cation is 1621621x{ 26! (see Figure 10.34 of
the text), which has the term symbol 2X; . We guess that the excited state may be 163103 1m{1x, and
check that this state has the term 1. First, the only unpaired electron in this excited state is lm;.
This has the desired spin multiplicity of two because 28+ 1 = 2s, + 1 = 2(3) + 1 = 2. This excited state
also has the desired value of the total orbital angular momentum around the molecular axis (|A]=1)
because the sum of the A values for the filled 163, 163, and 1x] levels is zero and, consequently, the
angular momentum projection on the molecular axis is that of the Iz}, electron alone. Finally, this
excited state has the overall gerade parity because the parity of the filled level is g and the parity of
the 1z} electron is g, from which we find that the overall parity is g x g = g. Since the excited state

lozlolini1n; | has the desired properties, it is a °I1, term.

The 162162 1n2In2 valence configuration has four unpaired electrons because both the 1x, and 1m,
levels are doubly degenerate (see text Figure 10.33), each with two electrons in parallel according to
Hund’s rules. Thus, § =1 + 3 + & + 5 = 2 and the spin multiplicity is given by 25 +1=2(2) + 1= .
Because u x u=gand g x g= g, the net parity of two electrons paired in an orbital is always gerade.
Consequently, the overall parity is found by multiplying the parity of unpaired electrons. For this

configuration,u xuxgxg= _

The electronic spectrum selection rules concerned with changes in angular momentum are (Section
13.20)):AA=0,%] AS=0 A¥X=0 AQ=0,%l, where2=A+ZX. Agives thetotal orbital angu-
lar momentum about the internuclear axis and X gives the total spin angular momentum about the
internuclear axis. The * superscript selection rule for reflection in the plane along the internuclear
axis is +¢3+ or —~ (i.e. +&>— is forbidden). The Laporte selection rule states that for a centrosym-
metric molecule (those with a centre of inversion) the only allowed transitions are transitions that
are accompanied by a change of parity: neg.
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(a) Thechangesin the transition 'Z} < 1Z] are AA=0,A8=0,A¥Y =0, AQ =0, uc>g, and +e>+50

the transition is .

(b) The changes in the transition e T are AA=0,AS5=0,AX =0, AQ=10, uesg, and ++s0
the transition is .

(c) Parity does not change in the transition t,, < ¢, so the transition is |forbidden|. However, this
transition is often observed because of either the presence of asymmetric vibrations or the Jahn—
Teller effect.

{d) The transition n* < n is|forbiddenl, for example in a carbonyl group, because the non-bonding

orbital of the lone pair on the oxygen does not change sign (+) under reflection in the plane that
contains the ¢ bond, while the n* orbital does change sign (). The +<>— transition is forbidden.

We begin by evaluating the normalization constants N, and N,

172 /4
Ni= _r . [Z_a] (standard integral), N,= [Z_a]
- T T
J g2 dy
172
) . - 1 B (Zb)m B (25)¥2 ) _ 2(2b)32
Likewise, N;= . “Ton ~ wn V| T
I xle-iblr-x ’Ed_x

Furthermore, we can easily check that

ax*+ b(x —x, =z + ab x3, where z=(a+b)"x- —b—x0 and dx= ;dz

a+bh (a + b)? (a +b)\2

Then, the vibration overlap integral between the vibrational wavefunction in the upper and lower
electronic states is:

S(1',0)=(I'| 0) = N,N, J xe-ate-b-nlidy

= NN, f xe-l@d (x-mlidx

= Moy J'- { bx, + z}e’{-z*ff;x%}dz

a+b |_|(a+b)”

ab

NONJ’BEX% bx, - 2 B 2
= > (at by e dz + ze ¥ dz

e
NONI'e a+h U

2 12 e
s
T h bxo(a-%b} +J ze"dz

—eo
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The integral of the above expression is necessarily zero because on the z-axis the function z has
ungerade symmetry while the function ¢ ** has gerade symmetry. Thus, u x g = u and the integral
over the complete z-axis of an ungerade function equals zero.

_ab o 2 14 12 L vz
, avb ¥ 32 arh Y

a+h a+b T '? a+h a+b

2 w2 L
_ @i e arE
a+b

For the case b= a/2, this simplifies to

32 14 14
4 a 3 32 s
Sl’,O = — vap = —axg/d_ | T2 12 ~ax§/3
0 [3.:;) 4 {2] %ot (729} @ xe

The Franck—Condon factor is

729

12
|S(11’0)I2___ [ 32 ] ax(}je—Zux%H

The rotational constant of the excited state is 8’ = 10.470 em™' while the rotational constant for the
ground state is B=10.308 cm™.. Since & > B, the bond length of the excited state is shorter than the

equilibrium bond length and the mranch hasa band headl (text Figure 13.11b).

P branch (AJ =—1): AVp(J) = ¥p(J )} — ¥ =—(B' + B)J + (B - B)J2[13.113]

To find the J value at which the head occurs, we need only compute a table of Av¥p(J) values from
low to high J. The point at which A¥.(J) is smallest is the branch head.

J 60 61 62 63 04 65 66 67
Avp(NYem™! -66348 —664.66 —665.51 -666.04 —666.24 —666.12 -665.68 —664.91

As indicated by the table, AV(J) is a minimum (i.e. the P branch head) when .

An alternative method involves deriving an equation that must be satisfied when J = J,,,,. We start
by recognizing that eqn 13.11a indicates that A¥;(J) is a quadratic function of J and, in fact, the
quadratic shape of the ¥ against J curve is called the Fortrat parabola. This means that we can
derive an equation for Jy,y by finding the maximum of the Fortrat parabola: dA¥,/dJ = 0, where
J= Jhcad‘
dav, d 5 s S
—=—{~(B'+B)\J+ (B -B)J?
TAREY; i~ W+ ( W2
=B+ By+2& -5y
—(B + B)+ 2B - B)J =0

_ (B +B) _ (10.470+10.308)

Jyad = e = = 64.13 = 64
head " (B — B)  2(10.470 — 10.308)
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The P branch has a band head so we immediately conclude both that the rotational constant of the
exited state, &, is greater than the rotational constant of the ground state, B, and that

Ilength of the excited state is shorter than the equilibrium bond ]ength|. Exercise Ei13.13b demon-
L(B' + B)I(B' - B)|. Thus if
we are only given that J,,, =25 and B = 5.437 cm™!, we know only that

strates that the J value of the band head, J,.., is the closest integer to

24.5< (B + B)I(B - B)<25.5

because the fractional value of a +(B’ + BY/(B’ — B) calculation must be rounded-off to give the
integer value J, 4. Algebraic manipulation of the inequality yields

R4S+ BB L {2255+ 1B
2(24.5)~ 1} [2(25.5) - 1}

1.0428> B> 1.0408

[5.664 cm™'> B > 5.654 cm™!

Here is an alternative solution that gives the same answer with insight into the band head concept.
Atthehead of aPband, ¥, ,,> ¥, ,,wherev;_ . isthe transition g« J=J,,q+ 1. Substitution
of eqn 13.11a into this inequality yields the relationship B” > (feoq + 1) B,y Similarly, ¥, <V,
where ¥, ___, is the transition J,..; — 2 & J=J,,,— 1. Substitution of eqn 13.11a into this inequality
yields the relationship B’ < JuuqB/(Jiess — 1). Consequently, (Joeq + DBV < B < i BT — 1)

Modelling the nelectrons of 1,3,5-hexatriene as free electrons in a linear box yvields non-degenerate
energy levels of

nih?

E, [8.4a]

= 2
8,

The molecule has six z electrons, so the lowest-energy transition is from # = 3 to n=4. Including half
a bond length at each end of the molecule, the length of the box is six times the C—C bond distance
d, so

@-3F)h TR

AE,.., = =
T 8 (6d): 288 md?

Modelling the n electrons of benzene as free electrons on a ring of circumference equal to six times
the C-C bond distance 4, and radius R equal to 3d/x, yields energy levels of

mih?
E, =——[838a
w= "2 [8382]
where [ is the moment of inertia: f = m R%. These energy levels are doubly degenerate, except for
the non-degenerate m, = 0. The six = electrons fill the s, =0 and +1 levels, so the lowest-energy
transition is from m, =1 to m,=2:

Ap. o @-PE_@-pw o w
T 2m R 2m(3din)? 24 md?
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Comparing the two shows
Th? n

AE; T=_<AErin=—
et 288 m,d? LT 24 md?

Therefore, the lowest-energy absorption will in energy on conversion of 1,3,5-hexatriene to
benzene.

The weak absorption at 320 nm is typical of a carbonyl chromophore of an enol. The assignment
is t*<n, where a non-bonding electron comes from one of the two lone pairs of the oxygen valence.
The two lone pairs of oxygen are in sp? hybrid orbitals, which define the xy plane that contains the
& bond of the carbonyl. The ©* molecular orbital is perpendicular to this plane. There is little overlap
between the n and ©* orbitals, producing a low value for the dipole transition integral and a low
molar absorption coefficient.

The strong absorption at 213 nm has the n*«nx assignment. The conjugation of the = bonds of the
ethenic chromophore and the carbonyl chromophore causes this transition to be shifted to lower
energies with respect to both the n*&n transition of ethene (165 nm) and the n*«rx transition of
propanone (190 nm). This shift can be understood in terms of the simple Hiickel theory of =
molecular orbitals using the butadiene n energy model shown in text Figure 10.43 and Figure 13.1
below. Figure 13.1 demonstrates a broad principle: the difference between neighbouring energy
levels becomes smaller as the number of adjacent, overlapping orbitals becomes larger.

—_ _-‘:"'165 nm --'_32'6;1;;& ﬂ 190 mr;-‘:::—
(C) pLC) _ar Lo PAC),
§ g _1_"__=,%13an1-|'—-—- ----- spA(0) sgz(O) ﬂ PA®)
“"-_.-‘.JL ___________________
Cc=C C=C-C= C=
Figure 13.1
The transition wavenumber is ¥ = % = 3051nm =328 x103¢m™.

The cyano ligand (CN7) is a strong ligand field splitter, so we expect the d° electrons of Fi ¢™ to have
the tj, low-spin ground-state configuration in the octahedral [Fe(CN)s]*- complex. The d-orbital
electron spins are expected to be paired in two of the orbitals of the t;, level with one unpaired
electron in the third orbital. This gives S= 1/2 and 25+ | = 2 in the ground state. We also expect that
P < Ay, where P is the energy of repulsion for pairing two electrons in an orbital.

Hypothesis 1. A d—d transition to the ti el octahedral excited statc with S =5 and 2§ + 1 =2 is
expected to be parity forbidden and therefore have a small molar absorption coefficient. This tran-
sition requires the energy A, and releases the energy P because the excited electron will come from
a t,, orbital that has paired electrons in the ground state. Thus, ¥=Aq - F and A, =V + P. Using the
typical value  ~ 28 x 10° cm! yields the estimate Ag ~ 61 x 10° cm™. (See FA. Cotton and G.
Wilkinson, Advanced Inorganic Chemistry, 4th edn, p. 646, Wiley-Interscience Publishers, New
York (1980) for electron-pairing energies.) This Ag value is much too large, so we conclude that this
transition is uniikely to be a satisfactory description of the observed transition.
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Hypothesis 2. Bonding molecular orbitals may form from the LUMOs of the CN ligands and the
t,, orbitals of Fe™ to produce complex-wide MOs that drastically reduce the electron pairing energy.
Using Figure 10.41 (MO diagram of NO) of the text as a model molecular orbital energy diagram
for CN” shows that the cyanide ground electronic configuration is 1622623621 x*2n®. It has an anti-
bonding 2z MO LUMGO that has the correct symmetry to form a x bond with an Fe™ t,, orbital.
This possibility is depicted in Figure 13.2 with the LUMO polarized toward the carbon as expected
for an antibonding MO. Overlap of this type will also form complex-wide antibonding r MOs and
Figure 13.3 depicts a reasonable energy-level diagram for the complex.

d,  LUMOofCN

Figure 13.2

T2

e —_——————— P — g J

t2g

Figure 13.3

Asin hypothesis 1, a d—d transition to the t4,el octahedral excited state with S =1 and 28+ 1 =2s
expected to be parity forbidden and therefore have a small molar absorption coefficient. This tran-
sition requires the energy A, and releases the energy P because the excited electron will come from a
t,; orbital that has paired electrons in the ground state, Thus, ¥ = A, — Pand A, =¥+ P. However, in
contrast to hypothesis 1 it now seems reasonable that the complex-wide electron delocalization greatly

reduces the electron-pairing energy, making P small enough to ignore. Thus, |Ao ~33x10%cm™|

This value seems acceptable.

After some vibrational decay the benzophenone (which does absorb near 360 nm) can transfer its

energy to naphthalene. The latter then emits the energy radiatively.

Only an integral mumber of half-wavelengths fit into the cavity. These are the resonant modes.
A=2L/m[13.18], wherer is an integer and L is the length of the cavity.

The resonant frequencies are given by v = ¢/A = nc/2L. The lowest-energy resonant modes (n=1) in
a 1.0-m cavity are il =20m(v=150 MHz—)|.
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E13.20{b) Referring to Example 13.2, we have

P = Epueltouee a0 Pore = E/1= By X Viepetitions WHETE Viepeiion is the pulse repetition rate.

20
Ipuls: = pulse"’Ppeak = mﬁw =200 ps
040 mW _

20Hz

vrepeu'tion = Paveragc '{Epulsc = W -

E13.21(b} This Mathcad worksheet simulates the output of a mode-locked laser. The radiation intensity is shown
in Justification 13.5 to be proportional to the function f{z,V) of the worksheet. The plots demonstrate
that the superposition of a great many modes creates very narrow spikes separated by z=2L/c.

“Li=10-em  ©:=209792458m-s1 ps:=10"2.s

w5201 07 thp=333.564 ps

™
'
i

e =BO0 . E it S 0 e e
v (sinpemot gy 0

f =

. (tN) [ sinfmc-t-21- L) ] &

T 1 T T
- g 4 B P " . * o - g £ T
f, 500, | ... ..
- ‘2-“,‘ *® ~ fa ¥ J
{) 1 ] L [
0 5 . 100 150 . 200 250 300
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Solutions to problems

Solutions to numerical problems

P13.2 (a) The H,0" vibrational wavenumber (0.41 eV) of the photoelectron spectrum band at 12-13 eV
corresponds to about 3300 cm', which is close to the 3652 cm™! symmetric stretching mode of the
neutral ground state (see text Figure 12.38). This suggests loss of a non-bonding electron. The
absence of a long vibrational series in this band is compatible with an ionized equilibrium bond
length that approximately equals that of the neutral ground state, thereby producing a large
Franck—Condon factor for the adiabatic transition (" = 0«v = 0) and smaller factors for other
vibrational transitions (v" = 1,2, ...«v = (1), These observations are compatible with the loss of a
non-bonding electron because such a loss does not affect, or has little effect, on the bonding forces
constants, vibrational frequencies, or equilibrium bond lengths.

(b) The H,0 vibrational wavenumber (0.125 V) of the photoelectron spectrum band at 14-16 ¢V
corresponds te about 1000 em™, which is very different from the 1595 cm™ bending mode of the
neutral ground siate (see text Figure 12.38). This suggests loss of a ¢ bonding electron that severely
reduces bond order, a bond force constant, and a vibrational frequency. Consequently, we expect
the bond length of the ionized state to be longer than that of the neutral ground state, an observa-
tion that is compatible with the long vibrational series of the band because this yields many vertical
transitions with significant Franck—Condon factors.

P13.4 The absorption band of text Figure 13.42 appears to be a positively skewed Gaussian with a peak
at the point (28 000 cm™!, 9.6 dm® mol™' cm™") and half-heights at the points (26 300 cm™', 4.8 dm?
mol~ em™) and (30 200 cm%, 4.8 dm® mol™ cm™). When skew is considered later in this solution,
the point (34 000 cm™, 0.7 dm? mol™! cm™!) will also be used, but first we note that the low side of
the peak appears to have the normal Gaussian shape so we use the half-height on the low side
and the peak to estimate the area with a normal Gaussian lineshape having the form

£=£pe Pk yhere gis a constant related to the half-width
AP,y =2 x (28 000 26 300) cm™' = 3400 e

a =J e(¥) d¥[13.5] Zst' g T )tiat g
band —o

=ema~/; [standard integral]
The relationship between the half-width and « is found by evaluation of the lineshape at
E(ﬁlfl) = £max"'z:
£ 12 = Emaxe*(‘"’urppeak Pia®
In(1/2) = ~(¥); — Ve ) f2*

s Ol T _ (AT, 12
In{2) In(2)
— Aﬁ1.'2

2z
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Thus,

A= |3 AV o oy T |n(2)]= 1.0645 AV, 26,

= %(3400 ecm™) x (9.6 dm? mol! cm")\/ xlln(2) = |3.5 x 104 dm? mol'cm =

The above calculation underestimates the value of 4 because the assumption of a normal Gaussian
lineshape neglects the fact that text Figure 13.42 shows a band that is obviously skewed toward the
higher energies. This increases the area under the curve. In fact, we have calculated the value of AV,
with the value of ¥, that comes from the low-energy side of the band because the band appears to
be Gaussian when ¥ < ¥, To account for the tail at higher energy the normal Gaussian lineshape

can be multiplied by the function 1 + exf (%}, where erf(x) is the error function (see a mathematics

handbook). The parameters ¥, and g of the normal Gaussian function are treated as adjustable
parameters as are b and ¢ within the error function, that is, the four parameters are adjusted in the
sense of a least sum of square errors (SSE) so as to fit the experimental data. The following Mathcad
worksheet, which uses the symbol ‘v’ to represent wavenumber, determines the four parameters.

Estimates of parameters in following éqﬁrétions 5

b
g

Brm =9.6- dma .ol - qu v m=gggga cm" a=2042 j___cm-1

b5 2000 - e ‘& 1= 28006 cm™"

3 e

Experimhmal Bégw

ST
c g
@A o,

&Y, Voo B B, c) — v,...,a) [1+ err[(" = 9 H

Sum of Square Errors function for which constants are adjusted to minimize SSE.

ks - o :L,i LiTe P i
| mea 2§ B . b i g X
L D
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Minimization of SSE:
Given SSE(V .0 2. b, c}=0

Npeak
: '_a =Minerm{v, .., a,b, c)

Vo =2-323x 10 cm™  a=5.919x 10% cnt?
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b=1112x10°cm* c=2.665x10crr*

10

efv, Vpeaks & b, c) 6}
dm® - mol™ - cm™!
Eep

(de’®-mol™ -em™) 41
o0

10° - cm™

Nurnerical Integration of Skewed Gaussian Absorption Band:

40000 - e

40000 - ™!
: } : E(V, Vpoa: @ b, C) dv = 4.249 x 10*dm? -mot - o2

As expected, the integrated absorption coefficient is larger than the value provided by the normal
Gaussian estimate. The data fit of the skewed Gaussian, shown in the Mathcad worksheet, is very

good.

For a photon to induce a spectroscopic transition, the transition moment {u) must be non-zero, a
requirement that leads to electronic spectrum selection rules concerned with changes in angular
momentum. The rules for a homonuclear diatomic are (Section 13.2(b)):

AA=0,21 AS=0 AX=0 A$£=0,tl, whereQ=A+3%
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A gives the total orbital angular momentum about the intermuclear axis and £ gives the total spin
angular momentum about the internuclear axis. The + superscript selection rule for reflection in the
plane along the internuclear axis is +¢>+ or —>— (1.e. +¢>—is forbidden). The Laporte selection rule
states that for a centrosymmetric molecule (those with a centre of inversion) the only allowed
transitions are transitions that are accompanied by a change of parity: uesg.

The electric-dipole transition | O M aﬂowedl because none of the above rules negate the

possibility of this event. You may also wish to reach this conclusion by direct examination of the
dipole transition moment integral, f wiydr, where the dipole moment operator has components
proportional to the Cartesian coordinates. The integral vanishes unless the integrand, or at least
some part of it, belongs to the totally symmetric representation (A,,; see Chapter 11). To find the
symmetry species of the integrand, we multiply together the characters of its factors. Homonuclear
diatomic molecules and ions belong to the D, point group and the D, character table tells us the
symmetry species of each integrand factor.

Wy Alg(EE)
H:: Alu(zz)
vit An(ED

Symmetry product: A x Ay X A=A XA =A,
Since the integrand spans A, the transition*Z; « *Z} is allowed.

An electric-dipole transition from a I ground state to a I1, excited state is forbidden by the
Laporte selection rule.

Finally, we check the possibility of a transition from a 2} ground state to a [1, excited state by
finding whether or not the integrand of the transition integral spans the totally symmetric represen-
tation. The symmetry product for the u, component is E,; x A;, X A, = E,; X A;, = E,,. Since the
integrand does not span A, the transition is forbidden for z-polarized light. The symmetry product
for both the u, and i, components is E;, x E;, x A, = E;, x E,,. Since the species product E;; x E,
has an angular dependence and therefore does not contain the totally symmetric representation, the
transition is forbidden for x- and y-polarized light. You may also wish to show this by application
of the orthogonality theorem to find the coefficient of A, in the integrand.

D, E oo (s 2C, i =0, 25,
ZHAL 1 -1 1 -1 1 -1

poor i (E,) 2 0 2cos ¢ -2 0 2cos¢
IL(E,) 2 0 2cos¢ 2 0 —2cos¢
Integrand 4 0 4cos’ § 4 0 4cos?g

The orthogonality theorem gives the coefficient of A, in the integrand as
Cay = (VM) Z(C)2(C) = [4+ 0 + 24c0s 6) + 4 + 0 + 24 cos* §))/h

Since the group order &, which equals infinity, does not cancel with a numerator factor, ¢4, = 0.
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E13.8 The normalized wavefunctions are:

12
1
= (—J for 0 € x < g and 0 elsewhere

{2
vy [%J for 3@ < x < b and 0 elsewhere
b— Ea

The overlap of these wavefunctions is non-zero in the range %a < x € @ only {(assuming that b = a).
Thus, the transition moment is given by

J . 1 12 { V2 rq . 1 2 1 172 e x=a
xpdx=|—| |—F— xdx=|~— —
vy a b_%a 1F2a a b_%a 2 x=1/2a

[IJIQ[ 1 1:’2[3 2}

a b-sa 8

2

3 a
S[b—ia]

In the especially symmetric case for which b = %a j wixy;dx = %

P13.10 The ratio of the transition probabilities of spontaneous emission to stimulated emission at a fre-
quency v is given by

3
A= (87:?1\/ )3[13 17]—£B whereklsaconstantandwehavev—E
c?

k

Thus, at 400 nm  4(400) = @00y ——— B(400),
and at 500 nm  A(500) = —— i B(500)

(500)°

3
Then, A(500) _ [ (400) y B(500) ) _( 64 1052 5 x 105
A4(400) ~ L (500 )"\ B400y ) | 125
Lifetimes and half-lives are inversely proportional to transition probabilities (rate constants) and
hence
(T > 8) = ——1,,(S* > 8) =2 x 105 x (1.0 x 10%s) =

10“’

P13.12  (2) The molar concentration corresponding to 1 molecule per cubic pum is:

" 1 . (10°um m™')’
V. 6.022x10%mol ~ (1.0 um?)10 dm m-')?

= |1.7 x 10 mol dm= or 1.7 nmol dm=
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{b) Animpurity of a compound of molar mass 100 g mol™ present at a concentration of 1.0 x 107 kg
per 1.00 kg water (i.e. 0.10 pmo! kg™') can be expected to be present at a level of N molecules per
cubic um, where N is:

_ LOx107" kg impurity y 6.022 x10% mol-!
1.00 kg water 1001073 kg impurity mol™

Pure as it seems, the solvent is much too contaminated for single-molecule spectroscopy.

x (1.0 x 10°kg water m3) x (105 m)?,

Solutions to theoretical problems
The absorbances 4, and A4, at wavelengths A, and 4, are the sum of the individual absorbances in
the mixture of A and B.
Ay =4 L[A] + &5 L[B] (i)
Ay =g L[A] + g5, L[B] (i)
Solving (i) for [A} gives

[A] — Al_ EBIL[B] (111)
Y2
Substitution of (iii) into (ii) and solving for [B] gives
A,— g5 L]B]

€a1

Az = EAZL[ ) + EBzL[B]

Ea14y = a0 A1 — €028 L[B] + £4,85, L[B]

[B] = e — €004

(EaiEp ~ EazEp )L

(iv)

Substitution of (iv) into (iii) and simphfying gives

A — 4,4
ey LIA] = A,—EB,IL{M}

(Ea1€m: ~ Eazen )L

— (£aiEny — EarEp1 )1~ EilEar Ay — £a24))

(£a18m— EnrEni)

_ EaEm A~ £aifp1ds

(Ea1Ep2 — Eaz€r1)

[A]= ez — emd;
(Eai€r ~ Eastrr) L

V)

Equations (iv) and (v) are the desired results.
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Use the Clebsch—Gordan series [9.43 and 9.44] to assess both the total orbital and total spin angu-
lar momentum quantum numbers. L represents the total orbital angular momentum of an atom; A
represents the total orbital angular momentum along the internuclear axis of a diatomic molecule,

L=L+0L,0+L-1,4+5L-2,. ., i-5L] [9.43]
S=5+8,5+5%-L5+5-2,..,|5-35| [9.44]

The term symbols for orbital angular momentum are

0 1 2 3 4 5 6
S P DF G H I foratoms

I for diatomic molecules
(a) The ground electronic configuration of dioxygen, 162162262 1n1nZ, is discussed in Section
10.4{d) and the determination of the term symbol, *Z;, is described in Section 13.2(a). The triplet
spin multiplicity, 25 + 1 = 3, indicates that § = 1. Thus, the sum S, + S, of the dissociated O atom
spin quantum numbers must also equal 1. The ground configuration of each O atom, [He]2s?2p*
with two unpaired electrons and both S; and S, equal to 1 by Hund’s maximum multiplicity rule for
the ground state, satisfies the total spin requirement because the atomic spin alignments are 5, +.5,,
S, +8,-1, ...|8, - S:|, which corresponds to 2 or 1{the required value) or 0. With both S, and S,
equal to 1 the spin multiplicity of each atom equals 3 in the ground state. We conclude that the *Z;
ground state of O, dissociates into O(*F) + O(*P).

The excited B’X state of O, dissociates into O(°P) + O('D), a triplet and a singlet. S = 1 for the
molecule and the atoms have S, = 1 and S, = ( with the permitted spin alignment of 1. In this case
the dissociated atoms have spin multiplicities of 3 and 1.

In summary, we have found the dissociated atomic oxygen spin multiplicity may be either

(b) The ground elecironic configuration of dinitrogen is 1621531} 262 and the term symbol is
'Z; . The singlet spin multiplicity, 25+ 1 =1, indicates that $=0. Thus, the sum S, + 5, of the dissociated N
atom spin quantum numbers must also equal 0, The ground configuration of each N atom, [He]2s?2p?
with three unpaired electrons and both §; and S, equal to 2 by Hund’s maximum multiplicity rule
for the ground state, satisfies the total spin requirement because the atomic spin alignments are
S +85, 5 +8,-1,...18;— S|, which corresponds to 3 or 2 or 1 or O(the required value). With both
8, and S, equal to % the spin multiplicity of each atom equals 4 in the ground state. We conclude
that the '} ground state of N, dissociates into N(*S) + N(*S).

There are a great many important excited states of dinitrogen. For a summary see Figure 1 in L.
Lofthus and PH. Krupenie, J Phy and Chem. Reference Data, V. 6 (1), 113-307 (1977), The spec-
trum of molecular nitrogen (hitp://www.nist.gov/srd/PDFfiles/jpcrd93.pdf).

The excited B3Z, state of N, dissociates into N(*S) + N(*D}, two doublets. S=1 for the molecule and
the atoms have S;= 3 and $,= 1 with alignments of 2 or 1 {the required value). In this casc the dis-
sociated atoms have spin multiplicities of 4 and 2.

The excited *IT, state of N, dissociates into N(?D) + N(*D), two doublets. $=1 for the molecule and
the atoms have S, = % and S, = % with the permitted spin alignment of 1. In this case the dissociated
atorns have spin multiplicities of 2 and 2.
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In summary, we have found the dissociated atomic nitrogen spin multiplicity may be either
or|4 and 2| or |2 and 2].

(a) Ethene (ethylene) belongs to D,,. In this group the x, y, and z components of the dipole
moment transform as B, B,,, and B, ,, respectively. The r orbital is B, (like z, the axis perpendicular

to the plane) and n* is B,,. Since B,, x B,, = B,, and B, xB,, = A, the transition is {and
1s y-polarized).

(b) Regard the CO group with its attached groups as locally C,,. The dipole moment has com-
ponents that transform as A(z), B,(x}, and B,{y), with the z-axis along the C==0 direction and x
perpendicular to the R,CO plane, The  orbital is p, (in the R,CO plane), and hence transforms
as B,. The =* orbital is p, (perpendicular to the R,CO plane), and hence transforms as B,. Since
Iy xT; = B, x B, = A,, but no component of the dipole moment transforms as A,, the transition is

orbiage]

(a) The Beer—Lambert law is;
1y
A= logT =g[J]L

The absorbed intensity is:
Iabszl{]_ I S0 I=IO_Iabs

Substitute this expression into the Beer-Lambert law and solve for I,

I
log—2—=¢[JIL, so Ty~ I,.=1,x 10,
IO* abs

(b) The problem states that I,(¥) is proportional to ¢, and to I;(¥), so:
T(F) o< 9 Ly(#) x {1 — 10~y
If the exponent is small, we can expand 1 — 10~ in a power series:

1074912 = (gmi0)4Me = | —g[T]L1n 10+ ...,

and fi(Vp) o< | g Lo (P)e[J]L

Solutions to applications: biochemistry, environmental science, and astrophysics

The fraction of the North Star radiation transmitted to the retina is
{1-0.30)x (1 —0.25)x (1 - 0.09) x (1 - 0.43)=0.272

The number of photons focused on the retinain 0.1 s is

(0.273) x (40 mm?) x (0.15) x (4 x 10* mm-2s-1) =
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The integrated absorption coefficient is

A= J (a7 [13.5)
band

If we can express £ as an analytical function of ¥, we can carry out the integration analytically.
Following the hint in the problem, we seck to fit £ to an exponential function, which means that a
plot of In £ versus ¥ ought to be a straight line (Figure 13.4). So, if

Ing=mv+b, then &=exp(mPlexp(d)

and 2 = (e!/m)exp(mv} (evaluated at the limits integration). We draw up the following table and find
the best-fit line:

Alnm &/(dm?® mol™! crm™!) vlom™ In &/(dm?® mol! con™!)
292.0 1512 34248 4.69

296.3 865 33748 4.13

300.8 477 33248 3.54

3054 257 32748 2.92

310.1 1359 32248 2.28

315.0 69.5 31 746 1.61

320.0 34.5 31250 0.912

5

y =i-38.383 + (1.2597 x 10

R0

_:3 i

31 000 32 000 33 000 34 000 35000
¥/ {em™ 1)

Figure 13.4

So,

e [ [1.26x1030m]_ex (1‘26"10_30"1

g = dm> mol-'cm-!
126x107cm| {290 107em ) ¥ 320x10—7cmﬂ ot e

=(1.24 x 10° dm? mol ' em 2

(a) The integrated abserption coefficient is

a= J' &(¥)d¥ [13.5] = 1 £,,,,A¥ [triangle approx. for area of band]
band

= % % (150 dm? mol~tcm™) x (34483 — 31250) em™! = |2.42 X 10° dm* mol~ em™
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{b) The concentration of gas under these conditions is

" r 24 Torx

AP ~1.03 x 10~ mol dm™?
¥ T RT (62364 Torr dm* mol K1) x (373 K) *ATmelam

Qver 99% of these gas molecules are monomers, so we take this concentration to be that of CH;,l
(If 1 of every 100 of the original monomers turned to dimers, each produces 0.5 dimers; rernaining
monomers represent 99 of 99.5 molecules.) Beer’s law states

A=¢ecL =(150 dm*mol-~*cm™) x (1.03 x 10~*mel dm=) x (12.0 cm) = (0,185
{c) The concentration of gas under these conditions 1s

n p 100 Torr

=== =4.30 1073 ld -
CTV T RT T (62364 Torr dm® mol K1) x (373 K) AP meldm

Since 18% of these CH,I units are in dimers (forming 9% as many molecules as were originally present
as monomers), the monomer concentration is only 82/91 of this value or 3.87 x 10 mol L-1. Beer’s
law is

A = ecL = (150 dm® mol-!em™) x (3.87 x 10~ mol dm~*) x (12.0 cm) =

If this absorbance were measured, the molar absorption coefficient inferred from it without consid-
eration of the dimerization would be

£ = AlcL = 6.97/{(4.30 x 10 mol dm~) x (12.0 cm)} =|135 dm® mol -~ em |

an apparent drop of 10% compared to the low-pressure value.

The fluorescence spectrum of CN is sketched in Figore 13.5.

v =00

01 J=l<0

he he

== e = 51409 x 10-1° T = 3.2087 &V
Ay 3864nm
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and

he he
AEp=—=—""—""—=5.1250x10"] =3.1987 eV
% A 387.6nm x ©

Energy of excited singlet, S, : E,(v,J)=V+ (v + %)ﬁlhc +J(J + DBhe
Energy of ground singlet, S, : E{v,J)=VF,+ (v + %)ﬁohc +J(J + DBhc

The midpoint of the 0—0 band corresponds to the forbidden Q branch (AJ = 0) with J =0 and
v=0¢«0.

AEy = E(0,0)— Ey(0,0)=(V;~ Vo) + 1(W— % Jhe (1)

The midpoint of the 1-1 band corresponds to the forbidden Q branch (AJ = 0) with J =0 and
v=1¢- L

AR = E(1,0) - B (LO)=(M -1} + %(‘71 - Vphe (2)

Multiplying eqn 1 by three and subtracting eqn 2 gives
3AE,—AE =XV - V)
Vi~ Vo= (3AEy - AE)
= 2{3(5.1250) - (5.1409)} x 10-'°J
=51171x107%F =|3.1938 eV| (3)
This is the potential energy difference between S; and .5,.
Eqns (1) and (3) may be solved for ¥, — ¥,
V= Vo= HAE,— (M- 15)}
=2{5.1250 - 5.1171} x 10 Vhc
=1.5800 x 1021 T =0.0098615 eV

=179.538 cm™!
The ¥, value can be determined by analyzing the band head data for which J+ 1 & J,

AE () = E(0,J)— Ey(LJ + 1)
=Vi— Vo + 3 (%= 30 ke + J(J + DBhc — (J + ) x (J + 2)Byhe

AE(Jy=V— Vot 30— Ve + J(J + DBhe — (J + 1) x(J + 2)Bhe

Therefore,
AEOQ(J)“AEH(J) = \thc
AE,(/, )=h—c~5 1158 x 10127
0 Thead I g8 Anm
he
AE \(Jierg) = ————=4.7117 x 1079 ]

421.6 nm
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. _ AEy(J) - AE(J)
=
he
(51158 -47117) x 10-1°J
. he

4.0410 x 10-2]
=————~=0.25222eV=1{2034.3cm™!
e

¥, = v+ 79.538 cm™

—20
~(2034.3 + 79.538) cm~'=|2113.8 em ' = wu
'

—By(LOYKT,
I, e* T (B0 E 00V K Ter

T a—E{D.0)KT.
I, ¢ 1{0.0)k T

= @KLy
INEER Y
Iy kT

he?, 41990 x 10°J
Ty = = =|1321K
T ( ] (1.38066 x 10T K~ In(10)
1

foo

-1
The relative population of the v=0and v= 1 vibrational states is the inverse of the relative intensities

. 1
of the transitions from those states, hence o1 = .

It would seem that with such a high effective temperature more than cight of the rotational levels
of the 8, state should have a significant population, but the spectra of molecules in comets are never
as clearly resolved as those obtained in the laboratory and that is most probably why additional
rotational structure does not appear in these spectra.




Molecular spectroscopy 3:
magnetic resonance

D14.2

Answers to discussion questions

Detailed discussions of the origins of the local, neighbouring group and solvent contributions to
the shielding constant can be found in Sections 14.5(c}, (d), and (&) as well as books on NMR., Here,
we will merely summarize the major features.

The local contribution is essentially the contribution of the electrons in the atom that contains the
nucleus being observed. It can be expressed as a sum of a diamagnetic and paramagnetic parts, that
is o(local) = 6, + &,. The diamagnetic part arises because the applied field generates a circulation of
charge in the ground state of the atom. In turn, the circulating charge generates a magnetic field.
The direction of this field can be found through Lenz’s law, which states that the induced magnetic
field must be opposite in direction to the field producing it. Thus, it shields the nucleus. The diamag-
netic contribution is roughly proportional to the electron density on the atom and it is the only
contribution for closed-shell free atoms and for distributions of charge that have spherical or cylin-
drical symmetry. The local paramagnetic contribution is somewhat harder to visualize since there
is no simple and basic principle analogous to Lenz’s law that can be used to explain the effect. The
applied field adds a term to the Hamiltonian of the atom that mixes in excited electronic states into
the ground state and any theoretical calculation of the effect requires detailed knowledge of the
excited state wavefunctions. It is to be noted that the paramagnetic contribution does not require
that the atom or molecule be paramagnetic. It is paramagnetic only in the sense that it results in
an induced field in the same direction as the applied field.

The neighbouring group contributions arise in a2 manner similar to the local contributions. Both
diamagnetic and paramagnetic currents are induced in the neighbouring atoms and these currents
result in shielding contributions to the nucleus of the atom being observed. However, there are
some differences. The magnitude of the effect is much smaller because the induced currents in
neighbouring atoms are much farther away. It also depends on the anisotropy of the magnetic sus-
ceptibility (see Chapter 19) of the neighbouring group, as shown in eqn 14.23(b}. Only anisotropic
susceptibilities result in a contribution.

Solvents can influence the local field in many different ways. Detailed theoretical calculations of the
effect are difficult due to the complex nature of the solute-solvent interaction. Polar solvent-polar
solute interactions are an electric field effect that usually causes deshielding of the solute protons.
Solvent magnetic anisotropy can cause shielding or deshielding, for example, for solutes in benzene
solution. In addition, there are a variety of specific chemical interactions between solvent and solute
that can affect the chemical shift.
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D14.4 See Section 14.6(e), Figures 14.24 and 14.25, and Justification 14.3 for a detailed explanation of this
effect. As demonstrated in the Justification, spin—spin splittings between magnetically equivalent
nuclei do not appear in the spectrum of groups of equivalent protons. For example, the protons of
the methyl group in ethanol become magnetically equivalent because of rapid rotation about the
C—C single bond. All three protons have the same time-averaged chemical environment and therefore
the same resonance frequencies. If the rotation were slowed or stopped magnetic non-equivalence
would re-emerge.

D14.6 Before the application of a pulse the magnetization vector, M, points along the direction of the
static external magnetic field B,. There are more  spins than § spins. When we apply a rotating
magnetic field B, at right angles to the static field, the magnetization vector as seen in the rotating
frame begins to precess about the B, field with angular frequency @, = yB,. The angle through which
M rotates is § = yBz, where ¢ is the time for which the 8, pulse is applied. When ¢ = /25, 8 = z/2 =
90°, and M has rotated into the xy plane. Now there are equal numbers of o and § spins. A 180°
pulse applied for a time n/y®;, rotates M antiparallel to the static field. Now there are more 3 spins
than & spins. A population inversion has occurred.

D14.8 Spin-spin couplings in NMR are due to a polarization mechanism that is {ransmitted through
bonds. The following description applies to the coupling between the protons in an H,—C-H,
group, as is typically found in organic compounds. See Figures 14.21-14.23 of the text. On Hy, the
Fermi contact interaction causes the spins of its proton and electron to be aligned antiparallel.
The spin of the electron from C in the Hy—C bond is then aligned antiparaliel to the electron
from H, due to the Pauli exclusion principle. The spin of the C electron in the bond with Hy is
then aligned parallel with the C electron from H; because of Hund’s rule. Finally, the alignment is
transmitted through the second bond in the same manner as the first. This progression of alignments
(antiparallel x antiparallel x parallel x antiparallel x antiparallel) yields an overall energetically
favourable parallel alignment of the two proton nuclear spins, therefore in this case the coupling
constant, 2Jyy is negative in sign.

The hyperfine structure in the ESR spectrum of an atomic or molecular system is a result of two
interactions: an anisotropic dipolar coupling between the net spin of the unpaired electrons and the
nuclear spins and also an isotropic coupling due to the Fermi contact interaction. In solution, only
the Fermi contact interaction contributes to the splitting as the dipolar contribution averages to
zero in a rapidly tumbling system. In the case of n-electron radicals, such as C¢Hg, no hyperfine
interaction between the unpaired electron and the ring protons might have been expected. The
protons lie in the nodal plane of the molecular orbital occupied by the unpaired electrom, 50 any
hyperfine structure cannot be explained by a simple Fermi contact interaction, which requires an
unpaired electron density at the proton. However, an indirect spin polarization mechanism, similar
to that used to explain spin—spin couplings in NMR, can account for the existence of proton hyper-
fine interactions in the ESR spectra of these systems (refer to Figure 14.57 of the text). Because of
Hund’s rule, the unpaired electron and the first electron in the C-H bond (the one from the C atom),
will tend to align parallel to each other. The second electron in the C-H bond {the one from H) will
then align antiparallel to the first by the Pauli principle, and finally the Fermi contact interaction will
align the proton and electron on H antiparallel. The net result (parallel x antiparallel x antiparallel)
is that the spins of the unpaired electron and the proton are aligned parallel and effectively they
have detected each other.

I



E14.1(b)

E14.2(b)

E14.3(b)

E14.4{b)

E14.5(b}

MAGNETIC RESCNANCE 331

Solutions to exercises

We use eqn 14.9, but with y[Table 14.2] in place of 7,.
Y5 2675 x10°T's' x1.0T
=—[14.9]= =43x10"s"'=(43 MHz
YL I [14.9] 7 x Vs

The relationship between angular velocity and angular displacement is

@=2my = ATB [see any general physics text.]

In this case, v is the Larmor frequency, v;, calculated in Exercise 14.1(b), and A€ is n/2. Solving for
t we obtain

AB I 1
t= = = e = |58 % 1005
T T PEE e S

For “F, g=5.2567

2By (5.2567) x (5.0508 x 107 J T-') x (16.2 T)
o (6.626 x10*J 5)

—6.49 x 1085~ =

The energy separation between the two levels is

Hence, v =

Y5 _ (1.93 x10°T's Yy x (154 T)
T 2n

=473x 1075 =[47.3 MH|

Because the value of the field given in the statement of the exercise is 14 T, we can assume it is a
600-MHz NMR spectrometer. A 600-MHz NMR spectrometer means 600 MHz is the resonance
frequency for protons for which the magnetic field is actually 14.1 T, as shown in Exercise 14.3a.
In high-field NMR it is the ficld not the frequency that is fixed.

AE = hv, where v=

A YN nucleus has three energy states in a magnetic field corresponding to m, = +1, 0, —1. But
AE(+]1 -5 0)=AE(D —>-1)

AE = Em} - Em_( = "}’h%m; - (uyﬁﬂﬂml)
= —yhBy(m] — m;) = —yRBAm;

The allowed transitions correspond to Am, =1, hence

AE = hv = yhiBy = g1y B, = (0.4036) X (5.051x 107 J T x (14.1 T)

B0
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We assume that the electron g value is equal to the free-electron g value, g, =2.0023. Then,
AE = hv = g upBy = (2.0023) x (9.274 x 107# ] T} x (0.30 T)

[exw07]

COMMENT. The energy level separation for the free |e|ectron in an EPR spectrometer is far greater | than that
of nuclei in an NMR spectrometer, daspite the fact that NMR spectrometers normally operate at much higher
magnetic fields.

In all cases the selection rule Am, =1 is applied, hence (Exercise 14.5b)

_ v _6626x10%IHZ v
g 50508 x10PI T g
=(1_3119x104)x%T

I

By

=(0.13119)><(M_i)T

&r

We can draw up the following table:

B/ T (a) *N (b} °F (c) P

g 0.40356 5.2567 2.2634
() 300 MHz 97.5 7.49 174
(ii) 750 MHz 244 18.7 435

COMMENT. Magnetic fields above 23 T have not yet been obtained for use in NMR spectrometers. As
discussed in the solution to Exercise 14.5b, it is the field, not the frequency, that is fixed in high-field NMR
spectrometers. Thus, an NMR spectrometer that is called a 300-MHz spectrometer refers to the resonance
frequency for protons and has a magnetic field fixed at 7.06 .

The relative population difference for spin 1 nuclei is given by

§£= Ny~ Ny ~ YhB, - grinBy
N N,+N;, 2kT 2kT
_1.405(5.05 x 107473 T-Y)B,
2(1.381 x 1083 J K x (298 K)
=8.62 x 107(8,/T)

oN
For0.50T —=(8.62 x107 0.50)=|4.3 x 107
(2) For = )% (0.50)
aN
b 25T —=(8.62x107 2.5 =22 x 1076
() For25T =r=@®62x107)x(25)=[22x107]
N
Forl3.5T —=(8.62x107)x(15.5)=[1.34x107*
© For = )% (15.5)

[Justification 14.1 and Exercise 14.7(a)]
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ﬁ
B, =— ;’n;‘; (1= 3cos?8)m, [14.28]

We use m; =5 and R = 100 pm = 1.00 x 107 m and substitate for the constants in the

expression. We obtain

_=26.75x 10757 T x 1.055 x 10#J s x 12.57 x 10”7 T*J-'m?
awe 87(1.00 x 10-1° m)?

B =—1.411 x 1073 T x (1 - 3cos? @)
@ 6=0°8,,=[282 x10°T| (b} 6=90°3,.=[0]

The ground state has

(1- 3cos?8)

m,=+i=aspin, m,=-+=pspin
Hence, with

8N=N;-N,

a

SN Ny—N, N,— N

N Ny+N, Ny+ Nyt

l—eaE4T 1 _(1-AEKT) AE  g.uB,
_ _ - _ £ for AE «< kT
1 + o-ABKT 1+1 2kT 25T Lfor ]

SN _2.0023x9.274 x10#J T x0.33T _ 0.2219K
N 2x1381x10BxT T

@ BN _02219K s
T i LB

&N 02219K
by L= |a 10°
®) N 77K 88 x10

8N 1
Thus, — o< —
us, - <=

GNINY298K) _ (77) _

ONINXTTK) ~ (298) 026

This ratio is not dependent on the magnetic field as long as the appreximation AE <« kT holds.

B = (1 —0)B,

|AB. | =1(A0)] By = |[§(CH,}—8(CH,))| x 1075,
=]1.16—3.36| x 106 B, = 2.20 x 10~ 3,

(@) B=19T, |AB,]=(220x10%)x(1.9T)=[42x10T
() B,=165T, |AB,]=(220x10°)x(165T)=[3.63x10°T



E14.11(b}

E14.12{b}

E14.13(b)

E14.14(b)

334 INSTRUCTOR'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

v—ye=v°§x 10

{Av|=(v—v*)(CH,) - (v - v*)(CH;)
=19[6(CH,) — 8(CH,)] x 10
=(3.36— 1.16) x 105v° = 2.20 X 10°61°

(a) v°=350MHz |Av|=(2.20x 10" x (350 MHz)=770 Hz [Figure. 14.1]
(b) vC=650MHz |Av|=(2.20x 106 x (650 MHz) = 1.43 kHz

— 6.97 Hz

L1 ]

————— T70 Hz

.~ 697Hz

at 350 MHz
Figure 14.1

At 650 MHz, the spin-spin splitting remains the same at 6.97 Hz, but as Av has increased to
1.43 kHz, the splitting appears narrower on the & scale.

See Section 14.6(b), Example 14.1 and Figures 14.16-14.19 for the approach to the solution to this
exercise. Also, see Example 14.2 and Figures 14.55 and 14.56. That latter example and those figures
are applied specifically to EPR spectra, but the process of determining the intensity pattern in the
fine structure of an NMR spectrum is the same. See the table below for the version of Pascal’s
triangle for up to three spin-% nuclei. Each number in the table is the sum of the six (/= %, 2I+1=6)
numbers above it (three to the right and three to the left).

T= £ [14.29, with &v written as Av]
TAV
Av=v°(§"—§) x 107¢ [Exercise 14.13a]
Then, = \[5 = \E =99x10™s

avy(8" - 8)x 10°%  (m) x (350 x 106 Hz) x (5.5-4.2)x10"*

Therefore, the signals merge when the lifetime of each isomer is less than about , corre-

sponding to a conversion rate of about {1.0 x 10357},

V= -g‘v—'uf-:igﬂ [solution to Exercise 14.3(a)]
31P 3
Hence YC'P) _ gC'P)

®Y(H) ~ g('H)
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or v('P)= ;igzj x 500 MHz = {203 MHz

The proton resonance consists of two lines (2 x % +1) and the *'P resonance of five lines
[2x(4x %) + 1]. The intensities are in the ratio 1:4:6:4:1 (Pascal’s triangle for four equivalent spin %
5.5857

2.2634
than the proton region. The spectrum is sketched in Figure 14.2.

nuclei, Section 14.6). The lines are spaced = 2.47 times greater in the phosphorus region

Proton
resonance

Phosphorus
resonance

1 J
Figure 14.2

Look first at A and M, since they have the largest splitting. The A resonance will be split into a
widely spaced triplet (by the two M protons); each peak of that triplet will be split into a less widely
spaced sextet (by the five X protons). The M resonance will be split into a widely spaced triplet (by
the two A protons); each peak of that triplet will be split into a narrowly spaced sextet (by the five
X protons). The X resonance will be split into a less widely spaced triplet (by the two A protons);
each peak of that triplet will be split into a narrowly spaced triplet (by the two M protons} (see
Figure 14.3). Only the splitiing of the central peak of Figure 14.3(a) is shown in Figure 14.3(b).

AzMsz JAM > JAX > JMX
A protons M protons X protons

_4 —_ JAX

(a) __‘ — Jam — Jam
| 1] [ 1] |ll

o) I Jax l Jwx —— Jux
11 T T

Figure 14.3

{a) Since all Jyr are equal in this molecule (the CH, group is perpendicular to the CF, group), the
H and F nuclei are both chemically and magnetically equivalent.
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(by Rapid rotation of the PH; groups about the Mo—P axes makes the P and H nuclei chemically
and magnetically equivalent in both the ¢is and trans forms.

The effective transverse relaxation time is given by

Tt = - 1 [14.34]——1—=

AV, X128

The maximum enhancement is given by

o 26.752 x 107 T s
=T [1437]= Table 14.2]=[0.5312]
= Sy D Ix 25177 x 107 T L aple142] 0.5312]

Precession in the rotating frame foltows

3

= or =
e n=7B

Vi

Since w is an angular frequency, the angle through which the magnetization vector rotates is

6=yBi= —g’:N Bt

o () x (1.0546 x 10-%J 5)
So %, = - —[o40x10+T
O (5.586) X (5.0508 x 1027 ] T-1) x (12.5  10-¢5)

a 90° pulse requiresé- x12.5us=6.25ps,.

—34 8 -1 —
5, = hv __he (6626 x10%T5)x (2998 x10°ms™) =[i3T]
Bhiy  Zoph  (2.0023) x (9274 x 10T Ty x (8 x 107 m)
The g factor is given by

_ kv h_ 662608x10%7s
8 B 1 92740 x 104 T-

71.448 mT GHz" x 9.2482 GHz
- =[2.0022
£ 330.02 mT

The hyperfine coupling constant for each proton is , the difference between adjacent lines
in the spectrum. The g value is given by

hv  (71.448 mT GHz™) x (9.332 GHz)
- — 1992
LA 3347 mT

=7.1448 x 10-" T Hz' = 71.448 mT GHz™'

If the spectrometer has sufficient resolution, it will see a signal split into eight equal parts at £1.445,
+1.435, +1.055 mT from the centre, namely

]328.865, 330.975,331.735,331.755,333.845, 333,865, 334.625 and 336.735 mT
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If the spectrometer can only resolve to the nearest (.1 mT, then the spectrum will appear as a sextet
with intensity ratios of 1:1:2:2:1:1. The four central peaks of the more highly resolved spectrum
would be the two central peaks of the less-resolved spectrum.

(a) If the CH, protons have the larger splitting there will be a triplet (1:2:1) of quartets (1:3:3:1).
Altogether, there will be 12 lines with relative intensities 1{4 lines), 2(2 lines), 3(4 lines), and
6(2 lines). Their positions in the spectrum will be determined by the magnitudes of the two proton
splittings, which are not given.

(b) If the CD, deuterons have the larger splitting there will be a quintet (1:2:3:2:1) of septets
(1:3:6:7:6:3:1). Altogether, there will be 35 lines with relative intensities 1{4 lines), 2(4 lines),
3(6 lines), 6(8 lines), 7(2 lines), 9(2 lines), 12(4 lines), 14(2 lines), 18(2 lines), and 21(1 line). Their
positions in the spectrum will determined by the magnitude of the two deuteron splittings, which
are not given.

The g value is given by
e= w0 m=TY P71 448 wT GHA
HeBy HeE Hs

(71.448 mT GHz™') x (9.312 GHz)
= =(332.
@ % 2.0024

(71.448 mT GHz™') x (33.88 GHz)
b = =
& 3 30024 1209 mT

Two nuclei of spin give five lines in the intensity ratio 1:2:3:2:1 (Figure 14.4).

| ’ I First nucleus with /= 1

| || |” ” | second nucleus with /=1
2

1 3 2 1

Figure 14.4
The X nucleus produces four lines of equal intensity. Three H nuclei split each into a 1:3:3:1 quar-

tet. The three D nuclei split each line into a septet with relative intensities 1:3:6:7:6:3:1 (see Exercise
14.24a and Figure 14.5).

XH; I||l Illl IH1 I||I

ol all

Figure 14.5
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‘We assume that the condition for the coalescence of two EPR lines is the same as the condition for
2

— [14.29]. Then, we

név

need to calculate Sv corresponding to the frequency difference of the two EPR resonances, g, and

g,. We have hv = gup %, [14.39]. Solve for v.

the coalescence of two NMR lines, that is the coalescence time is given by 7 =

v = %%g, and then

9274 x 1071 T~
6.626 x107J s

V2 V2

1=
mdv  mx14x107s™

The tumbling rate is the inverse of this time, |3.1x 107s7!|.

v = %%(Sg) = % 1.0 T x (2023 - 2.022) = 1.40 x 1075~

=322x103s

Solutions to problems
Solutions to numerical problems

When v =60 MHz

V2 N2 2

T v mAv T x((5.2—4.0) x 10-¢) x (60 x 105 Hz)
= 6.25 ms, corresponding to a jump rate of 160 s7%,

T

When v =300 MHz

5 &

BTy T mAv . mx((5.2 - 4.0) x 10-5) x (300 x [0° Hz)

=~1.25 ms, corresponding to a jump rate of 8.0 x 10? s71.

Assume an Arrhenius-like jumping process (Chapter 21}
rate =< g 5/RT

Then, In rate(T”) =:E—a 11
rate(T) R\T" T

i) _ 8.314J K-'mol™' xlnfg
and therefore E, = th’l(.l" {r) = : moi 218 - [56 k7 mol!

T T 280K 300K

The FID signals from the three nuclei are all of the form of eqn 14.30, which we will write as
F(2)=3S;; cos(2mv, £)e™, For simplicity, we will assume that all T, values are the same at 1.0s and

7
that the maximum signal intensity Sy, is the same for each nucleus. No information is given in the problem
statement about the number of nuclei with the specific values of & given, so again for simplicity we will
assurne only one nucleus corresponds to each value of 8. The totai FID can then be expressed as

F(f) = SOZCOS(ZJ‘L'VLJ-I)C’”TE
J




MAGNETIC RESONANCE

The solution is contained in the following MathCad® worksheet and Figure 14.6.

Definitions: MHz ;=108 - Hz - N =22
m:=0,1.N-1
. _ m
Time domain: tm=10-5 t"':='ﬁ‘t““‘
Relaxation time: T,=1s

Chemical shifts: 5,:=32 &,=41 =50
Spectrometer frequency: v, '=800-MH,
Relative intensities: S,:=1  S,:=1  Sy:=1

Larmor frequencies: v, = (1 + %J Vg Va :=(1+ %28-) Wy Vii= (1 +~6—"J~w0

FID of signal 1: F1m:=S,-c:cns(2-rr-\ar“t,,,)-a:T!'zE
FIB of siglgal 2: R, =85;-cos(2-1m-v, t,)- e;;_n
FIDofsignal3;  Fy, =5, -CoS(2-T- vy 1,) 6
Total FID signal: F =F,+ F_z +F,

wle

339
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The FiDs of the signal from this compound with the values of the chemical shifts given in this
problem are just a jumble of lines with intensities decreasing with time; the FIDs themselves
contain very little direct information about the compound. The desired information is extracted by
Fourier transformation of the FIDs from the time domain to the frequency domain. Increasing the
frequency of the spectrometer from 200 MHz to 800 MHz has no effect upon the chemical shift
expressed as & values, but does increase the chemical shift expressed as (v, — v,) values and that is
the main reason for building spectrometers operating at higher and higher frequencies. Increasing
the frequency {and hence the field) allows for greater resolution of spin-spin splittings in the
spectrum as the chemical shift (v, — v;) increases. That would not be obvious in this example because
no information is given about spin—spin splittings. As an example of this problem in a real substance,
ethanol, where spin—spin splittings occur, examine Figures 14.34 and 14.6 of the text.

It seems reasonable to assume that only staggered conformations can oceur, therefore the equilibria
are as shown in Figure 14.7.

H 131 H
R3: ! :R4 H: ! :R3 R4 ! H
—N —ee
A A
R, H R, Ri Ri Ry R, R R,

Figure 14.7

When R, =R, =H, all three of the above conformations ccour with equal probability:
3 Jyn (methyl) = $CJ, + 23J) [t=irans, g= gauche; CHR;R,=methyl]
The first conformation in the figure is trans, the second two are gauche.
Additional methyl groups will avoid being staggered between both R, and R,, therefore
3mlethy) = 2CJ, +37)  [R,=H.R;=CH,)
g (sopropyly=3J, [R;=R,=CH,]
We then have three simultaneous equations in two unknowns J, and J,:
1CJ +220)=73Hz (1)
1037, +37,)=80Hz (2
3J,=11.2Hz

The two unknowns are overdetermined. The first two equations yield 7, =10.1, 3/, = 5.9. However,
if we assume that *J, = 11.2 as measured directly in the isopropyl case then 3/, = 5.4 (eqn 1} or 4.8
(eqn 2), with an average value of 5.1.

Using the original form of the Karplus equation
3, =Acos? (180°)+B=11.2
3J;=Acos? (60°)+ B=15.1
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or
11.2=4+8
51=0254+8B

These simultaneous equations vield 4 = 6.8 Hz and B =4.8 Hz. With these values of 4 and B, the
original form of the Karplus equation fits the data exactly (at least to within the error in the values
of 3J, and *J, and in the measured values reported).

From the form of the Karplus equation in the text [14.27] we see that those values of 4, B, and C
cannot be determined from the data given, as there are three constants to be determined from only
two values of J. However, if we use the values of 4, B, and C given in the text, then

J,=7THz+ 1 Hz(cos 180°) + 5 Hz(cos 360°) =11 Hz
J,=7Hz+1Hz{cos 60°) + 5 Hz{cos 120°)=5Hz

The agreement with the modern form of the Karplus equation is excellent, but not better than the

original version. ’Both fit the data equally well,| but the modern version is preferred as it is more

generally applicable,

The proton COSY spectrum of l-nitropropane shows that (a) the C,—H resonance with § = 4.3
shares a cross-peak with the C,—H resonance at § = 2.1 and (b) the C,—H resonance with § = 2.1
shares a cross-peak with the C-H resonance at § = 1.1. Off-diagonal peaks indicate coupling
between Hs on various carbons. Thus peaks at {4,2) and (2,4) indicate that the Hs on the adjacent
CH, units are coupled. The peaks at (1,2) and (2,1) indicate that the Hs on CH, and central CH,
units are coupled. See Figure 14,8,

a b <
NO,CH,CH,CH,

N
o
I

Figure 14.8
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~11
P14.10 gt [14'39]=(7.14478x10 T) x (v/Hz)
UpB, By
_(7.14478 x 101 T) % (9.302 x 10°)
- A
_ 0.66461
T BT
0.66461 _0.66461
— 2.002
81 033364 - T 0.33194 -

P14.12  Construct the spectrum by taking into account first the two equivalent N splitting (producing a
|1 :2:3:2: 1quintet |) and then the splitting of each of these linesintoa|l: 4:6:4:1 quintet] by the

four equivalent protons. The resuiting 25-line spectrum is shown in Figure 14.9. Note that Pascal’s
triangle does not apply to the intensities of the quintet due to "N, but does apply to the quintet due
to the protons.

0112mT

| ll || i I I ll ik
]

N(2)

L0.148 mT{ N(1)

~L

Figure 14.9

P14.14 For CH;, a= Op with @=2.25mT [14.42]. If we assume that the value of @ does not change from
this value (a good assumption in view of the similarity of the anions), we may write

a a

P=Q " THmT

Hence, we can construct the following maps

NO- NO, NO;

NO»
0.005 0.200 0.121 0.050 0.050
0.076 0.005  0.048 NO, 0.050 0.050

0.076 0.200
NO,
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Solutions to theoretical problems

(a) The table displays experimental '*C chemical shifts and computed* atomic charges on the
carbon atom pera to a number of substituents in substituted benzenes, Two sets of charges are
shown, one derived by fitting the electrostatic potential and the other by Mulliken population
analysis (see Figure 14.10).

Substituent OH CH;, H CF; CN NO,

8 130.1 128.4 128.5 128.9 129.1 129.4
Electrostatic charge/e -0.1305 -0.1273 —0.0757 —0.0227 —0.0152 —0.0541
Mulliken charge/e -0.1175 —0.1089 —0.1021 —0.0665 —0.0805 —0.0392

*Semi-empirical, PM3 level, PC Spartan Pro™

0.00

-0.02 o

—0.04 I

-0.06 ® Mulliken

Charge

—0.08 o © Electrostatic

L

-0.10 -

-0.12

-0.14
128.0 128.5 12%.0 129.5 130.0 130.5
]

Figure 14.10

(b) Neither set of charges correlates well to the chemical shifts. If one removes phenol from the
data set, a correlation would be apparent, particularly for the Mulliken charges.

(c) The diamagnetic local contribution to shielding is roughly proportional to the electron
density on the atom. The extent to which the para carbon atom is affected by electron-donating or
-withdrawing groups on the other side of the benzene ring is reflected in the net charge on the atom.
If the diamagnetic local contribution dominated, then the more positive the atom, the greater the
deshielding and the greater the chemical shift 8 would be. That no such correlation is observed leads
to several possible hypotheses, for example the diamagnetic local contribution is not the dominant
contribution in these molecules (or not in all of these molecules) or the computation is not suffi-
ciently accurate to provide meaningful atomic charges.

Bunax
J {1 - 3cos?B)sinfdo
“ZrlinoMy J o

4nR? rm

(gnucl > =
sin@de

0
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The denominator is the normalization constant, and ensures that the total probability of being
between 0and 8., is 1.

j (1-3x*)dx
= _g’:! T:;?m’ ! — [Xpax = €056, ]
f dx
1
— —& 1l Hol xmax(l - xrznax)
4nR? Xopax — 1
= %(cos2 B, + C086,,,)

If, 8,,,, = m(complete rotation), cos 8,,, =—1 and (B} =0

If, 6., = 30°,cos? 6,,,, + cos G, = 1.616, and

(5.5857) x (5.0508 x 107" J T-') x (47 x 107 T2~ m?) x (1.616)
(4m) % (1.58 x 10" m)* x (2)

(‘Enucl ) =
-

P14.20 We have seen (Problem 14.19) that, if S(¢) =< cos w,?, then {{w) =« , which peaks at

(1 + (@~ @) 7°]
o = @,. Therefore, if

S(#) = a cos @t + b cos wyt
we can anticipate that

a + b
l+i{m—@)P??  1+{w,— ey

I(@) <

and explicit calculation shows this to be so, therefore Kw) consists of two absotption lines, one
peaking at @ = @, and the other at @ = w,.

Solution to applications

P14.22  Methionine-105 is in the vicinity of both tryptophan-28 and tyrosine-23 but the latter two residues
are not in the vicinity of each other. The methionine residue may lie between them, as represented
in Figure 14.11.

P14.24  The desired result is the linear equation:

[£].Av

[Tl= P K, [Note: The intercept turns out to be —K, not K as K is defined in the problem
v

statement.]

N 4
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o . H .. C:O
methionine residue |
N OH
HN
S
- /oy
N
H
|
..... N ¢
..... C==0 tyrosine residue
tryptophan residue
Figure 14.11

Our first task is to express quantities in terms of [I),, [E]y, Av, év, and K, eliminating terms such as
{11, [EI], [E}, v,, v;. and v. [Note: symbolic mathematical software is helpful here.] Begin with
yo W . (BN _[h-[BN  [EY
(I} +[EI] ~ []+[E]] (1l

Ve
m,
where we have used the fact that total I (i.e. free I plus bound I) is the same as initial I. Solve this so
it must also be much greater than [EI]:

Hov—v) _ [ dv

Ell= = ,
[E1] Ve — Vg Av

where in the second equality we notice that the frequency differences that appear are the ones
defined in the problem. Now, take the equilibrium constant:

x < E _ (E) — [EI)I, — (EID _ QEJ —[EID(I),
[ET] [EI] [EI}

‘We have used the fact that total I is much greater than total E (from the condition that [1], = [E],),
so it must also be much greater than [EI], even if all E binds I. Now solve this for [E],

K+I K+[I I),6v K +[I],)év
g, = Kt Mgy (K o+ (T ) Moty _ (K +[Th)
1k [Ty Av Av
The expression contains the desired terms and only those terms, Solving for [1], vields:
El,Av
m, =Bk
Vv

which would result in a straight line with slope [E],Av and y-intercept —-X if one plots [I], against
1/6v.
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P14.26  When spin label molecules approach to within 800 pm, orbital overlap of the unpaired electrons
and dipolar interactions between magnetic moments cause an exchange coupling interaction
between the spins. The electron exchange process occurs at a rate that increases as concentration
increases. Thus, the process has a lifetime that is too long at low concentrations to affect the ‘pure’
ESR signal. As the concentration increases, the linewidths increase until the triplet coalesces into a
broad singlet. Further increase of the concentration decreases the exchange lifetime and therefore
the linewidth of the singlet. (See Figure 14.12.)

ESR spectrum of di-tert-butyl nitroxide

J
s

Low
concentration

Moderate
concentration

Higher
concentration

High
concentration

Figure 14.12

When spin labels within biological membranes are highly mobile, they may approach closely and
the exchange interaction may provide the ESR spectra with information that mimics the moderate
and high concentration signals above.

B 4



MAGNETIC RESONANCE 347

Pi14.28 Assume that the radius of the disk is 1 unit. The volume of each slice is proportional to (length of
slice x 8.) (Figure 14.13).

F‘\

™

Figure 14.13(a)

length of slice at x=2 sin
x=cosf
@=arccos x

ranges from —1 to +1

length of slice at x = 2 sin(arccos x)

2

MRI
absorption
intensity 1 |
fx
0.5

0 H ;- 1
-1 0.5 0 0.5 1

Figure 14.13(b}

Plot f(x)=2 sin{arccos x} against x between the limits—1 and +1. The piot is shown in Figure 14.13(b).
The volume at each value of x is proportional to f(x) and the intensity of the MR1T signal is propor-
tional to the volume, so Figure 14.13(b) represents the absorption intensity for the MRI image of
the disk.



Statistical thermodynamics
1: the concepts

D15.2

D15.4

D15.6

Answers to discussion questions

See Figures 15.8 and 15.10, the Brief Hiustration in Section 15.3(a), and Self-test 15.6 for details. If
the levels are non-degenerate, then both quantities increase from zero to a limiting value in a roughly
sigmoidal shape. At very low temperatures, only the lower energy level is accessible, resulting in a
highly ordered system at the energy of the lower level. At very high temperatures, the states are
occupied practically equally, giving a highly disordered system whose mean energy is halfway
between the two levels.

Because this chapter focuses on the application of statistics to the distribution of physical states in
systems that contain a large number of atoms or molecules, we begin with a statistical answer: the
thermodynamic temperature is the one quantity that determines the most probabie populations of
those states in systems at thermal equilibrium, as explained in Section 15.1(b). As a consequence,
the temperature provides a necessary condition for thermal equilibrium; a system is at thermal
equilibrium only il all of its subsystems have the same temperature. Note that this is not a circular
definition of temperature, for thermal equilibrium is not defined by uniformity of temperature:
systems whose subsystems can exchange enetgy tend toward thermal equilibrium. In this context,
subsystems can be different materials placed in contact {such as a block of copper in a beaker of
water) or can be more abstract (such as rotational and vibrational modes of motion).

Finally, the equipartition theorem allows us to connect the temperature of statistical thermo-
dynamics to the empirical concept of temperature developed long beforehand. Temperature is a
measure of the intensity of thermal energy, directly proportional to the mean energy for each quadratic
contribution to the energy (provided that the temperature is sufficiently high).

An ensemble is a set of a large number of imaginary replications of the actual system. These replica-
tions are identical in some respects, but not in all respects, For example, in the canonical ensemble,
all replications have the same number of particles, the same volume, and the same temperature,
but need not have the same energy. Ensembles are useful in statistical thermodynamics because it
is mathematically more tractable to perform an ensemble average to determine (time-averaged)
thermodynamic properties than it is to perform an average over time to determine these properties.
Recali that macroscopic thermodynamic properties are averages over the time-dependent proper-
ties of the particles that compose the macroscopic systeni. In fact, it is taken as a fundamental
principle of statistical thermodynamics that the (sufficiently long) time average of every physical
observable is equal to its ensemble average.
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Solutions to exercises

The weight is given by

N! 21!
W= = = [2.04 x 10
No! NN, 610151014101310!121010!1! 204x107]

Apply eqn 15.7 to each level. For two non-degenerate levels,

—Pe;
& = E—— X -.q— = g-Bler—e) o p—Bdr = p-defkT

Nl q e—.ﬁgl

Hence, as T approaches 0, the exponent becomes infinitely large and negative:

. N
lim 7 =[]

That is, only the lower state would be populated.
For two non-degenerate levels,

N, .
Fz = ¢ /T [Exercise 15.2(b)]
1

N, Age Ae
50 In—=——— and T =-
N, kT k!nﬂ
N

6. _34 ) 10 -1 -1
_ 6,626 x107] 5} 2.998 x 10" cm s7' % 300 cm :

Thus, T =
1.381 x 102 J K- x In(1/2)

349

In fact there are two upper states, but one upper level, and of course the answer is different if the
question asks when 15% of the molecules are in the upper level, or if it asks when 15% of the

molecules are in each upper state. The solution below assumes the former.
If the levels were non-degenerate, then

Ny = e™*T [Exercise 15.2(b)]
1

Because each state at a given level is equally likely, the population ratio of the Jevels is

N, - g = 82 o netier

N, gefr g

Assuming that other states (if any) are negligibly populated,

ln&=ln£—£ and T=_L
N g kT klﬂngl
&N

34 1o -t .
6.626 x 107 J5x2.998 x 10¥em st % 360 cm =213k

Thus, T =

1381102 K- xIn| —2
(100 - 15) x 2
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E15.5(b) (a) The thermal wavelength is

h
A= Gy [15.19]

We need the molecular mass, not the molar mass:

-3 -1
=20.18><10 kg mol =3351x 10 %kg

6.022 »% 10* mol~!
o, A 6.626 X 101 s _ 3.886x10°m
© AT @ax335Ix 10 R kg x 1381 0BT K x T (T/K)”
-10
@ T=300K:A= is—%gbl)%—m =[2243x 10" m| = [22.43 pm]
3.886 x10"°m

(i) T=3000K: A= =[7.094 x 102 m|=7.094 pm|

(300072

(b) The translational partition function is

7= %[15.19}

N oo (L00x102my
(i) T=300K: qT—m— 8.86 x 10%

N _ (1.00 x 102 m)?
(11) T =3000K: q‘T = m =(2.80 x 10¥

3
14 . . g (AN
T_ 4 _ |

E15.6(b) g'= i [15.19] implying that p [ AJ

1 n
However, as A = - ( m,)

muz’? m
o e[ (1313m ) e
g\, 4.003m, '

E15.7(b) S=kinw[15.27]

oW eS| 9S8 W[ oS
W = ek d _— = ——— = —] ——
5 © an (BVJ k [BV} k(aV]
N TN TN

512

502 '
S 15.39a] = nR[an + ln-e—J,

NA
a5 dnl nR  NR
S0 _— = HR = —=
1% oV V NV
TN T.N

oW NRW NwW
and |—| = =—
W) NV ¥V

S=nrRn
NA
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AW AV pV A¥V  (1x10°Pa)x (20 m?) x (1 x107%)
— s N—=t—x—= =|4.8 x 102
W vV kT V (1.381 x 10 ®JT K1) x (300 K)
Notice that the value of #is much larger than that of AW/%. For example, at the conventional
temperature the molar entropy of helium is 126 J K-' mol-!, therefore,

=102 x 1P J K

RT (8.3145 T K-'mol™) x (298 K)

S_ LO2xI0°JK-
£ 1.381x10BJK-

and W = ek = 736077 — {()3.20x10Y

5 3 -1 -1
S=nsm=[i’£JSm= (1% 10° Pa) x (20 m?) x (126 J K~ mol™)

=7.36 x 107

50

The high-temperature expression for the rotational partition function of a linear molecule is

kT - h
Re— _[16.15 B=——[12.7],I = uR*[Table 12.1
q o'th[ 6.15b], 4m:'I[ 1.1 = uR*[Table12.1]
2 2 2
Hence, g= 8a2kTI _ 8a2kTuR

oh? oh?
For N,, g = +m(N) = 1 x 14.007m, = 7.00m,, and o = 2, therefore

_ (87%) x (1381 x 10 BT K1) x (300 K) x (7.00 x 1.6605 x 107 kg) x (10975 x 10 m)?
1= (2) % (6626 X 10 s)?

The high-temperature expression for the rotational partition function of a non-linear molecule is

3/2 172
= l(";_T] [JEC‘J [16.14b with o]
ag C

Combining the universal constants yields

32 3/2
i n-l.'Z - 138] X 10_23] K_l JElﬂ: 1.027 K—3.’2 cm-3f2
he 6.626 x 10 J s x 2.998 x 10 cm s

1027 (TIKY™ 1.027 x (T/K)*?

T = =0.01676 x (T/K)*
o (ABClem=)y?  (27.877 x 14,512 x 9.285)? x (T7K)

Thus, ¢

(@) At25°C, qR=0.01676 x (298)*2 =
(b) At25°C, g% = 0.01676 x (373)"2=
The rotational partition function of a non-symmetrical linear molecule is
gR= Y (2J + D)e#RUKT 16,13 with B = I/kT]
J

helB _ 6.626 x 10T sx2.998 x 10 ecm s~' x 6.511 cmi!
ko 1.381 x 10-3 J K-

Use =9.366 K
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S0 qR = 2(2J + l)eA9.365K><J(J+1).'T
S

Use a spreadsheet or other mathematical software to evaluate the terms of the sum and to sum the
terms until they converge. The high-temperature expression is
e KT T
q =—=
heB 9366 K

The explicit and high-temperature expressions are compared in Figure 15.1. The difference between
the two expressions is very nearly constant after the first few degrees. That difference drops to 5%

of the explicit sum at . As both expressions rise, their absolute difference becomes relatively
smaller.

0 i0 20 30 40 50 60 70
T'K

Figure 15.1

The rotational partition function of a spherical rotor molecule, ignoring nuclear statistics, is

g* =" g,e” T [15.9] = 3 (2] +1)?e eB/+DAT 12 8 and Section 12.4(d)].
J J

heB _ 6.626x10*F5x2998x10"cm s x 0.0572 cm™

=0.0823 K
k 1.381 x 10-Z# T K

Use

S0 qR= 2(2 T+ l)zev0.0823KxJ(J+1)lT
7

Use a spreadsheet or other mathemnatical software to evaluate the terms of the sum and to sum the terms
until they converge. The high-temperature expression is eqn 16.14b, neglecting ¢ and with A=B=C:

3/2 32
gR = 7\ k_j‘: = g2 _r
heB 0.0823 K

The explicit and high-temperature expressions are compared in Figure 15.2. The difference between
the two expressions actually grows {(albeit rather slowly) after the first few tenths of a degree.
Because both expressions grow laster than does the difference between them, the relative difference

drops; it reaches 5% of the explicit sum at .
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60
PP R U E— A

40 v — R S— -

“u-' 30_- ....................... .................... .......................

Explicit
20 __ ....................... ........................ TN

0 0.15 0.3 045 0.6 0.75

Figure 15.2
The rotational partition function of a symmetric rotor molecuie, ignoring nuclear statistics, is

J
=Y g, T(15.9] = T (2 + De BT [1 +2Y ehed EW’*T] [12.12]
JK J=0

K=1

hLF 6,626 x 10 J5x 2,998 x 10 cm ™' x 9.444 cm™!

U
% 1381102 K

=13.585K, and

he(d ~ B) 6626 x 103 J s x2.998 x 10 cm 57X (6.196 — 9.444) cm™!
k 1.381x10-3J K-
=—4672K

J=0 K=l

S0 gR= z (2J + l)e—]3A585KxJ'(J’+1).'T (1 + 2ie+4.672KxK11T)

Write a brief computer program or use other mathematical software to evaluate the terms of the
sum and to sum the terms until they converge. Nested sums are straightforward to program in lan-
guages such as BASIC or FORTR AN, whereas in spreadsheets they are more unwieldy. Compare
the results of the direct sum with the high-temperature expression, eqn 16.14b, with 8= C:

. x 112 kT 3/2 I
=5 -— | &
A he B
The explicit and high-temperature expressions are compared in Figure 15.3. The difference between

the two expressions actually grows (albeit rather slowly) after the first few degrees. Because both
expressions grow faster than does the difference between them, the relative difference drops; it

reaches 5% of the explicit sum at .
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20 e e

10 _, .................... . < ., ............... . ...................
: i Explicit nggh :
H :temperature ;

0 10 20 30 40 50 60
TK

Figure 15.3

The symmetry number is the order of the rotational subgroup of the group to which a molecule
belongs (except for linear molecules, for which ¢ = 2 if the molecule has inversion symmetry and
1 otherwise). The rotational subgroup contains only rotational operations and the identity.

(a) CO,: full group D,,; subgroup C,; hence o =

{(by Oy full group C,,; subgroup C,; o=

{c) SO, full group Dy; subgroup {E, C,, C3,3C,}; 0= EI
(d) SF, full group Oy; subgroup J; 0=

(e) ALCI: full group Dyy; subgroup Dy 6=

Pyridine belongs to the C,, group, the same as water, so g = 2. The rotational partition function of
a non-linear molecule is [Exercise 15.9(a)]

1.027  (T/K)*” 1.027 x (298.15)"
t= == = =[4.26 % 10°
1 o (ABC/em™)"? 2 x(0.2014 x 0.1936 x 0.0987)"

The partition function for a mode of molecular vibration is

g =Y ek = ]ﬁ [16.19 with 8 = VkT]
— g hed

o

Use =3085K

@ _6.626x10]5x2.998 x10"cm 57! x 214.5 cm™
k 1.381 x 1072 JTK!

1

v _ —vheHkT _
s¢ 47 = Ze T ] — e-308SKT
u

The high-temperature expression is

KT T
vo R 16.21
T =55 3085k 102N
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The explicit and high-temperature expressions are compared in Figure 15.4. The high-temperature
expression reaches 95% of the explicit sum at |3000 K |.

4

12

10 1

0 500 1000 1500 2000 2500 3000 3500 4000
T/K

Figure 15.4

E15.16(b} The partition function for a mode of molecular vibration is

13

A% — ~vhe#IkT —
Jrnoae = Ze T ] = @-he¥AT
v

[16.19 with B = UkT]

and the overall vibrational partition function is the product of the partition functions of the indi-
vidual modes. (See Example 16.3.) We draw up the following table:

Mode 1 2 3 4

Plem™ 3311 712 712 2097
etk T 5292 1.138 1.138 3.352
Frmode 1.005 1.472 1.472 1.036

The overall vibrational partition function is

gV =1.005%1.472x1.472 x1.036 =|2.256

E15.17(b} The partition function for a mode of molecular vibration is

. I .
q;nde = Ze'”*“’”’kT= m [1619 with = IlkT]

and the overall vibrational partition function is the product of the partition functions of the indi-
vidual modes. (See Example 16.3.) We draw up the following table, including the degeneracy of
each level:
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Mode 1 2 3 4
vlem™! 178 90 555 125
gmode 1 2 3 3
hevlkT 0.512 0.259 1.597 0.360
Prnode 2.50 438 1.254 3.31

The overall vibrational partition function is

g¥=2.50x4382x1.254x 331> =(3.43 x10°

g= 3 ge ™ [159]= Y, g "V = 2 + JehenkT 4 Qg hemIkT
levels levels
hev,  6.626x10Jsx2998 x10%cm s~ X ¥
where I = L =7192 x 10 x (¥./cm™!
kT 1381 x 102 TK ' x 2000 K (¥/em)
Therefore,
g =2+ 3771920071250 4 9g-TI0TI0 = 9 1 33,4070 + 2 x 0.3926 = |4.0061
U,-U_(0)= —&[ﬂ] [15.24a for 1 mol]
g \dBj,
he, N . .
Use T hev f=17.192 x 10-4V,; [Exercise 15.18(b)]

and g =2+ 3e-*"f+ Je-t"f= 40061 [Exercise 15.18(b)]

Thus, U, - U, (0)=—Yahe

(30,6475 4 2, e -heary

_6.022 x 102 mol'x 6.626 x 10T 5 x 2.998 x 10 cm s~
- 4.0061
x (3 1 1250 Cm—l x e—7.192><10*"x1250 + 2 Y 1300 cnl—l % ew7.192x10’4x1300)

=[+7.61x10°7|=[+7.61kJ]

The energies of the states relative to the energy of the state with m, =0 are —y#3, 0, and +y%8. With
respect to the lowest level they are 0, yfi8 and 2yA38, respectively. The partition function is

q = Ze*ﬁ&i =1+ efyfi@,ﬂ_i_ e—27ﬁ':Bﬁ
i

where the energies are measured with respect to the lowest energy.
The mean energy per electron is

BT 1dg e+ 2e20%)  [yhs(l+ 2e)
= N - _EEE - 1 + e 7A88 4 a-2riBf - eV g | 4 e-rins

(e (15.22]

Alternatively, if we measure energy with respect to zero magnetic field (rather than to ground-state
energy), then
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=g, LD gy, PABUA2ETN) | L4 2eTW
£ Eg g dﬁ =Y eINABE 4 | 4 e tNABE - e nei | 4 @-YNAT

Letting x = y#f3, the partition function becomes
g=l+er+e?
and the mean energy, scaled by the energy separation, becomes

_gﬂ_ 1+ 2e~ _
yhB e +1+e¥

The functions are plotted in Figures 15.5(a) and {b). The effect of increasing the magnetic field is to
concentrate population into the lower level.

Partition function

3
2 4N O S o T—
ORI OO ...................... ........................ .......................
1 _ ...............
0.5 4 ...u.........u....4».w.u......4.4.‘..........'..............u<.......-§ ................................................
0 ; : : .
Y 1 2 3 4 5
x
Figure 15.5(a)
Mean energy
0 -

{e)yhB

Fignre 15.5(b)
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Expressions for the relative populations are given in Exercise 15.2(b).

The relative populations are

_]_VL = g B8 — o= 2rFBf — a2 gpnd .%A =gt —ax

where x =B = A8 1.933x107T's7'x1.0546 x 1075 x20.0T
T e (1381 x 10 ] KT
295x10°

/K

Because x is so small, the population ratios will be close to 1, even at low temperature. Thus, it will
be more informative to report the difference of the ratios from 1, using the series expansion of the
exponentials:

I—N+ =l-e*=2x and 1-—F=l-e*=x

-3
(a) 1—%=2x=31<2'9150—x10=5.9><10-3 and 1—%:2.95“0-3

N, _2x295x 103 Ny _295x10°

- s e =20 %107 d 1- =1.0x10~
& 1= 298 ©IUTan N 298 8
{a) The ratio of populations is given by the Boltzmann factor
n_ SAE Y osoxr B3 _ asoorir
n exp( T ] e and " e
(1) At1.00K, ™ expl 220K 1395107 and 5 =exp| 220K 1 [1 93x 10
nl 1.00 n, T.OOK

" ~250K n -50.0K
2) At250K, 2= ——— |=10.368 d == =10.135
@ " exr{ 250K ) R e"p( 250K J

1

" ~250K n, ~500K
100K, —= =|0. —= =10.607
o Atook, exp[ 201 and - oxpf 00K

1

(b) The molecular partition function is

g= E kT = | 4 @ 290KIT 4 @-S00KIT
states

At 25.0 K, we note that e 230&T = gl and 3008 T = g2

g=l+e!+e?=1.503

N dg
E(T)y=-——[1522
(c) ET) . dﬁ[ ]

So E(T)= _&(_25_0 K k(e 359KIT 4 2g-300KIT
q
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(6.022 x 103 mol™") x (-25.0 K) x (1.381 x 1073 T K-)

At250K, E, = —
1.503

[T

(d) The molar heat capacity is

x(e'+2e?)

ol/ a1
= m [ = N (25. G L (a250KIT 4 Da-S00KIT
Cym ( 5 )V (25 OK)ka q(e +2e }

250K, _ _ 1, ) dq
= NA(25_OK)k ® [ qu (e 25.DKJT+ 4e 50.0XIT) - F(e 25.0KT + 23 SOHK’T)ﬁ]

dg _ 250K
where Py

o ¢y, < NaCS0KPK (e+ fa-S00KIT _

(evZS.GKfT+ 23_50‘0[(”‘)

Tq

(g7 B0 De-S00KIT)2 J
q

6.022 x 102 mol™) x (25.0 K)? x (1.381 x [0-Z J K1)
AL25.0K, Cy =t
b (250 KPx (1.503)

-1 ~2%2
-1y 4e2 — (e'+2e7?)
X (e * 1.503

=(3.53 J K-'mol!

{e) Themolar entropy is

- Um - Um(o)

Sin
T

+ Nk Ing

-1
At250K, 5, = ﬁ%én%— +(6.022 x 10% mol™') x (1.381 x 1022 T K-"Y In1.503

=16.92 J K" mol"!

ni g6V

Eis2p) =S

= gle-A.sfkT = Je-2heBikT [12. 10]

Set % = % and solve for 7.

ln(lJ=—1=ln3+(_2hCB]
e kT

_ 2hcB
k(L +1n3)

2x(6.626 x 107 J 5) x 2.998 x 10" cm s7' % 10.59 cm™!
= =|1452K
1381 x 10~ T K x {1+ 1.0986)

where we used B = 10.59 cm™! from Table 12.2, assuming 'H*CL.
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The Sackur-Tetrode equation gives the statistical entropy; for 1 mole at standard pressure:

h

eSJ’ZkT

Se=RIn| ——
A

(a) At100K

Ae 6.626 x 10 s
27(131.3)(1.6605 x 107 kg)(1.381 x 102 T K-')(100 K)}

- B _ 21,381 x 102 J K1) x (100 K) . =
S7=(8.3145J K 'mo )n( (10°Pa) x (1.52 x 10" m)’ 14717 mol

(by At298.15K

1.52 x10"m

v

6.626 x 10 J s

A=
(27(131,3)(1.6605 x 1077 kg)(1.381 x 103 ] K-'%298.15 K)}
=8.823x 10" m

172

e52(1.381 x 102 J K1) x (298.15 K)]

®=(8.314 - -
and  Sn=(8.31457 K~ mol )1“{ (10°Pa) x (8.823 < 10> m)’

=[169.6J K~ mol-!|

The entropy in terms of partition function is

+ NklIng[15.28] = _é\j_[@n_g} + NkIng[15.24b]
¥

sy« LU L

1
1 _ e—kqﬂﬁ

1= o [Example 15.2] =

dlng o —hoVehF heveha¥ hev
d | Z2L| =(-e)x =- =
an [ a'B l/ ( ¢ ) (1 — g-heps )2 1 — g-hese ehd¥ _ ]

(6,626 x 10 J 5) x (2.998 x 101 cm s71) x (321 em™")
B (1.381x 10-3J K1) x (600 K)

Therefore, 4 = . 1.863

1- 6_0‘7696

=0.7696

hefv

dlng (6.626 x 107 T s} x (2.998 x 10% cm s71) x (321 ¢m™)
and B == 207696 _ |
¥

=-53503 %1027

5.503 x1021J

1.381 % 10-2J K1) In1.863
0K +(1.381 % ) }

Hence, $,=(6.022 x 10 mol™) x [

=[10.70 1 K mol-!|

Inclusion of a factor of 1/N! is necessary when considering indistinguishable particles. Because of
their translational freedom, gases are collections of indistinguishable particles. The factor, then,

must be included in calculations on (a) .
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Solutions to probliems
Solutions to numerical probiems

Number of configurations of combined system, W= W #,

W= (109) x (2 x 10) = |2 x 10 |.

S=klow[15.27)=(1.381 x 10-3 JK-) x In(2 x 104) =[1.282 x 10-2'] K-

Sy =kln o =(1.381 x 102 J K-") x In(10®) =[0.636 x 1021 K-

Sy=kln o, =(1.381 x 10-2 J K1) x In(2 x 10?) = [0.646 x 102! T K-1]

These results are significant in that they show that the statistical-mechanical entropy is an additive
property consistent with the thermodynamic result. That is,

§=8,+8,=(0.636+0.646) x 10 FK-'=1.282 x 102! J K!

This problem can be carried out on a spreadsheet if care is taken with the layout. One may simply
pick values of ¥; however, if one works in terms of the characteristic vibrational temperature, 8y,
one can employ more general dimensionless quantities, as described below.

gy = h—z»‘i [Section 16.2(c)]

‘We note that the energy levels of the Morse oscillator can be written as

E =@+ %)hcff -+ %)erhcf? [12.38]
= (v + Pkby— (v + 3P x Kby = (v + kB {1 - (v + })x.}

Thus, one can tabulate values of E /k8, without having to select a wavenumber. Similarly, one can
employ the dimensionless temperature 778y. As noted in the problem, Boltzrnann factors require
energies measured with respect to the ground state, so the energies in the exponents of the Boltzmann
factors must be E, — E;. The energy expression for the Morse oscillator eventually reaches a maxi-
mum in v and then begins decreasing. Oniy the states up to and including the maximum energy are
physically meaningful, so there are a finite number of Morse states. Thus, the partition function for
a Morse oscillator is:

T Eu - EO Ky Eu - Eﬂ BV
= ¥ exp| ———— |= D exp| ———— x —
7= 2 [ kT ] 2 ( W T
To choose meaningful values of the anharmonicity, x,, look up vibrational constants for some com-
mon diatomic molecules. x, is about 0.03 for H, and about an order of magnitude smaller for I,.

A plot of partition functions with various anharmonicities is shown in Figure 15.6. For small
values of x,, the partition function closely resembles that of a harmonic oscillator [15.12]. This
provides a check on the calculation, for a Morse oscillator in the Himit of small x, is a harmonic
osciilator. As x, increases, the partition function gradually increases compared to the harmonic
oscillator. This reflects the fact that the Morse oscillator energy levels become more closely spaced
with increasing energy, so more levels are accessible at a given temperature. Eventually, however, the
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--------- harmonic
-——- x=10.001
e — x =0.003
——-x=0.01

T/0
Figure 15.6

partition functions of highly anharmonic Morse oscillators fall below the harmonic curve at high
temperatures. This reflects the fact that these Morse oscillators have a finite number of energy levels
(indeed, a small number) so naturally a harmonic oscillator has more accessible levels at high
temperature,

P15.6 If the electronic states were in thermal equilibriurn with the translational states, then the tempera-
ture would be the same for both. The ratio of electronic states at 300 K would be

e kT
N _ & 4 x @-8ehT — Ya—hotkT

NO goe-en.fkT 2
-34 10 -1 -1
 2exp (6626 X107 5) (2998 x 10¥em ™) x (450 em ™) | _
{1.381 x 102 J K-y x (300 K)

.. 0.30
The ob d
e observed ratio 1s 0.70

=0.43. Hence, the populations are [not at equilibrium].

P15.8 (a) First, evaluate the partition function
g =2 g [15.9]=X g0
i I

The degeneracy is given by
gr=2J+1
where J is the level of the term (displayed as the subscript in the term symboi).

6.626 105 x2.998 x 10°cm 57!
1.381 x102JK1x 3560 K

At 3287°C=3560 K, hcB = =4.041 x 10~*cm

g= 54+ 734{(4.04lxlﬂ“‘cm)x{l',’cwn’r)} + 9e-{(4.041x1o-4mn)x(387cm-1)) + 36—{(4.041x]0’4cm)><(6557c-m'l)j

=5+ 7 % (0.934) + 9 x (0.855) + 3 x (0.0707) = 19.444
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The fractions of molecules in the various energy levels are

gier g

pr= T = T [15.7, with degeneracy included]
5 (7) x(0.934) _
F)=———=|02 *F) =
POR) = Jg g = 10257 PR =g =[o33d
5 (9)x(0.855) . (3) x{0.0707) _
PR =04 =[039¢] pF)= 10448 Lo

COMMENT. 2, p, = 1. Note that the most highly populated level is not the lowest level.

The partition function is
g=2 g [15.9]= 3 geT =3 grehikT
i T -

The degeneracy is given by

= 2J+ 1
where Jis the level of the term (displayed as the subscript in the term symbol).
—34 10 —1 ] ]
At 298 K. hev, _ 6.626 x 10T sx 2998 x10"%cm s x ¥, —483x105% L

kT 1381 10- BT K% (298 K)

s0 g=1+ 3 48310IxS51] | §a-48Mx1073x14100 |, §o-d.83xI03xTI253 | a4 BIIOTRIEHTI — ] IO

At 1000 K,

—-34 10 ~L v -
hev; _ 6,626 x 107 T5 x 2.998 x 100 cm s X ¥ 1439 x 10 x
KT 1.381 x 107# J K x (1000 K) -t

— = -3 _
50 g= 1+ 3e-1439x1073x557.1 | §a-1439x1073%1410.0 4 §a-1439x107Ix7125.3 4 o-1.439x1077x16367.3 — 1 3 (J(4

(a) Totalentropy: $=8,+95,=(5.69+11.63) FJK-'=17.32TK"!

- 23y -1 2 Py
W = e5* [from 15.27) = el 3K N30 IK! _ g1250x10% _

(b) Total entropy, $=2mol x(9.03 J K-'mol')=18.06 J K~

W = g5k = @l806TK-1138IxI0°BIK _ ol 31x102 . |]()5.69x107

The final temperature is not the average because the molar heat capacity of graphite increases with
temperature. At 298 K, it is 8.54 J K ! mol™!, whereas at 498 K it is 14.64 J K-' mol .

(c) At constant internal energy and volume the condition for spontaneity is AS;, > 0. Since

Wy > Wy, the process of part (b) is .

Solutions to theoretical problems

! 5!
W=————————[13.]]= ————— =]l
@) NGINIENZI---[ ] 015101010!
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(b) We draw up the following table:

0 £ 2e 3e 4de Se = N
nlnt...
4 0 0 0 0 1 5
3 1 0 0 1 0 20
3 0 1 1 0 0 20
2 2 0 1 0 0 30
2 1 2 0 o 0 30
1 3 1 0 o o 20
0 5 0 0 0 0 1

The most probable configurations are [{2, 2,0,10, 0}| and {{2, ,2,0,0, 0}|.

(a) The probability of finding a molecule in state j is
N,

i€ sy
B = l157]

In the systems under consideration, ¢ is both the mean energy and the energy difference between
adjacent levels, so

o—/fE
7
which implies that

Fi=

S
—jBe=InN,—~InN+Ing and 1n]\@=1nN—]nq—jﬁe=ln?—%

Thus, a plot of In N, against j should be a straight line with slope ~&/&T.

We draw up the following table uging the information in Problem 15.15:

J 0 1 2 3

N, 4 2 2 1

ki

In N, 1.39 0.69 0.69 0

7

[most probable configuration]

£ —50cm ™, the

These are points pletted in Figure 15.7 (full line). The slope is —0.416 and, since e

slope corresponds to a temperature

_ (50 cm™) x (2.998 x 10" cm s7') x (6.626 X 10~ ] 5)

(0.416) x (1.381 x 102 T K1)
=(163K

(A better estimate, 104 K, represented by the dashed line in Figure 15.7, is found in Problem
15.18)

T
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In A

Figure 15.7

(b} Choose one of the weight 2520 configurations and one of the weight 504 configurations, and

draw up the following table:

J 0 1 2 3 4
W=2520 N, 4 3 1 0 1
A, 1.39 1.10 0 oo 0
9w =504 N, 6 0 ! 1 1
InN, 1.79 oo 0 0 0

J

Inspection confirms that these data give very crocked lines.

ET) ldg .
a =—>=———=[15.22], thg= 15.12
@ (=== G052 withg={— (512
geFe €
S0 (s)ml_c_ﬁeu-eﬁe_l—as
Hence, eﬂf:““,implyingthatﬁzlln[1+iJ
a £ a

In2
For a mean energy of ,a=1and 8 = nT, implying that

£ he
T=—t_=(s0cm" =[104K
Finz _O0em )x(kanJ 104K]
1 1
b) =7 5= =[1+4]

| - 1 a
1+a
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For a non-degenerate two-level system, the populations are

el and p=—" (54
T i+e LR

Po

By hypothesis, p; > p, 50 €7 > 1, which requires § <0 and in turn T < 0.
(a) The partition function is
g=1l+c*

so the internal energy relative to that at zero temperature is

dlng

U(T) - U(O) = —N{WJ [15.24b] - SNC_‘BE _ gNe—sﬂ'kT

1+ef ]+ ekl

and the entropy is

ST = U(T); U(0) eNe-tAT

+ Nklng[15.28]= m + Nk In(1 + e~=/*7)

Expressing the entropy in molar units yields

£ Re—e;‘k'r
Sm(T) = m + R In(l + e_dkr)
The partition function is ploited against £/kT in Figure 15.8(a) and against £T/e in Figure 15.8(b).
Note that the partition function is plotted on a logarithmic scale in both graphs. Notice that the
partition function grows without bound as the temperature approaches zero from the negative side
(i.e. as e/kT becomes large and negative; Figure 15.8(a)). The partition function cannot really be
interpreted as a count of thermally accessible states if T<0.

100 000

10 000

1000
™™
100
10
1 : ;
-10 -5 0 5 10
kT
Figure 15.8(a)
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1000

"

gas constant are plotted against £/kT in Figure 15.9(a). The same quantities are plotted against £ T/e
in Figure 15.9(b).

1.2
—— Energy

---- Entropy

=
]
1

{U-U(}leNorSpn/R
=3 =
= o

0.2 1

0 : ; ;
-10 5 0 5 10

Figure 15.9(z)

\
|
|
|
|
|
|

lm T L LT LT TTTT T PP PP P
h=2]
10 e T L LT T T R T PR TP TP E )
L + /f :
-10 -5 0 10
kT/e
Figure 15.8(b)
Internal energy in units of Ne relative to that at zero temperature and molar entropy in units of the
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1.2
—— Energy
---- Entropy
&
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¥
5
=
&
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:D 04 P ;;..:'..,........ LT
02 —
0 ; : ;
-10 -5 0 5 10
kTfe
Figure 15.9(b)

Solutions to applications

Use the perfect gas law to relate a ratio of pressures to a ratio of amounts (moles), then apply the
Boltzmann distribution to the ratio of amounts:

pth) _ aMRTIV _ nlh) _ o (ctir-ctionivTs — g-metimio)i
Pho) nh)RTIV  nlhy)

Defining p( = 0) = p,, we obtain the desired barometric formula:

P _ iy _ [omragiirr] - 2R
P O

Note that the result depends on the temperature, and it assumes that the temperature does not vary
with height. To proceed, we must pick 2 temperature, so we use the standard termperature of 298 K,
which s reasonable for the surface of the earth, but not for 8.0 km altitude.

For oxygen at §.0 km,

M(Oy)gh _ (0.0320kg mol™) x (9.81 m s7%) x (8.0 x 10° m) =101

RT (8.3145J K 'mol~') x (298 K)
ANB.Okm)
s0 —m———= =g 10=10.363
20) 0.363)
For water,

M({H,0)gh _ (0.0180 kg mol™') x (9.81m s7%) x (8.0 x 10°m) _ 0.57
RT (8.3145 Y K'mol™*) x (298 K) ’

NEBOkm) o5 _
20) =e99=0.57

SO
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(a) The electronic partition function, ¢%, of a perfect, atomic hydrogen gas consists of the elec-
tronic energies £ that can be written in the form:

En=(1—i2]hdeﬂ, n=123..., 00,
n

where we have used the state n =1 as the zero of energy (in contrast to the usual zero being at infinite
separation of the proton and electron). The degeneracy of each level is g, = 2n%, where the »? factor
is the orbital degeneracy of each shell and the factor of 2 accounts for spin degeneracy.

=Y gerir=2y nze_(l_;;_]c
n=1 n=1

where C=hAcRu/k T potosprere = 27.301. 45, when written as an infinite sum, is infinitely large because

-

- = b C - -
limnte ' #/ =lmrle C=eClmui=oo,
e

oo n—see
The inclusion of partition function terms corresponding to large » values is clearly an error.

(b} States corresponding to large n values have very large average radii and most certainly interact with
other atoms, thereby blurring the distinct energy level of the state. Such interactions most likely occur
during the collision between an atom in state # and an atom in the ground state #= 1. (Even at high

temperatures, the ground state is the most probable state.) Collisional lifetime broadening is given by
h z.h
SE,=—1[9.39]=

" 2nrr 3351 2r

where the last equality employs the collisional frequency (derived in Section 20.1(b)) rather than the
collisional lifetime. The cellisional frequency of the nth state of an atomic perfect gas is given by

Cules P 2¥3g.cp 2Mg, EpN
= Sl 50 11b] = = ZnL 20 97 = = TnP YA
z, 3 [20.11b] P [20.9]

H

The mean speed is

142
5=[8";MT) —1.106 x 10*m s [20.7]

k(9

The collisional cross-section is
o, =nd? [Section 20.1(b)] = =(r, + a,)

From Example 9.2, the mean radius of a hydrogen atom with principal quantum number » might
be surmised to be

3na,
r = ———
i 2
In fact, this is true of ms orbitals, which is good enough for this problem. So, the collisional cross-
section is

o = =2Y
n 0 2

Any quantum state within §E of the continuum of an isolated atom will have its energy blurred by

collisions so as to be indistingnishable from the continuum. Only states having energies in the range
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0 < E < E_ - 5E will be a distinct atomic quantum state, The maximum term, #,,,,, that should be
retained in the partition function of a hydrogen atom is given by

E,

Pmax

=E_ -b8E

Mmax

2
2rMy

2
12 Eag(M] ZoN ki

[1— 21 JthH=thH—

nmax

with p=1.99x 10~*kg m and Mj;=1.01 x 102 kg mol™ . Subitracting hcRy, from both sides simplifies to

2
3n.+2 =

at| —®E—— | fpN,h

heRy D( 2 J P
nl, - 2120,

The root function of a calculator or mathematical software may be used to solve this equation for s,

for atomic hydrogen of the photosphere

Furthermore, examination of the partition function terms n=2, 3, ... , i, indicates that they are
negligibly small and may be discarded. The point is that very large n values should not be included
in 4% because they do not reflect reality.

(c) The equilibrium probability of finding a hydrogen atom in energy level r is

InZa-E kT
= E

q

where T= 5780 K. (Note: The probability for each distinct state omits the factor of 2#°.) This func-
tion is plotted in Figure 15.10.

0 T T T T T

= L N

log (Fn)

Figure 15.10

Even at the high temperature of the Sun’s photosphere only the ground electronic state is significantly
populated. This leads us to expect that at more ordinary temperatures only the ground state of atoms
and molecules are populated at equilibrium. It would be a mistake to thoughtlessly apply equilibrium
populations to a study of the Sun’s photosphere, however. It is bombarded with extremely high energy
radiation from the direction of the Sun’s core while radiating at a much lower encrgy. The photosphere
may show significant deviations from equilibrium. See S. I Strickler, J Chem. Educ. 43, 364 (1966).
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2. applications

D16.2

D16.4

Answers to discussion questions

The symmetry number, o, is a correction factor to prevent the over-counting of rotational states
when computing the high-temperature form of the rotational partition function. An elementary
interpretation of o is that it recognizes that in a homonuclear diatomic molecule AA the orientations
AA’and A’A are indistinguishable, and should not be counted twice, so the quantity g =kT/hcB is
replaced by ¢ = kT/oheB with o = 2, A more sophisticated interpretation is that the Pauli principle
allows only certain rotational states to be occupied, and the symmetry factor adjusts the high-
temperature form of the partition function (which is derived by taking a sum over all states), to
account for this restriction. In either case, the symmetry number is equal to the number of indistin-
guishable orientations of the molecule. More formally, it is equal to the order of the rotational
subgroup of the molecule. (See Chapter 11.)

The temperature is always high enough for the mean translational energy to be %kT, the equiparti-
tion value (provided the gas is above its condensation temperature), therefore the molar constant-
volume heat capacity for translation is C7,, = 2R.

Translation is the only mode of motion for a monatomic gas, so for such a gas C;,,, = 2R = 12.47 )
K- mol™. This result is very reliable: helium, for example has this value over a range of 2000 K.

When the temperature is high enough for the rotations of the molecules to be highly excited (when
T 6;), we can use the equipartition value kT for the mean rotational energy (for a linear rotor) to
obtain C,,, = R. For non-linear molecules, the mean rotational energy rises to %kT , 50 the molar
rotational heat capacity rises to R when 7> 8. Only the lowest rotational state is occupied when
the temperature is very low, and then rotation does not contribute to the heat capacity. We can
calculate the rotational heat capacity at intermediate temperatures by differentiating the equation
for the mean rotational energy (egn 16.26a for a linear molecule). The resulting expression is
plotted in Figure 16.9 of the text. Because the translational contribution is always present, we can
expect the molar heat capacity of a gas of diatomic molecules (Cf . + C}.) to change from %R to
%R as the temperature is increased above 6;.

Molecular vibrations contribute to the heat capacity, but only when the temperature is high enough
for them to be significantly excited. For each vibrational mode, the equipartition mean energy is kT,
o0 the maximum contribution to the molar heat capacity is R. However, it is very unusual for the
vibrations to be so highly excited that equipartition is valid, and it is more appropriate to use
the full expression for the vibrational heat capacity, which is obtained by differentiating eqn 16.28.
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The curve in Figure 16.11 of the text shows how the vibrational heat capacity depends on temperature.
Note that even when the temperature is only slightly above the vibrational temperature, the heat
capacity is close to its equipartition value.

The iotal heat capacity of a molecular substance is the sum of each contribution (Figure 16.12
of the text). When equipartition is valid (when the temperature is well above the characteristic
temperature of the mode 7> 8,,) we can estimate the heat capacity by counting the numbers of
modes that are active. In gases, all three translational modes are always active and contribute %R to
the molar heat capacity. If we denote the number of active rotational modes by v§ (so for most
molecules at normal temperatures vy = 2 for linear molecules, and 3 for non-linear molecules), then
the rotational contribution is 7v#R. If the temperature is high enough for v{ vibrational modes
to be active the vibrational contribution to the molar heat capacity is vER. In most cases v, = 0.
It follows that the total molar heat capacity is

Crm=3(3+vE+2vi)R
The expressions for g, U, and S that were derived in this chapter are applicable to T < 0 as well as
T > 0. However, if we plot g and U against T, for example, in a two-level system and other systems
as well, we find sharp discontinuities on passing through zero, and 7 = +0 (corresponding to all
populations in the lower state) is quite distinct from 7T = -0, where all population is in the upper
state. The entropy Sis continuous at T= 0, but all these functions are continuous if we use = VkT
as the independent variable that indicates that 8 = 1/T is a more natural variable than 7.
(See Further information 16.3 in the 8th edition of this text for a more complete discussion.)

Solutions to exercises

The thermal wavelength is given by A = _h__ [15.19, 16.12]. When numerical values for 4, &,
(2amkT)V?
and & are substituted in this expression it becomes

1749
(T/K)"2(M /g mol )2

Alpm =

At298.15 K, with M =64.06 g mol-! for SOZs we obtain
1749
A= (298.15 x 64.06) pm =112.66 pm|=12.66 x 102 m

See Exercise 16.1(b).

3
1.0cm® x

V 108 cm?®
T=—[l6.12]= =|4.9 x 10%
9 A [ ] (12.66 x 1017 m)a

Cym =303+ vE+2v}R [16.35]

with a mode active if 7> 6.




E16.4(b)

E16.5(b)

E16.6(b)

STATISTICAL THERMODYNAMICS 2: APPLICATICNS 373

(@ 0;C,= %(3 + 3+ 0)R = 3R [experimental = 3.7R]
(b) C,Hg Cyp=3(3+3+2x1)R=4R [experimental = 6.3R)
(€) COy: Cyp=3(3+2+0)R=3R [experimental = 4.5R]

Consultation of the book Herzberg ( Molecular Spectra and Molecular Structure IT) tums up only
one vibrational mode among these molecules whose frequency is low enough to have a vibrational
temperature near room temperature. That mode was in C,H,, corresponding to the ‘internal rota-
tion’ of CHj; groups. The discrepancies between the estimates and the experimental values suggest
that there are vibrational modes in each molecule that contribute to the heat capacity—albeit not
to the full equipartition value—that our estimates have classified as inactive.

The rotational temperature is given by

B = ”CTB [Section 16.2(b)], %c =1.4388cmK, 6, =14388cm K x &

For 'H;: 6 =1.4388 cm K x 80.864 cm™' =|116.35 K
For ’H,: 0 = 1.4388 cm K x 30.442 cm™' =|43.80 K

The rotational partition function of a linear molecule at high temperature (298 K) is (see Section
16.2(b))

KT _ T _heB

qR= - = — R=
chcB  oby k

Substituting values for the constants this may also be written as

_ 0.6950 y ~T/K _ (0.6950) x (T/K) = 0.2404(T/K)
o4 {Blcm) 2 x 1.4457

() At25°C: gR=(0.2404) x (298) = [71.6|
(b} At250°C; qR=(O.2404)><(523)=

R

The symmetry number is the order of the rotational subgroup of the group to which a molecule
belongs (except for linear molecules, for which o = 2 if the molecule has inverston symmetry and
1 otherwise).

(a) CO,:full group D_;; subgroup C;; hence o =

{b} Os: full group C,,; subgroup C,; 6 =

{c) SO, full group D,,; subgroup {E, C;, C3,3C,}, 0= @
(d) SF,: full group O,; subgroup 0, o =

(e) AlLCl: fuil group D,y; subgroup Ds;; 0 =
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372 172
For non-linear molecules at high temperature, ¢® = 1. d [Section 16.2b]
o\ ke ABC

After substituting values for the constants this becomes

L0270 (T/K)¥ 10270 x 298
o= I5C = =2)=[5837
= BClam "~ () x 202736 x 034417 x 0293535 10 = )

The high-temperature approximation is valid if 7> 8, where

he(ABCY»
o=
k
(6,626 X 107 5) x (2.998 x 10 cm s71) x [2.02736 x 034417 x 0.293535 cm™]*>

1.38 x 10-BJ K-!
-[i5K]

The high-temperature approximation is clearly valid.

g® = 5837 [Exercise 16.7(b}]
All rotational modes of SO, are active at 25°C, therefore
Uk -UN0)=E"=32RT

R

SR = ET + Ring®= 1R + RIn(5837) = 84.57 J K-' mol|

(a) The partition function is

q= 2 eEsae kT — z ge—EMd.’kT
states Jevels
where g is the degeneracy of the level. For rotations of a symmetric rotor such as CH;CN, the
energy levels are E; = ke[ BJ(J + 1) + (A — B)K?} and the degeneracies are g, = 2(2J + 1) if K#0 and
2J+ 1if K=0. The partition function, then, is

oo 7
g= 1+ 2(2_] + l)e—(thJ(JH).fkT] [1 + 22 e-{hc(l-észfk:r)]
J=1 K=l

To evaluate this sum explicitly, we set up the following columns in a spreadsheet (values for 4 =
5.28 cmi, B=0.307 e, and T'=298.15 K)

J JI+ 1D 27+ 1 g-hoB 1T Jterm g lhe(d-B)K T} Ksum Jsum
0 0 1 1 1 1 1 1

1 2 3 0.997 8.832 0.976 2.953 9.832

2 6 5 0.991 23.64 0.908 4.770 33.47

3 12 7 0.982 43,88 0.808 6.381 77.35
82 6806 165 4.18 %107 ¢.079 8 x 1071 11.442 7498.95

83 6972 167 3.27x 107 0.062 2x 107 11.442 7499.01
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The column labelled X sum is the term in large parentheses, which includes the inner summation.
The J sum converges (to four significant figures) only at about J = 80; the K sum converges much
more quickly, but the sum fails to take into account nuclear statistics, so it must be divided by the

symmetry number (o = 3), At 298 K, g® =|2.50 x 10?|. A similar computation at 7= 500 K yields

(b) The rotational partition function of a non-linear molecule is

R_l E 32 x /2
=5\ | | FBC

After substituting the values of the constants this becomes [with B = C}

L0270 (TR 1.0270 (TIK)*?
¢ (ABCkm™)* 3 (5.28 x0.307 x 0.307)"2

qR

= 0.485 x (T/K)*

At298 K, ¢=0485x298%2=12.50 % 1{¥

[2.50 x10]
AtS00K, g =0.485x 500%2=

The high-temperature approximation is certainly valid here.

E16.10{b) The rotational partition function of a non-linear molecule at high temperatures is (see the solution
to E16.9(b) above)
10270 (T/K) 1.0270 x (T/K)*?2

== = =1.549 x (T7K)*?
o (ABClm™)?  (3.1752 x 0.3951 x 0.3505)"2 X (T/K)

(a) At25°C, gR=1.549 x (298)¥2=
(b) At100°C, gR =1.549 x (373)"2=1.12 x 10*

E16.11{b) The equipartition theorem would predict a contribution to molar heat capacity of %R for every
translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas,
C,m=R+Cp,,. So, for CO,

P

R

with vibrations Cy,/R=3(3)+2(3)+(3x3-6)=55 and y= % =|1.18

3.

75 =140 w

(%]

without vibrations C /R = 3(%) + 2(%) =25 and y=

37.11J mol- K !
imental y= =[1.29
CRPCTIMENA, ¥ = (37.11-8.3145) T mol 'K [129]

|
|
|
The experimental result is closer to that obtained by neglecting vibrations, but not so close that |
vibrations can be neglected entirely. |

|

|

E16.12(b) The molar entropy of a collection of oscillators is given by

- Um — Um (0) NA (E)

S, T+ k@ [16.1]= 57 + Ring |
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where (ey=—<" O C[16.28], ¢ = L S P RTY

eﬂkcﬁ _ 1 ef.’VIT - 1- e—ﬁkc\? 1- e—ﬁv.'T

and 8y is the vibrational temperature kcv/k. Thus,

5 _ RGIT)

m eEVIT -1

— Rln(l — e ¥¥T)
A plot of S,,/R versus T/8y is shown in Figure 16.1.

3.5

[T

T

o JTITT

Tioy

Figure 16.1

The vibrational entropy of ethyne is the sum of contributions of this form from each of its seven
normal modes. The table below shows results from a spreadsheet programmed to compute S, /R at

a given temperature for the normal-mode wavenumbers of ethyne.

T=298K Tr=300K
vlem™ 6/K oy So/R Tigy Su/R
612 880 0.336 0.216 0.568 0.554
729 1049 0.284 0.138 0.479 0.425
1974 2839 0.105 0.000766 0.176 0.0229
3287 4728 0.0630 0.00000217 0.106 0.000818
3374 4853 0.0614 0.00000146 0.103 0.000652

The total vibrational entropy is obtained by summing the last column (twice for the first two entries,

since they represent doubly degenerate modes).

(a) At298K,S, =0.708R=|588Jmol K"

(b) At500K, S, =1.982R =[16.48 ] mol- K|

The contributions of rotational and vibrational modes of motion to the molar Gibbs energy depend

on the molecular partition functions

G, ~ G.(0y=—RTIn ¢[16.9; also see Comment to Exercise 16.8{a)]
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The rotational partition function of a non-linear molecule is given by

. I(kT]m[ x }”z 1.0270( (TVK)? JM
q = =

T o\ ke ABC o Liﬁéfcrn‘5

and the vibrational partition function for each vibrational mode is given by

: "
4= 1o Where 6y = "kﬂ =1.4388 K x (¥/em™)

10270 ( 298

172
At298K g = =3.35x10°
2 (3.553) % (0.4452) x (0.3948)

and Gh- GL(0)=—(8.3145) mol-'K-") x (298 K)In3.35 x 10

=-20.1x10*J mol={-20.1kJ mol™!

The vibrational partition functions are so stall that we are better off taking
Ing¥=—In{l— e %7} = e 8v7T
]_nq?f = 37(1,4388(1110]{298} = 470 x 10—3
lnq)f = g 114388705298} — 3 32 % 1 ()72
lnq‘{ - e-{l.4388(1042)¢‘298) = 653 X 104

50 Gy Gu(0)=—(8.3145 F mol7 K1) x (298 K) x (4.70 x 103+ 3.32 x 102+ 6.53 x 10°%)

=-110 Jmol=[-0.110 kJ mol™

1 for Z states

= 7P wh =(25+1
7 ggjc where g = ( )X{2f0r1'[,A,...states

377

The 3% term is triply degenerate (from spin), and the 'A term is doubly (orbitally) degenerate.

Hence,
g=3+2"
(a) AtS00K

_ (1.4388 cm K) x (7918.1 cm™)

=2278
500K

Be

(b) At900K

_ (14388 cm K) x (7918.1 cm™")

=12.66
900 K

Be

na [f3000
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See the solution to Exercise 16.14(b). g =3 + 2e*

N(dg) 2Nee*
U-U0)=-—| 2| =
© q [8,81, 34 2efe

(el _ 9_({ _ 6R(epyeP
@ (BT JV_ kﬁz( o jf Gracoy

Therefore, since at 400 K e =28.48,

(6) % (28.48)% x (e-2848) -
CymfR = e =[2.32 x 1010

COMMENT. The electronic contribution is negligible at this temperature.

See the solution to Exercise 16.14(b). At400 K

(14388 cm K) x (7918.1cm™)
- 400 K

=28.48

Be

Therefore, the contribution to G, is

G,,— G.(0)==RT In g [16.9, also see the Comment to Exercise 16.8(a)]
—RT Ing = —(8.314 T K-'mol™) x (400 K) x In(3 + 2 x 724}

= —(8.314 J K~ mol) x (400 K) x (In3) = |-3.65 kJ mol"*

COMMENT. The contribution of the excited state is negligible at this temperature.

The degeneracy of a species with § = 3 is 6. The electronic contribution to molar entropy is

_Uw-Un(0)
T

(The term involving the internal energy is proportional to a temperature derivative of the partition
function, which in turn depends on excited-state contributions to the partition function; those con-
tributions are negligible.)

S =(8.3145 J mol" K~)In6 ={14.9 J mol- K~'

S, + Rlng = Rlng

The Mayer f~function is f = e ~ 1. For the Lennard-Jones type [Section 17.6] of intermolecular
6 12
potential of this exercise, namely E, = —-e[d—ﬁ - GT], we have:
ooy

0 E=e f=-1 r<c E>0 f<0

c E=0 f=0 r>c E<0 f>0
o E,=0 f=0

¥

r

r

The general shape of the ffunction as a function of r can be visualized from these relationships.
The potential energy is at a minimum at r = 2" [Section 17.6] and f reaches its maximum at that
value of r. In order to plot the ffunction against r, we define x =r/o and then we write
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Let us assume that £ = — = kT or some multiple of k7" Define b= f¢. Then,

|-

f(x.b)y= eb{-‘%-r%]_l

Now, we can plot f{x,b) against x for various values of b. See Figure 16.2, in which f (x,) is plotted
forb=1,2,and 3.

2 T T

Figure 16.2

E16.19{b) Use S, = RIn s[16.50b]

Draw up the following table:

7 0 1 2 3 4 5 6
0 m r a b ¢ 0 m r
§ 1 6 6 6 3 6 6 2 6 6 3 6 1

SR 0 1.8 1.8 1.8 1.1 1.8 1.8 07 1.8 1.8 L1 1.8 ¢

where ais the 1, 2, 3 isomer, bis the 1, 2, 4 isomer, and ¢ is the 1, 3, 5 isomer.
i
'E16.20(b) We need Lo calculate

vy o .
K= H Le:m X e*ArEoJ'RT [1 652b] — Qm(mBrz)Qm(mBrz) e-ArEDfRT
1\ Ny q;(?QBrslBr)z
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Each of these partition functions is a product
qm=Adma"q"q"
with all gB=1.
The ratio of the translational partition functions is virtually 1 (because the masses nearly cancel;
explicit calculation gives 0.999). The same is true of the vibrational partition functions. Although

the moments of inertia cancel in the rotational partition functions, the two homonuclear species
eachhaveo =2, 50

R¢78 R 81
q (Rlirz)qm( B;Q):o.zs
g Br®'Br)

The value of A E, is also very small compared with RT, so

-z

Solutions to problems
Solutions to numerical problems

P16.2 Ae=¢g=guyB,[14.39]
g=1+e?*

2a—x '
Cy/R= _XE [Problem 16.1], x =2uyB,8 [£=2 for electrons]
’ (1+e>)
Therefore, if B,=5.0T,
_()x02714x10*ITHYx(50T) 672
- (1381 x 10-BTK )y xT T T/IK

(a) T=50K, x=0134, C, =447 x 10°R, implying that C,, = 3.7 x 1072 J K-* mol"". Since
the equipartition value is about 3R [v = 3, v} = 0], the field brings about a change of about

(b) T=298K,x=226x1072 C,=13x10"*R, implying that C,,= 1.1 mJ K-! mol™', a change of
about |4 x 107%

Question. What percentage change would a magnetic field of 1 kT cause?
P16.4 g=1+5c% [g,=27+1]
e=FE(J=2)— E(J=0)=6hcB [E=hcBJJ+1)]
U - U(0) __lgg_ Seg

N gof 1+5%e*
AU,
= —jf3? = 16.31
CV,rn JB ( aﬁ }V [ a]
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5e2B%ef  180(hcBp)e st

Crn/R= (1 + Se~pe)2 = L+ Seerhry

E%Bz =14388cm K x60.864cm™ =87.571 K
Hence,

Cy/R 1.380 x 106 g-52s4K/7

= (1 + 5e-334KIT 2 5 (T/K)?

We draw up the following table:

TIK 50 100 150 200 250 300 350 400 450 500
Cyn/R 0.02 0.68 1.40 1.35 1.04 0.76 0.56 0.42 0.32 0.26

These points are plotted in Figure 16.3.

CV,m / R

T/K.
Figure 16.3

ai kT Ao h
N, poA? T (2amkT)?

P16.6

After substituting values for the constants we obtain

TO
% =2.561x 102 x (T/K Y2 x (M /g mol)
A

= (2.561 x 102) x (298)5"2 x (28.02)3 = 5.823 x 10

kT T heh
R - = —— = —
1 chcB  ofy O k

After substitating values for the constants we obtain

R

_0.6950  T/K _ 0.6950 298

X — = x
o (Blem”) 2 19987

|
|
|
|
0 100 200 300 400 500
=51.81
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1
v _
9= 1— e vT

_hev 6626 x107% )5 x 2.998 x 10 cm 57! % 2358 om ™!
where Bv="= [381x 102 K~ =R

1

V. —
o ¢°= | — e-3392K/298K 1.00

Therefore,

e-4

Ji—m =(5.823 x 105) x (51.8T) x (1.00) = 3.02 x 108

A
U,—Unh(0)=3RT + RT =3RT [T 81,6]
Hence,

o _Un—U,0) Im
sg="2n" a0, plind= 4
T (DNA

=R+ R{in3.02 x10* + 1} =23.03R =|191.4J K ' mol "

The difference between the experimental and calculated values is negligible, indicating that the
residual entropy is negligible.
The vibrational temperature is defined by
kev = hcﬁ,
s0 a vibration with 8y less than 1000 K has a wavenumber less than

Ky (1.381x 10727 K1) x (1000 K)

- = 695.2 cm!
he (6626 x 10 T 5) x (2.998 x 100 cm 51 om

¥ =

There are seven such wavenumbers listed among those for Cg: two Ty, a T3, 2 G,, and three H,.
The number of modes involved, v¥, must take into account the degeneracy of these vibrational
energies:

vE =2(3) + 1(3) + 1(4) + X(5) =
The molar heat capacity of a molecule is roughly

Cym = +(3+vE+2VHR[1.35]=1(3+ 3+ 2 x 28)R = 31R = 31 (8.3145 J mol " K)
21258 ] mol" K.

The second virial coefficient is given by B=-27rNAf fridr[16.42], where f is the Mayer
Jf-function: o

F=eT —1[1642]
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6 12
The intermolecular potential given in this problem, namely £, = —« [0—6 - EEJ is a Lennard-Jones
rroor
type [Section 17.6, eqn 17.33] of intermolecular potential. Note, however, that £in E, as given in the
preblem is four times the value of £ of eqn 17.33 and is four times the values found in Table 17.4.
& in E, can be identified with 7, in eqn 17.33 and Table 17.4. In order to be consistent with the

standard form of the Lennard-Jones potential we prefer to add the factor of 4. Then,
4efaf o2
e
Let us first solve for Bin terms of dimensionless variables. We define the reduced variables z = I and
ag

kT .. . B )
= —— and the reduced second virial coefficient » = ————. These transformations to reduced

£ 2335NA03
variables, which are used in the following MathCad calculation of the reduced second virial

coefficient, are consistent with the definitions in Hirschfelder, Curtis, and Bird, Molecular Theory
of Gases and Liguids, the standard reference on second virial coefficients. With these transforma-
tions eqn 16.42 becomes

2(z8-z712y
fitz)=e .t -1 bt)=- [ﬁ(t,z}-z%z
. [

The reduced second virial coefficient is plotted against the reduced temperature in Figure 16.4(a).
The values in this plot are consistent with the calculated classical curve in Figure 3.6-1 on page 164
of Hirschfelder et al. The plot shows the dependence of the second virial coefficient on temperature
and the transformation shows that B is proportional to ¢°.

0]

-2 ]

Figure 16.4(a)

We may also determine B itself for a particular gas and this is done in the following MathCad calcu-
lation for Argon. Lennard-Jones parameters are from Table 17.4.
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0:=3.623-10"0-m  k:=1.38065-10-J K"
Ci=1,2.40 . T=0104K £i=dk-111.84°K NJ:=6.02214-10%- mol”

o

e[{?] Sy

- "B mnN, g{ 232
R C. . o [N ‘o :
L
. L 0;
* m*mol™! )
110

f

100

TS Teoom Ty e T T T
Figwel64(h) . . . . . o« o e omos s e ow s e e a s s

Comparison of the values of B for argon in this plot with the data in Table 1.4 show a very close
match. For example, the calculated value at 100 K is —1.848 m? mol™ and the expertmental value is
—1.87 m* mol™.

H,O + DCl = HDO + HCl

_ ¢"(HDO)¢* (HC])
¢° (H,0)¢” (DCI)

e #E [16.52; with A, F, here defined as the molecular, not molar,
energy difference; N, factors cancel]

Use partition function expressions from the checklist of key equations, Chapters 15 and 16. The
ratio of translational partition functions is

gTL(HDO)L(HC) _ ( MHDOMHC) )" (1902 x 36.46 ’”*1 04l
gE(H,0)gL(DCH ~ | M(H,0)M(DCI) 18.02%x3746)

The ratio of rotational partition functions is
g*(HDO)R(HC) _ o(H,0) (A(ILO)BH,0)C(H,0)/em )2 B(DCl)/cm!
gR(H,0)q*(DCly 1 (AHDO)BHDO)C(HDO)/cm=)"2 B(HCl)/cm!
gy (2788 X14.51x9.20)" x 5.449
T 77 (23.38 % 9.102 x 6.417)"2 % 10.59

=1.707

(o =2 for H,O; o = 1 for the other molecules).
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The ratio of vibrational partition functions (call it Q) is

g (HDO)gY(HCl)  9(2726.7)9(1402.2)(3707.5)¢(2991) _

2 (F,0)g"(DCY)  9(3656.7)9(1594 8)g(3755.8)g(2145) _ <
1
where  g(x)= 1 — -1 4388xAT/IK}
A—;;‘?O_ = 1(2726.7 + 1402.2 + 3707.5 + 2991) — (3656.7 + 1594.8 + 3755.8 + 2145)} o™
¢

=-162 cm™!
So, the exponent in the energy term is

Ao Ak ke AE, 1 14388x(162) 233

kT kT ohe T T/K TIK

Therefore, K=1.041 x 1.707 x @ x e¥¥7K =1 777QeB¥TE

We then draw up the following table (using a computer):

TK 100 200 300 400 500 600 700 800 900 1000
K 18.3 5.70 3.87 3.19 2.85 2.65 2.51 241 2.34 2.29

and specifically X = at (a) 298 K and at (b) 800 K.

Solutions to theoretical problems

(a) 6, and 6, are the constant factors in the numerators of the negative exponents in the sums that
are the partition functions for vibration and rotation. They have the dimensions of temperature,
which occurs in the denominator of the exponents. So high temperature means 7" 8y, or 6 and only
then does the exponential become substantial. Thus, 8, and 8 are measures of the temperature at
which higher vibrational and rotational states, respectively, become significantly populated.

& 10 ~1 -34 -1
8R=@$(2.998x10 em s ) X (6.626 X 10T s ) x (60864 cm) _ oo

k (1381102 K)
hev (6626 x 10" 5) x (4400.39 cm™') x (2.998 X 10° cms™)
and 6= (381X 107 T K) =[6330K

(b)and (c) These parts of the solution were performed with Mathcad and are reproduced on the
following pages.

Objective: To caleulate the equilibrium constant K(T") and C,(T') for dihydrogen at high temperature
for a system made with » mol H, at 1 bar.

H.(g) = 2 H(g)

At equilibrium, the degree of dissociation, a, and the equilibrium amounts of H, and atomic hydro-
gen are related by the expressions

ny,=(1-a)n and ny=2an
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The equilibrium mole fractions are
xy, = (- o/l — on + 2an} = (1 - a)/(1+ &)
xy = 2enf{(1 — a)n + 2an} =2al(l + &)
The partial pressures are
P,=0-a@)p/(l1+a) and py=2op/(l+a)
The equilibrium constant is

(pulp”Y = dg? (pir™) _ 4a?
(pw, IP°) (I-e?) (1-a?)

The above equation is easily solved for &

K(T) =

, where p= p® =1bar

o = (K/(K + 4)2]

The heat capacity at constant volume for the equilibrium mixture is
Cy (mixture) = ny ., (H) + 1y, Gy (H)

The heat capacity at constant volume per mole of dihydrogen used to prepare the equilibrium
mixture is

Cy = Cp(mixture)/n = {nyCy,, (H) + 1y, Gy (H, )30
=[20Cy 0 (H) + (1 - @)Cpn(Hy)|

The formula for the heat capacity at constant pressure per mole of dihydrogen used to prepare the
equilibrium mixture (C,) can be deduced from the molar relationship

Cn=CimntR
Cp = {nHCp,m(H) + nHZCp,m(HI)}fn

= ”‘f{cy,m(H) + R} + i‘fﬁ—{c,,,m(Hz) + R}

- 1gCom () + 1y, Gy (H,) " R(”H + ”HQJ

n n
=Cy+ R+ )
Calculations
J=joule s = second kI=10007J
mol =mole g=gram bar=1x10°Pa
h=6.62608 x 10731J g c=29979x 108 m s k=1.38066 x 102 JK!

R=28.31451J K- mol™! N,=6.02214x 102 mol”t  p*=1bar
Molecular properties of H,
#=4400.39 cm™ B=060.864cm™ D=432.1kJ mol

_lgmol™

my N, my, = 2my
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hev heB
Y R

Computation of K(T) and a(T)

N=200 i=0,. N T, =500K+ 250K

h h

A= Ay = 0
M Qumgk Ty T (2amy KT

! :
qvi= W’ gri = 59:

KI(Aggy)' & 27 Ko )
eqi = = = P o= =
P qvidri(Ay;)

See Figures 16.5(2) and (b).

{(a) 1 T T T T T

g05 F ]

0 1000 2000 3000 4000 5000 6000
Ti/K

(b) 100 T T T T T

80 r

KC‘I.‘

2

T/K
Figure 16.5(a) & (b)

Heat capacity at constant volume per mole of dihydrogen used to prepare the equilibrium mixture
is (see Figure 16.6(a))

1] i} 1 5
| 0 1000 2000 3000 4000 3000 6000
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27

26 T

25 F

24 F

23

Cp, /{IK ' mol™")

22 r

21 F

20 1 1 ] 1 i
0 1000 2000 3000 4000 5000 6000

T,/K Figure 16.6(a)

Cy(H) =
6, eteviah

2
C,(H,)=|2.5R + [—— X ——} R| C,=2a,C,(H)+(1-a)C,(H,)
' T, 1—etT ' '

i

The heat capacity at constant pressure per mole of dihydrogen used to prepare the equilibrium
mixture is (see Figure 16.6(b))

C,=Cy+ R(1+ ;)

42

40

38 r

36 F

C,, /UK mol™)

34 |

32 r

30

28 1 1 1 i i
0 1000 2000 3000 4000 5000 6000

Ti/K

Figure 16.6(h)



P16.16

STATISTICAL THERMODYNAMICS 2: APPLICATIONS 389

The coniribution to the heat capacity from this system of states is

LY _(su
= kﬂz[aﬁJ [l6.31a]-[aTJV

dlng og NkT?( dg
h - =-N| —21| =- = X
where U/—U(0) N( 35 ]V (aﬁJ [15.24a] = p (BT]V

‘We need to evaluate g for the energy levels of the Morse potential given by eqn 12.38:
E,= (v + 3)he? — (v + 1) hevx, [12.38]
Relative to E, = 0 the energy expression can be written as E, = vhcv[] — (v + 1)x.].

Let Acv =u, Then, E, = w1 — (v + 1)x.]. The partition function becomes

Hrmax
g=Y efh = Ee—s(uun ]} = 2 - Twll-(wel)x AT
=0 =0
V.., i5 the maximum value of v for the Morse oscillator before dissociation occurs. It can be
2D,

calculated from v, =

Since specific values of x,, 7, and D, are required to solve this problem we will choose the case of
HCl(g). Values of D,, ¥, and x, may be obtained from Table 12.2 and Problem 12.12. The value of

x, can also be calculated from x, = D [12.38]. The heat capacity is calculated in the following

[

MathCad worksheet and Figure 16.7.
in this problem we will compare the heat capacity at constant volume of a Morse oscillator with the heat
capacity of a harmonic oscillator for the case that is characterized by the following parameters for HCI:
Depth of potential minimum: D, =43.0-10%-cm?
Fundamental frequency: ¥ :=2989.7 cn!
Anharmonicity constant: X, =0.01736
Maximum quantum number of hammonic oscillator: Vi, =29

Maximum quantum number of Morse oscillator: Voo = 28
Constants: - h:=8.6260693-10°%-jouls-sec ¢:= 299792458% -

N, = 6.0221415-10%- mole K :=1.3808505 - 102, 124

Energy levels: G(v,x) =[{v+.5)-v,— v+ BP-x-v]-h-C &0) =G{0.X)
Energy levels relative to zero for the lowest energy: '
GuiX=CEN-s) T

Molecular pamtlon function

:-'@m(“'xl

q(T,x,vm); Ee wT
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Meanenew[‘l&%]

BRI T fais N
""" o 5““‘“”""’"‘“‘)“ q(T.mvw)( qn:”‘?"’"*"f"J

T ::,5 -K,‘gs ‘ K¢.2000‘ K
B e (. DUEIT SR SO
o _if;‘;‘.Q\((T;Ka;‘{m)‘_’i",ﬁ”“‘;E'a'fﬁ‘“?“."cr’){"”vmg}’;' B
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JEK ol

e LS00 . 1000 1500 2000

Note the slight difference between the vibrational heat capacities of the harmonic-oscillator
approximation and the Morse-oscillator approximation. Also note that for HCI(g) at room tem-
perature the vibrational energy levels make essentially no contribution to the overall heat capacity
of 29.12 T K-' mol™. This is a result of the large spacing between the HCl energy levels.

P16.18 (2) Ethene belongs to the Dy, point group, whose rotational subgroup includes E and three C,
elements around different axes, so o =4. The rotational partition function of a non-linear molecule is

e  L(kTY*( 2 V"
q —
he ) \dBC

After substituting for the constants this becomes

qR= 1.0270 (T/K)B.Q _ 1.0270 x 268152 =1660.6
o (ABClem=)? ~ (4)x (4.828 x 1.0012 x 0.8282)2

(b) Pyridine belongs to the C,, group, the same as water, so = 2.

10270  (T/K)*? 1.0270 x 298.15%2
= e = =[426 % 10°
7 o (ABCIem™)?  (2)x(0.2014 x 0.1936 x 0.0987)2




P16.20

STATISTICAL THERMODYNAMICS 2: APPLICATIONS 391

The partition function of a system with energy levels &(J) and degeneracies g(J) is

q=2 g(J)e
J
The contribution of the heat capacity from this system of states is

¢, = —kﬁZ[%gJ [16.31a]

dlng _Nlodg
where U-—- U(O)——N( aﬁ] {aﬁl

Express these quantities in terms of sums over energy levels

v- U(OJ——;( > e(e(D)e” W))
=5 e #
q

and

(o ol/
—kg? = o

J JZ( -z )sz(J)e—th _ ~Z g(Ne(J)e e ( a; ) a

- —gzgu)szu)e-w + %zgu)eu)e-wz g Ne(T)e P

Finally, a double sum appears, one that has some resemblance to the terms in £( 8). The fact that £{ )
is a double sum encourages us 1o try to express the single sum in C, as a double sum. We can do so

3 g/ e
by multiplying it by one in the form £ —_so
q
Gy N z —Beld) ne-tetr) 4 ¥ —BelJ) el T )e-Bel)
= LB RO g+ S el S g e e

Now, collect terms within each double sum and divide both sides by —N:

G
kNB?

= iz S g()g(J e e Aetinesn — Ll 3 &g )e(T)e(J ye e =]
q° ;.r q° i

Clearly the two sums could be combined, but it pays to make one observation before doing so. The
first sum contains a term £(J), but all the other factors in that sum are related to J and J' in the
same way. Thus, the first sum would not be changed by writing £%(7") instead of £%(J); furthermore,
if we add the sum with £(J") to the sum with £%(J}, we would have twice the original sum, therefore
we can write (finally combining the sums):

CV = —Ble{J yreld ?
NG 3 2 g(N)g(J e AN e2(J) + €2(J) - 2e(J)e(J)]
Recognizing that e2(J) + £3(J") — 2e(S)e(J ") = [e(J) — e(J")]?, we arrive at
2
¢ =)
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For a linear rotor, the degeneracies are g(J) = 2J + 1. The energies are
eJ)=hcBI(T+ D=0 k(T +1)
s0  Be(J)=6J(J+ DT

The total heat capacity and the contributions of several transitions are plotted in Figure 16.3,
One can evaluate C,,./R using the following expression, derivable from eqn (1) above. It has the
advantage of using single sums rather than double sums,

CV,m

e R ULEIGR qi(z g(J)BS(J)E""‘”J

1.2

/\\_k Total

Cun/R
b ¢
(=
P |

AL

1,2 R
P 103
/ // — |
0 —_—
0 1 2 3 4 3
Temperature, T/0p
Figure 16.8

COMMENT. 7(3) is defined in such a way that J and J* sach run independently from O to infinity. Thus, identi-
cal terms appear twice. (For example, both (0,1) and (1,0) terms appear with identical values in £(5). In the
plot, however, the (0,1) curve represents both terms.) One could redefine the double sum with an inner sum
over J’ running from 0 to J — 1 and an outer sum over J running from O to infinity. In that case, each term
appears only ance, and the overall factor of% in C, would have tc be removed.

Eqn 16.42 relates the second virial coefficient fo the pairwise intermolecular potential energy:
B= —2nNAJ fAdr, where [ =g ffe—]
Q

In order to relate the pairwise potential to the van der Waals equation, we must express that equa-
tion as a virial series. The equations are

van der Waals p= RT —i; virial p:£[1+V£+~-J

Vo—b V% V.
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Expand the van der Waals equation as a power series in 1/V

RT a RT b a RT 1 a
p=————————— —=— | I+ —+ - |- =l | b - —
V.(-5b/Vy) Vi VWV Va Vi V. Ve RT

Thus, the second virial coefficient in terms of van der Waals parameters is

B=bh--L
RT

The pairwise potential and Mayer f~function are:

forO<r<r, Fp-ow efr=(} f=-1
forrsr<r, E,——¢ efr=¢hk f=ef-1>0

forr,sr E,—»0 e¥#rz] f=0
B “ n f2 rs p
So, = fidr=—| rdr+(ef-1)| rdr=——+(*-1)| =~
2N, 0 o . 3 3 3

Expand the exponential because e < kT, 50 fe < 1

8 o 2zN, g(ri-ri)
B=2aNi——+(1+pe-D| -2 |I= Alp 2 1
8 *‘{ 3 e e )[3 3}} 3 {r‘ kT }

Comparing this result to the virial coefficient from the van der Waals equation, we identify

AN _ 2N, (ri—1r})

3

b and
where ¢, 1s £ expressed as a molar quantity. Thus, the van der Waals b is proportional to the volume
of the hard-sphere (repulsive) part of the potential. The a parameter is more complicated, but it is
where the attractive part of the potential appears, including both the depth of the attractive well
and the range of distances over which it operates.

Use eqn 16.45 to compute the limiting isothermal Joule-Thomson coefficient:

dB
limp,; = B—T—
p—>0‘ur dT
_2aN, .- e(ri=r)} . 27N, [e(ri-})
3 kT 3 | kI
_ 2nN, . 2e(ri—ri) _pe 2a
3 kT RT

The Joule-Thomson coefficient itself is [2.53]

.
,u=—£1=2”NA {ZS(rg—r%)_ 3}____ RT

L8|
G, 3G, kT
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All partition functions other than the electronic partition function of atomic I are unaffected by a
magnetic field, hence the relative change in K is due to the relative change in g5

E_— — g g /BBM —_3 I, 4
gh= e, M= -3 E e
My

Since gupBE < 1 for normally attainable fields, we can expand the exponentials

1
gk = Z{l — guxpBM,; + E(&UBJB'BMJ)Z + }

My

=4+ %(gﬁsﬁfBFEM}[EMJ = 0}

My

: 4[1 s %(usﬁﬁ)zJ [g - ﬂ

This partition function appears squared in the numerator of the equilibrium constant expression.
(See solution to Exercise 16.20(a).) Therefore, if X is the actual equilibrium constant and K°is its
value when 8= 0, we write

2
K 10 20
X (1 + ?(uaﬂﬂ)z) ~1+ —9"1%5252
For a shift of 1%, we require

248> = 0.0, or upBB=0.067
Hence,

0.067kT  (0.067) x (1.381 x 102 F K1) x (1000 K)
3 = = ~[100 T
iy 9274 x 10#J T 10|

Solutions to applications

S=kln W[15.27]

so S=kln4Y= Nklnd
=(53x108) x (1.38 x 102 T K ) x Ind

=[9.57 1057 K|

Question. s this a large residual entropy? The answer depends on what comparison is made. Multi-
ply the answer by Avogadro’s number to obtain the molar residual entropy, 5.76 x 10° J K- mol™,
surely a large number—but then DNA is a macromolecule. The residual entropy per mole of
base pairs may be a more reasonable quantity to compare to molar residual entropies of small
molecules. To obtain that answer, divide the molecule’s entropy by the number of base pairs before
multiplying by N,. The resuitis 11.5 J K~ mol™, a quantity more in ling¢ with examples discussed in
Section 16.7.
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P16.28  The standard molar Gibbs energy is given by

e e I In _ 9m
Go—Ga((=RTIn=", where -—-—=-"-¢Rgg"[16.51
b (O] N, NN, q%q"q" | 1

Translation: (See the solution to Problem 16.6 for all partition functions.)

Te

In_ _ 3561 102(7/K)**(Mlg mol)
A

=(2.561 x 1072) x (2000)"% x (38.90? =1.111 % 10°
Rotation of a linear molecule:

R kT _0.6950x T/IK
cheB~ o Blem™!

q

The rotational constant is

Fi #i

B = =
dgcl  dremg R?

mpmg  (10.81) x (28.09) « 10~ kg mol™!
mg +mg  10.81+28.09  6.022 x 10® mol !

where m = =1296x10*¥kg

- 1.0546 x 10#]J s
B= =10).5952 cm™!
4m(2.998 x 10" cm s7") x (1.296 x 102 kg) x (190.5 x 102 m)? o

0.6950 2000
= —

so g® =2335
1 0.5952
Vibration:
v 1 1 1
q = —heW kT = ~ = =
I-e —1.4388(v/em™) —1.4388(772)
1- exp| ——————— 1-— exp| ——=
T/K 2000

The Boltzmann factor for the lowest-lying electronic excited state is

exp[ —(1.4388) x (8000)

=32x103
2000

The degeneracy of the ground level is 4 (spin degeneracy = 4, orbital degeneracy = 1), and that of
the excited level is also 4 (spin degeneracy = 2, orbital degeneracy = 2), so

g¥=4(1+3.2x10%)=4.013
Putting it all together yields

G- G5(0) = (8.3145 T mol" K-') x (2000 K)
x In[(1.111 x 10°) x (2335} X (2.467) x (4.013)]

=5.13510°J mol'=513.5 kJ mol~!
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P16.30  The standard molar Gibbs energy is given by

I 9w _ 9o
Go —Gal0)= RTIn==, where - ="—gRgVgF[16.51]
Ny Ny Ny

See Problem 16,28 above for partition function expressions. First, at 10.00 K

T®
Translation: qNL =2.561 x 10(TTK)**(M/g mol~')*?
A

=(2.561 x 10-2) x (10.00)*? x (36.033)*>=1752

Rotation of a non-linear molecule:

. l(kT}m( x J”z 10270 (T/K)™
q = — =

—_— = X —===
ol ke ABC o (ABClcm )2

The rotational constants are

3
x i o i} 1
B= , 80 ABC=|-— 5
4rcl dre ) T Iglc

A

o f_1osasx102Ts Y
" 47(2.998 x 10 cm s7™)
« (10° A m)
(39.340) x (39.032) x (0.3082) x (m, A?)* x (1.66054 x 10~ kg u~')
=101.2 cm™

10270 _ (100002 _

~1.614
L

so gR

Vibration: for each mode

! 1 1

q¥= =
1 — e-he¥hkT ~1.4388(v/cm™) —1.4388(63.4)
l-exp| —————— 1—exp| —————
TIK 10.00

Even the lowest-frequency mode has a vibrational partition function of 1, so the stiffer vibrations
have ¢¥ even closer to 1. The degeneracy of the electronic ground state is 1, so %= 1. Putting it all
together yields

G® - G2(0) = (8.3145 T mol” K1) x (10.00 K)In[(1752) x (1.614) x (1) x (1)]

= (660.8 J mol-!
Now, at 1000 K
TS
Translation: qu =(2.561 % 1072) x (1000)72 x (36.033)*? =1.752 x 10*
A
_1.0270 _ (10002 _

Rotation: ¢® X =1614
OHHO: = T T R 012y
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. o 1
Vibration: qy:l—exp( G =11.47

1

: — (L4388) % (i224.5)y 1-207
1 exp( R s

} — (}4388)X(ZW) =1.056
1 exp(_T

g¥=(11.47y % (1.207) x (1.056) = 14.62
Putting it all together yields

G2— G2(0)=(8.3145 ] mol~ K-) x (1000 K) x In[(1.752 x 108) x (1614) x (14.62) x (1)]

=2.415 % 10°J mol~=241.5 kJ mol!




7 Molecular interactions

D17.2

D17.4

Answers to discussion questions

When the applied field changes direction slowly, the permanent dipole moment has time to
reorientate—the whole molecule rotates into a new direction—and follows the field. However,
when the frequency of the field is high, a molecule cannot change direction fast encugh to follow
the change in direction of the applied field and the dipole moment then makes no contribution to
the polarization of the sample. Because a molecule takes about 1 ps to turn through about 1 radian
in a fluid, the loss of this contribution to the polarization occurs when measurements are made
at frequencies greater than about 10! Hz (in the microwave region). We say that the orientation
polarization, the polarization arising from the permanent dipole moments, is lost at such high
frequencies.

The next contribution to the polarization to be lost as the frequency is raised is the distortion polar-
ization, the polarization that arises from the distortion of the positions of the muclei by the applied
field. The molecule is bent and stretched by the applied field, and the molecular dipole moment
changes accordingly. The time taken for a molecule to bend is approximately the inverse of the
molecular vibrational frequency, so the distortion polarization disappears when the frequency of
the radiation is increased through the infrared. The disappearance of polarization occurs in stages:
as shown in Justification 17.3, each successive stage occurs as the incident frequency rises above the
frequency of a particular mode of vibration.

At even higher frequencies, in the visible region, only the electrons are mobile enough to respond to
the rapidly changing direction of the applied field. The polarization that remains is now due entirely
to the distortion of the electron distribution, and the surviving contribution to the molecular polar-
izability is called the electronic polarizability.

@ V-84 17
e rt

V is the potential energy of interaction between a point dipole y, and the point charge Q, at the
separation r. The point charge lies on the axis of the dipole and the separation r is much larger than
the separation of charge within the dipole so that the partial charges of the dipole seem to merge
and cancel to create the so-called peint dipole.

_ Oy cosB
dneyr?

(b) V=
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V is the potential energy of interaction between a point dipole &, and the point charge (3, at the
separation r. The point charge lies at an angle 8 to the axis of the dipole and the separation r is much
larger than the separation of charge within the dipole so that the partial charges of the dipole seem
to merge and cancel. '

@ v=BESO e F0)=1-3cos6[17.22]

dne,rd
V is the potential energy of interaction between the two point dipoles y; and i, at the separation r.
The dipoles are parallel and the separation distance is at angle 6 to the dipoles. The separation r
is much larger than the separation of charge within the dipoles so that the partial charges of the
dipoles seem to merge and cancel.

There are three van der Waals type interactions that depend on distance as 1/r%; they are the Keesom
interaction between rotating permanent dipoles, the permanent-dipole-induced-dipele interaction,
and the induced-dipole-induced-dipole, or London dispersion, interaction. In each case, we can
visualize the distance dependence of the potential energy as arising from the 1/r* dependence of the
field (and hence the magnitude of the induced dipole) and the 1/r* dependence of the potential
energy of interaction of the dipoles (either permanent or induced).

The increase in entropy of a solution when hydrophobic molecules or groups of molecules cluster
together and reduce their structural demands on the solvent (water) is the origin of the hydrophobic
interaction that tends to stabilize clustering of hydrophobic groups in solution. A manifestation of
the hydrophobic interaction is the clustering together of hydrophobic groups in biological macro-
molecules. For example, the side chains of amino acids that are used to form the polypeptide chains
of proteins are hydrophobic, and the hydrophobic interaction is a major contributor to the tertiary
structure of polypeptides. At first thought, this clustering would seem to be a non-spontaneous
process as the clustering of the solute results in a decrease in entropy of the solute. However, the
clustering of the solute results in greater freedom of movement of the solvent molecules and an
accompanying increase in disorder and entropy of the solvent. The total entropy of the system has
increased and the process is spontaneous.

A molecular beam is a narrow stream of molecules with a narrow spread of velocities and, in some
cases, in specific internal states or orientations. Molecular beam studies of non-reactive collisions
are used to explore the details of intermolecular interactions with a view to determining the shape
of the intermolecular potential.

The primary experimental information from a moelecular beam experiment is the fraction of the
molecules in the incident beam that are scattered into a particular direction, The fraction is nor-
mally expressed in terms of d/, the rate at which molecules are scattered into a cone that represents
the area covered by the ‘eye’ of the detector (Figure 17.15 of the text). This rate is reported as the
differential scattering cross-section, o, the constant of proportionality between the value of d/and
the intensity [ of the incident beam, the number density of target molecules, 4/, and the infinitesimal
path length dx through the sample:

dI'= 6Ia(dx [17.35]

The value of ¢ (which has the dimensions of area) depends on the impact parameter, b, the initial
perpendicular separation of the paths of the colliding molecules (text Figure 17.16), and the details
of the intermolecular potential.
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The scattering pattern of real molecules, which are not hard spheres, depends on the details of the
intermolecular potential, including the anisotropy that is present when the molecules are non-
spherical. The scattering also depends on the relative speed of approach of the two particles: a very
fast particle might pass through the interaction region without much deflection, whereas a slower
one on the same path might be temporarily captured and underge considerable deflection (text
Figure 17.18). The variation of the scattering cross-section with the relative speed of approach
therefore gives information about the strength and range of the intermolecular potential.

Another phenomenon that can occur in certain beams is the capturing of one species by another.
The vibrational temperature in supersonic beams is so low that van der Waals molecules may be
formed, which are complexes of the form AB in which A and B are held together by van der Waals
forces or hydrogen bonds. Large numbers of such molecules have been studied spectroscopically,
including ArHCI, (HCl),, ArCO,, and (H,0),. More recently, van der Waals clusters of water
molecules have been pursued as far as (H,0),. The study of their spectroscopic properties gives
detailed information about the intermolecular potentials involved.

Solutions to exercises

A molecule that has a centre of symmetry cannot be polar. 8O,, which has a trigonal planar
structure (Dy,), and XeF,, which is square planar (D,,), cannot be polar. (see-saw, C,,) may be

polar.

b = (uf + p3 + 2, cos8)2 [17.2a]
=[(2.5) + (0.50)> + (2) x (2.5) x (0.50) x {cos120°)]"* D =

p=3 Or=14e(0) - 2er,— 2er;, where r,=ix, and r;=ix;+jy,
Xy = -;-162 pm
X3= 1,00530° = (+143 pm) x (0.866) = 124 pm
3= ry5in30° = (143 pm) x (0.500) = 71.5 pm

The components of the vector sum are the sums of the components.
1= —2ex, — 2ex, = —2e x {(162) + (124)} pm = —e x (572 nm)
tt,=—2ey; = —2e x (71.5 pm)=—e x (143 pm)

p=(ui+p3)" [17.30]
= e x {(57Z pm)? + (143 pm)?}*2= (1.602 x 10 C) x (590 x 1072 m)

=(9.4§><10‘29Cm)x{ 1D J:

3.33564 x 10-*Cm

The angle that ¢ makes with the x-axis is given by

| 572 572 =
f= = 6 =cos™| —= |=[142°
cost= 152 o 9= cos (590 {53
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The H-Cl bond length of a hydrogen chloride molecule is 127.45 pm and the Mg cation is 300 pm
from the dipole centre. Because these lengths are comparable, a calculation based on the assump-
tion that the hydrogen chloride dipole acts like a point dipole with a dipole length much shorter
than the dipole—ion distance is unlikely to provide an accurate value of the dipole—ion interaction
energy. However, such a calculation does provide an ‘order-of-magnitude’ estimate. The minimum
value of the dipole-ion interaction occurs with the dipole pointing toward the cation.

v~ Hnalugr g e 2Hna®
Ame,r? dngyr?
2 % (1.08 D) X (3.336 x 10-* C m D) x (1.602 x 10~ C)
o (1113 X 10-°J7 C2 m-1) x (300 x 102 m)?
~_115% 1077

The interaction potential becomes a maximum on flipping the dipole. This effectively changes the
sign of the dipole in the previous calculation, giving

Vo~ 115 x 10717 ]
The work w required to flip the dipole is the difference V., — Vo
W Vo= Van =230 x 10718 ]

Wa= W Ny~ [1.39  10°kJ mol|

The induced dipole moment of NH, is

M, = E[17.4] = drggong, E[17.5]
= 47 % (8.854 x 1072 JC2m) X (2.22 x 1020 m?) x (15.0 x 10}V m) [1J =1C V]

=(3.71x10%C m)x( 1D ]

333564 x 10°C m
=[1.00pD

Thus, we see that the induced dipole is much smaller than the permanent dipole moment of NH,
(147 D).

Polarizability &, dipole moment y, and molar polarization P, are related by

N it
p=|2a 17.15
m (3so)x[a+3krj[ ]

In order to solve for a, it is first necessary to obtain g from the temperature variation of P_:

lu'2 — 3£0Pm

+_
*T3%T TN,

Therefore,| 2o x| L L 1_[ 28} (o _pr) (Bt T, PLatT]
| 3k T T') |N, " mEeom
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and hence,

_ Sk x{P,— P})

11
Nox|=-=
(77

9% (8.854x1012J1C2 m ") x (1381 x 102 K1) X (75.74 — 71.43) x 10-*m* mo}~

2

1 1
6.022 x 10 mol-} x -
( mel™) {320.0 K 4217 K]

=1.043 x 10 C?m?

1D
=323x107°C =[0.968D
=S mx[3.33564x]03”Cm]

3P, g2 3x(8.854x1072J1C2m) x (75,74 x 10~ m* mol-)
TN,  3%T 6.022 x 10® mol-!
1.043 x 10 C2m?
T 3x(1381x102J K) x (320.0 K)

=256 x 102 - C2 m? |
Corresponding to e’ = 2 [17.5]=]2.29 x 10-% m?
dme,

E17.7(b) M =185.0 gmol!

2
1= (s +2)[17.14
£ i, (£,+2)] ]
|_ PP, ., 20B
M M

.= M +2pP, 85.0gmol"+2x(1.92gcm ™) x(32.16 cm*mol™') 297
T M-pP,  85.0gmol—(1.92 gcm>)x(32.16 cm® mol) -

E1780)  n=(e)?[17.17) and St- PN
£,

= 17.16
+2  3Mg, [ ]

T

Therefore,

o = 3Meo (m=1)_ 3x(655gmol")x(8.854 x102J'C?m™) (162221
T opN, nt+2) (299x105g mT) x (6.022 x 102 mol™') 1.622%+ 2

=|3.40 x 1031 C2m?|

o

E17.9(b) o' = —[175]

(1]

o =Ame,e’ = (1.11265 x 10710 J C2 m') x (2.2 x 1079 m?) = 2.45 x 10~ J! C? m?
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Let

_ pNae _ (865 x 10°g m™) x (6.022 x 10% mol!) x (245 x 10-°J-'C? m?)

= = 0.0665
3Me, 3x(72.3gmol™) x (8.85419 x 10~ J-'C?*m™")

and solve the Clausius—Mossotti eqn [17.16] for £, with which we calculate the refractive index.

g—1

= (C [17.16, the Clausius—Mossotti eqn]
E+2

8_1+2C_1+2><(0.066§)
T 1I-C  1-0.0665

=€ [17.17] = (1.2137)2 =

E17.10(b) #=15.17x 10-* C m for bromobenzene (157.00 g mol™'}

=1.2137

a=dnee’ [17.5]=(1.11265 x 10931 C2 m™) x (1.5 x 10Pm?) = 1.67 x 10-* J-1 C? 0’

2 022 X 107 mol-!
NA[a+—-” J[]‘f’.lS]z 6.022 x 107 mol

P =2
™ 3, 3T 3% (8.85419 x 10-2J7C2 m™)

(5.17 x 10 C m)? ]

1.67 x 109 C2 m?
x(( * M)t (13807 x 107 ) K) x (298,15 K)

=8.69 x 10~ m3 mol~

Let

_ PP (1L491x10°gm~) x (8.69 x 10~ m® mol ™)

=0.825
M 157.00 g mol! 825

c

and solve the Debye eqn [17.14] for ¢,.

Ll C[17.14, the Debye eqn]
g+2

1+2C  1+2%(0.82%)
= = — = 15
&=T1-C 1-0.825

3ot Lac)? Hon ) das
E17.11(b) VLondon =—m[1725]= —T
_3x(1.66 x10® m*P x (1520.4 kJ mol™)

4% (1.0 x 10° m)$

By mor]

E17.12(b} Using the partial charge presented in Table 17.2, we estimate the partial charge on each hydrogen
atom of a water molecule to be Oy = &¢ where 8 = 0.42. The electroneutrality of an H,0 molecule
implies that the estimated partial charge on the oxygen atom is Q= -28¢. With a hydrogen bond
length of 170 pm, the point charge model of the hydrogen bond in a continuum of water estimates
the potential of interaction to be
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yo@nlo by
4qer dme £,
2(0.42 x 1.60 x [0*C)?

= =—6.0x102]
4n(80) x (8.85 x 102 ]-'C2m™) x (170 x 102 m)

[17.12b]

The molar energy required to break these bonds is

E = —N.V =—(6.022 x 10® mol™) x (=6.0 x 102" T} =|3.6 kJ mol~!

The model of point charges embedded within a continuum of water yields an estimate of the hydro-
gen bond strength that is well below the experimental value of about 20 kJ mol™. The excessively
low estimate has been caused by the assumption that water around the point charges behaves as a
continuum of matter, This significantly overestimates the ability of the surrounding water mole-
cules to modulate the point-charge interaction.

M 18.02 g mol™

—=——="—=1813cm’
P 0.9940gcm> o

p = pre?nWrRT [17 51 the Kelvin eqn]

2% (72.75 % 10-* N m~') x (18.13 x 10-* m* mol™)
(20.0 x 10 m) x (8.3145 J K-'mol-') x (308.15 K)

E17.13(b) V.=

=(5.623 kPa) x cxp{

SET

E17.14(b) y = 5 pgrh [17.40]
=1 x(995.6 kg m~) x (9.80665 m s7%) x (0.320 x 107 m) x (9.11 x 102 m)

=0.1423 kg s2=

2%(22.39 x10* N m™)
220 %10 m

2
E17.15()  po— Pou= —[17.38, the Laplace eqn) =
r

=2.04x10° N m—==|204 kPa

Pressure differentials for small droplets are quite large.

Solutions to problems
Solutions to numerical problems
P17.2 Refer to Figure 17.1 of the text, and add moments vectorially using g = 2, cos%ﬂ [17.2b].
(a) p-xylene: the resuitant is zero, so p = EI
(b) o=xylene: g =(2) x (0.4 D) x cos30° =
(©) me-xylene p = (2) X (0.4 D) x cos60° =

The p-xylene molecule belongs to the group D,,, and so it is necessarily non-polar.
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P17.4 The energy of the dipole is —u; £ in the electric field £. To flip it over requires a change in energy of
24,F. This will occur when the energy of interaction of the dipole with the induced dipole of the
Ar atom equals 2y, E. The magnitude of the dipole-induced-dipole interaction is

3
V= 22 [17.24] = 21, [after flipping over]
4me,r’

T (6.17 x 10-°C m) x {1.66 x 10~ m?*) 46 %100 m
T 8ne, T (8m) % (8.854 % 102 ]C2m ) x (1.0x10*°Vm )
r=1.9x10"m=[1.9 nm]
COMMENT. This distance is about 11 times the radius of the Ar atom.
— 2
P17.6 p =M & n714)and B, = T N0 + 2B 11715, with & = dneyer]
P &+2 3 e, kT

Eqn 17.15 indicates that, when the permanent dipole moment g contributes to the molar polariza-
tion in a manner that is consistent with thermal averaging of the electric dipole moment in the
presence of the applied field (i.e. free rotation), a plot of P, against 1/T should be linear with an
Nat?

e,k -

m

dpP
A7)

4
intercept at 1/T=0equal to —:— N,a” and a constant slope for which equals Eqnl7.15

. . 4 . S
1s replaced by the Clausius—Mossotti expression, P, = TﬂNAa’ [17.16], in the case for which either

the molecules are non-polar or because the frequency of the applied field is so high that the
molecules cannot orientate quickly enough to follow the change in direction of the field.

To examine the possibility that either solid or liquid methanol exhibits the characteristics of eqn
17.14 or eqn 17.16, we draw up the following table and prepare the Figure 17.1 plot of P, against
1/T. The molar polarization P, is calculated with eqn 17.14 at all temperatures and, since the data
have been corrected for the variation in methanol density, we use p =0.791 g cm™ for all entries and

M=32.0gmol.

g/°C -185 170 -150 -140 110 80 =50 =20 0 20
TIK g8 103 123 133 163 193 223 233 273 293
% 1.3 969 812 751 613 518 448 395 3,66 3.4l
£ 3.2 3.6 4 5.1 67 57 49 43 38 34
Z% 042 046 050 0358 0957 0549 0941 0933 0925 0917

P fem*mol™y 17.1 188 202 234 387 384 381 37.7 374 37.1

Inspection of Figure 17.1 reveals that the molar polarization P, is not a linear function of 1/T for
either the solid or liquid phase of methanol, nor is it a constant for either phase. Thus, we conclude
that the conditions of eqns 17.15 and 17.16 are not applicable and it is not possible to extract
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reliable values for either the polarizability volume or the dipole moment from this data. The data
do provide valuable conceptual information about molecular motion in the condensed phases.

40 -
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1000 K/T
Figure 17.1

Figure 17.1 indicates that, as the temperature of liquid methanol is reduced, P, increases less
rapidly than would be expected for the linear case of thermal equilibrium of the dipole with the
applied field. The progression toward lower teraperatures appears to have a negative second-order
component, which extends into the solid phase. The second-order regression fit for 8 £ —110°C
reflects this significant non-linearity:

P fem® mol™' = 31.246 + 2.3788 x (10° K/T) - 0.1904 x (10° K/TY, with R*=0.9914

This indicates that hydrogen bonding between methanol molecules is hindering molecular rotation
and reducing the orientation polarization. The effect extends below the melting point with the
—110%C data point exhibiting liquid-like, hindered rotation. The large decline of £, below ~110°C
is interpreted as corresponding to a stronger hindrance of the dipole moment rotation but the
non-constancy of P, seems to indicate that rotational excitation is never completely eliminated,

4n , o N2 . ,
Po= SN+ d_gsj;‘T [17.15, with & = dmegor’]
o _ , , dp,
Eqn 17.15 indicates that a plot of P, against 1/7 should be linear with a slope, m, equal to

: 4n
92!';{ and a 1/T = 0 intercept that equals ?NA{I’. Therefore, we draw up the following table and
0
prepare a plot f P, against 1/7". If it is linear, we perform a linear least-squares regression fit of the
plot so as to acquire the slope and intercept from which we calculate &’ and u. A suitable plot is

shown in Figure 17,2

T/IK 3843 420.1 444.7
1009 2.602 2.380 2.249
T/K ) ' )

P_/(cm? mol™) 57.4 53.5 50.1
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65 1

60 1

551

Po/em® mol™!)

50 4

45 7

-

40 'l L L 1 'l '] AL
1.9 20 21 22 23 24 25 26 27

1000 K
T

Figure 17.2

The plot of P, against 1/7Tis linear with a regression fit that gives an intercept of 3.44 cm* mol™! (not
shown in the figure), and the slope is such that dP_/d(1/T) = 2.08 x 1(* cm® mol™ K. It follows that

3P, (at intercept) 3 x (3.44 cm® mol™)
== = =|1.36 x 107 cm?
¢ 4N, 47 % (6.022 x 107 mol-'y om

) 9¢k dP,
N, d/T)
12 J1 02 - 23 ft
_]9%x(8.85419 x 104 J'C? m™') x (1.3807 x 10-# J K™) X (2.08 x 10 m mol- K)
6.022 x 10% mol-!

=380 x10%C*m?

1D
= (3.80 x 10 C? m?)2 x -[185D
u= ™) (3.33564x10‘3°Cm)

P17.10 Let the partial charge on the carbon atom equal de and the N-to-C distance equal /. Then,

pu=del[l73a] or s=2
el

(1.77 D) x (3.3356 x 100 C m D)
5= =[0.123
(1.602 x 10-°C) x (299 x 102 m)

P17.12 A plot of surface tension y against surfactant concentration [A} is shown in Figure 17.3. It is linear
and the regression fit, summarized in the figure, gives a slope equal to =25.657 x 10-% N m® mol .
Solving eqn 17.50 for the surface excess I, indicates that the surface excess is proportional to the

bulk concentration.
[A] dy (—-25.657 x 10 N m™) [A]
r[A]=___[17.5 ]=— = = x ~
RT d[A] (8.31447 T K-'mol1) x (293.15 K) mol dm-3

=(1.05 x 10* mol m=2) x _ AL
mol dm™?
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This equation is used to calculate the surface excess for a given value of [A]. For example, when
[A]=0.10 mol dm, T}, =(1.05x 10~ mol m?} x (0.10) = 1.05 x 10-¢ mol m™2.

75 1
[
70 4
% 65 4
£ y=-25.657x+72.814
R*=0.9991
60
55 T T T T 1
0 0.1 0.2 0.3 04 0.5
[Al/mol dm®
Figure 17.3

Solutions to theoretical problems

P17.14 Since the refractive index #, and, therefore, the relative permittivity &, are close to 1, we infer that
the dipole moment does not contribute to the molar polarization because either the gas-phase
molecules are non-polar or the molecular rotational frequency is much lower than the frequency of
theapplied electric field, whichis the case for infrared, visible, and ultraviolet radiation. Furthermore,

-1 . .
the observation that the ratio C = ~“— must be much less than 1 greatly simplifies mathematical
81’
manipulations.
&1 _ PNa% 117 16, Clausius—Mossotti eqn] = —2— [p = Mp/RT, perfect gas] = C
et Mgy A= i (£ 7 PR PETIEC BAST=

Solving the Clausius—Mossotti eqn for £, gives
.= 1+2C ap
1-C ek T

=(1+2C)x (1~ C +C?— C*+--)[Taylor series expansion of (1 - ) for C =]
=1+ C [second-order and higher powers are insignificantly small and may be discarded)]

, where C=

n=(1+C)"?[17.17]
=1+ 3 C[Taylor expansion, discard higher-order terms]

=1+
be kT ¥

Thus, #, is linear in pressure p with an intercept equal to 1, which corresponds to a vacuum. The

24
66,k T
1.00. Very sensitive measurements of the refractive index as a function of pressure may be used to

slope, . 18 so small (~10 bar ) that we normally consider the refractive index of a gas to be
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find the polarizability. Solving the above equation for o gives the computational equation using
measured values of temperature, pressure, and refractive index:

o =6k Tx (n,— p
The polarizability volume is calculated with

o’ = afdne, [17.5]

Consider a single molecule surrounded by N— 1(= N) others in a container of volume V. The number
. . . . N
of molecules in a spherical shell of thickness dR is 4nR? x FdR. Molecules cannot approach more

closely than the molecular diameter ¢ so R = d and therefore the pair interaction energy is
u=| anrex| X[ e dR:ﬂ AR _(4nNGe ) (L _ 1) _-4nNG
d vV RS V p R4 k1% wd 42 W

The mutual pairwise interaction energy of all ¥ molecules is U = 3 Nu (the 3 appears because each
pair must be counted only once, i.e. A with B but not A with B and B with A). Therefore,

=2aN3C,

U =
vd?

F der Waal —=—| =
or a van der Waals gas, % Wd

ma [dU) 2mN?*C
72
T

2nNIC,

d thereft =
an eretore a 33

[N=nN,].

The number of molecules in a volume element dr is A/dr where A is the number density. The energy
of interaction of these molecules with one at a distance r is F{r)A(dr, where ¥{r) is the pair inter-
action energy, not the volume, The total interaction energy of all molecules with the one at the centre,
taking into account an isotropic distribution around a centre molecule so that dz = 4n#’dr, is there-

o

fore A J V{r)dr = 4nn J V(r)r’dr, where d is the radius of a molecule. The total cohesive energy

d
density 22, which is defined to be a positive property, is %9\[ multiplied by the negative of the total
interaction energy of a single molecule with the factor of % assuring that the interaction of molecule
A with molecule B is not counted twice. Thus,

oo

U=-2nN? J V(r)dr

d

For ¥(r)=-C,/r® the total energy density becomes

! 2e2C[ 1T 2rA0%C,
‘U:Z 2C —_ Zd = ] — =
A GJ'd rdr 3 [r3]a, ¥E

However, the number density is related to density p and molar mass M by the expression

N =NplM
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2 NV G
3ILM )&

P17.20 Asin Problem 17.19, we can write
] bR+ R(v)

- 2arcsin| ——
[Rl +R,(1)

o) =
b> R+ R,(v)

0

where R,(z) = R, Furthermore, R, =+ R, and b= R,

(a) 9(1)) =T 2arcsm[m;]

(The restriction & < R, + Ry(v)} transforms into + R, < + R, + R,e", which is valid for all v.) This
z 2

function is plotted as curve a in Figure 17.4.

160 é.......:.......:..-...:........_-...-.._..uu..:..u-
120 i
o b NN
_g 80 R A VA i SR
=
40 i-
0 2 4 6 8 10
{a) v/v* and (b) E/E*
Figure 17.4

(b) The kinetic energy of approach is £ = $nm?, and so

. 1 ,
(E)=n— 2arcsm(ﬂ—2—e_m} where E*= Em(v*)-

This function is plotted as curve b in Figure 17.4.

Solutions to applications: biochemistry
(a) The energy of induced-dipole-induced-dipole interactions can be approximated by the

P17.22
London formula {eqn 17.25):

3

C  3aje LI
4r

V=-—= =
s 2 NL+1,
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where the second equality uses the fact that the interaction is between two of the same molecule.
For two phenyl groups, we have:

29 332 19 -l
o 30.04x10Pm)2x (5.0eV) x (1602 X100 T V) | o 0r
4 % (4.0 x 10~ m)®

or {—0.0096 J mol™'|.

COMMENT. A distance of 0.40 nm vyields V =-9.6 kd mol.

(b) The potential energy is everywhere negative. We can obtain the distance dependence of the
force by taking
_dV _ 6C

Fe_2l =
dr r’

This force is everywhere attractive (i.e. it works against increasing the distance between interacting

groups). The force |approaches zero as the distance becomes very largeJ; there is no finite distance

at which the dispersion force is zero. (Of course, if one takes into account repulsive forces, then the
net force is zero at a distance at which the attractive and repulsive forces balance.)

(a) The dipole moment computed for frans-N-methylacetamide is

u4=03.092D)x(3.336 x10*CmD")=(1.031 x10-*Cm

(semi-empirical, PM3 level, PC Spartan Pro™). The dipole 1s oriented mainly along the carbonyl
group. The interaction energy of two parallel dipoles is given by eqn 17.22;

p = fun f(6)

P , where f(8)=1-3cos?8
TEF

and r 1s the distance between the dipoles and 8 the angle between the direction of the dipoles and
the line that joins them. The angular dependence is shown in Figure 17.5. Note that ¥(8) is at a
minimum for 8 = 0° and 180°, while it is at a maximum for 90° and 270°.

T T T T T T T

20

<o
T

V(©) /] mol™

|
[
[=]
T

=40 -

| 1 1 L | b L

0 50 100 150 200 250 300 350
6/deg
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{b) If the dipoles are scparated by 3.0 nm, then the maximum energy of interaction is:
-2 2 —
V. = (1.031 x 102 C m) 3 <1027
47(8.854 x 1072 J'C?m™") x (3.0 x 10 m)?

In molar units

Vo =(3.55 x 1072 J) x (6.022 x 10® mol~!) = 21 J mol~'= 2.1 x [0-2 kJ mol-'

Thus, dipole—dipole interactions at this distance are [dwarfcd by hydrogen-bonding interactions|.

However, the typical hydrogen bond length is much shorter, so this may not be a fair comparison.

Here is a solution using MathCad.

7368 8.37 B3 747 725 673 852 787 753
(@ Data=]353 4.24 409 3.45 296 289 439 403 3.80
100,180 1.70. 1.35 160 1.60 1195 1.60.71.:60

iogA =(Data”® S:= (DaiéT)w W= Data™y> g Mxy = augment(S, W)

infor:= regress {xy, logA; 1): :b = subm;@_%ix(info,:m g‘_.'i;:o; 0) b=igae2| by -

(b) W:=1.5 Estimate for Given/Find Solve Block
8:=4.84 :logA:=7.60 :
Given  logA=by+b,-S+b,- W  Wi=Find(W) W=1.362




Materials 1:
macromolecules
and self-assembly

D18.2

D18.4

Answers to discussion questions

The freely jointed random-coil model of a polymer chain of “units’ or ‘residues’ gives the simplest
possibility for the conformation of the polymer that is not capable of forming hydrogen bonds or
any other type of non-linkage bond. In this model, a bond that links adjacent units in the chain is
free to make any angle with respect to the preceding one (see text Figures 18.3 and 18.4). We assume
that the residues occupy zero volume, so different parts of the chain can occupy the same region of
space. We also assume in the derivation of the expression for the probability of the ends of the chain
being a distance s/ apart, that the chain is compact in the sense that # < N. This model is obviously
an oversimplification because a bond is actually constrained to a cone of angles around a direction
defined by its neighbour and it is impossible for one section of a chain to overlap with another.
Constrained angles and self-avoidance tend to swell the coil, so it is better to regard the R, and R,
values of a random coil as lower bounds to the actual values.

The freely jointed chain is improved by constraining each successive individual bond to a single
cone of angle & relative to its neighbour. This constrained chain reduces R, and R, values of a
freely jointed random coil by a factor of F:

Fe (l—coseJ [18.5]

1+ cosh

The random-coil model also ignores the role of the solvent: a poor solvent will tend to cause the coil
to tighten; a good solvent does the opposite. Therefore, calculations based on this model are best
regarded as lower bounds to the dimensions of a polymer in a good solvent and as an upper bound
for a polymer in a poor solvent. The model is most reliable for a polymer in a bulk solid sample,
where the coil is likely to have its natural dimensions.

The number-average molar mass is the value obtained by weighting each molar mass by the number
of molecules with that mass (eqn 18.19).

— 1
M, = 3. N.M,= (M) [18.19]
In this expression, &, is the number of molecules of molar mass M, and N is the total number of

molecules. Measurements of the osmotic pressures of macromolecular solutions yield the number-
average molar mass.
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The weight-average molar mass is the value obtained by weighting each molar mass by the mass of
each one present (eqn 18.20a).

1 R )
M oM = g = oD

[18.20a,18.20b]

In this expression, m, is the total mass of molecules with molar mass M, and m is the total mass of
the sample. Light-scattering experiments give the weight-average molar mass.

The Z-average molar mass is defined through the formula (eqn 18.20c).

SNME
M, = W = % [18.20¢]

The Z-average molar mass is obtained from sedimentation equilibria experiments.

The viscosity-average molar mass is the value obtained from measurements of the intrinsic viscosi-
ties [r7] of solutions of the macromolecule. It is obtained from the Mark—Kuhn-Houwink—Sakurada
equation (18.37), where K and « are empirical values:

[1]= KM, [18.37], so H:[%}

In fact, the viscosity average is also a weighted average of individual molar masses:

1 Ya
ﬂ: =|—> mM;
[
In terms of this equation, the weight-average molar mass corresponds to ¢ = 1 and the number-
average molar mass to a = -1, Experimentally, a is found to be in the range 0.5-1.0. Therefore, M,
is closer to M, than to M,.

The protein-folding problem involves discovery of the mechanisms for the rapidity (sometimes as
short as a millisecond) and reliability by which a newly synthesized chain of amino acids folds into
a three-dimensional native structure that is biologically active. The problem is three or four decades
old, with recent evidence suggesting that local, secondary structures assemble first via attractive
forces discussed in Chapter 17 (hydrogen bonds, London interactions, ionic interactions, disulfide
links) thereafter the local structures direct optimization of the global structure. The importance of
the problem is recognized by consideration of the high selectivity of a native enzymatic active site
for specific substrates, which are rapidly and repetitively converted to needed products, and the
need to develop health-restoring drugs that inhibit specific enzymes. Further encouragement for
research in this field is provided by recent evidence that a dysfunction in protein folding contributes
to nerve cell death in Alzheimer’s disease.

The secondary, tertiary, and quaternary naiive protein structures presumably yield a global Gibbs
energy minimum and therein lays the difficulty to resolving a protein-tolding problem. The great
flexibility of the peptide backbone means that from the equilibrium thermodynamic view there are a
great many conformations that correspond to local minima in the space of all possible conformations.
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This is iflustrated in Figure 18.1. Many thermally accessible conformations may have similar Gibbs
energy but very different associations between sections of the chain, with each set of associations
leading to very different three-dimensional structures, most of which are not the native shape. The
computational difficulty in predicting the native shape is complicated by the energy of interaction
between the polymer chain and surrounding solveni molecuies. In the aqueous environment
of biological cells, the outer surface of a protein molecule is covered by a mobile sheath of water
molecules, and its interior contains pockets of water molecules. These water molecules play an
important role in determining the conformation that the chain adopts through hydrophobic inter-
actions and hydrogen bonding to amino acids in the chain.

Local minima

J

>

Global
minirnum

Molecular potential energy

Parameter representing conformation

Figure 18.1

Solutions to exercises

E184(b)  R..= N'"I[18.4]=(1200)"*x (1.125 pm) =

E18.2(b) The repeating monomer unit of polypropylene is (—CH(CH;) -CH,-), which has a molar mass of
42.1 g mol™'. The number of repeating units, &, is therefore

N = Mooyme: 174 kg mol”!

M, "~ 421 x 10-* kg mol~!

MOonomer

=4.13x10?

1=2R(C-C) [add half a bond length on etther side of monomer]

R.= NI[18.3] =2 x (4.13 x 10*) x (1.54 x 10-° m) = [1.27 pm
R..= NV[18.4] =2 x (4.13 x 10°)"2 x (1.54 x 10" m) =

E18.3(b) For a random coil, the radius of gyration is

12 2 2
R=lYV rpse, so =6 Re| cpx BIMM ) o6 <100
g
6 I 0.450 nm




E18.4(b)

E18.5(b)

E18.6(b}
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The repeating monorer unit of polyethylene is (-CH,~CH,-), which has a molar mass of
2% g mol™'. The number of repeating units, &, is therefore

M e 85000 g mol™!

M gm0 10°

N=

monomer

[=2R(C-C) =2 x [54 pm =308 pm [add half a bond length on either side of monomer]
In units of [ the polymer ends are separated by the distance

-9 -9
n=15>(10 m _ 15x10°m 487
) 308 x 102 m

[iN) e [18.1]

—(48.7)24( 2 (3 08x30%)}

Thus,

P

112
[zrx304x103]
=[98x107

We obtain (see Exercise 18.4b) N = 3.04 x 10° and / = 308 pm. Thus,

3 1y2
= (’27\717] [18.2]

12
3 -
= _ =727 x 107 m™

[2 x (3.04 x 10%) x (308 x 10"211'1)2} o

The 15.00-15.10 nm range of distances between the polymer ends is very small, so we estimate that
the distribution function f(r) is the constant given by f(r) = £(15.05 nm). The probability that the
polymer ends are in this range is

3
P= f(nar= 41{ ”’J re-?Ar[18.2]

—_ 3
7 -1
- 41:(121%?&) x (15.05 x 10~ m)?
T

X e-(7,2T><107 m-1R(15.05x10- m)2 x (15_1 _ 15_00) =% 10-°m
=(59x10-3

We obtain (see Exercise 18.4a) N = 3.04 x 10° and / = 308 pm. In units of / the polymer ends are
moved apart by the distance

20x10*9m 20x10°m

=649
! T 308 x10"2m
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Thus, the molar change in conformational entropy arising from the stretch is

AS =~ RN In{(1+v)*(1-v)"}[18.7] with v=n/N=6.49/3.04 x10*=2.13 x 10~
= -3 x(8.3145J mol ' K) x (3.04 x 10°) x In{(1.00213)-9021% % (0.99787)97¥7}
=|-57 mJ mol-' K|

E18.7(b) The radius of gyration for a constrained chain that has successive individual bonds constrained to
a single cone of angle 8=120° (i.e. cos = —%) is

112 112
- 1+4
Rg,oonsl:ainnd coil = Rg,raudorn coilF Wlth F = [ 1 COSBJ [l 8'8] = ( i % J = \/5

1 +cos6 -3

The percentage change in the radius of gyration on application of the constraint is

candom coil

= (3 - ) x 100% =[+73.21%]

The percentage change in the volume on application of the constraint is

(Rg,constrai.;;: coil — Rg,mndom coil ] x 100% = (ngnsuainm coil 1] % 100% = (F _ 1) x 100%
random coi

( Vcansu'ained coll Vrandum coil J % 100% = (Ré,constrained coil — Rggrandam ceil ] % 100%

3
Vrandom coil R g.random cotl

3
= || Rocomsmiossoi | _ 111009 = (F— 1) x 100%
-Rg,randomooil

= (3= 1) x 100% = [+419.6%

112
2
E18.8(b) Ro= RosrantomeonF = NVIF[18.11], where F= {T” - J

Thus, the percentage increase in the root-mean-square separation when the polymer persistence
length is changed from / to 0.025R,, with constant contour length given by the expression

[RWRTMR“M“‘W’“ J x 100% = [L - 1] X 100% = (F - 1) x 100%
Jrandom coil

random coil

2 Y 2 % (0.025 v
= {[Tp _ 1} _ 1} x 100% = {(M - 1] - 1} x 100%

142
_ {[2 % (0.0?5 x NI) 1} _ 1} < 100%

= {(0.50N — I} — I} x 100%

=[+2.13 x 10°% when N =1000]
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The percentage change in the volume as determined by the root-mean-square separation is

. ) R _R3 g
[V Vrms,randomcoll ] « 100% = [ rms - rms,random coil ] % 100% = (FB _ 1) x 100%

V: les,randum ol

ms,random coil
3/2 n
{[%‘J _1}“00%:{[3@%_1} _l}xw()%

32
) {[2 x (0.0[25 X ND) 1) ) 1} < 100%

= {(0.050N — 1) -1} x 100% = l+3.42 x 104% when N = 1000

E18.9(b) In analogy to eqn 18.11 we have

N 172 2[ B3
R.= R, nioment ¥ = (?] IF, where F= (T"— 1}

Solving for [, gives
[ |6RZ 164 pm | 6 x (3000 pm)*
[ =— Evlt= +1;=|1.8x10%
-4 S| e[ o Cee

E18.10(b) Each polyethene chain bond has a length /=154 pm = 0.154 nm and the number N of chain bonds
is the polymer molar mass divided by the molar mass of the repeating CH, unit:

M e _ 85 000 g mol™!
My, 14 g mol™!

=6.07 x 107

N-=
'The restoring force of a freely jointed chain is

=5
F=om

kT (H"J v = nIN [18.122]

1-v
# is the displacement from equilibrium in units of /so

no_ (2.0 nm)/(0.154 nm) _

N 6.07 X 10° 2.1x107

Since v <« 1, we use the simplified form of eqn 18.12a:

nkT (13.0) x (1.381 x 102 T K1)  (298.15 K) -
= 18.12b]= = =(5.7x107“N
N [ ] (6.07 x 10%) x (154 x 107 m)

¥

E18.14(b}) Equal amounts imply equal numbers of molecules. Hence, the number-average is (egn 18.19)

_NM+ N M, nM+nmi,
N n

= 5(3 % 62 + 2 x 78) kg mol~'=|68 kg mol™!

M,
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and the weight average is (eqns 18.20a, 18.20b)

—  mM+mM, aMi+mM} 3x62°+2x78
M=—"—"2=1 22 kg mol~ ={69 kg mol"!
m mM,+ mM, 3x62+2x78 &

E18.12(b) (a) Osmometry gives the number-average molar mass, so

(E]M1+[E}M2

3, = Mt oMy g g it by (M i MR 4.
N+ N, m+n, )L [ o[ P
M1 _IM'2 Ml Mz

— 100 g - [assume 100 g of solution] = 8.8 kg mot~!

g e
+ =
[22 kg mol-! J {7-33 kg mol™! J

(b) Light scattering gives the mass-average molar mass, so

_ +
Mw _ m,M, + szz _ (25) X (22) 10(075) X (733) kg mol-! =11 kg mol

my+my

E18.13(b} Since the two spherical particles have different radii and different densities, their buoyancy & must
be considered. The buoyancy is

b=1-pv [18.27]=1-plp,
where p and p, are solution and solute particle densities, respectively.

Their effective masses are proportional to both » and the particle mass. The solute particle mass
equals its volume multiplied by its density p, so, since the solute particle has radius a, the particle
mass is proportional to a’p,. Therefore,

Pl bajps

According to eqn 18.31, the Stoke’s frictional coefficient is proportional to « and eqn 18.28 indi-
cates that the sedimentation rate s is proportional to the effective mass and inversely proportional
to the frictional coefficient. Thus,

3
a’p;

§ o< e bazps o< (ps - p)a2

The constant of proporticnality cancels when taking ratios, so the relative rates of sedimentation
of the two different particles are

2
5 o p a, 1.10 - 0.794
2ol B P 2| =] e ) (8.4) = |56
5 (pl—p]x(a,] [1.18—0.794 @4
E18.14b) M, = Sfbﬂ [18.30]= f—fNL [18.27]

— Py

Assuming that the solution density equals that of water at 298 K (0.9969 g cm™?) and substitution
of the Stokes—Einstein relationship, f = £T/D [20.51], gives
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i = SRT
(I-pv)D
_ (7.468v) x (10775 8v™')(8.3145 J mol ™ K1) x (298.15 K)
1-(996.9kgm™) x (8.0l x 10*m*kg ™)} x(7.72 x 107" m?*s™")

[ kg mor ]

E18.15{(b) The net force acting on the settling particle equals zero because of the balance between the gravita-
tion pull, g, and the {rictional force, f5, where s 1s the drift speed and the frictional coefficient, is
given by Stokes’s relationship /= 6zan [18.31] for a particle of radius a. Thus,

ﬁ=mcﬂg
1- $ma’®
_ g bmg (1= plp) XIGRT) XPIE 11g 37 2nd 18,31
f f 6ran
_ 2p—pla’g
97

_ 2x(1250 kg m™ - 1000 kg m~) x (15.5 x 10-*m)* x (3.8067 m 57°)

9% (8.9 x 10 kg m—s)
[ismms ]

E18.16(b) A = AR [18.30] = SNa [18.27]
b 1- po,

Substitution of the Stokes—FEinstein relationship, /= k7/D[20.51], gives
i = SRT
(- pv,)D
_{5.18v) x (10725 Sy1)(8.3145 T mol K-') x (293.15K)
{1-(0.997 gcm?)x (0.721em® g )} x (79 x 101 m?s7)

- [egmar]

E18.17(b) The number of solute molecules with potential energy E is proportional to e"547, hence

co Noce BT where E = 3mgrie’
Therefore, ¢ o eMo?¥2RT [ . = bm, M =mN,] and

Mba?r?

2RT

Ine = const. + [b=1- pyv,]

This expression indicates that the slope of a plot of Inc¢ against #? is equal to Mbw*/2RT.
Therefore,

o 2RT xslope | 2 (831451 K-'mol ) x (293 K) x (821 x 10°m~?)
T be? {1-(997kgm?) x (7.2 x 10~ m3kg)} x (27 x 1080 s71)?

={3.1x 10*kg mol™
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Solutions to problems
Solutions to numerical problems
§
P18.2 §=—[18.29]
ray

dr 5 1dr dinr

Since s=—,—=——=
dt’'r rdr dt

and if we plot In r against ¢, the siope gives S through
_ 1 dnr

o dt

The data are as follows:

thmin 155 29.1 36.4 58.2

ricm 5.05 5.09 5.12 5.19
In{rfcm) 1.619 1.627 1.633 1.647

The points are plotted in Figure 18.2.

1.64

In{ricm)

1.62

060 bbb i i i ioEE R

thnin

Figure 18.2

The least-squares slope is 6.62 x 10~* min~!, so

1 min
6.62 x 104min ') x
_6.62><10‘4min"_( ) [603J

o? [ 4.5 % 104 Jl
20X —M—

60s
=497 x 10"3s or

S
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—_ 2RT ¢ 2RT c
M =—"""  mnZNngid=——— InZfw=2
= = e B ey e T

Solving for the squared rotational frequency v and substitution of 5=1 - pv, [18.27] gives
e _ RTnfe,/c;)
2n M, X (1— pu) X (k2= 1})
(8.3145 1 K-'mol=) x (298 K) x In5
T 2m2x(1x 102 kg mol-") x (1= 0.75) x (7.07— 5.0%) x 10*m?
=3367 572

v=(5857) x (60 s min') =

We need to determine the intrinsic viscosity, [n], from a plot of ((n/ng} — 1)/(¢/(g dm™)) against c,
extrapolated to ¢ = 0 as in Example 18.5. Then, from the relationship [n] = KM [18.37] or

K M, Y. _ o _
[?] - = T | — | in conventional units with K and a from Table 18.4, the viscosity
cmig! cm’g g mol

average molar mass M, may be calculated. 7/n, values are determined from the times of flow using
the relationship

H
D _L2 . g3
m h A b
noting that in the limit as ¢ approaches 0 the approximation becomes exact.
Asexplored in Self-fest 18.5, [n] can also be determined from the limit of (1/c)In(r/n,) as c approaches
0. To see this, we note that, when i = n,,

1n1=1n(1+n_-ﬂ_oJ=m:1_1
T M Uy h

The above relationship is exact in the limit that # coincides with #,, which is true when ¢ = 0. Hence,
[17] can also be defined as the limit of (1/c)Mn(n/n,) as ¢ — 0. We use both methods to determine the
intrinsic viscosity, and thus show that they give identical results.

We draw up the following table and plot the points as shown in Figure 18.3.

cle drm 0.000 222 5,00 8.00 10.00
s 208.2 248.1 3034 371.8 4213

. _ 1,192 1.457 1.786 2.004

100[(n/n,} — 1]

T _ 8.63 9.15 9.82 10.24

In(nin) _ 0.1753 0.3766 0.5799 0.7048
100 In(n/

100 nén/ne) . 7.89 7.52 7.4 7.05

elg dm™?




P18.8

MATERIALS 1: MACROMOLECULES AND SELF-ASSEMBLY 423

= 100{{n/ng) ~ 1}/{c/ (g do*)}
1 = 100In{(n/ng)}/{ei (g dm)}

cilg dm™)

Figure 18.3

The intercept of Figure 18.3 as determined from the simultaneous extrapolation of both plots is
8.22. Hence,

[711=8.22x(0.01 dm’ g ") x (10 cm dm~'pP = 82.2 cm® g!

o Ita - 1/0.74
M, = [m] = [%gg_l] gmol™=12.1x10°g mol™

K 9.5 x 10-*cm?

The Mark-Kuhn-Houwink-Sakurada equation (eqn 18.37) between [n] and M, can be trans-
formed into a linear one:

In([n)fem? g~y = In( K/cm? g1} + a In(M, /g mol~!) [conventional units]
= In{K/em? g1} + a In(103)+ a In(M, kg mol-")
= In{(10° K/em® g7) + a In(M,/kg mol-)
so a plot of In{{nl/em? g') versus ln(M,/kg mol'} will have a slope of a and a y-intercept of
In(10*K/cm? g 1), The transformed data and plot are shown below (Figure 18.4).

M, /kg mol! 100 198 106 249 359 860 1800 5470 9720 56800

[n)fem? g 890 119 281 440 512 776 1139 195 275 667
In(M/kgmol) 230 299 466 552 588 676 7.509 861 918  10.90
In(rfem®g) 219 248 334 378 394 435 4749 527 562  6.500

Thus, @ ={0.500

K =107 W% b gl = I8.62 x107%cm®g™!

Solving for M, in the case for which [#]=100 c¢m? g-! yields

lla 2

— [ [nlfem3 g _ 100 _ -

A= | lnem e TR P 17 =[1.3 x 10° kg mol~
[ Kiem g ) °7% Tlse2xioe ) MO XD Xemo
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7 ; T T T B T
L : y = 1.0028 + 0.49999x ]
e
'Tm 5
E
2
=4
]
3 .............................
2 |1 - 1 H i . 1 M 1
2 4 6 8 10 12
in(AM,/kg mol™)
Figure 18.4

COMMENT. A sclvent in which the Gibbs energy of solvent—solvent, solvent—polymer, and polymer—polymer
interactions are ldentical is called a theta (8) solvent. a :% for theta solvents.

Ll = g (1 + BML_ + ) [see Section 5.5(¢), Example 5.4; IT = pghand M = M)
¢ n

n

A plot of IT/c against ¢ is has an intercept equal to RT/A, at ¢ = 0 and the slope at the intercept
equals BRT/M,2. Thus, M, = RT/intercept and B = slope x M,/RT. We draw up the following table
and prepare the requisite plot shown in Figure 18.5.

/g dm™ 1.21 2.72 5.08 6.60

ITfc/Pa gt dm? 111 118 129 136

140 i
30

Itje)/(Pafg dm™3)

(
jn
=}

Figure 18.5

The plot of Figure 18.5 appears to be linear with a linear regression fit that gives an intercept of
105.4 Pa g dm? and a slope of 4.64 Pa g2 dm®. It follows that
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— (8.3145T K" mol") x (293 K) -
M, = = =123.1k 1!
» 105.4 Pa kg’l m3
B (23.1 kg mol )2 x (4.64 Pa kg mf%) I Py yE——
(8.3145J K-' mol!) x (293 K) -

Solutions to theoretical problems

The fundamental vibrational frequency v is related to the harmonic-oscillator force constant kg ..
by the expression

112 142
B e T I i VT
2l m 2wl mx

where ¥ is the restoring force caused by displacement x. Substitution of x =n/ into the random coil
model for the restoring force gives

nkT kTx
= 18.12b, niN x 1] =
N L " 1=

F

Thus, with the presumption that the effective mass of Hooke’s law is m = MN-'N;! we find that

o LAY (R
" 2nd\ Nm ) |20\ M

For the case in which / = 154 pm, M = 65 kg mol™, and T =293 K the fundamental vibrational
frequency is

1 {(8.3 145 T K 'mol ) x (293 K)

172
v= =6.3GHz
27 x (154 x 10-'2 m) 65 kg mol™

The fundamental vibrational frequency has a T dependence on temperature that reflects the
thermal energy needed to establish a displacement from equilibrium. The Af¥? dependence indi-
cates that a larger chain mass requires more thermal energy to establish the same displacement.

dN = Ke-M-MP2rd M where K is the constant of proportionality for the distribution.

Evaluate K by requiring that de =N.
Let M-M=(29)"x, so dM=(2y"dx

o o

Ke M-MPnrd M = K(2y)? J e*dx, where a= M
. (2,},)1.'2

and N=J

0

Note that the point x = 0 represents M = M, and x = —q represents M = 0. In a narrow distribution,
the number of molecules with masses much different from the mean falls off rapidly as one moves
away from the mean, therefore dN = 0 at M < 0 (that is, at x < —q). Therefore,

£

N = K(ZT)UZJ e“"ldx = K(Zy)mi't”z

o
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Hence, K = . It then follows from turning eqgn 18.19 into an integral that

N
(ZTEY)LQ

=L | pay - 1 Me-M-FVz gL
N (2my)"2 .

" 2 re _
1 _ 2 37 1
N (21’5‘)’)”2 JO [(27)U2x + M]e_xz(z'}’)uzdx = [%} f_ (xe‘xz+ (27;)“2 e-.x-)dx

Once again, extending the lower limit of integration to —ee adds negligibly to the integral, so

2 12 172 ) 12
Ez(_”fj x{l-l—(i) H}: ﬁ{—yj
s 2y m

The probability that the ends of a three-dimensional (reely jointed chain lie in the range r to r + dr
is f(r)dr, where

3 172
a 3
f(?') = 4‘1'5[—“”2 ) rze"tﬂrl; a= (—ZNP ] [182]

The mean nth power of the end-to-end separation is

= J i

0

()= J mrzf(i")dr = 41:[—?,—2} J‘ re~rdr
T

0 0

Note: The general form of the above standard integral is

, where I' is the gamma function found in math handbooks

J " _Tim +1)i2]

rre-edr
2am+l
0

R, is the radius of rotation of a point mass that has the same mass m and moment of inertia / as the
object of interest. For an object that has a continuum of mass within its macroscopic boundaries:

I=mR2, where I= prZdr and R is the distance from the axis of rotation
For a homogeneous object p=m/V so

R=V" f Rd7 (The integrand is the square distance from the axis of rotation.)
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(a) For a solid thin disk of radius @ and thickness & there are two moments of inertia, one about
the disk axis (R, |, R =r) and another about the axis along the disk diameter (R, ), R=y).

a L 2n
R L=(mzh)“frzdfr=-(1ml.h)“j J J r’dfdzdr [cylindrical coordinates]

r=0 J z=0.t 6=0

a k 1
=(na2h)"J ridr XJ dz XJ' de

0 0 0

r=4
4
_i[’_}
a2
&
4 r=0

a h 2%
R: =(ra’h)! J y¥dt = (aa?h)? f J f (rsinf)?* x rdédzdr [cylindrical coordinates]

&l ™
r=0J =0.J8=0

a h In
=(na2h)‘J r%lrx[ dsz sin?@dé

[ 0 9
r=q G=2r
4 3 2
= (nahy" [L} X hx [2 _sm 6}
4 o 2 4 om0

Ryy=

(b) For a solid rod of radius @ and length / there are two moments of inertia, one about the axis
of its length (R, , R =r) and another about the axis that is perpendicular to its length (R, ;, R =2z).

a i In
Rg,":(ﬂazl)ljrzdf = (ra?iy! J [ J r*dfdzdr [cylindrical coordinates]

r=0 J z=0J =0

a

= (nazl)‘2nl[ ridr
1}
: 4 r=0

=i/
Ry=1yz4

a 2 2n
RZ, = (natly! f e = (rtazl)“[ J J z2rd@dzdr [cylindrical coordinates] =

r=0 J z=—i2 J =0
= /L
RE-J-_ 12l
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(¢} For a solid sphere of radius a: V = %mﬂ dr = r?sinfdrdfde, and R2= x2+ »2,

2n .4 a
RV = J J J (x*+ yHrisin8drdade
=0 J o0

=0

2n T a
= J J J (r*sin® A cos® ¢ + r?sin? Gsin® ¢)r? sinf drd6de

=0 J =0 J r=0

2% 7t a 2n T a
= J [ J risin’@drdéde = {j dq)}{j sin’ Bdﬂ}“' r“dr}
=0 J g=0 J r=0 0 0 ¢

e [P] 8na’
x| — =
60" |5 15

=21 x {-cos6 + }cos* 6}

r=0
8na’ 8ma’
R2= = :l 2
T I5xGmad) o
r- [

COMMENT, A comman error involves using r2 in place of the squared distance from the axis of rotation,

which is actually equal to x? + y? not to x? + y? + z% = r2. The common error gives the result \/%-a.

The probability that the end separation is »/ is [see Further Information 18.1(a)}:

_ number of polymers with N bonds to the right

total number of arrangements of bonds
_ NUYNgU(N = Ng)! N

v {3(N + n)}!{%'(N — n)H2v

The factorials are substituted with Stirling’s formula: In x! = In(2n)!? + %(Zx +1)nx-x

InP =N - In{ (N +m} ~ In{Z (N — m)}! - In2¥
=In@2m)?+ 12N + DinN — N —In2¥
— {InQ2m)\2 + LN + 1+ {3 (N + n)} - 3(N +n}}
—{In@n)" + (N — n+ DIn{z(N —n)} - (N — n}}
=-In(2m)">~In2¥+ (2N + DInN - N + 3 (N + m) + (N —n)
—1(N +n+ D> (N + n)} - 3V — n + DIn{5(N — )}
=-InQm)"? - In2¥+ 22N + DInN - 3 (¥ + n+ DIn{3} - (N — n+ Din{3}
—3(N +n+DIn{N +n} - +(N —n+ DIn{N - n}
=-InQm)2— 2% + (2N + DInN — (N + Din{3}
—3(N +n+DIn{N( + 5)} - 2V —n + DIn{N(1 - 5}
=2+ QN+ DInN - 3NV +n+ DInN -3V —n+1)In N
-2V +n+DIn{l+ =} - (N - n+Dinfl - £}
=) - 1IN - 2N +n+ Din{l + 2} = 3 (¥ — n+ Din{l — 5}
=In(Z2)? - 2(N +n+Dlnfl + 23 - 2V —n+Din{l - 5}
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The final expression above for In P confirms eqn 18.39. For a compact coil (#/N « 1) the expression
simplifies using the relationship In{l + 4} = % — ()2 ---, where third- and higher-order terms are
discarded as they are negligibly smail.
P=In()" =3IV = 3V + 0+ Dy =3P - sV =+ D=3y - 3G
=In(2)2 - LN +n+ 2} + (N — n + D}
+ 3V +n+ D+ 30V - n+ Dz ()
= InGp) - 5+ 7OV + DG
= InGE)"- £ + 1 G5Y
Since N > 1, the third term is negligibly small compared to the second term and the expression
becomes

InP=n(Z)?~ 2% or P=(%)e

confirming eqns 18.1 and 18.40.

Refer to Figure 18.6.

Figure 18.6

The definition of radius of gyration is

i i=l j=|

12
=%[%ER§J . so 2VRI=SR=3SR:
i

The scalar quantity R, can be written as the dot product R; - R,. If we refer all our measurements
to a common origin (thch we will later specify as the centre of mass), the interatomic vectors R;
can be expressed in terms of vectors from the origin: R,= R, — R,. (If this is not apparent, note that
R,+ R;=R,) Therefore,

R?
Re 2N2

ZZ(R R)-(R,-R)

22(3 ‘R,+R;-R,—2R.-R,)

) 2N222(R2+R2 2R, -R;)

T 2N?
Look at the sums over the squared terms:
SIR-TTR=NER
L L 5

1

HCHCC, Ré=ﬁzR}_%zzR'RJ:TIV-ZR}_.J_V}?ZR’ZRJ
v 7 4 J

J
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If we choose the origin of our coordinate system to be the centre of mass, then
1
ZR,: ERJ: 0 and RI= WZR}
i J i

for the centre of mass is the point in the centre of the distribution such that all vectors from that
point to identical individual masses surn to zero.

Write t = aT, then

i =ga and, using the result of Problem 18.23, i(—]— =t—al =0
oT , ol .

Thus, the internal energy is independent of the extension. Therefore,

t=al =T i =|-T 9 [Problem 18.23]
aT §, a )

and the tension is proportional to the variation of entropy with extension, Extension reduces the
disorder of the chains, and they tend to revert to their disorderly {non-extended) state.

Solutions to applications: biochemistry and technology

With conceniration ¢ in g dm™ the osmotic pressure equation can be written in the form

2
H=RT{L+B><(L) +}
M M

where B is the osmotic virial coefficient in dm?® mot™. The osmotic virial coefficient arises largely .
from the effect of excluded volume. If we imagine a solution of a macromolecule being built by the
successive addition of macromolecules of effective radius a to the solvent, each one being excluded
by the ones that preceded it, then B is the excluded volume per mole of molecules. The volume of a
molecule is v, = %mﬁ but the excluded volume is determined by the smallest distance possible
between centres of two molecules, which is 24, so the excluded volume is $n(2a)’= 8v,,, for a pair
of molecules. The volume exciuded per molecule is one-half this volume or 4v,,;. Thus, the osmotic
viral coefficient is

B = 4NAUm0].= l‘%NACﬁ

The osmotic pressure of an ideal solution is IT° = R7e/M and the percentage deviation from ideality is

-

o

#100% = % x 100%

For the bushy stunt virus:

B= 16TTtNA(M.O x 107°m)* =(27.7 m® mol™

H__ o i 3 -1 . =3
T° | oove - (277 mPmot™) x (10.0 kg m™)

m 1.07 % 10 kg mol x 100% = 2.59%
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For haemoglobin:

B= I‘%NA(&?_ x 10-°m)?=|0.33 m* mol™!

_ JI° . y .
no-iI >(100%=(O.33m mol™") x (10.0 kg m~>)

I 65.5 kg mol~ x 100% = 5.0%

When the structure factor, P(f), is included in egn 18.23, the Rayleigh ratio for ideal solutions
becomes

R(6)=KP(6)c, M, [18.23]
To take deviations from ideality into account, it is common to rewrite eqn 19.23 as

Ke 1 2Bc _ KP(6)c, M.

E — — + —L R(B) = =
re) oL i O RO 280

where B is an empirical constant analogous to the osmotic virial coefficient and indicative of the
effect of excluded volume. Thus, the percentage deviation of the Rayleigh ratio from the ideal is
given by

. KPO) M~ KP(6)c, M,
RO = RAO)  1g0n = M+ 2BPO), x 100%
R°(9) KP(®)c, M,

= _A_‘ - 1 X 100%
M, + 2BP(8)c,

= ﬂ x 100%
M, + 2BP()c,

= ==2B% 1 100% using P©) = 1]
M, +2Bc,

‘We estimate that the osmotic virial coefficient, calculated above, approximates Bwithin the Rayleigh
ratio relationship.

For the bushy stunt virus:

R(6) — R°(8) -2(27.7 m*mol™") x (10.0 kg m?)

x 100% = 100%
R°(6) *= 107 x 10 kg mol "+ (27.7 m’ mol ) x 100 kg m=)  *
=|-5.05%
For haemoglobin:
_ Ro _ 3 -1 =3
R(6) — R°(6) X 100% = 2(0.33 m?* mol™) x (10.0 kg m~3) < 100%

R°(8) 65.5 kg mol™ + (0.33 m* mol™) x (10.0 kg m~3)

e
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(a) We seek an expression for a ratio of scattering intensities of a macromolecule in two different
conformations, a rigid rod or a closed circle. The dependence on scattering angle € is contained in
the Rayleigh ratioR(6). The definition of this quantity, in eqn 18.22(a), gives an expression for the
scattering intensity at scattering angie 8
sin? ¢

P2

I(ea ¢= r) = R(B)]ﬂ

where ¢ is an angle between the plane of polarization of the incident beam and the plane defined by
the incident and scattered beams (see text Figure 18.30). [; is the intensity of incident light and r the
distance between sample and detector. Thus, for any given scattering angle, the ratic of scattered
intensity of two conformations is the same as the ratio of their Rayleigh ratios:

Ir_od — ‘Rmd _ R'od

I. R. P,
The last equality stems from eqn 18.23 with the inclusion of the structure factor P(f) of eqn 18.25,
which relates the Rayleigh ratios to a number of angle-independent factors that would be the same
for both conformations, and the structure factor that depends on both conformation and scattering
angle. Finally, eqn 18.25 gives an approximate value of the structure factor as a function of the
macromolecuie’s radius of gyration R, the wavelength of light, and the scattering angle:

16x2RIsin?(+6) 347 167 R2sin*(16)
332 B 312

P@)=1-

The radius of gyration of a rod of length /is
Ryy = & 1[see Problem 18.3(b)]

For a closed circle, the radius of gyration, which is the rms distance from the centre of mass[Problem
18.22], is simply the radius of a circle whose circumference is /:

I=2nR., so R, .= i
2n

The intensity ratio is;

I, 332—im*Psin?(36)

I. 37— 4Psin’(36)

Putting the numbers in yields:

6/° 20 45 90
La/L. 0976 0876  0.514

(b) I would work at a detection angle at which the ratio is smallest, i.e. most different from unity,
provided 1 had sufficient intensity to make accurate measurements. Of the angles considered in

part (a), is the best choice. With the help of a spreadsheet or symbolic mathematical program,
the ratio can be computed for a large range of scattering angles and plotted (Figure 18.7).
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‘rrodﬂcc

0 45 90 135 180

Figure 18.7

A look at the results of such a calculation shows that both the intensity ratio and the intensities
themselves decrease with increasing scattering angle from 0° through 180°, that of the closed circle
conformation changing much more slowly than that of the rod.

Note: The approximation used above vields negative numbers for P, 4 at large scattering angles. This
is because the approximation, which depends on the molecule being much smaller than the wave-
length, is shaky at best, particularly at large angles.

P18.30 M= M_ and egn 18.30 gives

_SNa

M
b

[18.30] = f—fﬁusm

Substitution of the Stokes—Einstein relationship, f= k77D [20.51], gives
M SRT
(1-pu)D
_ (4.58v) (10835 Sv')(8.3145 J mol ' K1) x (293.15 K)
T {1 (998 kg m3) x (0.75 x 10 m kg)} x (6.3 x 10~ m2s7!)

- [Fremor]

The Stoke’s relationship, /= 6ran [18.31], and the Stokes—Einstein frictional coefficient, /= RT/D,
are equated when estimating the effective radius a.

JfStok:’s =f Einstein—Stokes

6nan=kT/D
kT
=
6rnDn

(1.381% 102 J K1) x (293.15K)

- -[34
67 % (6.3 x 10-1m?s1) x (1.00 x 10~ kg m-'s-) =

P18.32  The isoelectric point is the pH at which the protein has no charge. At that point, then, its drift speed
under electrophoresis, s, vanishes. Plot the drift speed against pH and extrapolate the line to s = 0.
The plot is shown in Figure 18.8.
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0
—0.1 - ... ................
E -02 R fromseienens
= sfmis) = ~0.17pH + 0,655
R1=0.9707
0.3 e ............................... P N i
0.4 ;
35 4 4.5 5 55 6
pH
Figuwre 18.8
Isoetectric pH is the x-intercept on the graph, that is, the value of x at which y = 0. One can find this ‘

by solving the fit equation:

si(um/s}=-0.17 pH + 0.655=0

pH =|3.85 1
One could obtain the result to about + (.05 pH by reading the value directly from the graph.

(a) The data are plotted in Figure 18,9, Both samples give rise to tolerably linear curves, so we ‘
estimate the melting point by interpolation using the best-fit straight line, 1

375 R . 001 4

370 i i : : 4 015

— Linear (0.01)

365 -

360
4 ! : :
[“E 355 T , ................ .=...3.9.707é:.+3.2408: ................

35() eerererererenes ; ................ ................ , ...... it .................

£ 770 RN Y. i ................ LA

340 oo ............... ................ ................ .................

335 ; ; ; ;

0.3 0.4 0.5 0.6 0.7 0.8
f

Figure 18.9

The best-fit equation has the form T, /K =mf+ b, and we want T, when f=0.40:
Cor=1.0x 102 mol dm=: T, =(39.7x0.40+324) K =|340 K
Ceae =0.15 mol dm: T.,=(39.7x0.40+349) K =360 K
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(b) The slopes are the same for both samples. The different concentrations of dissolved salt simply
offset the melting temperatures by a constant amount with an increase in the concentration causing
a higher the melting point. This behaviour is not what is typically observed with small molecules,
where the presence of dissolved impurities disrupts freezing and depresses the freezing point.
However, the effect of dissolved ions on DNA can be explained by considering that ions can inter-
act with charged regions of the macromolecule, thereby reducing otherwise unfavourable intra-
molecular interactions. For example, if two regions bearing negative charge would have to approach
each other in the absence of dissolved salts, the incorporation of a cation very close to each region
and an anion in between them would turn an unfavourable interaction into a favourable one and a
higher melting point. See Figure 18.10.

(-

Figure 18.10

The melting points are greater at both larger fractions of G—C base pairs and at larger salt concen-
trations. T,, increases with the number of G-C base pairs because this pair is held together with
three hydrogen bonds in the double-helical structure, whereas the A-T pair is heid with two hydro-
gen bonds (see Section 18.5(b)). The AH, contribution is greater for the G—C pair. Low salt concen-
trations destabilize the double helix by inadequately contributing to the attractive forces between
the solution and the sugar—phosphate backbone of the double helix. This makes it easier for a base
to rotate out from the centre of the double helix.

The peaks are separated by 104 g mol™, so this is the molar mass of the repeating unit of the polymer.
This peak separation is consistent with the identification of the polymer as polystyrene, for the repeat-
ing group of CH,CH(C,H;) (8 C atoms and 8 H atoms) has a molar mass of 8 x (12 + 1) g mol™
=104 g mol™. A consistent difference between peaks suggests a pure system and points away from
different numbers of subunits of different molecular weight (such as the z-butyl initiators) being
incorporated into the polymer molecules. The most intense peak has a molar mass equal to that of
#n repeating groups plus that of a silver cation plus that of terminal groups:

Mi{peak)=nMrepeat) + M{Ag") + M(terminal)
If both ends of the polymer have terminal ¢-butyl groups, then
Mterminal) = 2M(¢-butyl) = 2(4 x 12 + 9 gmol~' = 114 g mol.

- M(peak) - M(Ag") ~ M(terminal) _ 25578 — 108114 _ [244].
M ((repeat) 104

and

The empirical Mark-Kuhn-Houwink—-Sakurada equation [18.37] is
[n] = KM,
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or, explicitly showing units,

M _(_K (M Y_(1wek) (& Y
cm3g! cm’ gl g mol™ cm? gt kg mol™
We fit the data to the above equation and obtain K and ¢ from a regression power fitting procedure.
The plot is shown in Figure 18.11 and, because of its linear appearance, both the linear and power

regression fits are reported. The power fit indicates that , which is very close to the value
of 1 of a linear fit. The value of Kis

3a
107K _ 1.75

cm?*g!

K =1.75x 10~ e g1 = 2.4 x 10 cm? g

The value of K is significantly smaller than the value for polystyrene in benzene reported in
Table 18.4 and to the value found in Problem 18.9 for polystyrene in tetrahydrofuran. The value
of a is considerably larger for poly(3-hexylthiophene). The differences may indicate that P3HT in
tetrahydrofuran is a stiffer polymer chain as a result of z-orbital interactions between heterocyclic
rings.

90 4
80 -

70 v =1.4293x + 1.3683
60 R?=0.9998

50 4
40
30
20
10

[nYem?® g !

y = 1746509551
=1

0 10 20 30 40 50 60
M. /kg mol™!
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Answers to discussion questions

A lattice plane is labelled by its Miller indices (hkl) where 4, k, and [ refer, respectively, to the
reciprocals of the intersection distances (in units of the side lengths of the unit cell, @, b, and ¢) of
the plane with axes that lie along the sides of a unit cell. If the reciprocal results in a fraction, the
fractionis cleared by multiplication by the lowest common denominator. The notation (hk/) denotes
an individual plane and the notation {/k/} denotes a set of parallel planes.

A systematic absence is an accidently forbidden reflection in the powder diffraction pattern of a
lattice. The absence is caused by destructive interference due to the positions of atoms or ions giving
a structure factor, and an overall amplitude of a diffracted wave, equal to zero. When the phase
difference between adjacent planes in the set of planes {Ak/} is x, destructive interference between
the waves diffracted from the planes ¢an occur and this diminishes the intensity of the diffracted
wave. This is illustrated in text Figure 19.21. The overall intensity of a diffracted wave from planes
{hk!} 1s determined from a calculation of the structure factor, F;,, which is a function of the posi-
tions (hence, of the Miller indices) and of the scattering factors of the atoms in the crystal (see egns
19.6and 19.7). If F,,,is zero for { ikl }, that reflection is absent in the diffraction pattern (see Example
19.2). Recognition of systematic absences in a powder spectrum allows rapid identification a lattice
structure. As summarized in Figure 19.23, a face-centred cubic lattice has a diffraction pattern for
which 4, k, and [ are all even or all odd; other combinations are absent. A body-centred cubic lattice
has systematic absences when the sum of 4, k, and /is odd. Absences for which (2a/A) x sinf =72
or 15'2 are characteristically absent in the pattern of a cubic P lattice (see Section 19.3(b)).

The atomic scattering factor, £, describes the dependence of the magnitude of an atom’s scattering
sin kr
kr

of X-rays on the scattering angle 8: f = 411[ p(r) r’dr, where k= %Esine [16.6].
0

The dependence on the electron density distribution in the atom, p(r), means that heavy atoms give
rise to stronger scattering than light atoms. Furthermore, since the electron distribution used to
calculate the scattering factor shows no angular dependence, the scattering factor is a spherical
distribution estimate that ignores the influence on scattering of partially filled valence p and d sub-
shells. It is shown in Justification 19.1 that the scattering factor equals the total number of atomic,
or ionic, electrons in the forward direction of scattering (i.e. 8 = 0). It is smaller in non-forward
directions. When comparing isoelectronic atoms and ions, the less diffuse species (greater p(#))
exhibits greater scattering.
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The majority of metals crystallize in structures that can be interpreted as the closest-packing
arrangements of hard spheres. These are the cubic close-packed (ccp) and hexagonal close-packed
{hcp) structures in which each atom has a coordination number of 12. In these models, 74% of the
volume of the unit cell is occupied by the atoms, giving a packing fraction is 0.74 in the hard-sphere
model. As indicated in Table 19.2 most of the remaining metallic elements crystallize in the
body-centered cubic (cubic-I or bee, coordination number of 8) arrangement, which is not too
much different from the close-packed structures in terms of the efficiency of the use of space. The
bee packing fraction is 0.68. Polonium is an exception as a-Po has the cubic-P (primitive cubic,
coordination number of 6) lattice structure, which has a packing fraction of 0.52. (See the solution
to Exercise 19.21a for a derivation of the packing fractions in cubic systems.)

If atoms were truly hard spheres, we would expect that all metals would crystallize in either the ccp
or hep close-packed structures, The fact that a significant number crystallize in other structures is
evidence for interactions between the atoms. For elemental metallic solids the effect of ionic and
covalent character in bonding between atoms may prevent close packing by directing non-close
packing bond angles and lengths. Bonding draws atoms together and in doing so, reduces the
coordination number below the 12 of close packing by squeezing out non-bonded atoms of
neighbouring layers.

Semiconductors generally have lower electrical conductivity than most metals. Additionally, the
conductivity of semiconductors increases as the temperature is raised, whereas that of metals
decreases. The difference occurs because of the relative balance between the excitation of electrons
into electrical conductance and the scattering of electrons off the conductance path by collisions
with vibrating atoms. The scattering process predominates with increasing temperature of a metal.
The excitation process predominates for the semiconductor.

The electronic structure of solids consists of allowed energy bands. The highest energy band of a
metal is partially filled. Being approximately filled to the Fermi level only, there is no gap of forbid-
den energies for excitation. It is easy to promote electrons from the filled level in which all random
vector momentums are occupied to levels in which there is a preferred vector momentum. This
provides high electrical conductivity. The energy difference between the top of the band and the
Fermi level helps to explain their appearance. If sufficiently wide, all incident visible light can be
both absorbed and emitted. This gives many metals their shiny, ‘silver’ luster. A narrow width may
result in colour as a range of visible frequencies are preferentially emitted. An example is the
reddish colour of copper.

Semiconductors have a band gap, E,, between a filled valence band and an approximately unfilled
conductance band above it. Significant energy is needed to promote electrons to the conductance
band. The energy may be provided thermally with the application of higher temperature, with
electromagnetic radiation of frequency above v, = E, /i, or with an applied voltage. The visual
appearance of a semiconductor is approximated with v ... For example, electromagnetic radiation
with more energy than green light is absorbed by cadmium sulfide, so the yellow, orange, and red
visible light are predominately reflected and seen as a yellow-orange colour by an observer. See the
Brief illustration in Section 19.10(b).

The Davydov splitting in the exciton bands of a crystal can be understood by considering the
allowed transitions of interacting dipoles of neighbouring molecules. As shown in text Figure 19.58,
the parallel alignment of transition dipoles is energetically unfavourable, and the exciton absorption
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is shifted to higher energy (blue shifted) than in the isolated molecules. However, a head-to-tail

alignment is energetically favourable, and the transition occurs at a lower frequency (red shifted) ‘
than in the isolated molecules. Transition dipoles are rarely in a single parallel or head-to-tail

alignment. As shown in text Figure 19.59, transition moments may often be either energetically

favoured or energetically unfavoured. These crystals exhibit both the blue shifted and the red shifted

band and the separation of the bands is the Davydov or exciton splitting.

Solutions to exercises

(3,0,3) is the midpoint of a face. All face midpoints are alike, including | (3.3,0) and (0,3,3) l There

are six faces to each cube, but each face is shared by two cubes. So other face midpoints can be
described by one of these three sets of coordinates on an adjacent unit cell.

Taking reciprocals of the coordinates yields (1,3,~1} and (3,3.4). respectively. Clearing the

fractions yields the Miller indices {(313) and (643)|.

a
(hl + k24 12)11‘2

523 pm
f= Gy ary g - 224 p

The distance between planes in a cubic lattice is dyy = [19.21.

523 pm
= ey AP
523 pm
dyoa = (22 + 42 + 42)12 =
A=2dsind [19.51=2 % (128.2 pm) x sin19.76° =(86.7 pm

Combining the Bragg law with Miller indices yields, for a cubic cell
. A
Slnakka _(h2 + kZ + 12)1,2
2a

In a face-centred cubic lattice, 4, &, and / must be all odd or all even (see Figure 19.23 of text).
So the first three reflections wouid be from the (111}, (200), and (220) planes. In an fcc cell, the
face diagonal of the cube is 4R, where R is the atomic radius. The relationship of the side of the unit
cell to R is therefore

@R =a*+a®=2d*, 50 a=

515

Now, we evaluate

A A 154 pm

—= = =0.189
2a 42R 44/5(144 pm)




E19.6(b)

E19.7(b)

E19.8(b)

E19.9(b)

440 INSTRUCTOR’S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

We set up the following table:

hid sin 8 6/° 26/°
111 0.327 19.1 38.2
200 0.378 222 444
220 0.335 323 64.6

In a circular camera, the distance between adjacent lines is D = RA(26), where R is the radius of the
camera (distance from sample to film) and 8 is the diffraction angle in radians. Combining these
guantities with the Bragg law (A= 2dsin 6, relating the glancing angle to the wavelength and separa-
tion of planes), we get

A
D=2RA6=2RA|sin" —
(sm Zd)

., 96.035pm . . 95.401pm
(574 - _sin"! =[0.054
(574 cm) [Sm 2823pm) T 3823 pm)]

Justification 9.1 demonstrates that the scattering factor in the forward direction equals the number

of electrons in the atom or simple ion. Consequently, .

The volume of a hexagonal unit cell is given by ¥ = kA, where £ is the height of the cell and 4 is the
area of the hexagonal face, which is shown in Figure 19.1. 4 equals 12 times the right triangular
area, shown in the figure, defined by the hexagonal face of segment length a.

A=12{Lr x (a/2)} = 3ar = 3a x (ac0s30°) = 3a?3/2

V = Ah=3am312
= 3% (1692.9 x 10-21)? x (506.96 x 102 m) x +/3/2

=3.7747 x 10~ m*={3.7747 nun?

Figure 19.1

The volume of an orthorhombic unit cell is

V = abc = (589 pm) x (822 pm) x (798 pm)
_ 3.86x10°pm?

= =3.86 x 10722 ¢cm?
{10"°pm cm™')?



E19.10(b)

E19.11(b)

SOLIDS 441

The mass per formula unit is

_ 135.01 g mol”!
"~ 6.02214 x 102 mol~

=22419x 102 g

The density p is related to the mass m per formula unit, the volume ¥ of the unit cell, and the num-
ber N of formula units per unit cell as follows

-3 -22 W3
Mmoo £V (298 x(386x 10 em) -
m 224 %107 g

A more accurate density, then, is

5% (224 %1072 g)
= =[2.90 g em™]
R 0B =290 g em”]

142

el e ()] e

S RESREN

679 879 860

Since the reflection at 17.7° is (111), we know that

137 pm
din=—"7—[195]=—"7""—"—=225
M= ing L Tl o P
and hence, since d,,, :;[ 19. ]— ~ for a cubsic unit cell, it follows that

(B+ 12+ 132
a={3")x (225 pm) =389 pm

The indices of the other reflections are obtained from

2 . 2
B+ ks 1) = [i] [19.2] = [2““‘6J [19.5]
dhkl
We draw up the following table:
2asing Y’
/]

6/° [ Sl ] Wi+l (hkl) a/pm
10.7 .11 1(?) (100} 369
13.6 1.78 20) (110) 412
17.7 2.98 3 (111) 390

219 4.49 401 (200) 367
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The calculated values reported in the second table column give cause for concern because they are
not very close to integer values. The third column rounds the second column off to the nearest
integer to give values of A%+ k% + I* for which we have little confidence. If the third column values

are correct, the reflections are those of the fourth column and the unit cell is {primitive
unit cell, see text Figure 19.23). The final column values are obtained from

A 2 2
= 2
a {23, BJx(k +k*+17)

and averaged to @ = 385 pm with a standard deviation of 21 pm (5%). Having expected a standard
deviation of about 1%, the variaticn in a reinforces concern about either the data or the analysis.
Something could be wrong with the data or, perhaps, the cubic cell assumption is wrong.

The exercise can be expanded as a small project by assuming that the glancing angle data is good
but the unit cell is orthorhombic. We take the Miller indices to be (100), (110}, (111), and (200} and
the project is to find the unit cell dimensions a, b, ¢ using a fitting procedure that minimizes the sum
of the squares of errors (SSE). We will perform the fit with Mathcad as its Given/Minerr solve
block is very convenient for the minimization of SSE. The key is recognition that eqns 19.3 and 19.5

2 2 2
provide two expressions for ¥ = l/d},. One expression is ¥y = [ﬁ] + [%] + (1] for each data
a ¢

point where the parameters a, b, and ¢ are determined by the minimization fit. The other expression

pd
. 2sinf . . .
is Y= ( S;Lm ) for each data point. We must adjust the parameters a, b, and ¢ so that the function

all data
SSE= Y (Y.,- Y)? is minimized. Here is the Mathcad worksheet:

i

Glancing angles with degrees converted to radians and assumed Miller indices:

- EE R . @t L

T e, w s P 2 ¥2 z
“Yexp, -&i{_u—u—z S"”ﬁ‘@e"mfa Viidhkbaibic) = [’E) + (5} + (1} :
137 ; a
JL - & : B :‘»3“;; e ‘ B '.-‘;h" . *'W;
 §SE(a.B,c) = (Yexp; = Yhitth . a.b o)
(=]
Vithal guies vaissrfor paameters and GVBVMInGit solvé Block: 11 - 11

Thed gl

=1 2157 sidés=Minermabe)

Dimensions of orthorhombic unitcell inpm:  sides =| 478.076
- ; 355.422)

LN & - s PR L
Tt . .-t B ontd w ARt
o s S s 8 P 5 -

T £xs L e 3 T
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Glancing angles of fit in degreses:

10.745

i, = asin{137-Yﬁt(n,k.,|.,sid§o,sidesﬁ§idesa)ﬂ]_ 360 ooy 136
2 -2 177
21.894

The last line of the worksheet indicates that the glancing angles found by the fit procedure are in
very good agreement with the experimental glancing angles. The fit gives @ = 367 pm, b =478 pm,
and ¢ =355 pm.

E19.12(b) 8,,,= arcsin

hict a

2 2 2-1!2
8., = arcsin 8342 L + 0 + 0
00 2 [ 574.1 796.8 4959

2 3 3 112
. | 8342 0 1 0
6,50 = arcsin + +
2 574.1 796.8 4959

2 2 2 1/2
ssaz( 1 1 1
= =|7. °
i =arcsin ) = '{574.1} +(796.8] +{495.9] ]

E19.13(b) All of the reflections present have & + k + / even, and all of the even & + k + / are present. The unit

2 2 2
[from eqn 19.5] = arcsin %[(EJ + %J + [—J {from eqn 19.3]
C

cell, then, is |body-centred cubic ] See Figure 19.23 of text.

E19.14(b) The siructure factor is given by
Fu= Z fe, where ¢, =2n(hx;+ky,+z) [19.7]
All eight of the vertices of the cube are shared by eight cubes, so each vertex has a scattering factor
of f18.

The coordinates of all vertices are integers, so the phase ¢ is a multiple of 27 and ¥ = 1. The body-
centre point belongs exclusively to one unit cell, so its scattering factor is f. The phase is

p=2n(lh+ L+l =n(h+k+1)

When A+ k + /s even, ¢ is a multiple of 2rn and e® = 1; when & + k + lis odd, ¢ is % plus a muitiple of
2rand e =—1, So, &' = (-1 and

Fa=8(f18)(1) + f(=1)+~
= [2f fork+k+Ieven and Oforh+k +1odd|for the body-centred cubic lattice
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E19.15(b) The electron density is given by
1 )
P(r) - _2 Erkle—an(hx+ky+lz} [19.8]
V Afkd

The component along the x direction is
1 .
p(x) = _Zﬂie—thx
Va

Using the data of this problem, we sum from & = -9 to +9 and use the relationship F, = F|,. The fol-
lowing Mathcad worksheet computation of p(1.0) uses unit volume. Figure 19.2 shows p(x) with x
in units of a. High electron density is indicated at the ends of unit cell edge (i.e. at the vertices).

10
10
41
i
6

6&

8

8

 p(1.0)=142

P
o2

150

100

28 5ot

Figure 19.2

E19.16(b) Using the information of Exercise 19.15b, the Mathcad worksheet computation of P(1.0) is per-
formed with eqn 19.9.
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10
10
4
4
F= 6
6
8
g 5
PG) = 3. (-]
10 he—9 :
10 P{1.0)=1.164 x 10°

The Patterson synthesis P(x)} of Figure 19.3 with x in units of & shows that atoms represented by
this data are separated by 1g unit along the x-axis.

1500 T T
1600 ¢ p
Plx) 500K 1
0 N -
_ t 1 1
50'0—1 ~0.5 0 0.5 1
x
Figure 19.3

E19.17(b) Draw points corresponding to the vectors joining each pair of atoms. Heavier atoms give more
intense contributions than light atoms. Remember that there are two vectors joining any pair of
atoms (ﬁ and K_B); dor’t forget the AA zero vectors for the centre point of the diagram, See
Figure 19.4 for C;H,.

o020

Figure 19.4



446 INSTRUCTOR’S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

. . . k
E19.18(h) By the de Broglie relationship: A4 = —ii =—
p mv

6.626 x10J s

— = —[3.77kms"
i (1675 x 107 kg) x (105 x 10~ m) >

Hence, v =

E19.19(b) As discussed in text Example 19.4 the wavelength of a thermal neutron is

h 6.626 x107*Js
A= = =224
(mkTY?  [(1.675x107% kg) x (1.381 x 10-2J K1) x (380 K)]2

E19.20{b) There are two smaller (black) triangles to each larger (brown) triangle. Let the area of the larger
triangle be 4 and the area of the smaller triangle be a. Since b = 1B(base) and / = 1H (height), a = ;4.
The black space is then 2NA4/4, for N of the larger triangles. The total space is then (N4 + %) = 3N4/2.

Therefore, the fraction filled is NA/(3NA/2) = .

E19.21(b) The diagonal of the face that has a lattice point in its centre is equal to 4r, where r is the radius of
the atom. The relationship between this diagonal and the edge length a is

4r=ax/5, 80 a=2\/§r

The volume of the unit cell is &, and each cell contains two atoms. (Each of the eight vertices
is shared among eight cells; each of the two face points is shared by twe cells.) So the packing
fraction is

Wi 283w m

= = ={0.370
Ve (2\/5:‘)3 32y

E19.22(b) Consider the eightfold coordination shown in Figure 19.5, where we take the smallest distance
between the larger hard-spheres at corners to be 2R and the closest approach of a large and small
hard sphere to be R + r. This lattice gives the minimum value of the radius ratio, y = r/R [19.12].

The body diagonal of the cube is ay3. Hence

a3=2R+2r or Y3R=R+r[a=2R] or B=l+y

Figure 19.5



E19.23(b)

E19.24{b}

E19.25(b)
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The radius ratios determined in Exercises 19.22a and 19.22b correspond to the smallest value of the
radius of the interior anion, since any smaller value would tend to bring the anions closer and increase
their interionic repulsion and at the same time decrease the attractions of cation and anion.

fa

oo — 414 [Exercise 19.22a]

Fonion = (0.414) x (138 pm) [ Table 19.3]=|57.1 pm

(b) For eightfold coordination: Jamion_ 732 [Exercise 19.22b]

tion

Fnion = (0.732) x (151 pm) = {111 pm

(a} For sixfold coordination:

The volume change is a result of two counteracting factors: different packing fractions f and
different radiir. Let Vand v be the unit cell volume and the atomic hard-sphere volume, respectively.
v o< 3, 50 the ratio of unit cell volumes is given by

Vow _ o oy Yoo _ Soxp T

thp - Vhep Sooc "gcp
Since the packing fractions are

Jop=0.7405 and  f = 0.6802 [Justification 19.3 and Exercise 19.21a],
the unit cell volume ratio for iron is

Vi _ 07405 (122

= =0.988
Vi 0.6802° (126)°

Hence, thereis a of 1.2% when iron transforms from hep to bee. (Actually, the data are

not precise enough to be sure of this. 122 could mean 122.49 and 126 could mean 125.51, in which
case an expansion would occur.)

The lattice enthalpy is the difference in enthalpy between an ionic solid and the corresponding
isolated ions, In this exercise, it is the enthalpy corresponding to the process

MgBr,(s) > Mg™(g) + 2Br (g)

The standard lattice enthalpy can be computed from the standard enthalpies given in the exercise by
considering the formation of MgBr,(s) from its elements as occurring through the following steps:
sublimation of Mg(s), removing two electrons from Mg(g), vaporization of Bry(l), atomization of
Br.(g), clectron attachment to Br(g), and formation of the solid MgBr, lattice from gaseous ions
AcH®(MgBr,,s) = Ay H7 (Mg,5) + A H* (Mg, 8) + A, . H (B, 1}
+ Apona siss H * (Bry, g) + 2A H® (Br,g) — AL H® (MgBr,5)

So the lattice enthalpy is

ALHO(MgBrZVS) = AsubI{e (Mgs S) + AionHe(Mgs g) + Ava];vl-{e‘(Brbl)
+ Ahond dissHe(Brk g) + 2Aeg}'{(9 (BI', g) - AfI{‘e (MgBr2= S)

A, H*(MgBr,,s) = [148 + 2187 + 31 + 193 — 2(331) + 524] kJ mol'=(2421 kJ mol~!
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rmal
Young’s modulus: E = 20——-—% [9.13a]=215GPa=215x 10° kgm" 2
normal strain

We solve this relationship for the normal strain after calculating the normal stress from the data
provided.

normal stress = force per unit area = F/4
normal strain = relative elongation = AL/L

FiA mgld mg  mg

"E E AE wdi2)E

a 100kg x(9.81ms7?)

T 1(0.10 x 107 m/2) x (215 x 10° kg m~'s?)

=0.058| or about 5.8% elongation

transverse strain

ALIL =

Poissen’s ratio: v, = [19.17j=0.41

normal strain

We note that the transverse strain is usually a contraction and that it is usually evenly distributed
in both transverse directions. That is, if (AL/L), is the normal strain, then the transverse strains,
(AL/L), and (AL/L),, are equal. In this case of a 2.0% uniaxial stress:

(%J = +0.020, [%] = (%) = —0.020 x 0.41 = —0.0082 [ contraction of widths]

Application of the stress to a 1 dm® cube of lead results in a volume equal to

(1—0.0082)>x (1 +0.020) x 1 dm? = 1.0033 dm*

The change in volume is{3.3 x 10-*dm?|.

p-type; the dopant, gallium, belongs to Group 13, whereas germanium belongs to Group 14.

E o = hvmm

y _ h _6626x10%]s
"TE T 1L12eV

g

LV =3.69 x10-5s1=[3.69 fHz
1.602 x 107

p=gA8(S+1)}"2uy [19.34, with S in place of 5]
Therefore, since p=53 yzand g, = 2,
S(S+D=(5)x(5.32=7.02, implyingthat §=220=2%

Since § = %%, the Mn”" ions have |four to five unpaired sp@.

A = 1 Val19.28] = xMlIp=(=7.9 x 107) x (84.15 g mol1)/(0.811 g cm~*) = |-8.2 x 10~ ecm’ mol




E19.32(b}

E19.33(b)

E19.34(b)

P19.2
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The molar susceptibility is given by

_ NagiuousS(S+1)
" 3kT

3Ty
Nagitohs
Using y,, = 5.03 x 10* m* mol™ [Table 15.6], we find that

[19.35], so S(S+1)=

3(1.381 102 K) x (298 K) {5.03 x 10~ m® mol-")
(6022 x 108 mol~') x (2.0023)F (41 x 107 T2 J-'m%) x (9.274 x 1024 T-1)2

_238 so S—_LtNIH428D o

2

S(S+1)=

corresponding to effective unpaired spins. The theoretical number is . The magnetic

moments in a crystal are close together, and they interact rather strongly. The discrepancy is most
likely due to an interaction among the magnetic moments.

The molar susceptibility is given by

_ MagluousS(S + 1)
" 3kT

[19.35]

Mn*" has five unpaired spins, so $=2.5 and

_ (6.022x10% mol™) x (2.0023) x (47 x 107 T2J " m*) x (9.274x 10 J T x 2.5) X (2.5 +1)
A 3(1.381x10 2 J K ') x (298 K)

=|1.85x 10" m* mol|

The relationship between critical temperature and critical magnetic field is given by

T2
1- FJ{19.36]

<

H(T)= ﬂc(O)(

Solving for T gives the critical temperature for a given magnetic field:

172 /2
H.(T) 15 kA m-
r=r[1-Z _anryx[1-2A™ | 4K
[ H(O)] ( )X( 25KA m-!

[

Solutions to problems
Solutions to numerical problems

The powder diffraction pattern shows a reflection from the (100) plane, so we may conclude that

polonium has the | simple (primitive) cubic lattice| because, as indicated in text Figure 9.23, the face-

centred and body-centred cubic lattices do not exhibit this line. Furthermore, only the primitive
cubic lattice shows a powder diffraction pattern in which the separation between the sixth and
seventh lines is larger than between the fifth and sixth lines (see text Figure 19.23).



P19.4

P19.6

P19.8
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A
dio= 2l=——[19.5
o= a[19.2] 2sin6[19]

154 pm

—_D4pm gy
4= D)= (0.225) P

A=2asinb,, as dy=a

A
sinf,,,

and

Therefore, a =

a(KCly  sinfhg(NaCl)  sin6°0”
aNaCl) ~ sinf,,(KCl) ~ sin3°23°

Therefore, a(KCl)=(1.114) x (564 pm) = (628 pm

The relative densities calculated from these unit cell dimensions are

=1.114

pKC) _( MEKCD | (a@NaCl (7455 [ 564 pm ' 0,94
p(NaCl) | M(NaCl) aKCl) ) 15844 ) \628pm )

Experimentally,

pKC)  1.99gem™
p(NaCl) 2.17gcm?

=0.917

and the measurements 1are broadly consistent .

As demonstrated in Justification 19.3 of the text, close-packed spheres fill 0.7404 of the total
volume of the crystal. Therefore, | cm? of close-packed carbon atoms would contain

0.74040 cm?

(%an) = 3.838 x 10** atoms

[r = ( 15‘;45) pm =77.225 pm="77.225 x 10-7° cm]

Hence, the close-packed density would be

_ massinlem®  (3.838 x 10®atom) x (12.01 m,/atom) x (1.6605 x 10 * g m,")
B lem?® B lcm?

-festan

The diamond structure is a very open structure that is dictated by the tetrahedral bonding of the
carbon atoms, As a result, many atoms that would be touching each other in a normal fec structure
do not in diamond, for example the C atom in the centre of a face does not touch the C atoms at the
corners of the face. See text Figure 19.41.

As indicated in Exercise 19.7, the volume of a primitive monoclinic unit cell is

V = abe sin = (1.0427 nm) x (0.8876 nm) x (1.3777 nm) X sin(93.254%) = 1.2730 nm?
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The mass per unit cell is
n=pV=(2.024 gcm?) x (1.2730 nm¥) x (107 em nm'P* = 2.577x 102 g
The monomer is CuC,H,;NO,S, so its molar mass is
M =[(63.546) + 7(12.011) + 13(1.008) + 5(14.007) + 8(15.999) + 32.066] g mol! = 390.82 g mol™

The number of monomer units, then, is the mass of the unit cell divided by the mass of the
monomer

-21 23 -1
mN, _ (2.577x10%g) x (6022 x 10® mol™) _, oo

N =
M 390.82 g mol™!

The length of an edge in the fcc lattice of these compounds is @ = 2(r, +r_). Then,
(1} a(MNaCl)=2(s,,. + 1) =562.8 pm

2y aKCl)=2(r, +ry )=6277pm

(3) a(NaBr)=2(r,.+1r,-)=596.2 pm

(4) a(KBr)=2r.+ 1, )=658.6 pm

If the ionic radii of all the jons are constant then

DH+H=2)+3)

(1) +(4)=(562.8+658.6) pm=1221.4 pm

{2) +(3)=(627.7+ 596.2) pm = 1223.9 pm

The difference is slight, ,henoe the data Supp@ the constancy of the radii of the ions.

When a very narrow X-ray beam (with a spread of wavelengths) is directed on the centre of a genu-
ine pearl, all the crystallites are irradiated parallel to a trigonal axis and the result is a Laue photo-
graph with sixfold symmetry. In a cultured pearl the narrow beain will have an arbitrary orientation
with respect to the crystallite axes (of the central core) and an unsymmetrical Laue photograph will
result. (See J. Bijvoet et al., X-ray analysis of crystals (London: Butterworth, 1951).)

(a) When there is only one pair of identical atoms, the Wierl equation reduces to

sinsR 4n . 1
&= f* , where s=-—sin—@
®=7""x T
sinsR . . . .
Extrema occur at sR =—R=tansR and this equation may be solved either graphically or
Coss

numerically to give the extrema values shown in the plot of Figure 19.6.
The angles of extrema are calculated using the Br, bond length of 228.3 pm, the equation

6 = 2sin™! (%—], and sR extrema values shown in Figure 19.6.
T
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Extrema in units of m/2

05t 3
Iif?
0.9836 % 5
09950 <9 0.9986 x 17
0 -
0.9917 x 7 0.9989 x 19
0.9534 % 3
—| | | L 0
0.5 0 5 10 13 0 35
SR(m/2)
Figure 19.6

Neutron diffraction: g =0

B = 2sin- [(0 9534 x 3m/2) x (78 pm)]

4m(228.3 pm)

. 1 {0.9836 x 57/2) x (78 pm)
= 2sin”} =242
Oond s = 2510 [ 47(228 3 pm) ]

Electron diffraction: 8y . =0

(0.9534 x 3r/2) x (4.0 pm)
. -72°
Bt = 25107 [ 47m(228.3 pm) 0

(0.9836 x 57/2) x (4 pm)
- 230
oo e = 2810 [ 4m(228.3 pm)

) 1=3 47,5 sinsR; 2 nle
R, Pl
= 4f f S0 ;CI:‘“ +6/3 0 ;ﬁ‘?‘ [4 C — Cl pairs, 6 Cl — Cl pairs]
n(i)]/z x
=@ X6 x AT X (D% [ ] +O)XAT7 X ()X TEE [x=sReol

8112
;2 = (408) x —L_ +(1062) 205X

A plot of this function is shown in Figure 19.7.
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400 T T T T T T T

—400 1 1 1 I I I |
0

Figure 19.7

We find x,, and x,;, from the graph, and s,,,, and s_;, from the data. Then, since x = sR¢, We can
take the ratio x/s to find the bond length R.. The calculation of s requires the wavelength of the
electron beam.

pz
2m

=¢l or p=(2mel )"

(-

From the de Broglie relationship,

h h 6.626 x 1075

=—= = =122 pm
p (CmeV ) 2x(9.109 x 1073 kg) x (1.609 x 10-'°C) x (1.00 x 10* V)
We draw up the following table:
B(expt.) Maxima Minima
3°0r 5022 7°54' 1°4¢’ 4°6 6°40’ 9°10/
sipm™ 0.0270 0.0482 0.0710 0.0159 0.0368 0.0599 0.0819
x(calc.) 4.77 8.52 12.6 2.89 6.52 10.6 14.5
(x/s)/pm 177 177 177 177 177 177 177
Hence, |Roq=177 pm| and the experimental diffraction pattern is consistent with tetrahedral
geometry.

— (o BT
G =Ge ™

E I
In(G/S) =In{G,/S) — | =% | x —
(G/S) = In(Gy /S) ( ok ) T
Thus, the slope of a In{G) against 1/Tplot equals —E,/2k. The data have minimal uncertainty so the
slope can be calculated by the two-point difference method. Alternatively, a linear regression fit of
(1/T, In(G/8)) data points gives the slope:
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slope = Am((l;/S) _In.0847)-In(2.86) _ 0o

] ]
A[?} 312K 420K
E,=-2kxslope=-2x(1.381 x 10 JK) x (4270 K)=1.18 x 16~ J

This is equivalent to 71.0 kJ mol or [0.736 eV|.

If the unit cell volume does not change on substitution of Ca for Y, then the density of the super-
conductor and that of the Y-only compound will be proportional to their molar masses.

M, = [2(200.59) + 2(137.327) +(1 — x) X (88.906) + x(40.078) + 2(63.546) + 7.55(15.999)] g mol”
M /(g 01 1) = 1012.6 — 48.828

The molar mass of the Y-only compound is 1312.6 g mol™, and the ratio of their densities is

=1-0.04822x, so x

Proer _ 1012.6 — 48,828 IR U -9
P only 1012.6 0.04822

£ Y-only

The density of the Y-only compound is its mass over its volume. The volume is
Vy.onty = @%¢ = (0.38606 nm)* x (2.8915 nm) = 0.43096 nm* = 0.43096 x 102! cm*
s0 the density

M 2 % (1012.6 g mol)

=2 —7.804 g cm™
Proms = N 1 ™ (6,022 x 105 mol ) x (0.43096 x 102 cm?) gem

The extent of Ca substitution is

* = 0048221~ 7804

COMMENT. The precision of this method depends strongly on just how constant the lattice volume really is.

Solutions to theoretical problems

If the sides of the unit cell define the vectors a, b, and ¢, then its volume is ' =a - b x ¢ [given].
Introduce the orthogonal set of unit vectors Z, j, &k so that

a=ad+a,f+ak
b=bJi+bj+bk
c=cd+e,j ek

a, a, a
Then, V' =a-bxec={b, b, b,
C € <
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Therefore,

a, a, alla, a,

2_
Vi=\b, b, b.||b b,
x Cy cf.' X Cy
ax a)’ a—' a. bx
=|b. b, b.|la, b,
¢ ¢ clla. b

=|ba, +ba, +ba,
ca, to,a, +oa

a’ ab ac
=(b-a bH b-c|=
ca cb

bb, +bb, +bb
c.b +ecb, +o.b
a? abcosy

abcosy b
accosf becosa

aa.+aa,+aa ab +ab +ab ac +ae, +a.c.

b +bye, +be,
€€ t €0, + CC,
accos

becose
C2

= a*6%c(1 - cos? o — cos? B — cos® ¥ + 2cosaxcos BCosy)

Hence, ﬁ/ = abe(l - cos? @ — cos? B~ cos? y + 2cosacos fcosy)Y 2‘

SCLIDS

[interchange rows and columns, no change in value]

Thus, for a monoclinic cell, for which ¢ =y =90°, V= abe(l ~ cos? )1 = abc sin

and for an orthorhombic celi, for which e = =y=90°, V=abec.

The mathematical forms of the 1s and 2s radial wavefunctions are found in Table 9.1. For the

one-electron hydrogen-like atorn dnp(r) = R(r) [9.18] and the scattering factor is given by

sinf

f(nZ)= 4nJ o(r.Z2)SBGT) o4, 9.6, where x=329 -
4mxr A

¢

The scattering factor equals one in the forward direction.

(a) The scattering factor of a 1s hydrogen-like orbital is calculated, and plotted, in the following
Mathcad worksheet. An increase in the atomic number effectively moves the scattering factor away

from the forward direction.

pm =10-2-m

2Zr

é{r,Z) =

58 I a

a:=52.91772108-pm

: > % _ 2
R,,(r,Z):=2-LE] e

e ™

1008 - . L
Rl 2P sinfd - xr)r dr.(

f(x,a;[
. pm 411X

N :=200 i=0.N

Xnax -=0.01-pm’! X;

;’~
¥

—_
-

RS g nd

e

N v L
W WA e

i'xmnx .
N

J

R(r,ZY
0

sin(4mxr) vdr

455
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| — 1 '. 1
000255 D004, -0.006,. » 001

X

o o

{b) The scattering factor of a 2s hydrogen-like orbital is calculated, and plotted, in the following
Mathcad worksheet. An increase in the principal quantum number » moves the scattering factor
towards the forward direction, while an increase in the atomic number effectively moves the scatter-
ing factor away from the forward direction.

. . i
- L d - e Lo % T O AT PP (174 ]
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Close-packed rods of length L and eiliptical cross-section with semi-major axis ¢ and semi-minor
axis b have a rod volume of nabL. The parallelepiped unit cell is shown in Figure 19.8(a) in a cross-
section of the packed rods. Examination of the figure reveals that each unit cell contains one rod.
Thus, the packing fraction fis given by

=——=——, where 4, is the cross-section area of the unit cell.
L4, 4
Figure 19.8(b) defines the parameters needed for the determination of 4, Examination of the
centre positions of a pair of stacked ellipses reveals that they have the relative coordinates (0,0) and
(0,2h). The adjacent ellipse column is centred b bigher and, consequently, the vertical contact point
between the adjacent ellipses is necessarily at 4/2. The horizontal component of the contact point,
x, is calculated with the formula for an ellipse using y = b/2.

Bidy
[E]:(f’;—zfﬂ or x=13a

The parallelepiped area has a base of 2b and its height A is
h=2x= \/ga

Thus,
A= 2bh = 243ab

and
mab X
=== =10.907
S P i (11

The above formula for the packing fraction shows that it is independent of the ellipse eccentricity.

. e Y .(__w_;h
il )
! (0,25) 2a
- »- -«
I e,
et -
- -,
| —
I ST
IRt ©.0)
(2) (b)

Figure 19.8

FM = zﬂehri(hx,—+ky,+lz,—) [19.7]

Tor each A atom use ¢ f, (each A atom shared by eight cells) but use f; for the central atom (since
it contributes solely to the cell).
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Fyg =L {1 + 2% 4 g2rik 4 @25l 4 2milhh) . g2uihel) 4 GIRikH) 4 gRrithekeD) 4 fr erilivicn)
= fo + (=1 £ [h k, ] are all integers, ei" = — 1]

(a) fu=f fa=0 Fu=f ‘no systematic absences]

(b) fa=3fas Fw=fall + 3(=D"+9]
Therefore, when k + k + is 0dd, F; = fo(1—3) = 3fa, and when 2+ k + is even, Fy, = 2 fa.

That is, there is an Ialternation of intensityl (I < F?) according to ;whether 2+ k +/ is odd or evenl.

© fa=fazfi Fu=fl+=D"=0 if h+k+1isodd.

Thus, [all & + & + [ odd lines are missing|.

According to eqn 19.18:

E

K=o
3(1-2vs)

R -
21+ vy)

Substituting the Lamé-constant expressions for E and vy into the right-hand side of these relation-
ships yields:

#(34+2u) #(3A +2p)
G=— ATH .4 K- AtE
211+ A 3 1- A
204 + 1) A+p
Expanding leads to:
(324 + 2u)
A+ 31+ 2
G= p K u):
5 24+2u+ 2 A+ 2
S 2(A+ )
p3A +2p)
and K= A+ =,u(3}»+2,u)=3l+2‘u=
[Hu—AJ 3u 3
(A+u)

as the problem asks us to prove.

Permitted states at the low-energy edge of the band must have a relatively long characteristic wave-
length, while the permitted states at the high-energy edge of the band must have a relatively short
characteristic wavelength., There are few wavefunctions that have these characteristics, so the
density of states is lowest at the edges. This is analogous to the MO picture that shows a few bonding
MOs that lack nodes and few antibonding MOs that have the maximum number of nodes.

Another insightful view is provided by consideration of the spatially periodic potential that the
electron experiences within a crystal. The periodicity demands that the electron wavefunction be
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a periodic function of the position vector ¥. We can approximate it with a Bloch wave, y = eif?,
where £ = ki+kj+ k_k is called the wavenumber vector. This is a bold, ‘free’ electron approxima-
tion and in the spirit of searching for a conceptual explanation, not an accurate solution, suppose
that the wavefunction satisfies a Hamiltonian in which the potential can be neglected: H=—(12m)V>.

The eigenvalues of the Bloch wave are: E = h2|k |*2m. The Bloch wave is periodic when the com-
ponents of the wavenumber vector are multiples of a basic repeating unit. Writing the repeating unit
as 2n/L, where L is a length that depends on the structure of the unit cell, we find k, =2n,7/L, where
n.=0,+1, £2, .... Similar equations can be written for &, and &, and with substitution the eigen-
values become E = (1/2m)(2afi/LY (n2 + n2+ n?). This equation suggests that the density of states for
energy level E can be visually evaluated by looking at a plot of permitted n,, n,, n. values, as shown
in Figure 19.9. The number of n,, n,, n. values within a thin, spherical shell around the origin equals
the density of states that have energy E. Three shells, labelled 1, 2, and 3, are shown in the graph.
All have the same width but their energies increase with their distance from the origin. It is obvious
that the low-energy shell 1 has a much lower density of states than the intermediate energy shell 2.
The sphere of shell 3 has been cut into the shape determined by the periodic potential pattern of the
crystal and, because of this phenomena, it also has a lower density of states than the intermediate
energy shell 2. The general concept is that the low-energy and high-energy edges of a band have
lower density of states than that of the band centre.

(a) HW{»QL = +or—w+or— and (ﬁ — ﬁ-ror— )Wﬁ—or— =0

Vman ~ Pror- )B numnn
mon +or _ _ 1 ,
( IB v ~ ) Wior— 0, where ﬁ . Oh ( 3cos 8)

‘mon — Vior-

[x+fr X. } Jw+or-— - Q Where x+0r- = (Vﬂmﬂ - ‘7+or— )/}B

+or— 1
1 Xor—

=x2_—-1=0

+0r—
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Xeorr =(Vmon— Vior)/B=21 and ¥V __=V %8
‘7+ = f}mun - .B and V.= ﬁmun + ﬁ

¥, and ¥_ are poltted below (Figure 19.10) as a function of & using g, =4.00 D,

Vipon =25 000 cm™', and r=0.5 nm.
T T 1 T
2.6
2.55
‘LL 25
104 cm™!
245
24
2.35 1 I ] 1
0 0.2 0.4 0.6 0.3 1
8i(m/2)
Figure 19.10

‘The ratio of £/u’ (and the relative intensities of the dimer transitions) does not depend on § or 8
because g, = 0. To see this, we use the coefficients of the normalized wavefunctions for v, and y_
and the overlap integral S = (y|u).

X,or- 1 Cogim
[ o )[ ror! ] =0, where x,,_ =zl
1 Xror-/ \ Caor-2
x+or—c+or-,l + ls.-*-cu'—,2 = 0
Cror—2= " Xyor-LCuoro1 (1)
The coefficients must also satisfy the normalization condition.
(W-i-or- |v’+ur—> = <C+ar—,1w1 + I':‘+or—,2w'2 Ic+or—,lw1 + C+or—,2w2>

— 2 2

- C+or—,l + c+or—,2 + 26+0r—,lc+or—,25

—_ 2 2 2 — 11
= Clor it Clora1™ 2x+ar_c+ur—,lS =1 (ll)

Thus,

1

= W Crn="Coy
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and

1
TR s

2 2 5 ) .
& [&] = (“_1“_2)_%_} [see Problem 19.31] = [LC_I_] —0

,uf Mo (C—.l + C—.Z)nu'mun C—.l + c—.l

C =0

{b) The secular determinant for N monomers has the dimension N x N.

ﬁmon - ‘Fd.l.mer vV 0
4 ﬁmon - ﬁ&:Iirn:er 14 R 0
0 ~

Pa = T+ Weos| = | k=1,2,3,... N[19.21]
N+1

12 , .y
V=8(0)=—"mn_(]1_13 0)= ——mon__
B(0) 7{1-3cos’0) Smegher

4nehcr

461

The following plot, Figure 19.11, shows the dimer transitions for 8 =0 and N =15. The shape of the
transition distribution changes slightly with N and transition energies are symimetrically distributed
around the monomer transition. The lowest-energy transition changes only slightly with NV giving a

value that goes to

25000 cm™+2¥V=25000cm™"'+ 2% (1280 cm™)=22422 cm~' as N =

Since the model considers only nearest-neighbour interactions, the transition dipole moment of the

lowest energy transition does not depend on the size of the chain.

2.8 T T T T T T T

Vdimer

10% em!

22 | 1

Figure 19.11
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P19.34 &= —(2)

o 142 =
= ry?dr with y= L erozan r ‘yidr [de=4nridr
0 M3

0 a

e - "
=—| rle o dr=3aj xme = dx =
a3 ant!
0o 0

—eal
Therefore, [£ = ——

2m,

Then, since g, = Napioé [19.30 with m = 0]

—Nype’al
2m

€

Am=

P19.36 Only two electronic levels are accessible to nitric oxide at low temperature. The ground state is
a doubly degenerate 11,,, state, while the excited state is a doubly degenerate 1, state that is
121.1 cor! above the ground state. These states originate from spin—orbital coupling of angular
momentum. Let £ = Aci be the energy separation between these levels, then the probabilities that a
molecule is in one ( p,,») or the other { py,) level are given by eqn 15.14 as (these equations are derived
from the Boltzmann distribution in the note below)

e —-£/kT 1

and  py,= T = T+ oo [15.14]

Pin= 1+ g-ckT

Since the ground state of nitric oxide exhibits o paramagnetism, only py» /N, molecules contribute
to the observed magnetic moment of a mole of nitric oxide molecules. Consequently, eqn 19.35 for
the molar paramagnetic susceptibility must be modified with the inclusion of a factor p;5:

oz PNag2tak5SS +1) g 5
3kT

Substitution of S(S+ 1) = (u/g,1t5)* [19.34 with $ substituted for 5] where  is the magnetic moment
into the above expression gives

- PaaNa ot (el )’
" 3kT

2 2
_ %, where efk = hevlk = he x (121.1em~)/k = 1742 K
ef

Thus, with p/ug=2

_ 6.286x10%m*mol™
A= (T/K) x {1 + e!T42(TIK))

This relationship gives the molar paramagnetic susceptibility of NO as a function of temperature.
For example, y, at 90 K is

_ 6.286 % 10-¢ m*mol™!

_ NN S
o= 50 x (1 1 o120 =8.81x10° m*mol
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The mass paramagnetic susceptibility is
Fmass = X¥m! M = (8.81 x 10~ m* mol)/{0.03001 kg mol™")=2.94 x 107" m* kg

Wishing to compare this with the value found in the older literature, we must convert the SI unit of
susceptibility to the cgs (or emu} unit by dividing the SI unit by 4z, converting the m? to cm’®, and
converting kg to g

Fomass N CES=(2.94x 10~ cm? g VMR =234 x 105 cm® g!

This is in reasonable agreement with the accepted value of 19.8 x 10-% cgs for the mass susceptibility
of NO(s) at 90 K. Figure 19.12 is a plot of the molar paramagnetic susceptibility, as modelled in
this problem, against temperature below the normal fusion point (110 K) of nitric oxide. The curve
is remarkably different from the y,.(7) behaviour of most paramagnetic substances, Paramagnetism is
normally a property of the ground electronic state and, consequently, there is an inverse relation-
ship between y,, and 7T[19.33] so that y,, decreases with increasing T. Effective angular momenta
of individual molecules align in a magnetic field at low temperature and become disoriented by
thermal agitation as the temperature is increased. In the case of NO(s) it is the excited state that is
paramagnetic so, when all molecules are in the ground state at absolute zero, y,,=0. As Tisincreased
from absolute zero, molecules are thermally promoted to the excited state and the observed para-
maguetism increases, as shown in Figure 19.12.

COMMENT. The explanation of the magnetic properties of NO is more complicated and subile than indicated
by the solution here. In fact, the full solution for this case was one of the important triumphs of the quantum
theory of magnetism, which was developed in about 1930. See J. H. van Vieck, The theory of efectric and
magnetic susceptibilities. Oxford University Press (1932).

Note: The Boltzmann distribution indicates that the probability that a molecule is in the ground-
state energy level is given by p, =< g,, where g, is the degeneracy of the ground state, while the prob-
ability that the molecule is in energy level 1, that is £ above the ground state, is given by p, o= g,e=*7,
For a two-level system the constant of proportionality is provided by the normalization condition
that p, + p, = 1. Thus, the constant of proportionality is 1/(g, + g,*7) and the probabilities are

Po=8l(g+ &) and p, =ge™* (g, +ge )

In the special case for which g, = g, the probabilities simplify to those given at the top.

10

0 T T T T T T T T T 1

0 0 20 30 40 50 60 70 8 % 100 110
/K

Figure 19.12
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Solutions to applications: biochemistry and nanoscience

The X-ray diffraction pattern of fibrous B-DNA (Figure 19.42 of the textbook) is discussed in
Impact on Biochemistry 19.1: X-ray crystallography of biclogical macromolecules. Figures 19.43
and 19.44 of the text provide definitions of the helical tilt angle o and the base-layer spacing 4. The
helical pitch p is the vertical rise per turn of the helix. The characteristic X-shape of the diffraction
pattern is that of a helix with incident radiation (Cu K 0.1542 nm}) perpendicular to the cylindrical
axis. An angle 8 =2.6° between the line of the incident radiation and the line from sample to the first
spot on the X gives p = A/sin 6 = 0.1542 nm/sin(2.6°) = 3.4 nm. Ten spots (counting two ‘missing
fourth’ spots) along the X diagonal indicate that there are 10 base-planes per turn of the helix,
with each accounting for a turn of 40°. The very large spot is at a distance (1/4) that is 10 times the
distance 1/p shown in Figure 19.13. Consequently, # = 0.34 nm. The missing fourth spots on the X
diagonals indicate two coaxial sugar-phosphate backbones that are separated by 3p/8 along the
axis. The periodic A spacing of the large, very electron-dense phosphorous atoms causes the 1/
spots to be very intense, The fact that the fibrous X-ray sample was saturated with water suggests
that the phosphates are to the outside.

Fourth spot in each
direction is missing.
Counting the missing
spots, there are a total
of 10 spots along the
diagonal.

Figure 19.13

Figure 19.14 shows the two-dimensional zig-zag projection of the helical sugar-phosphate back-
bone onto a plane along the central axis. It serves to define the projection length /, perpendicular
distance d between backbone planes, and the helix radius r, Examination of the right-hand triangle
that shows the definition of & yields:

34
tan{(c) = Lo 2 - balss

= = =1.0nm
4r 4tan{e) 4 tan{40°)

Examination of the right triangle containing the angle o also shows that / sin{e) = p/2, while the
right triangle containing the angle 2o shows that / sin(2«) = d. Dividing these two equations
yields:

sin(2a) _ 2d or 2sin{or)cos(e) E
sinf@)  p sin{a) B

or cos{a)= fd—
p

d = p cos() = (3.4 nm) cos(40°) = 2.6 nm
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Finishing, ‘

jo— £ 34 6om
2sin{e)  2sin(40°)

Figure 19.14

P19.40  Figure 19.15(a) shows a dark univalent probe cation in a vacancy within a two-dimensional square
ionic lattice of grey univalent cations and white univalent anions. Let d; = 200 pm be the distance
between nearest neighbours and let V;, be the absolute value of the Coulombic interaction between
nearest neighbours.

e’ (1.602 x10-°C)?

= = =1.153x10-3]
dnegd,  (L113x 107 C7m~") x (200 x 10-2m)

Vo

The symmetry of the lattice around the probe cation consists of four regions like that of
Figure 19.15(b), so we calculate the total Coulombic interaction of the probe within the lattice
quadrant of Figure 19.15(b) and multiply by 4. The calculation is pursued one column at a time
and the column interactions are summed.

Rel
Q
—
5

“g222s

-

&
o] Jol lelu
oCe00-
o] Jo] Jors
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o] JoI Jel Iel JeoI 16
L JoI Jeol Jel le] JeJ )
o] JoI lel 1ol 1o] Je)
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Figure 19.15

Probe-to-column 0 interaction:

v yxic e e ey 5 E ful f
= Vx| 15 03 mg g )= o m2 SV  ay (eetl form)



466 INSTRUCTOR’'S SOLUTIONS MANUAL: PHYSICAL CHEMISTRY

Probe-to-column 1 interaction using the Pythagorean theorem for the probe—ion distance:

i 1 1 1 = (=)
Veotma1 = Vo % (ﬁ T iz + 0¥z 1712 J = V;}"=l n + 1)
Similarly, the probe-to-column m interaction, using the Pythagorean theorem for the probe—ion
distance, is
Vo= Vo3 — 2" for 0 < m < oo (the sum is performed with a caleulator or software)
woman = V0.2 o or0<m e sum is performed with a calculator or softwa
The total interaction for the region shown in Figure 19.13(b) is the sum of the above expression
over all columns
_ s o (_1)n+m
VFigiQ.lS(b) = VD%Z{E;Z:MZ—)M
= —0.4038V,=(-0.4038) x (1.153 x 10-'¢ I)
=-4.656 x107*]

The total Coulombic interaction of the probe cation with the lattice is
View = Weigis15m=4H—4.656 x 1079 J) = [-1.862 x 1078 J
where the negative value indicates a net attraction.

COMMENT. Suppaose that you interpret the problem to involve placement of the prebe cation at the foot of
the two-dimensional step shown in Figure 19.16, you calcuiate the probe potential with

Vtotal = 3VHg19.15(n) - Vcciumn Q
=3 x (-0.4038V;) - -\, In2)
=-0.5183V,

=(-0.5183) x {1153 x 1078 ) =

Once again, the negative value indicates a net attraction.

Oeoe

®0OBO

o] Jof

L Jol 1e

o] Jo

L JoF ey

ol Joi jel Jeol lef.]
L. 2ol Je) Joi el le)
o] JoI JoI Jei. Jel.: ]
L. 201 Joi Jel lel le]
el Joi Joi Jel Jei ]
Figure 19.16
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2 O Molecules in motion

D20.2

D204

D29.6

Answers to discussion questions

Gases are very dilute systems and on average the molecules are very far apart from each other
except when they collide, so what little resistance there is to flow in a gaseous fluid is almost entirely
due to the collisions between molecules. The frequency of collisions increases with increasing
temperature (see eqns 20.10, 20.9, and 20,7}, hence the viscosity of gases increases with temperature,
In liquids, on the other hand, the molecules are very close to each other, which results in there being
strong forces of attraction between them that resist their movement relative to each other. However,
as the temperature increases, more and more molecules are likely to have sufficient kinetic energy to
overcome the forces of attraction, resulting in decreased viscosity.

The thermodynamic force ¥ is defined in eqn 20.43.

__[om
F= (ax ]ﬂ [20.43]

This expression is a summary of the second thermodynamic law that molecules move in the direc-
tion that minimizes the chemical potential of the molecules when p and T are local constants. Fis
not one of the ‘real’ forces such as gravity or electromagnetism; it s the negative gradient of the
chemical potential, which has a balance of terms involving enthalpy and entropy:

(2], 2], 0
on, o on, T

Thus, the thermodynamic force moves molecules so as to minimize the enthalpy, to which molecu-
lar interactions provide a great contribution, while simultaneously attempting to maximize entropy.
Often, one or the other of these tendencies predominate. For an ideal solution the gradient of the
molar enthalpy is zero, so the force represents the spontaneous tendency for molecules to disperse
s0 that entropy is maximized.

Inelastic neutron-scattering measurements of scattering angle along with energy gain or energy loss
of the neutrons on passage through a sample is interpreted in terms of the motion of particles in
the sample.

NMR longitudinal relaxation time (7)) measurements involve a spin relaxation process that gives
up energy to the surroundings. The relaxation is caused by local magnetic fields that arise from the
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tumbling totion of molecules in a fluid sample and the relaxation times can be interpreted in terms
of the mobilities of molecules. It has been shown that big molecules in viscous fluids typically rotate
in a series of small steps of about 5°, whereas small molecules in non-viscous fluids typically
jump through about 57° in each step. Another fact of basic interest is that proton and 'O NMR
measurements show that the time characteristic of protons hopping from one moiecule to the next
is about 1.5 ps, which is comparable to the time that inelastic neutron scattering shows it takes a
water molecule to reorientate through about 1 rad. NMR spin relaxation time measurement and
relationships to melecular motion are discussed in Section 14.9.

When the laser beam of dynamic light-scattering measurements scatters off two molecules, the
intensity at the detector may be high or low, depending on the degree of constructive and destructive
interference. Since the detector signal depends on scattering from a great many molecules, the
resulting light intensity fluctuation is interpreted as depending on the diffusion coefficient, which is
a measure of the rate of molecular motion.

Solutions to exercises

12

172
- _[8RT o oun | 3RT
E20.1(b) €= (_RM J 1207} and c=@*)"? = Y [20.3]

The mean translational kinetic energy is: {E )y = (3 mv* )N, = +mN, (?) = $Mc?= 3RT

The ratios of species 1 to species 2 at the same temperature are:

_ W2
a —(iu—z] and By

&\ M, (Ech

Goe [2006Y"
She S| 2200 _[7079
@ i (4.003]

(b) The mean translation Kinetic energy s independent of molecular mass and depends on
temperature alone! Consequently, because the mean translational kinetic energy for a gas is propor-
tional to 7, the ratio of mean translational kinetic energies for gases at the same temperature always
equals 1.

12
_ [ 8RT
E20.2(b) (3.) = (WJ [20.7]

_ [8x(8.3145 1 mol” K1) x (298 K) |
- T x (28.02 x 1023 kg mol )

(5w

b))y A= Zfz—T [see note below] =
cp

kT
21:’2nd2p
B (1.381x 10T K )% (298 K)
T 227 x (395 x 102 m)? x {1 x 10~ Torr) x {1.333 x 102 Pa Torr™)

= 445 x10*m=[45.5 kn

|:cr = ndz:l

[IPa=1Jm3]
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The mean free path is much larger than the dimensions of the pumping apparatus used to generate
the very low pressure,

A
V2 x (475 ms™) e -
-—m:lSIXIO ) —

Note: The standard, simple kinetic model expression for the mean free path A estimates that a molecule
moving with the mean speed ¢ spends a mean time of 1/z between collisions, where z is the collision
frequency [20.11a,b]. (See the IUPAC Compendium of Chemical Terminology in the TUPAC Gold
Book; http://goldbook.iupac.org/.) Thus, the model estimates that

c) z= % [20.12] = X5 20.9]

A=< [20.12 alternative] = KT _ [20.13 alternative]
2 Mop

We use this definition throughout our computations.

32
ZERT] ple—Mv2RT [20_4]

The Maxwell distribution of speeds is f(v}= 41{

The factor M/2RT can be evaluated as

M 44.01x 107 kg mol™
2RT 2 x(8.3145 JK-"mol-') x (300 K)

=882 x10°m=2s?

Av) varies over the range 200 to 250 m s™!. The range is large enough that the assumption of the
constancy of fover the range may lead to a degree of computational error. Nonetheless, we make
this assumption and then compare the answer to a software numerical integration without the
assumption. First, making the assumption of the constancy of f over the integration range, we
estimate the value of fto be its value at the centre of the range:

8.82 x10-¢m2g?

312
J x (225 ms)? x @l~882x10-6)x(225)2
T

F(225ms )y =(4r) x [
=191x103ms

Therefore, the fraction of molecules in the specified range 1s

Vhigh Thigh
J fdv [20.5]= fJ dv = F x Av=(191x 103 m's) x (50 ms™)

Flow

SOETITE

corresponding to 9.6%. Here is the result of a Mathcad software numerical integration:

Vlow

250-m-3-1
I fiv)dv = 0.0954

200-m-9-1

In this case, the constancy assumption gives a very good result.
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E20.4(b) Wewant to find a relationship between ¢ = (¢9)'? = (3RTI M) [20.2, 20.3] and (v%)""* for a perfect gas.
‘We begin by finding an expression for {(v*):

oo

(v4)=J v*f(u>du=4n(M/2nRT)3’2f e MARTdy [20.4]

0 a

]IZ
= 4m(M2aRT ) {_.._( 2RT
M

16
_IS[RTJ
M

Thus, (WH@5?=5/3 or l(v“)"“/(yz)”z:(5/3)“"[.

} } [standard integral]

E20.5(b) We want the pressure at which A = d where the atomic diameter, 2, of an argon atom is related to the
collision cross-section by o = nd? or d = (o/n)"2.

kT kT o) kT
pP= 52y, [Exerclse 20. Z(b) note] W = (EJ —&I

112 o -1
{gj (1381 x102J K )x(298K){Table20.1]

(0.36 x 102 m?)*?

=239 x107Pa =239 bar|[1J =1Pa m’]

This pressure is somewhat higher than the ~150 bar compressed gas cylinder in which argon gas is
normally purchased. It should be recognized that at this high pressure the perfect gas estimate may
be in error.

——— [Exercise 20.2(b) note]

(1.381x 10 2T K1) x (217 K)
=[0.41 pm!
T (22) x (043 x 105 m2) x (12.1 x 10° Pa) =

E20.6(h) 2”2

E£20.7(b) At an altitude of 15 km the temperature is 217 K and the pressure is 12.1 kPa:

SRT 112
C=|—— 20,7
¢ [ . J [20.7]

(8% (831457 mol' Ky x 217 K) |
- 7 % (28.02 x 10-* kg mol ™)

=405 ms™!

f20.11b and 20.9]

zZ=

2 oip
kT

2% (0.43 x 10¥ m?) X (405 m s) x (12.1 X 10 Pa)
B (1.381x 102 T K" x (217 K)

X105

[Table 20.1]
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E20.8(b) A= KT [Exercise 20.2(b} note]
2]!2 O-P

_(1.381x 102 T K"} x (298.15 K)

T (22) % (0.52 X 107 m?) x (p)

_560x10°m _553x10%m _420x10°m _560x10*m
~ (p/Pa)  platm  p/Torr  pibar

(2) Whenp=15atm, 1=3.7x 10 m=[3.7 am|.
(b) Whenp=1bar,/1=5.6x10‘3m=.

(c) Whenp=10Torr,A=42x10"m= .

E20.9(b) A=0B5cm)x4.0cm)=1.4x 10" m?
The collision frequency of the helium gas molecules with surface area 4 equals Zy,A:
I /.
(2eMRT)?
_ (111Pa} % (6.022 x 10® mol™') x (1.4 x 10~ m?)
" {2m(4.00 x 10- kg mol ) x (8.3145 J K-"mol ") x (1500 K)}"2
=5.29 x 10'%s-!

A[20.16]

wA

The number of helium molecule collisions within A4 in time interval ¢ equals Zw.4¢ if p does not
change significantly during the period #:

ZyAt=(529 x 1051 x (10 s} =|5.3 x 102

E20.10(b) The mass loss equals the effusion mass loss multiplied by the time period

.., = (rate of effusion) x 1 x m = (rate of effusion) x 1 x MIN,

A

loss = 7 NA 1/2 X [ d ][20'16]
E N
(ZnMRT)

172
M
= pdot x| =
ol (2::}11‘]
= (0.224 Pa) x {r(1.50 x 10 m)?} x (24 X 36005) x [

- s

E20.11(b) 'The mass loss equals the effusion mass loss multiplied by the time period £

0.300 kg mol-' "
2n(8.3145 J mol 'K 1y x (450 K)

My, = (rate of effusion) x ¢ x m = (rate of effusion) x ¢ x MIN,

AN
My = (‘””—AJ x [ M’J[zo.w} = pAgt % [

13
(rnMRTY? )"\ N, ZnRT}
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Solving for p gives

i [ 20RTY”
At M

) 277 x 10 kg 21(8.3145 T mol ' K-y x 573 K) )
£7(0.25 x 10 m)?} x (500 ) 0.200 kg mol !

STERT

E20.12(b) The pressure of this exercise changes significantly during time period ¢ so it is useful to spend
a moment finding an expression for p(¢r). Mathematically, the rate of effusion is the derivative
—dN/d¢, Substitution of the perfect gas law for N, N = pV'N,/RT, where V and 7 are constants,
reveals that the rate of effusion can be written as —(N, V/RT)dp/d:. This formulation of the rate of
effusion, along with eqn 20.16, is used to find p(r):

NV Ydp  pAN,
_[ }5 = Gnurry= 201

dp _ pAy( RT
dr V M

¥4 i
J P__1 J dt, where p, is the initial pressure
P T

o

H
mL=—> or p(H)=pe
Do T

The nitrogen and unknown fluorocarbon data can be used to determine the relaxation time, 7, for each:

oo w8235
S I plp)e | In(65.1/42.1)
ty, _  185s

™ n(plp)y, | In(65.1/421)

The above definition of r shows that it is proportional to M. Since the ratio of the relaxation times
cancels the constant of proportionality,

12
M Mgy _ Tunk
My,

el
G

89
—— | x(28.02 1-1 —557 mol™*
135 > @songmor - T gmert
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E20.13(b) In Exercise 20.12b it is shown that

V(| 2M
mE = L or p(t)= pe", where 7=— r
Po T A\ RT

The relaxation time, 7, of nitrogen is calculated with the data:

_ 22.0 m® [ 2m(28.02x107 kg mol) "
“ | m0.050 x10°m)? )~ (83145 mol- K x (293 K)

=24 x107s =276 days

The time required for the specified pressure decline is calculated with the above equation.
t = 7ln{ py/p) = (276 days) x In(122/105) =|41.4 days

E20.14(b) The fluxis

dT /lcC,, ol dT

J = —x——[2020)=~1C,, m[A] [20 23] =~ =5 [perfect gas, [A] = p/RT]

where the negative sign indicates flow toward lower temperature and

RT

1
= [E] [20.7] and A= k [Exerc1se 20.2(b) note] = m

M
s _RT Y\ (8RTY" (Cuup) 4T
22N, op M RT dz
172
=_.£x E e ,._CV‘m_.._ Xd_T
oM Nyo ) dz

For hydrogen M =2.016 g mol™, o = 0.27 nm? { Table 20.1], and appendix data tables are used to
calculate Cy i Cppy=C,p— R=(28.824 - 8.3145) J K-'mol™* = 20.510 J K- mol .

S__2, (@314 T K mol ) x (260 K) -
a % (2.016 % 10~* kg mol-!)

2
3
{ 20.510 J K~ mol™!

35K m!
(6.022 x 102 mol1) x (0.27 x 10-¢ mz)} X@3KmD

=(-0.17 T m?s!

E20.15(b) The coefficient of thermal conductivity, x, is a function of the mean free path, 1, which in turnis a
function of the collision cross-section, o. Hence, reversing the order, ¢ can be obtained from «:

8RT 172

K= %A,ECVJ“[A] [20.23] and ¢= ( J [20.7]
M

1
X [Exercise 20.2(b) note] = TN TA] [% = NA[A]}

21.’2 21;’2 O'NA[A
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cCym cCym
Therefore, K= m or o= m
8 x (8.3145 J K~ mol™") x (208 K)
7t X (28.02 x 10% kg mol™')

112
For nitrogen at 298 K, ¢ = { } =475ms™.

From Tabie 20.2 thermal conductivity values at 273 K we estimate the value at 298 K using the
kinetic theory finding the x s« 717 [20.23]: & =(0.0240 TK- ! 571) > (298/273)2 =0.0251 JK ma ' 571

The Cy,, value is calculated with the perfect gas relationship Cy,, = C,,, — R and the C,, value
provided in an appendix table (29.125 J K™ mol™'). This gives C;., =20.811 JK ™ moi™'. Alternatively,
the C,.,, value is calculated with the equipartition theorem: €, = %R =20.786J K- mol™.

oo {(475ms ) % (20.811J K- mol™)
T 3x22x (6.022 x 1023 mol) x (0.0251J K- m-s )
=1.54 x 1071* m?

[i5mm)

The experimental value is 0.43 nm?.

Question. What approximations inhereni in the equation used in the solution to this exercise are the
likely cause of the factor of 2.8 difference between the experimental and calculated values of the
collision cross-section for neon?

dr .
E20.16(b) The thermal energy flux (‘heat’ flux) is described by: J{energy) = -xd— 1:20.20], where the negative
Z

sign indicates flow toward lower temperature. This is the rate of energy transfer per unit area. The
total rate of energy transfer across area A4 is

% = AJ(energy) = ~KAC(1I—];

To calculate the temperature gradient with the given data, we assume that the gradient is in a sieady
state. Then, recognizing that temperature differences have identical magnitude in Celsius or Kelvin
units,

dT AT _{(-10)~(50)} K
dz Az 100x102m
=-6.0x102K m~

We now assume that the coefficient of thermal conductivity of the gas between the window panes
is comparable to that of nitrogen given in Table 20.2: x =0.0240 J K ' 57",

Therefore, the rate of energy transfer, the rate of heat loss, towards the low temperature is

% ~—(0.0240 T K 'm s} x (1.50 m?)  (=6.0 x 102K m™")

=22JFs!

v
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n= %MlEleT [20.24, [A] = p/RT for a perfect gas]
We begin by substituting kinetic-theory relationships for A [E20.2(b) note] and £ [20.7]:

112
1t RT 8RT A
=M x(zmaNAp ) | RT

(M ) (sRT)”
3x2VgN, nM

We now solve, and compute, the collision cross-section for nitrogen at 273 K:
From Table 20.2, 7= 166 x 10-¢P =166 x 10" kgm s

_ 28.02 x 107 kg mol~!
T 3% 22%(6.022 x 10* mol!) x (166 x 10~ kg m~'s™)

. [3(8.3145 K-t mol ) x (273 K) .
n(28.02 x 10-* kg mol-")

=3.00 x 10" m?=

E20.18(b) The flow rate of a compressible gas in a steady state, Newtonian, laminar flow through a pipe of

radius R and length ! is described by Poiseuille’s formula,

dv _ (pf - piynR*
dt 16Inp,

where Vis the volume flowing, p, and p, are pressures at each end of the tube, and p; is the pressure
at which the volume is measured. (This formula is derived below.) Solving for p? gives

16inp, a

2 2 =

A p2+( TR* }x(dtJ

{16) x (10.50m) x (176 x 107 kg m's™!) x (1.00 x 10° Pa)
®*x(7.5x107 m)*

=(1.00 x 105) Pa? +[

X (8.70 x 105 m s!)
=1.0000259 x 10¥ Pa>

Hence, p, =|1.0000129 bar

COMMENT. For the exercise as stated the answer is not sensitive to the viscosity. The flow rate is so low that
the iniet pressure would equal the outiet pressure {to the precision of the data) whether the viscosity were that
of N, at 300 K or 283 K, or even liquid water at 203 Kl

To begin the derivation of the Poiscuille formula consider eqn 20.21 in the form applicable to flow
through a cylinder of radius r, where 0 < r £ R: J{x component of momentum) =—7 x (dv/dr) with
x parallel to the tube walls. This momentum flux is the increase in momentum along the radius per
time ¢ per area of cylinder surface. As sach, the force acting in the x direction is given by

(2rrl) % J{x component of momentum) =—-2nrin x (dv /dr)
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This force is also given by the pressure difference between the cylinder ends, which is taken to be a
constant along the radius with a constant gradient along x so that ( p, — p, )/l = dp/dx, multiplied by
the area cross-section of the cylinder: —xr¥{ p, — p,). Steady, laminar flow requires that these two
forees balance. Thus, in this flow model we envision a maximum of flow at r=0 with decreasing flow
until it is zero at r = R because of the viscous drag on the surface of each cylinder due to friction
with more slowly moving surrounding gas. Equating the two forces and solving for dv, gives

=2nrin x (dv/dr) = —{(p, — p)mr’
1 dp

dv,=——rd
v, 2 rdr
Now, the volume size of a cylinder of length dx is given by dV = midx, so dx/dz = (1/nrH)dV/d:.
Equating dx/d: with dv, in our working equation gives

dv w dp
dl — j=———¢dr
[ dr ] 2n dx

and integration from r =0 to r = R with no contribution to the gas flow at r = R gives

& _ R

d: 8n dx

To assure conservation of mass in a gaseous volume that expands while moving toward the low-
pressure end, we make the substitution ¥'=nRT/p to get
dn _ nR'pdp =R dp? dp®  p3

- b -
—= =- -+, where —— =-""—=""because the pressure gradient
dr  SnRT dx  167RT dx~ 9% Tg¢ pecause the p &
1s independent of x.

If we measure the amount of gas at p = p,, we can make the substitution du = (p,/RT)dV to get a

gas flow of
4
%—I: = lgR [( p} — p3) Poiseuille’s formula
TPy

1 4MRT\"
E20.190) 1 =-iMAZ[A}[20.24] = [3 ~ ]x[ } [Exercise 20.2(b) note, 20.7, [A] = p/RT]
. A T

1
= (3 » (0.88 x 10-5m?) x (6.022 x 102 mo]“')]

y {4 x (78.11 x 10-* kg mol!) x (8.3145 ] K5 mole™") x T }”2
T

=(5.72 x 107 kg m~'s7) x (T/K)"2 = (5.72 uP) x (T/K)"*
(a) AtT =273K,n=(572 pP)x (273)"2=|95.5 uP
(b) AtT =298 K,n=(5.72 uP) x (298)"2=|98.7 uP

(©) AtT =1000K,n=(5.72 uP)x (1000)"2 =
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4RT
A

2
J [Exercise 20.2{b} note, 20.7, [A] = p/RT]

IS Cym
E20.20(b) x = $AEC, ,[A][20.23]= [33?\’7) x (

According to the equipartition theorem C,, , = %R = %kN » for a monatomic gas so

[ k ] (41{2‘]”2
k=] — [x
2o M

_[1.381 x102J K-! J y {4 x (8.3145 1 K- mol™") x (300 K)]”2

2 T

) ) § 1 142
(107 m*) x ofam® )~ | (10~ kg mol ') x (Mg mol~)

2
1 1
=(0.0123 T K'm sy x [a/nmz J X (M/g — } at T=300K

J

=

oy = —d T1dz [20.20] = —cATIAz [steady-state flux]
=—k x {305 K - 295 K)/(0.15 m)
=—(66.T K m™)k, where the negative indicates an energy flux toward the low temperature

(a) Forneon:

112
k= (001237 K- m- ) x| e | x| —— =[11FmI K m s
0.24) 120018

The observed value of x is larger by a factor of 4.

gy =667 Km1) x (114 mJ] K'm's ) =|-0.76 W m~
Rate of energy flow = J,epe 4 = (~0.76 W m2) x (0.0225 m?) =
The negative sign indicates flow toward the low temperature.

(b} For dinitrogen the equipartition theorem gives Cp = %R. Consequently, the above equation

for the thermal conductivity must be increased by a factor of 3.

y2
1 1 -
K= (%) x (0.0123 T K'm's7!) x {m] X {MJ = |9.0 mJ K-'ms!

The observed value of x is larger by a factor of 2.7.

Jepergy = —(66.7 K m™) x (9.0 m) K'm's ) =|-0.60 Wm?
Rate of energy flow = Jyey, A = (~0.60 W m) x (0.0225 m?) =
The negative sign indicates flow toward the low temperature.

COMMENT. The computations of simple kinetic theory give an estimate for the coefficient of thermal
conductivity that is low but satisfying in that its simplicity gives & result within an order of magnitude of being
correct. To improve the estimaie requires remcval of the hard-sphere assurnption with consideration of
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more realistic forces of attraction and repulsion, Additionally, the simple utilization of a mean speed has to
be replaced with a kinetic theory that recognizes that faster molecuiss fransport more kinetic energy than
do slower ones.

2
E20.21(b) K= %/lECVm[A] [20.23]= Lom X ART [Exercise 20.2(b) note, 20.7, [A] = p/RT]
' JoN, M

~ 20.8 J K- mol-! [4x (831451 K~ wol™) x (293 K) v
“{ 3% (043 x 107 m?) x (6,022 x 10% mol ) 7 % (28.02 x 10~ kg mol )

= |8.9 mJ K-1m-'s!

Question. Can the differences between the calculated and experimental values of x be accounted for
by the difference in temperature (293 K here, 273 K in Table 20.2)? If not, what might be responsible
for the difference?

112
E20.22(b) D= %AE [20.22] = %( 211!(21;) ] X (%:;;J [Exercise 20.2(b) note, 20.7]

i (1.381 x 102 J K1) x (298 K) L [§x 83145 T K mol ™) x 298 K) v
T 212 (043 x 10 m?) x px (1T m~Pa') 7 X (28.02 % 10~ kg mol-')

_ 1.07 m?s™!

piPa

The flux due to diffusion is J = —D t—N [20.19], where A/ is the number density and = is the direc-
Z

tion of the pressure gradient. Dividing both sides by the Avogadro constant converts A to molar
concentration ¢, while converting the flux to number of moles per unit area per second. Thus, with
a negative sign that indicates mass flow from high to low pressure,

de d@v) D dp

J=-D===-D
dz dz RT dz

[perfect gas law].

For a pressure gradient of 0.20 barm™ =2.0x 10* Pa m™!,

_ (2.0 x10*Pam™)yx D
T (8.3145 F mol"' K1) x (298 K)

(a) p=10.0Pa,

2 -1
D= 1'07% - and J = (8.07 mol m25°) x (0.107) = [0.86 mol m~?s~!
(b) p=100KkPa,
2 -1 —
p= TS 7 X 10- m?s'|and J = (8.07 mol m2s) x (1.07 x 10~
1.00 % 10°
=|86 umol m2s™

=(8.07 mol m25™1) x D/(m?s71).
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(¢ p=I150MPa,
2 -1
D= —11£701:<11806 =(7.13% 10 m?s!|and J = (8.07 mol m~2s7!) x (7.13 x 10-%)
=10.58 pmol m~?s!

E20.23(b) The molar ionic conductivity is related to mobility by

A=z F [20.36]
=1x(4.24 x 108 m?s5™ V) x (96485 C mol")

=[4.09 mS m? mol"!|

E20.24()  s=uE[20.34]and £ = % [20.30]

Therefore,

§= u(%J=(401 x 108 m?s V_I)X( 120V J

1.00 x 102 m
=481 x10°ms'={48.Ipum s

481

E20.25(b) The basis for the solution is Kohlrausch’s law of independent migration of ions [eqn 20.29]. The
limiting molar conductivity of a dissolved salt is the sum of formula weighted limiting molar con-

ductivities of the formula ions at infinite dilution, so
AL =V A+ v_i [20.29]
AZ(Nal) = A(Na™) + A(I") = 12.69 mS m? mol-!
A% (NaCH,CO,)= A(Na") + A(CH,CO;) =9.10 mS m?mol!
A2 (Mg(CH,CO,),) = A(Mg®*) + 24(CH,CO3) = 18.78 mS m? mol-!
Hence,
As{Mgl,) = AL (Mg(CH,CO,),) + 2 AL (Nal)— 2AZ(NaCH,CO,)
=(18.78 +2 x 12.69 -2 x 9.10) mS m* mol'= |25.96 mS m? mol-!

E2026(b) .= —’% [20.36;z=1;:S=1Q"'=1C V-5’
Z.

5.54 mS m? mol-!
F)= =574 x10°mS C-'m2=[5.74 x 10-* m? V15!
) = 5 6485 % 10° C ol | X10°mS €' m?=[5.74 x 10 m? V-'s
7.635 mS m? mol™!
Cl) = —[7913x 10 m V 15!
M) = 5 6485 % 10°C mol- L oS

7.81 mS m?mol!
Br)= —[809%x10°m?V s !
u(Br) = 5 6485 X 10°C mol™ B9 x 10 m? Vs




E20.27(b)

E20.28(b)

E20.29(b)

E20.30(b)
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D= uRT

[2050] z=L1CV=1]J

S m?V-lgl -1 1
_ (420108 m? Vs ) x 83145 T K mol ) x 298K) oo g
1% 9.6485 x 10 C mol ™!

The parabolic decay/growth in concentration ¢ has the form ¢(x) = ¢, — Ax?, where ¢, is the concen-
tration at x = 0 and the constant A4 is determined by the condition that ¢(8 cm) = 5

€= ¢X) D7 3% (781 % 107 cm?) x ¢o= (78.1m) X ¢
x? (8 em)*

A=

The concentration becomes negligibly small at | x]=11.3 cm so computations are limited to values
of x for which | x| < 11.3 cm. The thermodynamic force is determined with eqn 20.45:

= -ELE poas = - B2 - a2

_ 2x(78.1m?) % (8.3145J K'mol”) x (298 K) x x
- 1-(7.81x10-3 cm2) x x2

_ (3.87 kN mol™") x (x/cm)

T 1~ (7.81 % 103) x (xfem)?

(3.87 kN mol) x 8
8 cmm) = —[+61.9 kN mol~
FE ) = T T3 1x 107) x ) i
CITKN Ml DX~ [+774 kN mol]
1 em) = — [+774 KN mol~
T em) = T % 107) % (1) o

The positive force indicates that the force points toward larger values of | x| values.

The Gaussian decay in concentration ¢ has the form c(x) = ¢,e™4*", where c, is the concentration at
x =0 and the constant A4 is determined by the condition that ¢(10 cm) = 3¢,

In(cyic)y  In2

A= =
x> (10cm)?

={0.010ecm?)xn2=(1.00cm'm*) xIn2

The thermodynamic force is determined with egn 20.45:

Fx )__.EE [20.45] = _Ei e =2ARTx
¢ C dx
=2x(1.00m™) x In2 x (8.3145 J K" mol™) x (291 K x (x/cm)
=(3.35 kN mol™) x (x/cm)

F(10 cm) = (3.35 kN mol ) x (10) =[33.5 kN mol~!

Eqn 20.60, {x% = 2Dz, gives the mean square distance travelled in any one dimension in time . We
need the distance travelled from a point in any direction. The distinction here is the distinction
between the one-dimensional and three-dimensional diffusion. The mean square three-dimensional
distance can be obtained from the one-dimensional mean square distance since motions in the three
directions are independent. Since * = x* + 3? + 22 [Pythagorean theorem)],




E20.31(b)

E20.32(b)

E20.33(b)
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() ={(x% + {7 + (2% = 3(x"} [independent motion]
= 3% 2D¢[20.60] = 6Dr.

) (1.0 x 102 m)?
Therefore, £ =+ = ~[a1x10°
CrelOre E =D T 6% (4.05 x 107 m?s1)

kT
énnD

(1.381x 103 T K1) x (298 K)
_ =207 x10-°m = [207
@ 6 x (1.00 x 107 kg m-151) x (1.055 x 10 m? s xATm

The Einstein-Smoluchowski equation [20.62] relates the diffusion constant to the jump distance A
and time 7 required for a jump:

a=

[20.52);1P =10"kg m™'s™"

2 2
p=-2 [20.62], so 7= A
2T 2D

If the jump distance is about one molecular diameter, or two effective molecular radii, then the
jump distance can be obtained by use of the Stokes—Einstein equation [20.52]:

A=2a=2 kT [20.52]=i
6mnD 3nnD

7= L % L2 [Mheptane = 0.386 X 10 kg m's™!, CRC Handbook Chemistry and Physics]
2D | 3D

~ 1 y (1.381x 103 J K1) x (298 K) :
T2x(3.17x10%m?s™) | 3rx(0.386 x 10 kg m s ) x(3.17 x 10 m2s™)

=201x10-'s=[20.1 ps|

COMMENT. In the strictest sense we are dealing with three-dimensional diffusion. However, since we are
assuming that only one jump occurs, it is probably an adequate approximation to use an equation derived for
one-dimensional diffusion. For three-dimensional diffusion the equation analogous to eqn 20.62 is 7= A%/8D.

Question. Can you derive the equation? Use an analysis similar to that described in the solution to
Exercise 20.30(a) and (b).

For three-dimensional diffusion we use an equation analogous to eqn 20.60 derived in Exercise
20.30(a) and (b).

_
T 6D

(a) M=(1.0x10"my=1.0x10"*m?

{

1.0 x10%m?
For iodine in benzene [data fi rom'Table 207t = Ex a1 3XX (]J()*:nmz = =

. 1.0 x 10 m? =
For sucrose in water: ¢ = §x (0522 x 10°m*s) =




P20.2

P20.4
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() {?=(1.0x107 m)P=1.0x 10~ m?

e 1.0 x 10~*m?
For iodine in benzene [data from Table 20.7]: ¢t = =78 x10°s=|2.2h
6x(2.13% 10 m?s)
1.0 x 10-*m?
For sucrose in water: t = 0x m =32x10*s=|89h

6 x ((.522 %10 m?s7!)

Solutions to problems
Solutions to numerical problems

In our one-dimensional problem, we can assign the v, component of velocity a positive or a nega-
tive value when pointing to the east (E) or west (W), respectively. Speed is the absolute value of ©,

so for discrete, rather than continuous, speeds the mean speed ¢ is (in analogy to Exampie 20.1):
all speeds all speeds all speads
E=(ub= Y flogd= X (%)lol=(3) X Mo,

i i i

where N, is the number having the velocity component »_, and N is the total number of observa-
tions. N =328 in this problem. Likewise, the root mean square speed ¢ is given by

all speeds 172 all speeds vz all speeds vz
c=<v.%>”2:{ > f:v.%} ={ 2 (%)v%} ={(%) 2 N!vi}
(a) Mean velocity:

(o.) = _L_[40(80) + 62(85) + 53(90) + 12(95) + 2(100)
7 328 | +38(=80) + 59(=85) + 50(=90) + 10(~95) + 2(~100)

EemiE

{b} Mean speed:

} kinh1=+2.67 km h~!

c =

}km h'=|86.2 km h!

1 [40(80) + 62(85) + 53(90) + 12(95) + 2(100)
328 | +38(80) + 59(85) + 50(90) + 10(95) + 2(100)

() Root mean square speed:
12 12
1 40(80) + 62(85)% + 53(90)% + 12(93)* + 2(100)? _ "
=|— kmh* =|(86.4 km h-!
¢ [ 328J {+38(80)2 + 59(85)% + 50(90)? + 10(95)* + 2(100)° h
This demonstrates that as always (X %17 > (X) for observable X.

172
K =3A8C, [A][20.23] and Z= (}F] [20.7] o T2

s T’ 2 ’
Hence, k e« T¥2C),  and LI [—-J X [ V’m]
X T
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The molar heat capacities at the two temperatures are estimated with the equipartition theorem.
At 300 K there are three translational degrees of freedom and two rotational degrees of freedom,
which gives C, = (3 + 2)«;_»R = %R. At 10 K the rotational degrees of freedom are not significantly
populated so there are three translational degrees of freedom alone, which gives C, = %R.

112
K’ 300 5
Therefore, — = | —— 21=l9.1
erefore, " [ IUJ x(3]

The atomic current 1s the number of atoms emerging from the slit per second, which is Z,4 with
A=1.0x10"m> We use

P
Zy=————1[20.14
¥ QrmkT)V? [20.14]

_ plPa
~ [(2r) x (M/g mol™) x (1.6605 x 102" kg) x (1.381 x 102 K-) x (380 K)]"

~ L piPa
=(1.35x10¥m?2s7") x [W]

(a}) Cadmium: Zy;4=(1.35x10%m2s ) x (1.0 x 107" m?) x (%J =(1.7 x 105!
) 12
(b) Mercury: Zoy A=(1.35x10¥m2s") x {1.0 x 10-" m?) x (600—6)”2“} =

The molar conductivity, A, is related to the conductivity, x, by A, = x/c [20.27] = C/Rc, where the
cell constant is € = 0.2063 cm™'. The Kehlrausch law [18.29] indicates that molar conductivity is
linear in ¢'2.

A, = A2 — K [20.28]

We draw a data table and calculate values for a plot of A, against ¢'2,

e/(mol dm?) 0.00050 0.0010 0.0050 0.010 0.020 0.050
RIQ 3314 1669 342.1 174.1 89.08 37.14
{mol dm=)'? 0.0224 0.0316 0.0707 0.100 0.141 0.224
Ag/(mS m* mol™) 12.45 12.36 12.06 11.85 11.58 11.11

The plot, shown in Figure 20.1, is linear and the linear regression fit yields the intercept and slope.
The intercept is the limiting molar conductivity and the slope is the negative of the Kohlrausch
parameter X:

Al = L12.6 mS m? mol™! |

% = 6.66 mS m? (mol dm-")*"|
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1254 o y=—6.6551x + 12.556
R*=0.9942

5 o1z

£
E

g

= 11.5 4

<

11 T T I T 1
0 0.05 0.1 0.15 0.2 0.25
Cln/(mol dm-])llZ

Figure 20.1

(@) An=((5.01+7.68) - 6.66 x (0.010/*>) mS m? mol! =[12.02 mS m? mol"!|

b x=cA,=(10molm?) x(12.02mS m’ mol") =120 mS m? m~? ={120 mS m™!

C  2063m”
== Q
© R= = ms m

v __ 10.0 Vem™
cm

s=uEi2034] with = % [20.30] =

Table 20.5 provides the ion mobilities, .
S(Li) = (4.01 x 10~ cm? s V-1 x (10.0 Vem) =
s(Na"y=(5.19 x 10~ cm? 57! V1) x (10.0 V em) =
s(K*)=(7.62x 104 cm? s V) x (10.0 V cm!) =

The drift speed equals the distance travelled in time ¢ divided by 7 so 1.00 cmn travel requires the times

(Li*) = 14?)’;10 W _[2495], #(Na*) = [193 ], and (K ") = [131]

(a) For the distance moved during a half-cycle, write

¥i2 vi2 wiZ
d= J sdt = J wEdr = u%j sin(2avi)d: [E = E,sin(2nve))
o a 0

_uE _ ux(10.0Vem™)

" X (0x10°s) fassume E,=10V]=(3.18 x 102 Vscm™)u

That is, dfem = (3.18 x 107%) x (w/em? V-1 571, Hence,

d(Li") = (3.18 X 10-%) x (4.01 x 10y cm =
d(Na")= (3.18 x 10°) x (5.19 x 10~) cm =
d(K™)=(3.18 x 10 x (7.62 x 10~) om =

(b) These correspond o about , , and solvent molecule diameters, respectively.
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P20.12 The linear gradation of colour indicates a constant concentration gradient across the length of the
tube:

c=ey+ %x, where ¢, =0.100 mol dm~ is the concentration at x =0 and

de _ Ac _ (0.050 - 0.100) mol dm*

— =-5.0 x 10?*mol dm~* cm~*=~0.50 mol dm?m™
drx Ax 10 em

Thus, the thermodynamic force is given by

Flx)= _RT e [20.45]
¢ dx

-1 -1
_ 83145V mol'K™) x @98K) o oy
0.100 ~ 0.0050 x (x/cm)

B 1.24 kN mol~!
" 0.100 — 0.0050 x (x/cm)

(a) Atx=0,7 ={12kN mol*|=21x 102N per molecule = ’21 zN per molecule|
(b) Atx=35cm, F=|17kN mol™'|=2.7 x 107 N per molecule = |27 ZN per molecu]e|
(c) Atx=10cm, F =(25 kN mol|= 4.1 x 10~ N per molecule = |41 zN per moleculeJ

P20.14 Since D o<y [20.52] and  npecefR7 [20.25], we expect that D o< e~ 5B/RT

Therefore, if the diffusion constant is D at Tand D’ at T,

__RIn(¥/D) __ (83145 K~ mol"') x In(2.89/2.05)

X =9.3kJ mol-!
1 1 11
T 298K 273K
That is, the activation energy for diffusion is (9.3 kJ mol™'|.
kT
P20.16 (x?y=2Dt[20.60] D=——[20.52]
6mna

kT kT (1381x102JK-')x(298.15K) x ¢
6nDa  3ma(x?)  (3m)x(2.12 x 107 m) x {x?)

'n:

= (2.06 x 1015 I m) x [(;:2>J

~ _ t/s
=(2.06 x 1072 I m 35) X[m]

) L tls
=(2.06 x 10kg ms71) [mj




488 INSTRUCTOR’'S SOLUTICNS MANUAL: PHYSICAL CHEMISTRY

We draw up the following table:

ts 30 60 90 120
{xB/10 2 m? 88.2 113.5 128 144
7102 kgm' s 0.701 1.09 1.45 i.72

Hence, the mean value is (1.2 x 10 kg m's™'|.

P20.18 The viscosity of a perfect gas is
1 -

_ MAip

NET

1Mp kT \_(8RTY"
=| -2 % x
NEkT 242 ap M
[Exercise 20.2(b) note, 20.7], where o = nd? is the collision cross-section
(2 ) (MRTY
T\ 3rd®N, T
2 (MRT }”2

AN

2 (mrrY?]
So,d =
InN,| =

172
- 2 (17.03 % 10 kg mol ) x (8.3145 J K- mol™) |~ T
T3 % (6.022 x 107 mol ) s 1

o 1pm
102 m

@Ky "
=0274x{——L
{(m’kg m~s™) }

[20.74 with [A] = p/RT = pIN\kT]

T

112
(270)2
d=0274x{— =
(a) 0 X{(9.08x10'6) pm =;369 pm
/2
(490)"2
by d=0274 —— =
(®) d=0 >({(1.7r49><10-5) pm =308 pm

COMMENT. Tha change in diameter with temperature can be interpreted in two ways. First, it shows the
approximate nature of the concept of molecular diameter, with different values resulting from measurements
of different quantities. Secondly, it is consistent with the idlea that, at higher temperatures, more forceful colii-
sions contract a molecule's perimeter.
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Solutions to theoretical problems

The most probable speed of a gas molecule corresponds to the condition that the Maxwell distribu-
tion be a maximum (it has no minimum), hence we find it by setting the first derivative of the func-
tion to zero and solving for the value of v at which this condition holds.

m
2nkT

32
f)= 47{ ] e ™ 20.4] = const x vie ™7 [M[R = mik]

2
m=0, when| 2 -2 |=0.
dv kT

So

172 12
T 2RT
v(most probable) = ¢* = (%) = {—ATJ [20.8]

The average kinetic energy corresponds to the average of +nm?. The average is obtained by determining

-

o 32
{v*) = L v f(e)dv = 4n[2;I:T] L v T dy [20.4)

12 -502 2 112 -2
The integral evaluates to S _m . Then, {¢*)=4n - X 3 i = 3k
8 |\ 2kT 2rkT 8 | 2kT m

Thus, (&)= %m(vz) = %kT.

a

Write the mean velocity initially as a; then in the emerging beam (v, ) = KJ v, f (v )dy,, where K is
q

a constant that ensures that the distribution in the emergent beam is also normalized. That is,
a 12 ra
1=k| fydv,=&| 22— e mAIKT gy
o T 2nkT | ), !
This integral cannot be evaluated analytically but it can be related to the error function by
defining

myl
2kT

2

172
which gives dv, = [Zk—T] dy. Then,
m

12 V2 rp b

m 2kT K )

1=K|=—=1{ |— J e dy [b=(m/2kT)" x a]= —J e r'dy = LKerf(b)
(2111{1’"] [ " J 0 n? |, ‘

where erf (z) is the error function: erf(z) = (2/11”2)J e *dy.
0
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Therefore, K = L
erf(5)

The mean velocity of the emerging beam is

V2 ra
wy=K (—m—] J v e mHAT Ay
kT ) |,

1/2 a
=K m —kT i(e"’"’-%’z’”dvx)
2rkT m o v,

1/2
=-K (k_T) (e—ma?-fzkr -1
2mn

Now, use @ = U, iia = (2kTTmm)'2,

This expression for the average magnitude of the one-dimensionai velocity in the x direction may
be obtained from

o

- 2
m
dp. =2 -mI2kT
Uxf(vx) vy [G vx(z I T] e Ve

s Vinitar = 2[

0

o om YT (2"

“ 2mkT m mmn
It may also be obtained very quickly by setting a = e in the expression for {v,} in the emergent beam
with erf(b) = erf(e<) = 1.

Substituting & = (2kT/and'? into {v.} in the emergent beam, e~*/4#7 = ¢"V'* and erf(b) = erf(1/n'?).

[Fird
sz 1 _ e—ih:
Therefore, (.} =[ o ] x erf(Un?)’

From tables of the error function, or from readily available software,

erf(1/x'?) = erf{0.56) = 0.57 and e* =0.73
Therefore, (v, ) = |0.47V, Yinigai |-

P20.24 The most probable speed, ¢*, of a perfect gas is given by
2
c*= (%—TJ [20.8, derived in Problem 20.20j
m

Consider a range of speeds Avaround ¢* and nc*, then

* #\2 o—mn2c*L2ET
f(nc ) _ (HC ) e [204] - nze—(nl—l)mu"zl'ZkT=

F(c®) T o*E e-meUUT

* *
Therefore, j}(sc*)) =9xet=13.02x10?% and % =16 xe 5 =49 x 107
[
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2
The diffusion equation is: % = D2 [20.53).
ot ox?
_ ™
A(ED)]IZ

diffusion equation by taking both the partial derivative with respect to time and the second partial
with respect to position to find whether or not they are proportional:

i__ l ® i e—bxz.':+ i % b_xz. e—bx?‘f!—_i-l_ﬁc

ot 2 P 12 £ 2t 2

9¢ [ & |, f Z2b% | wuan

gx | t

axr |t V2 g ¢ ol t

1 bx? 1 oe .
=—| — |¢ +! = |¢ =—— as required.
2Dt D¢ D ot

Initially, the material is concentrated at x =0. Note that ¢ =0 for x >0 when ¢ =0 on account of the

We confirm that ¢(x,#) = I%e‘i”‘z” [20.57], where a = and b= %, is a solution to the

. 1
very strong exponential factor (e“”‘z’ — () more strongly than i - ooJ. When x =0, e/~ =],
We confirm the correct behaviour by noting that (x) =0 and {x?) =0 at t = 0{20.59 and 20.60], and

s0 all the material mustbe at x=0at¢=0.

The probability of being at x after time ¢ is given by
2 17z
P(x) = (—’) 242 [20,61]
Tt

112
P(6A) = (%J e-18ei

(a) After foursteps: t=41

112 12
2z e-18Tdn) = i e =(0.0043
7 X (47) 2n

P(61) = {

The exact answer is because the number of steps is insufficient to travel this distance.

(b) After six steps: 1 =61

12 12
2t l
P(63) = -tseiten) = | | ¢ ={0.0162
(64) {nx(ér)} © (31:] ¢
(c) After 12steps:r=127

112 12
27 ] @-18:127) = [6_1_J e ¥2=10.0514
b

Poa)= [ ax(127)
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Solutions to applications: astrophysics and biochemistry

’

o Grm . o .
Newton's gravitational force law: F = , where ( is the gravitational constant and r is the

r
centre-to-centre distance between mass m and m”. In this problem r 2 R, where R is a planet radius.

The minimum work w required to move an object of mass m from a position near the planet’s
surface to infinity is

3 oo 1 == 4
w=J Fdr= Gmm’J' izdr:—Gmm’ x[-] =(Gm szmgplanetR
¥

R R r R

=R

’

Gm’ . o . " m
where gy = —— is the gravitational acceleration of a planet and Bparer _ (—,] [ ) .
R- EFacth planet Earth

Using data provided in the problem:

>
m m Fipfars R T ¥
EMars = ERarth X {'E{J /{F] = Zeanh X [L) X (%J
Mars Earth HlEarn Mars

6.37

2
—— | =376ms>
3.38

=(9.81ms>)x(0.108) x [

The escape speed v, is determined by the minimum kinetic energy that provides the energy w.

2ml = (gR) punem, 50 that v, = (2gR)E ..

{a) The escape speed for Earth: v, =[2x(9.81 ms?) x (6.37 x 108 m)]" = m
(b) The escape speed for Mars: 1, =[2x(3.76 ms?) x (3.38 x 105 m}]*~ = m

Since ¢ = (8RT/mM)'? [20.7], the temperature at which the mean gas speed corresponds to the
escape speed is given by T’ = rMp2_ /8 K and computed temperature values for hydrogen, helium, and
oxygen are summarized in the following table:

10°TIK H, He 0,
Earth 11.9 23.7 190 [f=11.2kms"]
Mars 24 48 38 [6=5.0km ]

In order to calculate the proportion P of molecules that have speeds exceeding the escape velo-
city, we must integrate the Maxwell distribution [20.4] from v, to infinity. P is a function of M, T,
and v,

og

W2 e
f)yv=4n M pPe~MAIRTqy)
2nRT Ve

The integral of this expression has no analytical solution but it is easily numerically performed on
the scientific calculator or with computer software. Avotd unit errors by using ST units throughout.
Here is a Mathcad setup for the computations along with the desired calculations:

P(M,Tve) = J

Ve
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M s 3 M
R:=8.3145 T, =490 —4—— . .@ 2RT d
PM,T,ve) =41 2 -R-T) v vi.e v

For gases of the Earth’s atmosphere, Ve, =11.2 x10¥ ms™:

Hydrogen at 240 K. P{0.0020186, 240, 11.2 - 10F) = 2. 498 x 10~
Hydrogen at 1500 K: P{0.0020186, 1500, 11.2 - 10%) = 1.487 x 10~
Helium at 240 K: P{0.004, 240, 11.2 - 10° =3.210 x 105
Helium at 1500 K: P{0.004, 1500, 11.2 - 10% =9.516 x 10-°
Oxygen at 240 K: P{0.032, 240, 11.2 - 10% = 0.000 x 10°
Oxygen at 1500 K: P{0.032, 1500, 11.2 - 109 =1.888 x 10-%

For gases of the Mars atmosphere, V. =5.04 x 108 ms™:

Hydrogen at 240 K: P(0.002016, 240, 5.04 - 109 =1.122 x 105
Hydrogen at 1500 K: P(0.002016, 1500, 5.04 - 105)=2.502 x 10
Helium at 240 K: P(0.004, 240, 5.04 - 10% = 5.083 x 10"
Helium at 1500 K: P(0.004, 1500, 5.04 - 10°) =4.307 x 102
Oxygen at 240 K: P(0.032, 240, 5.04 - 105 = 5.659 x 1098
Oxygen at 1500 K: P{0.032, 1500, 5.04 - 10°) = 4.246 x 16+

Rased on these numbers alone, it would appear that H, and He would be depleted from the atmo-
sphere of both Earth and Mars only after many (millions?) years, that the rate on Mars, although
still slow, would be many orders of magnitude larger than on Earth, that O, would be retained on
Earth indefinitely, and that the rate of O, depletion on Mars would be very slow (billions of years?),
although not totally negligible. The temperatures of both planets may have been higher in past
times than they are now.

Dry atmospheric air is 78.08% N,, 20.95% O,, 0.93% Ar, and 0.03% CO,, plus traces of other gases.
Nitrogen, oxygen, and carbon dioxide contribute 99.06% of the molecules in a volume with each
meolecule contributing an average rotational energy equal to kT. The rotational energy density is
given by

_ En _ 0.9906N(e) _ 0.9906(%)pN, 09906 kTpN,
Pr= v RT RT
— 0.9906p = 0.9906(1.013 x 105 Pa) = 0.1004 J cm->

The total energy density (translational plus rotational) is
pr=px+pr=015Tcm?+010Jecm>3=0.25] cm™3

For order of magnitude calculations we restrict our assumed values to powers of 10 of the base
units. Thus,

p=lgem?=1x10°kgm
flair)=1x 10 kg m™' s7' [see comment and question below]

We need the diffusion constant:

kT
" 6mna
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a is calculated from the volume of the virus, which is assumed to be spherical:

m (1x10°m,) x (1 x 10" kg my")

V= =1x10%m’

o 1x10*kg m?
V=3%na’

1”3 s 313

o= V| fIX10Pme b 0 m

4 4

21 -1
(1x102FK) x (300 K) =1x107m?s?

T enx (1x107%kgm's ")y x (1 x10%m)

For three-dimensional diffusion:

o) I m?
=t e = 1085 = | 300
6D 1x10%m?s!

Therefore, it does not seem likely that a cold could be caught by the process of diffusion.

COMMENT. In a Fermi calculation only those values of physical quantities that can be determined by scientific
common sense should be used. Perhaps the value for n{air} used above does not fit that description.

Question. Can you obtain the value of n(air) by a Fermi calculation based on the relationship in
Table 20.37

112

P20.36 e(x,1) = ¢+ (¢, — ¢ ){l — erf (£)}, where &(x,t) = x/{(4D1)"? and erf(§)=1- i[ e’dy
T
¢

In order for c(x,f) to be the correct solution of this diffusion problem it must satisfy the boundary

condition, the initial condition, and the diffusion equation [eqn 20.53]. At the boundary x=0, =0,

2 [T ., 2 ) (=
R e

and erf(0)=1-—

Thus, ¢(0,8) = ¢y + (¢, — ¢} 1 — 0} = ¢,. The boundary condition 1s satisfied. At the initial time (¥ =0),
&(x,0) =0 and erf(==) = 1. Thus, c(x,0) = ¢, + (¢, — €,){1 — 1} =¢,. The initial condition is satisfled. We
must find the analytical forms for d¢/dr and 9%/ax®. If they are proportional with a constant of
proportionality equal to D, ¢(x,¢) satisfies the diffusion equation.

de(x,0) L {6, = )X _oup

MY - p| 2l S0 -xtane
ox 2 Jn(Dey?

dle(x,f) 1 (eg,—cy)x gxHaDe
ox? - 2 \/E( D)2

The constant of proportionality between the partials equals I and we conclude that the suggested
solution satisfies the diffusion equation.

Diffusion through alveoli sites (about 1 cell thick) of oxygen and carbon dioxide between lungs and
bleod capillaries (also about 1 cell thick) occurs through about 0.075 mm (the diameter of a red
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blood cell). So, we will examine diffusion profiles for 0 £ x < 0.1 mm. The largest distance suggests
that the longest time that must be examined is estimated with eqn 20.59.
nx2 (1 x 10~ m)*

g = 2 =3.74s
mET 4D 42.10 % 109 m?s)

Figure 20.2 shows oxygen concentration distributions for times between 0.01 s and 4.0 5. We set ¢,
equal to zero and calculate ¢, with Henry’s law [Section 5.3(b), eqn 5.23].

. P
bo, = 2% [16.26b and Brief illustration of Section 5.3b] = 21 kPa [Table 5.1]
° Ko, 7.9 x 104 kPa kg mol ™!

=27 x10"*mol kg™

So, ¢,=2.7x 10r*mol dm™.

Oxygen concentration profiles at ¢
3 ] T ! T

o
108 moldm™>
in
[
>
|

05s

05 ]
0.1s

0.01s

0 0.02 0.04 0.06 0.08 0.1
ximm

Figure 2(.2




The rates of chemical
reactions

Answers to discussion questions

The determination of a rate law is simplified by the isolation method in which the concentrations
of all the reactants except one are in large excess. If B is in large excess, for example, then to a good
approximation its concentration is constant throughout the reaction. Although the true rate law
might be v = & [A][B], we can approximate [B} by [B], and write

v=k[A], where k. = &[B], [21.10]

which has the form of a first-order rate law. Because the true rate law has been forced into first-order
form by assuming that the concentration of B is constant, it is called a pseudo-first-order rate law.
The dependence of the rate on the concentration of each of the reactants may be found by isolating
them in turn (by having all the other substances present in large excess), and so constructing the
overall rate law,

In the method of initial rates, which is often used in conjunction with the isolation method, the rate
is measured at the beginning of the reaction for several different initial concentrations of reactants.
We shall suppose that the rate law for a reaction with A isolated is v =k [A]7; then its initial rate, vy, is
given by the initial values of the concentration of A, and we write v, = &, [A]§. Taking logarithms gives

logvy=log k., + alog[A],[21.11]

For a series of initial concentrations, a plot of the logarithms of the initial rates against the
logarithms of the initial concentrations of A should be a straight line with slope a.

The method of initial rates might not reveal the full rate faw, for the products may participate in the
reaction and affect the rate. For example, products participate in the synthesis of HBr, where the
full rate law depends on the concentration of HBr. To avoid this difficulty, the rate law should be
fitted to the data throughout the reaction. The fitting may be done, in simple cases at least, by using
a proposed rate law to predict the concentration of any component at any time, and comparing it
with the data.

Because rate laws are differential equations, we must integrate them if we want to find the concen-
trations as a function of time. Even the most complex rate laws may be integrated numerically.
However, in a number of simple cases analytical solutions are easily obtained and prove to be very
useful. These are summarized in Table 21.3. In order to determine the rate law, one plots the right-
hand side of the integrated rate laws shown in the table against ¢ in order to see which of them
results in a straight line through the origin. The one that does is the correct rate law.
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The parameter 4, which corresponds to the intercept of the line at 1/7= 0 (at infinite temperature),
is called the pre-exponential factor or the frequency factor. The parameter E,, which is obtained
from the slope of the line (—£,/R), is called the activation energy. Collectively, the two quantities are
called the Arrhenius parameters.

The temperature dependence of some reactions is not Arrhenius-like, in the sense that a straight
line is not obtained when In k& is plotted against 1/7. However, it is still possible to define an activa-
{ion energy as

dink
dr

Ea=RT3[ ][21.30]

This definition reduces to the earlier one {as the slope of a straight line) for a temperature-independent
activation energy. However, this latter definition is more general because it allows E, to be obtained
from the slope (at the temperature of interest) of a plot of In k against 1/T even if the Arrhenius
plot is not a straight line. Non-Arrhenius behaviour is sometimes a sign that quantum-mechanical
tunnelling is playing a significant role in the reaction.

The rate-determining step is not just the slowest step: it must be slow and be a crucial gateway for
the formation of products, If a faster reaction can also lead to products, then the slowest step is
irrelevant because the slow reaction can then be side-stepped. The rate-determining step is like a
slow ferry crossing between two fast highways: the overall rate at which traffic can reach its destina-
tion is determined by the rate at which it can cross on the ferry.

If the first step in a mechanism is the slowest step with the highest activation energy, then it is rate
determining, and the overall reaction rate is equal to the rate of the first step because all subsequent
steps are so fast that once the first intermediate is formed it results immediately in the formation of
products. Once over the initial barrier, the intermediates cascade into products. However, a rate-
determining step may also stem from the low concentration of a crucial reactant or catalyst and
need not correspond to the step with highest activation barrier. A rate-determining step arising
from the low activity of a crucial enzyme can sometimes be identified by determining whether or
not the reactants and products for that step are in equilibrium: if the reaction is not at equilibrium
it suggests that the step may be stow enough to be rate-determining.

In the analysis of stepwise polymerization, the rate constant for the second-order condensation
is assumed to be independent of the chain length and to remain constant throughout the reaction.
It follows, then, that the degree of polymerization is given by

(NY=1+k2[A][21.68b]

Therefore, the average molar mass can be controlled by adjusting the initial concentration of mono-
mer and the length of time that the polymerization is allowed to proceed.

Chain polymerization is a complicated radical chain mechanism involving initiation, propagation,
and termination steps (see Section 21.9(b) for the details of this mechanism). The derivation of the
overall rate equation utilizes the steady-state approximation and leads to the following expression
for the average number of monomer units in the polymer chain:

(N) =2k [M]JIT2 [21.75]

where k, = %kp( Sfhkfe) V2, where k, k;, and k, are the rate constants for the propagation, initiation,
and termination steps, respectively, and fis the fraction of radicals that successfully initiate a chain.
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We see that the average molar mass of the polymer is directly proporticnal to the monomer concen-
tration, and inversely proportional to the square root of the initiator concentration and to the rate
constant for imitiation, therefore the slower the initiation of the chain, the higher the average molar
mass of the polymer.

Both the Marcus theory of photo-induced electron transfer and the Forster theory of resonance
energy transfer examine interactions between a molecule excited by absorption of electromagnetic
energy (the chromophore S) and another molecule Q. They explain different mechanisms of quench-
ing, that is, different ways that the chromophore gets rid of extra energy after absorbing a photon
through intermolecular interactions. Another common feature of the two is that they depend on
physical proximity of S and Q: they must be close for action to be efficient.

In the Marcus theory, the rate of electron transfer depends on the reaction Gibbs energy of electron
transfer, A, 7, and on the energy cost to S, Q, and the reaction medium of any concomitant molecular
rearrangement. The rate is enhanced when the driving force (A,G) and the reorganization energy
are well matched.

Resonant energy transfer in the Forster mechanism is most efficient when () can directly absorb
electromagnetic radiation from S. The oscillating dipole moment of § is induced by the electro-
magnetic radiation it absorbed, It transfers the excitation energy of the radiation to Q via a mech-
anism in which its oscillating dipole moment induces an oscillating dipole moment in Q. This energy
transfer can be efficient when the absorption spectrum of the acceptor (Q) overlaps with the
emission spectrum of the donor (S).

Solutions to exercises

The initial amount of NH, is assumed to be zero. Let its final amount be n,,,, and let & be the fraction
of that final amount produced during any given time. Thus, e varies from 0 to 1 over the course of the
reaction. At any given time, the amount of ammonia produced up to that time is an,;, the amount
of nitrogen consumed is an,,/2, and the amount of hydrogen consumed is 3an,, /2. If we let 14,
be the total quantity of gas initially present (H; and N,), then the total at any given time will be

Porotal = Plinitial — OPlaml 2 — 30Rapl2 + 6y = ity — Oty

Thus, the total amount of gas changes from sy, 1O 7y, — Ham OVer the course of the reaction.
(Note that total gas amount decreases at the same rate as ammonia is produced.) Since the volume
and temperature do not change, we may also write

Protat = Pinitial — apa.m|

1d[J diJ
v=-—c[1-;«1[21.3b], 50 %:vjy

Vy

Rate of consumptionof A=v=
Rate of consumption of B=3v=
Rate of formation of C=¢=
Rate of formation of D=2v=
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E21.3(b) v=v—i%l[21.3b]=%f?=%x(2.7 mol dm~s-) =
Rate of formation of C=v=
Rate of formation of D=2v=
Rate of consumption of A =v=
Rate of consumption of B=3v=

E21.4{b) The rate is expressed in mol dm= s, therefore

mol dm= 57 ={&,] x (mol dm~3} x (mol dm=3)?
where [k,] denotes units of k,, requires the units to be
(a) Rate of consumptionof A=v=
(b} Rate of formation of C=v=|k[A][BF

E215(b) Given 9%=k,[A][B][C]*‘

the rate of reaction is [21.3b]

_1do_diG =
v=— =2 = [LIAIBIC]

Vi
The units of k,, [k,]. must satisfy

mol dm= 571 = [k] x (mol dm) x (mol dm~?) x (ol dm=)"!
Therefore, [k]= @

E21.6{b) (a) Forasecond-order reaction, denoting the units of k, by [£/]

molecule m™ 57! = [k] x {molecule m~*)?, therefore [£,] = | m’ molecule's™ lor |m3 §7! ]

For a third-order reaction

molecule m~ s = [k,] x {molecule m—)’, therefore [k ] = lmf‘ molecule? s Ior |m6 7! |

COMMENT. Technically, ‘molecule’ is not a unit, so a number of molecules is simply a number of individual
objects, that is, a pure number. In the chemical kinetics literature, it is common to see rate constants reported
in molecular units of M2 871, mé &', cm? &7, etc., with the number of molecules left unstated.

(b) For a second-order reaction

Pa s =[k] x Pa? therefore [k, ]=Pa's™

For a third-order reaction

Pa s™' ={k,] x Pa?, therefore [k,] = Pa~?s""
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The rate law is

v=Kk[A]* o pi = {pao(l- 3}

where f'is the fraction reacted. Thus,

ﬂzﬂz(l-ﬂ]’
v, DAz 1- £

Taking logarithms
41 1““f1]
In| — [=alh| —=-
[”2] (I”fz
9.71
h In| =22
ln[vz) n(?.ﬁ?’J
s0 a= -y = 090 =20
In| —LL | In| =
(1—15J I{O.SOJ
The reaction is .

COMMENT. Knowledge of the initial pressure is not required for the solution to this exercise. The ratio of pres-
sures was computed using fractions of the initial pressure.

Table 21.3 gives a general expression for the half-life of a reaction of the type A — P for orders
other than 1:

21 -1
l)"I,‘Z T — oc[A (1)-" o pé—n

(n - D[AR

Form a ratio of the half-lives at different initial pressures:
l-n n=1
tpkPoy) _ f_o_]'J _ [fgl}
toltoz) | oz Doy

Hence, m{—f‘”(*”‘)’l) } =(n- 1)1n{£°-&J

L2 Poz2) Doy
]n( 340 SJ
178s
of (n-l=—n """ 0992 =]
289 kPa
In| 22722
55.5kPa

Therefore,

The rate law is

ve—r I8 _g1a)
2 dr
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The half-life formula in eqn. 21.13 is based on the assumption that

diA]_
T Al

That is, it would be accurate to take the half-life from the table and say

In2

hyy=—F
ky

where k[ =2k,. Thus,

_ In2
T 2(3.56 x 10°7s)

-paxiy

Likewise, we modify the integrated rate law [eqn. 21.12(b)], noting that pressure is proportional to
concentration:

a‘l.’2

p= peih

(a) Therefore, after 50 s, we have

P =(33.0 kPa)e 2356075 x(505) — |3 909 kPa

(b) After 20 min,

7 =(33.0 kPa) 2356107 s ix(20x605) — 12.97 kPa

E21.10(b) From Table 21.3, we see that for A + 2B — P the integrated second-order rate law is

P In[[A]o([B]o-?-[P])}
[Bl-2AL | (AL~ [PD[Bl,

By the time [B] falls to 0.010 mol dm™3, it has dropped by 0.020 mol dm=, so the [A] has fallen by
0.010 mol dm to 0.040 mol dm3, and the [P] has risen by 0.010 mol dm to 0.010 mol dm™.

(a) Substituting the data after solving for k,

= 1 <1n 0.050 x (0.030 - 2 x 0.010)
" (3.6 X 10°5) x (0.030 — 2 x 0.050) mol dm~? (0.050 — 0.010) < 0.030

=[3.5 x 10 dm’ mol-'s!

(b) The half-life in terms of A is the time when [A] =[A],/2 = 0.025 mol dm™. The stoichiometry
requires [B] to drop by 0.050 mol dm~; however, since [B], was only 0.030 mol dm™?, this concentra-
tion cannot be reached from the given initial conditions. The half-life of A, then, is , since
there is not enough B to react with it.

The half-life in terms of B is the time when {B] = [B],/2 = 0.015 mol dm™?, [A] = [A], — [B],/4 =
0.0425 mol dm-3, and [P] =[B}],/4 =0.0075 mol dm™:
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ta(B) = ! ]Jl!: [Al(B], - 2{P]D :|
kr ([B]Q - Z[A]O) (IA]() _ [PD[B]U

_ 1 xIn 0.050 x 0.015
(3.5 x 103 dm? mol*s7") x (0.030 — 2 x 0.050) mol dm~) 0.0425 x 0.030

=(2.2x10%s|=|0.61h

E21.11(b) The integrated rate law is

ket = L BB 2CD ip e 21 31
(Blo—2[Al,  ([Alo~ [CDIBy

Solving for [C] yields, after some rearranging

[Aly[B], (e Ble-2Akr — 1)
- [B]gekfl([ah_z[Ah) - 2[A]0

(€]

so [C] _ (0.027) x (0“130) X (60.34x(04130—2><0A027)x1-'s _ 1) _ 0027 » (eD.Olﬁxn‘s_ 1)

mol dm? (0.130) x e0MX010-2x0.02Txeks _ 3 3¢ ((0.027) - al026xtls _ (3 42

0-027 x eU.UZﬁXZ‘D‘_ 1

(@ [Cl= 30.025520_0_42 )mol dm2={0.014 mol dm™?
0.027 X 80.026)(15)(50_ 1

b [C]= eu.nzﬁism_o"u )mol dm==0.027 mol dm"?

COMMENT. Note that part (b) tells us that the reaction is essentially complete after 15 min. In fact, it is essen-
tially complete considerably before this time. When is the reaction 99% complete?

E21.12(b) The rate law is

pe—tdAl_piap
2 dt
which integrates to

2kr—ll—1 sor—1 1—1
T 2{ (AR [AR) T4k \[AP  [AR

1 1 1
= (4(6.50 x 10~ dm® mol s‘)] 8 ((0.015 moldm=) _ (0.067 mol dm~)? J

=[1.6 x 105s| ={19 days|

‘ E21.13(b} The equilibrium constant of the reaction is the ratio of rate constants of the forward and reverse
‘ reactions:
k
} K= Fi’ so k. =Kk!
|

T
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The relaxation time for the temperature jump is [Example 21.4}:
t=k+ k{([BI+[CD}!, so k=t"-k{([B]+[C]
Setting these two expressions for k, equal yields

1

K== k(BI+[CD, s ki=—r s

1
T (3.0x10%85)x (2.0 X 1075+ 2.0 X 10-*+ 2.0 x 10-*) mol dm™

= 8.3 x 10¢ dm® mol ' s

and k£ =(2.0%10"%mel dm?) x (8.3 x 108dm*mol-'s") =(1.7 x 10 75!

The rate constant is given by

Hence, &

-E,
RT

k.= Aexp{ J[21.31]

soat24°Citis

—Ea
(8.3145 F K mol™) x [(24 + 273) K]]

1.70 x 102 dm?* mol-'s~t= Aexp[

and at 37°Citis

2.01x 102 dm*mol-'s'= Aexp —E,
(8.3145 T K-'mol) x [(37 + 273) K]

Dividing the two rate constants yields

1.70 x 102 -E, 1 1
2.01x 1072 8.3145J K- mol™ 297K 310K
o 1:70 % 102 ~E, W1 1
201x102 ;) 183145 K-'mol™ 297K 310K

-1
1 1 170 x 1072
E=- - 1 83145 1 K-'mol"
and £, [2971( 310K] H(Z.OIXIO'z]X( mok)

=9.9x10°J mol"=|9.9 kJ mol™!

With the activation energy in hand, the prefactor can be computed from either rate constant value

3 -
A=k, exp(}f}] =(1.70 x 102 dm> mol-'s~!} x exp( 9.9 x10° ) mol J

(8.3145 7 K" mol~) x (297 K)

= 10.94 dm?® mol- S'II
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Proceed as in Exercise 21.14(b):

Rln(kr(TZ)J

k(7)) (831457 K-'mol™") x In2

= = -1
T T 298K 308K

Call the stable double helix 8 and the unstable one U. The rate of the overall reaction is

_d8

= =i[U
v dr 2[U]

however, we cannot have the concentration of an intermediate in the overall rate law.
(i) Assume a pre-equilibrium with

P [-E}%, which implies [U] = KJAJB]

and v=k{U]=|kK[A]B]|=

kx| AJ[B]| with kg =k, K

(ii) Apply the steady-state approximation:

du]

TRl 0 = k[A][B] - K[U] - &,[U]

K{A]B]

[U]= K+ ks and v= ik | k.- [A][B)| with &, Kk,

COMMENT. The steady-state rate iaw reduces to the pre-equilibrium rate law if kj = k,, which is likely to be
the case if the first step is characterized as fast and the second slow. The steady-state approximation also
encompasses the opposite possibility, that k] << k;, in which case k. = k,, implying that the first step is rate
limiting.

1 & 1
= +
kr kakb kapA

Therefore, for two different pressures we have

[analogous to 21.62]

P fl(l 1)
k(p) kip) k\p

G o]
so k=|——||——~—
o o NAKk(p) k(p)

_ 1 LY, 1 B
Tl109x10°Pa  25Pa ) | L7x107s7  2.2x 1045

=[9.9x10%5 Pa!|=[9.9 5" MPa”!|




E21.18(b)

E21.19(b)

E21.20(b)

E21.21(b)

E21.22(b}

Let the steps be
A+B=1 (fast:k,k;)
and TP (k)

Then, the rate of reaction is

v= 9[% = k(11

Applying the pre-equilibrium approximation yields

ok _ K,[AIB]
O AR
and v= % =LkJAIB] with k= E";"—

Thus, E,= E,(@) +E(b) - E(a)(21.641=(27+ 15~ 35) kI mol ' =[7KJ mol *]

The degree of polymerization is [21.68b]

(Ny=1+k A,
=1+(2.80x 102 dm* mol" 577) x 10.00 h x 3600 s h~' x 5.00 x 102 mol dm™?

The fraction condensed is related to the degree of polymerization by

_(W)-1_514-1

1
Ny —— = =
W)= % P= 0w =514

=|0.981

The kinetic chain length varies with concentration as
v =M [21.74]

so the ratio of kinetic chain lengths under different concentrations is

112

v, ML ([
202 =1 =50x(10.0)"?=|15.8
[Mllx([llz] *(10.0)

vi
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The quantum yield tells us that each mole of photons absorbed causes 1.2 x 10> moles of A to react
[21.76a]; the stoichiometry tells us that 1 mole of B is formed for every mole of A that reacts, From

the yield of 1.77 mmol B, we infer that 1.77 mmol A reacted, caused by the absorption of

(1.77 x 10~ mol) x (6.022 x 10% cinstein~')
= -4.4 x 10'#| photons

1.2 x 10? mol einstein™!

The quantum yield is defined as the amount of reacting molecules n, divided by the amount of
photons absorbed n,,. The fraction of photons absorbed f,,, is one minus the fraction transmitted
Jisans» and the amount of photons emitted 7, can be inferred from the energy of the light source

{power P times time ¢) and the energy of per photon (sc/A).
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Rn _ HpReN,

Pavs (1= frans)APE

- (0.324 mol) x (6.626 x 107 T 5} x (2.998 x 10¥ m 5™') x (6.022 x 102 mol™)
(1-0.257) (320 x 10~ m) x (87.5 W) x (28.0 min) x (60 s min-)

E21.23(b) The Stern—Volmer equation [21.83] relates the ratio of fluorescence quantum yields in the absence
and presence of quenching

& T

o _ _ e
= L rkolQl=

¢:

The last equality reflects the fact that fluorescence intensities are proportional to quantum yields.
Solve this equation for [Q]:

Ugo!s) ] (100/75) — 1
= - =0, -3
[Ql Toke (35 x107s) x (2.5 x 10° dm? mol ' s _—038 mol dm

E21.24(b} The efficiency of resonance energy transfer is given by [21.85]:

m=1-2L_015

to

Forster theory relates this quantity to the distance R between donor—acceptor pairs by

6

R 21.86
"= Rey g 12186

where R, is an empirical parameter listed in Table 21.7. Solving for the distance yields

e 16
I 1
R=R0[E—1J =(2211m)><[m—1] ={2.9nm

Solutions to problems
Solutions to numerical problems

P21.2 A simple but practical approach is to make an initial guess at the order by observing whether the
half-life of the reaction appears to depend on concentration. If it does not, the reaction is first

order; otherwise refer to Table 21.3. Visual inspection of the data seems to indicate that the half-life
is roughly independent of the concentration, therefore we first try to fit the data to eqn 21.12b:

[Al)_
ln[[A]0 J =kt

As in Example 21.3 we plot ln(

[A]
[Aly
the following table (A = (CH,),CBr):

J against time to see if a straight line is obtained. We draw up
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t/h 0 3.15 6.20 10.00 18.30 30.80

[AJ(10-? mol dm™?) 10.39 8.96 7.76 6.39 3.53 2.07

._[é.], 1 0.862 0.747 0.615 0.340 0.199

[Alo

ln([A—]] 0 —0.148 -0.292 -0.436 —1.080 -1.613
(Al

(ﬁ)/(dn’ﬁ mol') 9.62 11.16 12.89 15.65 28.3 48.3

0+

—1.0+

In{[A]/[Aly}

t/h
Figure 21.1

The data are plotied in Figure 21.1. The fit to a straight line is only fair, but the deviations look
more like experimental scatter than systematic curvature. The correlation coefficient is 0.996. If we
try to fit the data to the expression for a second-order reaction in Table 21.3, the fit is not as good;

that correlation coefficient is 0.985. Thus, we conclude that the reaction is most likely .

A non-integer order, neither first nor second, is also possible.
The rate constant &, is the negative of the slope of the first-order plot:

k,=0.0542 h-'=

At43.8h

[Al)_ - -
ln[mJ =—(0.0542 h) x (43.8 h) =—2.374

[A]=(10.39 x 10~ mol dm?) x e2#%=[9.67 x 10-* mol dm">
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Examination of the data shows that the half-life remains constant at about 2 min. Therefore, the

reaction is . This can be confirmed by fitting any two pairs of data to the integrated

first-order rate law, solving for the rate constant from each pair, and checking to see that they are
the same to within experimental error:

1n{%} = —k!t[21.12b, A = N,0,)

Note: £/ is the rate constant in the differential equation

_diA]

=k
o = KAl

Because of the stoichiometry of the reaction, the rate of the reaction is half the rate of consump-
tion of N,Qs:

__1dA] _ _K
v=-5 = kAl = A]
Solving for &/,
[Al
Inf X2k
{ [A] ]

T

t
At t=1.00min, [A]=0.705 mol dm~ and
1.000
In| —/—=
(0.705}
kl=———"=0350 min"' =5.83 x 105"
1.00 min
At :=3.00 min, [A] = 0.349 mol dm™ and
1.000
In| ——
0.349
b =———>=0351min"' = 5.85 % 10-3g"}
3.00 min

Values of k; may be determined in a similar manner at all other times. The average value of &/

obtained is [5.84 x 10257 | (which makes [k, =2.92 x 103 S"J). The constancy of k], which varies

only between 5.83 and 5.85 x 10~% 57! confirms that the reaction is . A lingar regression
of In[A] against ¢ yields the same result. The half-life is [21.13]:

In2 0.693 =
hp=—=——"—"———=11875=|1.98 min|.
12 kKl 5.84x107%s! s

The data for this experiment do not extend much beyond one half-life. Therefore, the half-life
method of predicting the order of the reaction as described in the selutions to Problems 21.1 and
21.2 cannot be used here. However, a similar method based on ‘three-quarters lives’ will work. For
a first-order reaction, we may write (analogous to the derivation of eqn 21.13)




THE RATES OF CHEMICAL REACTIONS 509

3
4_[&]9_ = «-lnz = lni =0288 or ¢,= 0288

=-1
LA 1 (AL p 3 A

Thus, the three-quarters life (or any given fractional life) is also independent of concentration
for a first-order reaction. Examination of the data shows that the first three-quarters life (time to
[A]=0.237 mol dm™) is about 80 min and by interpolation the second (time to [A]=0.178 mol dm ™)
is also about 80 min. Therefore, the reaction is first order and the rate constant 1s approximately

k= 0.288 0.288

oA 80 min

=3.6x10%min!

T

A least-squares fit of the data to the first-order integrated rate law [21.12b] gives the slightly more

accurate result, k, =(3.65 x 10~ min~'|. The half-life is

In2 In2

fyp= —= = ~——————— =190 min
7 kT 3.65% 107 min™

The average lifetime is calculated from

% = ¢ k0[21.12b]

Al

0

which has the form of a distribution function in the sense that the ratio is the fraction of

sucrose molecules that have lived to time ¢. The average lifetime is then

Jute"‘r’dt
o=t L [rrma]

k.
ekt dy
0

The denominator ensures normalization of the distribution function.

COMMENT. The average lifetime is alsc called the relaxation time. Note that the average lifetime is nct the
hatf-life. The latter is 190 min. Also note that 2 x f5, 2 t,0.

P21.8 The data do not extend much beyond one half-life, therefore we cannot see whether the half-life is
constant over the course of the reaction as a preliminary step in guessing a reaction order. In a
first-order reaction, however, not only the half-life but any other similarly defined {ractional lifetime
remains consiant. (See Problem 21.6.) In this problem, we can see that the two-thirds-life is not
constant. (It takes less than 1.6 ms for [ClO] to drop from the first recorded value (8.49 pmol dm=)
by more than a third of that value (to 5.79 umol dm); it takes more than 4.0 more ms for the con-
centration to drop by not even a third of that value (to 3.95 ymol dm™?). So, our working assumption
is that the reaction is not first order but second order. Draw up the following table:

The plot of 1/[C1O] vs. ¢ (Figure 21.2) yields a reasonable straight line; the linear least-squares fit is:
(1/ICIOD/(dm?® pmol-)=0.118 + 0.0237(¢#/ms) R?=0.974

The rate constant is equal to the slope

k?=0.0237 dm® pmol~ ms ' = [2.37x 10" dm”* mol 's |
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tims [CIO)/{umol dm™™) (UV[CIO])/(dm? pmol™)
0.12 8.49 0.118
0.62 8.09 0.124
0.96 7.10 0.141
1.60 5.79 0.173
3.20 5.20 0.192
4.00 497 0.210
5.75 3.95 0.253
0.30 R
‘15 0.25
[=
3
£ o :
g
O 0.15
PPN G S N S
0 1 2 3 4 5 6
t/ms
Figure 21.2

Note; &/ is the rate constant in the differential equation

_dicio) _ kCl0]
dt
Because of the stoichiometry of the reaction, the rate of the reaction is half the rate of consump-
tion of ClO:
_1d[CI0]

kf
= =k ICI0) = —~[CIO
v =3 S = KICI0) = —{CI0]

sO |E= 1.18x 107 dm? mol™ s*j

The half-life depends on the initial concentration [eqn 21.16]:

= =
27 EICIO),  (2.37 x 107 dm® mol-!s1)8.47 x 10~ mol dm™?)

A+BoP, %? =k [AJ[B]"

and for a short interval 52,

5TP] = kJA]"[BT5t
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Therefore, since 8{P] =[P}, - [P}, =[P,

Pl _ 4 (ap(Bys:

[A]
M is independent of [Propene], implying that m = 1.
[Propene]
[Chloropropane] _ | p(HC) 10 7.5 50
[HCH 0.05 003 0.01

These results suggest that the ratio is roughly proportional to p(HCIY, and therefore that m = 3
when A is identified with HCI. The rate law is therefore

d[Chloropropanc]
dt

and the reaction is in propene and in HCL.

If the rate constant obeys the Arrhenius equation {eqn 21.29), a plot of In k against 1/T should yield
a straight line with slope —£,/R. Construct a table as follows:

=k, [Propene|HCIP

k. Js 8/°C 10°K/T Ink,
2.46 % 103 0 3.66 -6.01
0.0451 20 341 -3.10
0.576 40 3.19 ~0.552

In(k, /s~ ) =~1166F K /T + 36702 : :
-7 — : ; ; ;
0.0031 0.0032 0.0033 0.0034 0.0035 0.0636 0.0037
K/T
Figure 21.3

The plot is shown in Figure 21.3. The best-fit straight line fits the three data points very well:
In(k /sy =-1.17x 10* K/T + 36.7
so E,=—(-1.17x 10°K) x (8.3145 J mol"! K~)={9.70 x 10T mol'|={97.0 kJ mol-'
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P21.14 We can estimate the activation energy of the overall reaction by proceeding as in Exercise 21.14(a)
and (b):

—Rin{%
Eyy= (R (’:3) ]—Rhl?uI =

2K MIK

To relate this quantity to the rate constants and equilibrium constants of the mechanism (Prob-
lem 21.11), we identify the effective rate constant as k. = XK, K; and apply the general definition of
activation energy [eqn 21.30]:

dinka _ pr ke dU/T) _ - dlnke

Ea off = RT? =
: dT d(IT) 4T d@i/T)

This form is usefu! because rate constants and equilibrium constants are often more readily differ-
entiated when considered as functions of 1/7 rather than functions of T, as in this case:

Inkgz=Ink+InK +nkK,
dink,;  dlnk dink, Rdanz

By - - - ~E+AH+AH
SO B = RGwT T A AW T AW 1T A
dink _-AH [van’t Hofl equation, Section 6.4(a)]
dUT) R

Hence, E,=E, - AH — A H,=(-18 + 14 + 14) kJ mol-'=|+10 kJ raol™

P21.16 (a) First, find an expression for the relaxation time, using Example 21.4 as a model:

dA] 2 g
& = 2kIAF+2K]A;] .

Rewrite the expression in terms of a difference from equilibrium values, [A] =[A],, + x

dIAl_ Akt dx _ 5 (AL + 0P+ 2K A, g — L)

dr dr di
d ’ r
E-:‘i = 2k [AL, - 4k, [Al X — 2k X + 2K][A, ) — Kx

Neglect powers of x greater than x', and use the fact that at equilibrium the forward and reverse
rates are equal,

k(AL = kA,
to obtain

dx : ,
5 = RIAL DX, so —=dk[AL+ K]

To get the desired expression, square the reciprocal relaxation time,

(i) T— = 16K2[AR, + B k[ Aoy + (KLY
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introduce [A},; = [A],, + 2[A;]., into the middle term,

I . ’
P 16kI[AL + 8k k(Ao — 2[As)es )} + (kY

= 16K[AR, + 8Ik [ Al — L6k, A Ly + (k1P = 8K A L + (50|

and use the equilibrium condition again to see that the remaining equilibrium concentrations
cancel each other.

COMMENT. Introducing [A),,, into just one term of egn (i) above is a permissible step but not a very systematic
one. It is worth trying because of the resemblance between egn () and the desired expression: we would be
finished if we could get [Al,, into the middle term and somehow get the first term to disappear! A more sys-
tematic but messier approach would be to express [A],, in terms of the desired [Al,, by using the equilibrium
condition and [Al = [Al + 2[Azle Solve both of those equations for [AJl,, set the twe resulting expressions
equal to each other, solve for [Al,, in terms of the desired [A],,, and substitute that expression for [A],, every-
where in egn {i).

1
(b) Plot s [Adw:

The resulting curve should be a straight line whose y-intercept is (k;)* and whose slope is 8%, k..

(¢c) Draw up the following table:

[Alie/ (0] dm3) 0.500 0.352 0.251 0.151 0.101
t/ns 2.3 2.7 33 4.0 53
1/(t/ns)? 0.189 0.137 0.092 0.062 0.036

The plot is shown in Figure 21.4.

02

= 03799 »
0.18 _)03799?61-00003 .................... LA IR IR e

To (-0 — RN S RSN WP SO

0.12 P T E.,...A...A...,,...,.g .................... : .................E ....................

1/(z/ns)?
=1

0 0.1 0.2 0.3 0.4 0.5
[Al/(mol/dm?)

Figure 21.4
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The y-intercept is 0.0003 ns~? and the slope is 0.38 nsZ dm3 mol-!, so

ko= (3107 x (10 5)2)12 = (3 x 1045 2)2 < 1.7 x 1075

_ 0.38 x (10 s)2 dm’ mol™!

= ﬁ-’f % 10° dm? mol~ s~

T 8x (17 x107s7)
3 -1t = 9
and szaldm mol's =2._‘,"_x10 _Exi0?
kofs! 1.7 x107

COMMENT. The data define a good straight line, as the correlation coefficient A2 =0.996 shows. That straight
line appears to go through the origin, but the best-fit equation gives a small non-zero y-intercept. Inspection
of the plot shows that several of the data points lie about as far from the fit line as the y-intercept does from
zero. This suggests that the y-intercept has a fairly high relative uncertainty and so do the rate constants.

(a) The fluorescence intensity is proportional to the concentration of fluorescing species, so

L _ 181

I t
=—— =g [21.79] so ]n[—f-) =——
I, [Shk 1

o To

A plot of In(F;/I;} against ¢ should be linear with a slope equal to —1/7, (i.e. 7, = —1/slope) and an
intercept equal to zero. See Figure 21.5. The plot is linear, with slope —0.150 ns™, so

0

G SRR ......................... ......................... ........................

-1.5 1
_2.5 -
-3 3 ; ;
0 5 10 15 20
Time/ns
Figure 21.5

7= —1/(=0.150 ns™) =

. 1 (] C
Alternatively, average the experimental values of ;ln(l—fj and check that the standard deviation is
0

a small fraction of the average (it is). The average equals —1/7, (i.e. 7,=—1/average).

(b} The quantum yield for fluorescence is related to the rate constants for the various decay mech-
anisms of the excited state by

_ kf
kg Foyse + Ko

S0 kp=de/r,=0.70/(6.7 ns) = [0.105 ns™!

& [21.81] = k7, [21.80]
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Proceed as in Problem 21.18. In the absence of a quencher, a plot of In J;//, against ¢ shou_ld be
linear with a slope equal to —1/z,. The plot is in fact linear with a best-fit slope of ~0.1004 us™
(See Figure 21.6.)

1
= 01004 s '

0

No
quencher

With
quencher :
*1_5 e
R, Y USRS JOTURURUOURIUN S, NSO b
-2.5 ' - :
0 5 10 15 20
Time/ps
Figure 21.6

In the presence of a quencher, a graph of Inf; /I, against 7 is still linear but with a slope equal to -1/r.
This plot is found to be linear with a regression slope equal to —1.788 ps'.

-1
L 559
F T 01788 s Hs

The rate constant for quenching (i.e. for energy transfer to the quencher) can be obtained from
1 = L + ko[Q] (Example 21.9]
T T

' —1'  RT(r'-1;")
Th = =
Y o
_ (0.08206 dm® atm K~ mol1)(300 K)(0.1788 — 0.1004) x (10-65)-"

9.74 x 10*atm

=[1.98 x 10° dm? mol's!|

Solutions to theoretical problems

The rate of change of [A] 15

dlA] _ "
o - k[A]

[A] t
d[A] J
Hence, J’ —=-k | dt=-kt
(Alg [A]n 0
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1
Therefore, k1= (LJ X al ln—l
n-1 [A] [A]o

At 1=1p, [A] =[A]/2

1 271 1 an-1_1 1
kty,=| — T | = — -
@‘[n—JXhAH'[AEJ [n—IJXhAEJ

2711
k(n-D[A]"

and fp= [as in Table 21.3]

Now, let ¢, be the time at which [A] = [A],/3. Substitute these expressions into the integrated rate
law:

R O S N A (i
""1’3‘[n—1]x[{A1;" [A]g*] (n—l )x(mz‘}
3-1
k(n—D[A]}"

and t]_g'_—

P21.24
dr

= k[A][B]

Let the initial concentrations be [A], = A, [B], = B;, and {P], = 0. Then, when P is formed in concen-

tration x, the concentration of A changes to 4, 2x and that of B changes to B, - 3x. Therefore,
d[P] dx

& A k{Ady—2x)By—3x) withx=0atr=0

[ k.dt =f dx
o (Ao —2x) x (B~ 3x)

0

Apply partial fractions decomposition to the integrand on the right:

J kdt = J 6 Nt 1 |4
. A 2B,=34, )7 | 3(4,-2%)  2(B,-3x)
_ -1 « J Todx J’ T odx
| (2By-34,) o X =34 o X~ %Bo
_1 -1
kit= _L x| In ol 12A0 —in al 1380
(28,—34,) —24 -35,

([ @x-A0B ) 1 1 @x = A40)B,
Tl 2B, -34, | L A(Bx - By) | |1 34,-2B; [ | 4,(3x — By)




P21.26

P21.28

P21.30

THE RATES OF CHEMICAL REACTIONS

Integrate eqn 21.30

dink,
E=-R [d(ur)]

to find an expression for In k, as a function of temperature

E
> d(UT
7 WD)

dlnk.=-

E E,
Ink = | -—2d(/T)=~—|d(I/T
o fonse[Bavmo-E
E

and Ink,=—"2+C
RT
This is eqn 21.29, with C=1n 4.

d[}?] =—k,[A] for n= 1 integrates to

The rate law

1 1 1
kt= (n — J X [{A]"l [A]g_l ] [Table 21.3]
(")
AL (Al
() ()
HAL (Al

1
Atr=ty, kiy= [ ]

n-1 i
n—1_.
Hence, fuz —E———l
tay (5)"_] -1
L\ d[A] — 2 )

2 A‘k,_'A2 TRl =2k [AT+ 2k]A,]
Define the deviation from equilibrium, x, by the following equations, which satisfy the law of mass
conservation:

[A]=[Al;+2x and [A,]=[A;],—-x
Then,

dA], +2

W = 2k (A ]g + 22+ 2K A g — )

dx

= _kr([A]eq + 2x)2 + k:([AZ]eq - x) = _kr([A]sq + 4[A]eqx + 4x2) + k:([AZIcq - x)

dr
= {4k x? + (k) + 4k [Alg )x + E[AE, - KA L}
= _{(kr’ + 4kr[A]eq)x + kr[AEq - kr’[AZ]eq}

517
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In the last equation the term containing x? has been dropped because x will be small near equilib-
rium and the x* term will be negligibly small. The equation may now be rearranged and integrated
using the following integration, which is found in standard mathematical handbooks:

dw 1
Jaw-&b = ;ln(aw + b}

J d . j o
(k! + 45 [AL)x + K [AlL - K[As)y

I

i kAL in{(k! + 4k [Alg)x + KL [ALL - &{[A;),} = —t + constant

Let ln[lJ ==k + 4k [Al)t, where ¥ =k + 4k [Al)x + K [A]L — KTAL L,

i)
Then, y= yyet*¥sltker

Comparison of the above exponential to the decay equation y = e reveals that

1
Tkl + 4k (A,

COMMENT. Note that this equation can be used as the basis of an alternative derivation of the eguation
discussed in Probiemn 21.16. The manipulations use the facts that K = [Aule,/TAIZ, = k. /k; and Al = [Als + 2[As),
by conservation of mass, which can be used to show that

2k,

[A]tol = [A]eq + _E'r,_

2k
o Ak [Al+[Alg = [Alin =0

This quadratic equation can be solved for [A],;:

K [
[AM’4K[1+ % q

Substitution of this equation into iz = (k{ + 4k, [A]., ) and some algebraic manipulation yields the
T

result of Problem 21.16: iz = k24 8k kA
T

(a) To find mean cube and mean square molar masses, we need an expression for the probability
P, that a polymer consists of N monomers, In stepwise polymerization, Py is the probability that
the polymer has N — 1 reacted end groups and one unreacted end group, In terms of the fraction p
of total end groups in the mixture that have reacted, the former probability is p*-!; the latter 1 — p.
Therefore, the total probability of finding an N-mer is

Py=p*'(1-p)

Since the molar mass of an N-mer is N times the monomer mass, M, the mean square molar mass
is
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(M2)= S (MNY Py = MILN Py = MEN?) = Mi(l - PN PN

d M1
—Mz(l-w—p ZPN_MZ(I—P)d— d—(l—p)"=—d—£;Tf).

Similarly, the mean cube molar mass is

(M*) = Y (M\NYBy= Mi(l- p)Y Np*™
N N

d d d d
— A — 2N o A — B P p— N
=M1~ p)y ZNP MiQ p)dppdppdpgp

o, MLsdps p?)
= M;(l p)d m d(l pyi= o
Therefore, (M) _|[M+4p+ 7)
M2y 1-pt
(b) <N>———[21683]sop..,1_<_;{>
1 1 Y
MAl+4[ 11— — |+]1-—
(M?) {+[ <N>J[ <N>”
S
(N}

_ MUNYZ+ MNP —HNY+ (NY 2N+ 1)
- (NP = (NY+2{(N) -1

M (6{NY¥-6(N)+1)

2ANY -1
P21.34 %:—k,[AF[OH]:«-k,[A]3 because [A] =[0H]
dAa]__ HdA] J Cdie
AT - k.dr and on [AT =-k, odz_—k,z

. dx _ -1
Since [ PO the equation becomes

1
AT [AF

=2kt or [A]l=[ALQ+2k{AR)Y"

By egn 21.68a the degree of polymerization, (N), is given by

‘ (N = [[i]]“ —[(0+ 2k AR
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Consider the following mechanism:

Cl+hv—2Cl I

Cl+ CHCl, —» CClL, + HCI k,

CCL+(Cl,— CClL,+Cl k;

2CCL+ (L, — 2CCl, k,

6 L= anca e+ e

L drec
(i} [_de = Io,[CI[CHC, ] — A5[CCLLJ[CL,] - 24, [CCLP[CL] =0
dic)

(iti) = =21~ KICHCHCL] + K[CCLICL]= 0

d[Cl;]
dr

Therefore, I, = k,JCCLP[Cl,] [add eqns (ii) and (iii)]

{iv) = ~I, = K[CCL][CL, ] - &, [CCl, F[CL, ]

which implies that

I 172
[CC“{T&J

Then, with (i),

diCCL] _,; , R?[CL]™
dt ! k2

When the pressure of chlorine is high, and the initiation rate is slow (in the sense that the lowest
powers ol I, dominate), the second term dominates the first, giving

172
% - %{fz_[cw = [l 12[CL] "
4

with k.= % It seems necessary to suppose that Cl+ Cl recombination (which needs a third body)
]

\
|
|
|
- |
is unimpertant.

Solutions to applications

(a) For the mechanism

hhhh...z.fjlhchh...

kp
hehh. .. —><T ceec. ..
b
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the rate equations are

Mt”w] = —k,(hhih..] + k{[hchh..]
] ... ifhchh...|~ fhchh. . + Kilecee..
% =ky[hchh.. ] - k[cece.. ]

(b) Apply the steady-state approximation to the intermediate:

% = k,[hhhhb. ] - Klhchh..| - kJhchh. ]+ Kecee..]=0
k,[hhhh.. )+ K[cece.. ]
hehh..)=
s [hchh... i+ k,
Therefore, d{hhhh. . ] ke [hhbh. ]+ K k [hhhh.. ]+ Kecee.. ]
d kl+ k&,
— [hhhh... ] ki, -k (kl+ k) e kilecce..]
ki + &, ki +ky
=— k kb [hhhh J+ kk kkb [eeee. .
This rate expression may be compared to that given in the text [Section 21.4 for the mechanism
A # B

k kb kf = ka'klg
Tk kT Kt ks

Here, hhhh.. —&cm .with £,

P21.40 We approach the lifetime via the efficiency of resonant energy transfer;

nT=1—I—f[21-85]=1—1

ko To

RS
and = m [21.86]

Equating these two expressions for n; and solving for R gives:
RS T -1 RE+RY

sl 0 ——e—=
R0+R To To Ro T— T

R 6 + 176
T To— T+ T T T
== =22 = or R=KR,
R, T— T Ty— T To— T To—~T

/6
0.010
f1,=10 ps/10° ps =0.010 d =56 — | =2
/1, ps/10° ps and R=35 nm(l—0.0lOJ




2 2 Reaction dynamics

D22.2

D224

Answers to discussion questions

A reaction in solution can be regarded as the outcome of two stages: one is the encounter of two
reactant species; this is followed by their reaction in the second stage, if they acquire their activation
energy. If the rate-determining step is the latter, then the reaction is activation controlled. An
activation-controlled reaction is activated to the extent that the rate-limiting step has a significant
activation energy.

If the rate-determining step is the coming together of the reactants, then the reaction is said to
be diffusion controlled. For a reaction of the form A + B — P that obeys the second-order rate law
v =k [A][B], in the diffusion-controlled regime,

k.=ks=4zR*DN, [22.18]
where I} is the sum of the diffusion coefficients of the two reactant species and R* is the distance at
which reaction occurs. A further approximation is that each molecule obeys the Stokes—Einstein
relationship and Stokes’ law, and then

k, = 3BT 12501
3n

where 71 is the viscosity of the medium. The result suggests that &, is independent of the radii of the
reactants. It also suggests that the rate constant depends only weakly on temperature, so the activa-
tion energy is small.

Much work in chemical dynamics is based on classical dynamical theories, in which trajectories
on potential energy surfaces are important quantities. (By the way, this statement characterizes
approaches to dynamic phenomena outside chemical reactions, such as protein folding to cite one
example.) As we have learned, classical mechanics is a limiting case of the more generally accurate
quantum mechanics, and in quantum mechanics trajectories are not valid constructs. Classical
approaches are often computationally more tractable and conceptually simpler than quantum,
which is why their use persists; however, classically based approaches increasingly diverge from
quantum results for systems of low mass or at low temperature. Under such conditions, so-called
tunnelling (the non-zero probability of a system to be in a state from which classical mechanics
forbids it) is a quantum-mechanical effect too important to ignore,

Perhaps the most common application of quantum approaches to dynamics is in the calculation of
potential energy surfaces. Quantum-chemical techniques are often used to derive potential-energy
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surfaces on which classical trajectories are then investigated. Quantum-mechanical scattering theory
{(Section 22.8d) is brought fo bear in some cases.

D226 See Section 22.8, particularly subsection (b). In general, for a collision to become a reaction, the
collision must have enough energy for the system to reach the ‘height’ of the transition state, the
saddle point on the potential energy surface between the reactant and product ‘valleys’. The colli-
sion must also have a trajectory that crosses the saddle point without returning to the reactants,
{Remember, if a system has enough energy to reach the transition state, it has enough energy to go
back to reactants!)

The position of the transition state in the potential energy ‘landscape’ influences the characteristics
of trajectories that lead to reaction. See Figures 22.24 and 22.25 in the main text. For example, if
the transition state lies nearer the reactants, the trajectorics most likely to lead to reaction have
reactants high in translational energy; once past the transition state, these trajectories roll from side
to side of the product valley, yielding vibrationally excited products. Conversely, if the transition
state lies nearer the products, then reactants with high translational energy are very likely to “bounce
off” the surface back into the reactant valley. It takes side-to-side motion (i.e. vibrational motion) to
get the system around the corner to the transition state; once there, products with high translational
energy are formed.

D22.8 For electron transfer to occur at an electrode, several steps are necessary. A species in a bulk solu-
tion phase must lose its solvating species and make its way through the electrode/solution interface
to the electrode. Once there, its hydration sphere must be adjusted by the electron transfer itself, and
then the species must detach and reverse its steps as it were, passing back through the interface into
the bulk solution phase. Because there are energy requirements associated with these steps, they are
said to be activated. How the activation Gibbs function depends on applied potentials and on the
resemblance of transition state to oxidized and reduced species is examined in Further information
22.2.

Solutions to exercises

E22.1{b) The collision frequency is
7 =68y AN[20.11a]
kT

2 u2
8kT
where &, = (—) = 4[,_] [20.10 with g = ﬂ} o =rd? [Section 20.1b] = 4zR?, and & = -
U nm 2 kT

/2 2
- P kT i
Therefore, z = AN = (4 R? i 4] =1 = 2
erefore, z = oC, N = (dx )X[k ]x (ﬂ ) 16pR [ ]

=16 (100 x 10*Pa) x (180 x 10-'2 m)?

/2
n
X
((28.01 % 1.661 x 107 kg) x (1.381 x 102 J K} x (298 K)J

=(6.64 x 10°s"!
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The collision deusity for like molecules is

z=X 270122 £
2 2\ kT 2 1381x 102 K- x 298 K

6.64x 105! 100 x 10°P
i[ 4 J: s [ kgL ]:‘8.07x1034s“m3

For the percentage increase at constant volume, note that % is constant at constant volume, so the
only constant-volume temperature dependence on z (and on Z) is in the speed factor:

zee TV 50 12%— =—£— and ia—Z =L
z\8rT ), 2T zlor), 21

ThereforE, §=£=£=l ...l_O_I_<_ =0.017
z Z 2T 2{298K

so both z and Z increase by about .

The fraction of collisions having at least £, along the line of flight may be inferred by dividing out
of the collision-theory rate constant [eqn. 22.12] those factors that can be identified as belonging to
the collision rate: § = e~5/RT,

E 15 x10%J mol™!
) o —6.01 = e50=[0.0024
@ O 2r = B31457 K mol") x (300 K) so f =eeo=[0.0024

E, 15 x 10%J mol!

RT  (8.3145] K-'mol™") x (800 K)

E 150 x 10°J mol-!
) —== =60.1, =g 0i=|76x107
O O pr = EAMSTK 'mol) x 300 K) 0 f=e

E 150 x 107 J mol™
0 B =226, —en6=[l6x1077]
@) 7 = 83125 K- mol”) x (800 K) 0 f=e

A straightforward approach would be to compute f = e~5/RT at the new temperature and compare
it to that at the old temperature. An approximate approach would be to note that f'changes from

=226, so f=et*=|0.10

(i)

|
Jo=e %R to exp , where x is the fractional increase in the temperature. If x is small, |

RT(1+ x)
the exponent changes from —E,/RT to approximately —£,(1 — x)/RT and f changes from f; to

Thus, the new fraction is the old one times a factor of f*. The increase in f'expressed as a percentage is

L= to 100% = Mo;_‘_fz x 100% = ( 3% — 1) x 100%

a 0

(a) (i) [f5"=(24x107%)19%0=] 22 and the percentage change is .

(i) f77=1(0.10)"1%0 =1 03 and the percentage change is .

by (D 2¥= (7.6 x 10727y 103% = 7 4 and the percentage change is |640% (|600%| using the

exact approach).

(i) f3%=(1.6x 10-9)1950 = | 33and the percentage change is[33%].

\
[ = e Ba(I-RRT = g ERT (@-BalRT Y5 = f fox
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172
k= PG(EJ NyeBiRT [22.13]
mu

We are not given a steric factor, so assume that P=1.

8(1.381 x 103 T K1) x (450 K) ]”2

= 0.30 x (10~ m)?
e = 0.30 > (10%m) x[ 7% (3930 x 1,661 x 107 kg)

_ 3 -1
x (6,022 x 10 mol-!) x exp[ 200 x 10°J mol J

(8.3145J K ' mol ™) x (450 K)

= Ll.'? % 107 m? mol! s‘lJ = ljx 102 dm?mol-*s|.

According to the RRK model,
g1
E*
P= [1 - ?J [22.14a]

where E is the available energy, E* is the energy needed to break a bond, and s is the number of
modes of motion available to accept the energy.

61
250 kJ mol!
Pz[l " 3000 mol” rnol“] =[13x10"

The rate constant for a diffusion-controlled bimolecular reaction is
ky;=4nR*DN, [22.18]

where D=D +D5=2x(42%x10°m?s")=84x10°m?s"
kg =4 x (0.50 x 107 m) x (8.4 x 10° m? s7") x (6.022 x 10 mol™)

ky =32 %107 m?mol~'s™'={3.2 x 10" dm? mol' 57|

The rate constant for a diffusion-controlled bimolecular reaction is

-1 -1 3 -1
8RT [22.21]= 8 x(8.3145 J K-'mol") x (298 K) _ 6.61 x 10? J mol

© 3 3n n
(a) Fordecylbenzene, 1=3.36 cP=3.36 x 10 kg m™' s

ky

_ 6.61x10°J mol™’
T 336x107kgm's

=197 x 10° dm’ mol-' s

4 -=1.97 x 108 m?moel s

{b) 1In concentrated sulfuric acid, n=27cP=27x 10" kg m' 5!

_ 6.61x10*J mol™!
T 27 %103 kg mls!

= (2.4 x 10° dm® mol 5|

4 =24 x 10 m*mol-'s!
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E22.8(b) The rate constant for a diffusion-controlled bimolecular reaction is

BRT &x(B3145T K mol!)x(298K)

k.= =
™ 3% (0.601 x 10 kg m~'s)

=1.10 % 107 m* mol-'s”'=[1.10 x 10° dm’ mol-1s™!|

Since this reaction is elementary bimolecular it is second order, hence

tin= [Table 21.3, with k, = 2k, because two atoms are consumed)

1
2i5[Ad
1
tya= =[253%10°
50 = S (110 % 107 dm? mol's1) x (1.8 X 102 mol dm %)

E22.9(b) The steric factor, P, is

ot
P =—[Section 22.1(c)]
c

The mean collision cross-section is o = wd? with d = (d,, + dg)/2.

Get the diameters from the collision cross-sections:

d,=(o,/m)? and dy=(og/n)?

2
12 12
Tl e ol (¥ + o’  {(0.88 nm?)?+(0.40 nm?)V?}?
N GZZ{[_A] +(_B] } ) 4 B 4 =[0.62 o}

Fi1 n

8.7 x 1072 m?
p=—"Tl"" " =|141x103
Therefore, 0.62 x (1 0-* m)z

E22.10(b) Since the reaction is diffusion controlled, the rate-limiting step is bimolecular and therefore second
order, hence

4P _
= KIATBI

where k= 4mR* DN, [22.18] = 4aN, R*(D, + D)

kT 2RT 1 1
—47ENAX(RA+RB)X {R—A+—][22 20]——(RA+ RB)X[E+R_BJ

2x(8.3145FJ K 'mol™} x (293 K)
3Ix(1.27 x10%kgm's™)

=5.76 x 106 m3>mol~'s™'= 5.76 x 10° dm* mol-'s

1 1
x (442 + 885) x [442 + -gé—s-j

ky=
Therefore, the initial rate is

d[P 1 _ (5.76 x 10° dm® mol' s1) x (0.200 mol dm*) x (0.150 mol dm-?)

=[1.73 x 10 mol dm*s~!

o
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COMMENT. if the approximation of eqn 22.21 is used, ky=5.12 x 10° dm® mot~' 57", In this case the approxi-

mation resuits in a difference of just over 10% compared to the expression used above.

E22.11{b} For reactions in solution the relationship between energy and enthalpy of activation is
AtH=E, — RT [Brief Comment in Section 22.5(a)]
k.= BeMSRg 8*HIRT B = [%] x (R—TJ [22.43]
= BetSIRg-E/RTg = fe—EalRT
Therefore, 4 = e Be®S® implying that A!S = R(]n% - IJ
Therefore, since E,=6134 K x R
ASH = E,— RT = (6134 K - 298 K)R

= (5836 K) x (8.3145 ] K~ mol™) = |+48.52 kJ mol”

_(1.381x102JK™) x (298 K) y (8.3145J K'mol™") x (298 K)
B 6.626 x 104 J s 105Pa
=154 x 10" m* mol-'s'=1.54 x 104 dm? mol-is™!

1z 3 L anl
and hence A!S = (8.3145 T K mol™} x {In 8.72 x 102 dm?* mol-'s _1
1.54 x 10*dm’* mol~'s™!

=|-32.27 K- mol|

COMMENT. In this connection, the enthalpy of activation is often referred to as the 'enargy’ of activation.

E22.12(b) The enthalpy of activation for a bimolecular solution reaction is [Exercise 22.11(b)]

AH =E, - RT =8.3145 T K-"mol"' x {5373 K — 298 K) = |+42.2 kJ mol~'

The entropy of activation is [Exercise 22.11(b)]
ANS = R(lni - IJ
B

. kRT? ,
with B= PR 1.54 x 10 dm?* mol~s7! [Exercise 22.11(b)]
P

6.45 x 101
1.54 x 10

Hence, A'G = AUH — TASS = {42.2 — (298) x (=15.5 x 10-*}} kJ mol-' = [+46.8 kJ mol-!|.

Therefore, AlS =8.3145F K- mol~' x {ln( J - 1} =-15.6J K" mol!

E22.13(b) Use eqn 22.44 to relate a bimolecular gas-phase rate constant to activation energy and entropy:

kr = CZB eA+Sﬂ‘Re-Eﬂ.’RT




528 INSTRUCTOR'S SCLUTIONS MANUAL: PHYSICAL CHEMISTRY

23 -1 2 - —
where B=| ¥ )| BT )12 437 (31X 102 TR X (328 K)*x (8.3145 ) mol- K~
(6.626 x 10 ] 5) x (10° Pa)

=1.86 x10"' m?mo)]-'s™!

Solve for the entropy of activation:

ALS = R[}nﬁ_z] +E
B T
3 —le-1 3 -1
=8.3145T K'mol-'x | In 0.23 m’ mol!s _ 49.6 % 10° ] mot
1.86 x 10" m? mol-1s-! 128 K

=|-93J K- mol™!

E22.14(b) For a bimolecular gas-phase reaction,

AIS = R(ln% - 2} + E? {Exercise 22.13(b)]

A E E A
= ——= -2 +==R/In—-2
R(ln ]+T [ 3 ]

2
where B = k::;{ [Exercise 22.11(a)]
p

For two structureless particles, the rate constant is

112
k. =N,* [%) e MERT [22.39)
TH

The activation energy is [21.30]

dink, d e 1 8k 1 AE

=R AR5 _ pre S [Nt sin e+ SInT - 2L

E=RT =g =& dT[ AT RT)
L AR RT
—RT?| =+ 220 A Fe S0
(ZT RTlJ 2

so the prefactor is
1z
e

2
A= kefRT = N,o* 8kT 8E0RT (A E0/RT gI2) = NAO'* §E 2
' U U

Hence

112 2
AIS=R lnNAO'*[Sk—T] LR,
L P

x_o 2
Rl EPR( 8
(kT)yz pom)
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For identical particles,

p=mi2=(78 x1.661 x 10¥ kg)/2=6.5x 10 kg
and hence

A*S =8.3145J K- mol!

« 41,062 X (107 m)? x10°Pa x 6,626 x 107 5 8 ”
(1381 x 10T K- x 500 K)*? Zx65x10%kg, 2

=(-77 J K-'mol™!

E22.15(b) At low pressure, the reaction can be assumed to be bimolecular. (See Section 21.8(a).)

{a) AS= R(ln% - 2] [Exercise 22.14(b)]

KRT? 1.381x102J K'x 8.3145J K~ mol™ x (298 K)?
ot 6.626 x 10~ T s x 10°Pa

=154 % 10" m’mol-'s!=1.54 x 10" dm? mol s

13 3 =1 a=1
Hence, A'S =8.3145J K- mol x| In-2o 10 dmimol™'s™ e e ol
1.54 x 10“dm* mol's™!

(by The enthalpy of activation for a bimolecular gas-phase reaction is

AtH = E, ~ 2RT [Brief Comment in Section 22.5(a)]

AH =30.0 kT mol'~ 2 x 8.3145 J mol' K~'x 298 K =|+25.0 kJ mol-!

{c) The Gibbs energy of activation at 298 K is
AMG=AH - TAS=25.0kI mol™ - (298 K) x (32 x 102 kT K~ mol)

A'G = [+34.7 kJ mol™!

E22.16(b) Useeqn 22.49 to examine the effect of ionic strength on a rate constant:
logk, =log k7 + 2 Az, zpg 2

where B=

Hence, logk? =logk, —2A4z,z,7"=log 1.55-2 x 0,509 x (1 x }) x (0.0241)¥?=0.032

and  k?=(1.08 dm* mol min-! .

E22,17(b} To solve this exercise requires some information left out of this edition of the textbook. See Quanta,
Matter, and Change by Peter Atkins, Julio de Paula, and Ron Friedman (New York: WH Freeman,
2008). For a donor-acceptor pair separated by a constant distance, assuming that the reorganiza-
tion energy is constant, eqn 20.62 in Quanta, Matter, and Change holds.

(AG*y _AG®
4ART  2RT

Ink,= + constant
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o, using molecular units rather than molar units,

_(AG°F AG®

Ink, = —
4AkT 2kT

+ constant
Two sets of rate constants and reaction Gibbs energies can be used to generate two equations (the
above equation applied to the two sets) in two unknowns, A and the constant.

(AGT) | AGY (a,63)"  AG;

Ink,  +-—"7"—+ = constant =Ink,, , +
42kT 2kT ’ 4rkT 2kT
(ArG?)z — (ArGg)z - ln@ + ArG‘; - ArGT
42kT ko 2T
and 4o (BGD-(AG
df/!ch’I‘%—‘v2 +2(AGE-AG
et,]
(—0.665 eV)? — (—0.975 eV)?

A= =(1.53eV

23T K 6
41,381 x 10-B T K1)(298 K)1 333x 105 — 2(0.975 - 0.665) eV

n
1.602 x 10-9F eV-! 2.02x10

If we knew the activation Gibbs energy, we could use eqns 20.58 and 20.60 of Quanta, Matter, and
Change to compute Hpa(r) from either rate constant, and we can compute the activation Gibbs
energy from eqn. 22.61 (Atkins, Peter, and de Paula, Julio, Physical Chemistry (9th edn, Oxford:
Oxford University Press, 2009)):

(A,G°+ AP _ {(-0.665+1.53)eVP
4 4(1.53eV)

172
UHp, (P o —AIG
k.=
Now ka=——3""\amr) 7T

12 174
bk, \ [ 4AkT AYG
o (2] (455 el 35

_ {(6.626 X 10-% J $}2.02 x 10° SI)]IIE

AIG = =0.123eV

2

3

y (4(1.53 eVX1.602 x 109 T eV-1)(1.381 x 103 ] K-')(298 K)J”‘

x| (01236V)(1.602 10707 V)
21381 x 102§ K-'}298 K)

£22.18(b) For the same donor and acceptor at different distances, eqn 22,63 applies:

In k,, = --pr + constant
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The slope of a plot of In &, versus r is —8. The slope of a line defined by two points is:

Ay lok,,~Ink,, In4.51 x 10°—In2.02 x 103
slope=—-= = ==—fi=
Ax r—r (1.23-1.11)nm
so f=-6.7nm

Rearrange eqn 22.63 to solve for the constant and substitute one of the known values of %

constant =Ink, /s7'+ fr=m 2.02 x10°+ (-6.7 nm ™"} x {1.11 nm)
=48

Thus, when r=1.48 nm,

Ink,/s'=—(6.7nm ") x (1.48§ nm) +4.8=14.7
and k,=e*"s7=]24x10%s7").

The conditions are in the limit of large, positive overpotentials, so eqn 22.70 applies:
Inj=lnj,+(1-a)fn

-1
where f = i 96845 C mol =389V~
RT (8.31457J K-'mol!') x (298 K)

Subtracting this equation from the same relationship between another set of currents and over-

potentials, we have
J_ .
Ih—=01-a)f(n"-n)
J
which rearranges to

, In(j}) 1n(72/17.0)
=+ 22U _qosxi0-y =[o169V
mER gy 105X I 042 x (389 V) 0169 V]

Take antilogarithms of eqn 22.70, then

Jy=j e 0 = (17.0 mA cm2) x g (-04x010SVx3EIV= ] 59 mA o2

In the high overpotential limit

j= et en[2269] so L=et@imm  apd = jed-oftem

J2

So, the current density at 0.60 V is
7o=(1.22 mA cm2) X el-050XOEOV-030VINEBIV) = m

(a) The Butler—Volmer equation [22.65] is

J = Jofe-eh— ey

. (25 %103 A cm‘z) X (e(l—D.SS)x(O.SDV)X(SE.QIV)_ e—O,SSX(O.}DV)x(SS.QiV)) =034 A cm™2

531
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(b) Egn 22.69 (also known as the Tafel equation) 'corresponds to the neglect of the second
exponential above, which is very small for an overpotential of 0.3 V. (Even when it was kept, in
part (a), it was negligible.) Hence,

j=[034A am?]

The validity of the Tafel equation increases with higher overpotentials, but decreases at lower
overpotentials. A plot of j against 7 becomes linear {non-exponential) as n — 0.

The validity of the Tafel equation improves as the overpotential increases.

The Butler—Volmer equation [22.65), with transfer coefficients from Table 22.3, 15
F=1 (e(lfalfn — eﬂxﬁ?) = j0(60‘42f" _ e—O.SBﬁ])

Recall that n is the overpotential, defined as the working potential E” minus the zero-current poten-
tial E. The latter is given by the Nernst equation (6.27):

. RT [ . a(Fe™) 1. a(Fe™)
E=FE°-——Im@=E*——In =077V -—=ln—"
vF 2 f a(Fe™) Fi na(FeS*)
1, a(Fe™) 1
Th =E -077V+—1 =E'-077V+—=lur,
us, 7 7 na(Fe3*) 7 ar

where r is the ratio of activities. Specializing to the condition that the ions have equal activities
yields

n=E -0.77V
and j=(2.5mA cm) x (60.42}'E'—0.42fx0‘77v_ €0 SB/EH038 X077V

Evaluating the constant parts of the exponentials (with /= 38.9 V') and incorporating them as
numerical factors yields

J=[(8.6 X 10-SmA cm?) x e — (8.8 x 107 mA cm2)e 5%

The current density of electrens is j/e because each one carries a charge of magnitude e, Look up
Jo values in Table 22.3, and recall that ] A= CsL.

For Cu|H;|H  j,=10x10%Acm

J_‘O_ 1.0 x10° A cm~?
e 1.602x10%C

For Pt|Ce*, Ce™ j,=4.0%10~mA ¢cm?

=[6.2x 107 cm™2 5~

; -5 -2
J_O — M = IZS x 10¥cem—2g!
e 1.602 x 109 C

(1.0 x 102 m)?
(260 x 1072 m)?
The numbers of electrons per atom are therefore |4.2 x 107251 ] and |0. 17 s [, respectively.

There are approximately =1.5 x 10** atoms in each square centimetre of surface.
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E22.25(b) When the overpotential is small, its relationship to the current density is

n=20 p268)= L,
Fj Fio
which implies that the current through surface area Sis
1=5j=Sj, fn
An ohmic resistance » obeys 17 = Ir, and so we can identify the resistance as
y e m_ | 1
I Sif 10em?x389Vxj,
257 x102Q
2 P nva1AQ)
(jo/A cm™?)

(@) Pb]H,|H j,=5.0x10"2Acm™
257 %1072 Q
f=m—= 51)(1099 =51GQ
(b) Pt|Fe™,Fe* j,=2.5x107 mA cm™
2.57x102Q
=" > _-J10Q
"= %100

E22.26(b) Zn can be deposited if the H' discharge current is less than about 1 mA cm=. The exchange current,
according to the high negative overpotential limit, is

i=—j,e ¥ [22.71]=—(0.79 mA cm ) x g 9>CEHVHCOT6V) = 3 1 % 10° mA cm™

This current density is much too large to allow deposition of zinc; that is, H, would begin being
evolved, and quickly, long before zinc began to deposit.

Solutions to problems
Solutions to numerical problems

P22.2 Draw up the following table as the basis of an Arrhenius plot [21.29]:

K 600 700 800 1000
103 K/T 1.67 1.43 1.25 1.00
kJf(cm? mol' 57"y 4.6 x 1{? 9.7 x 103 1.3x10° 3.1x10°
In (k fem? mol s71) 6.13 918 11.8 14.9

The points are plotted in Figure 22.1.

The least-squares intercept is at 28.3, which implies that

Al(cm® mol s1) = e%3= 2.0 x 102
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30
Tw 20 |-
T
=
=
i
2
o 10
=
0 1.0 2.0
10%/(T/K)
Figure 22.1

12
But comparison of eqn 22.13 to the Arrhenins equation tells us that 4 = N, Po (8_@:] , SO

o
2
P= e
N,o | BkT
The reduced mass is

1 =m(NOLY2 = (46 x 1.661 x 1077 kg)/2 = 3.8 x 10 kg

50, evaluating P in the centre of the range of temperatures spanned by the data,

_ 20x102x (102 m) mol-ls™! % %38 x10%kg v
T (6022 x 107 mol) x 0.60 x (10°m)? | 8x 1.381x 102 J K~ x 800 K

=16.5 x 1073|.
o* = Po = (6.5 x 107} x (0.60 nm?) =|3.9 x 10~ nm? | = 3.9 x 10~*' m?

Draw up the following table for an Arrhenius plot [21.29]:

8/°C ~24.82 -20.73 ~17.02 ~13.00 ~8.95
TIK 24833 252.42 256.13 260.15 264.20
10 RIT 4.027 3.962 3.904 3.844 3.785
10° k fs 1.22 231 4.39 8.50 14.3
In (k,/s7) -9.01 -8.37 -7.73 ~7.07 ~6.55

The points are plotted in Figure 22.2.

L A
A least-squares fit of the data yields the intercept +32.7 at 1/7'= 0, which implies that ln{gj =327,

and hence that A =1.53 % 10" s~ The slope is —1.035 x 10# K=—E,/R, and hence! E, = 86.0 kJ mol™! |
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S [y i B ——

In {k /s

[N M —

e Y Qe —

385 0.0039 0.00395 0.004 0.00405
T/K

24

0.00375  0.0038 0.

Figure 22.2

In solution A'H = E, — RT [ Brief comment in Section 22.5(a)], so at —~20°C
AH =86.0 k] mol-'—(8.3145 T mol' K~} x (253 K)

=|+83.9 kJ mol™"

‘We assume that the reaction is first order for which, by analogy to Section 22.4
kT _ _
KI=—-I-:KI and ;’cr:Jc‘K*:vak—ir:><Kt
vt hvi

with AG =—-RT In K+ [22.40]

Therefore, k= de 5" = Lz8 e MR = LZa gSIRg-aMHIRT

h h
We can identify ALS by writing
kT

k= eASIR o= B IRT e= Ade EJRT

T

and hence obtain

Sy

=8.3145T K'mol!x {h‘l(

(6.626 x 107¥ T gy x (1.53 x 10s7!) -1
(1381 x 102 JK) x (253 K)

=|+19.6 J K- mol!].

Therefore, A'G = A'tH — TA}S = 83.9 ki mol~' - 253K x 19.6 J K-'mol-'=|+7%.0 ki mol-!|.

535
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Figure 22.3 shows that log &, is proportional to the ionic strength even when one of the reactants is
a neutral molecule.

-0.155 . , . , . . .
log k,+0.14517 - 0.1815 | : ! 3
B B e SRR beoees R RRDEEE S doamae
2 | A |
_,E ~0.165 ----- R R ISP SRRCEEE boeeooe T EEEEEE LLEE s
8 : : ' :
E 1 I I !
é ~0.17 4----- A ERREEE ‘  hnt LECEEL T EEPE EEEREEE
5 T 1
&0 | . |
=] . : . : :
L L St e foenee e
~0.18 ; ; : ; f—t +—
0 002 004 006 008 01 012 014 016 018
If{mol kg™
Figure 22.3

From the graph, the intercept at 7= 0 is —0.182, 50 the limiting value of &, is

k2 =10-012=0.658 dm® mol- min™!|

Compare the equation of the best-fit line to the logarithm of eqn 22.47b:

o oghe+ log Irli0n

Y- YH,0, Yot

logk, =logk?—logK, =logk]—log

which implies that logw—l— =0.1451.
yCI

If the Debye—Hiickel limiting law holds {an approximation at best), the activity coefficients of I
and the activated complex are equal, which would imply that logyy,0, = 0.1451.
Linear regression analysis of In(rate constant) against 1/7T yields the following results:
ln(k,/22.4 dm? mol™ min~'y= C'+ BT
where C =34.36 (standard deviation (.36),
B =-23227 K (standard deviation 252 K),
and R=0.99976 (indicating a good fit).
In(k./22.4 dm’ mol™! min™") = C"+ BT
where ' =28.30 (standard deviation = 0.84),
B’ =-21065 K (standard deviation = 582 K),
and R=0.99848 (indicating a good fit).
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The regression parameters can be used in the calculation of the pre-exponential factor {A) and the
activation energy (£,) usingInk, =In A — £,/RT.

In A= C+1n(22.4)=37.47

5o A=187x10'*dm®mol"' min"' = [3.12 x 10" dm’ mol 51|

L 1kJ -
E,=—RB=—(8.3145] K-'mol™') x (-23227 K) X(IOUJ: 193 kJ mol !

InA4'=C +In(22.4)=31.41

so A =437 x10%dm*mol ' min'= |7.29 x 101" dm? mol-'s™!

1
E;=—RB =—(8.3145 J K-"mol™) x (21065 K) x [IOI?TT J =175 kJ mol™!

To summarize:

Al(dm® mol ' s7) E,/(kJ mol™)

Forward reaction 3.12 x 10" 193
Reverse reaction 7.29 x 10" 175

Both sets of data, k&, and &/, fit the Arrhenius equation very well and are thus consistent with the
collision theory of bimolecular gas-phase reactions that provides an equation [22.13] compatible
with the Arrhenius equation. The numerical values for 4" and 4 may be compared to the results of
Example 22.1. The pre-exponential factor for the reverse reaction is comparable to the one estimated
in that problem based on collision density; however, the prefactor for the forward reaction appears to
be much larger than collision density. These data are not really compatible with collision theory.

Deposition may occur when the potential falls to below E. (Recall that i < 0 for cathodic processes.)
E'is given by the Nernst equation [6.27]:

E=E"+ Elna(M")
zF

Simultaneous deposition will occur if the two potentials are the same; hence the relative activities
are given by

E*(Sn, Sn™) + ?—;-]na(Snz*) = E°(Pb,Pb*") + %lna(Pb“)

" a(Sn*")
a(Pb™")

- [%J{E"(Pb, Pb™) — E°(Sn, Sn%)} = 2 x (38.9 V1) x (=0.126 + 0.136)V = 0.78

That is, we require a(Sn”") = e*8a(Pb*") = 2.2a(Pb™).

The thickness of the double layer is

12
eRT
= ———— 18.16
o [ZpFZIbﬁJ [ ]
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where = %sz(b,./b"), b°=1mol kg™

For NaCl, Ih® = by, = [NaCl] assuming complete dissociation.
For N2,80y, 15° = 2{(1)*(2bays0,)} + (2F brasso,) = Irass0,= I Na,50;,],
also assuming complete dissociation.
We need the relative permittivity of water
E=£6,=78.54x(8.854x 102 ' C?m)=6.954x 107 J' C*m™
e ((6.954 x 10710 J-1 C2 m1) x (8.3145 T K- mol ') x (298 K)}”2 y [ 1 ]’”

2 x (1000 kg m™) x (96485 C mol™)? H°

_ 3.04x10"mmolkg™? 304 pm mol'* kg2
(Ib°)”2 (Ibe)ilz

These equations can be used to produce the graph of ry, against b, shown in Figure 22.4. Note the
contraction of the double layer with increasing ionic strength,

Gouy—-Chapman diffuse double layer

5000
4000
NaCl{aq)
3000
£
£ Nap804(aq)
g
2000
1000
0 IS B ST R
0 20 40 60 80 100
b/{mmol kg™")
Figure 22.4

P22.14 At large positive values of the overpotential the current density is anodic.
J = jolel-otft — g-afy [22 65] = je! =¥ [22.69] = j, [22.93]
Inj=1Inj,+ (1 -c)fn anode
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Performing a linear regression analysis of In j against 5, we find
slope=(1 —a)f=19.550 V-, standard deviation = 0.355
y-intercept = In { jo/(mA m2)} =-10.826, standard deviation=0.287
R=0.99901

Jo=e# mA m2=2.00 x 10° mA m?|

19.550 V- 19.550 V-1
“ 7 389 V-

The linear regression explains 99.90% of the variation in a In f against n plot and standard deviations
are low. There are essentially deviations from the Tafel equation/plot.

Solutions to theoretical problems

We are to show that

1% = &, f [T]etde + [T]e*

0
is a solution of eqn 22.25,

e _ o

s Pe TR

(subject to the stated initial condition and boundary condition) provided that [J] is a solution of

@ 8’[] ]
ot E)x-

First, evaluate the derivatives of [J]*:

B[J]* kw[J] k;+[a[ ]J eyt _ k[Jle_k,_[a[ ]J kit

i L 03 T 0 S A T
and e ‘k’uaxz] dz+(ax ]e

[ . M .., [(an*),,  am*
Thus, D—-—ax2 —k,L[aIJ fcrdr+[ J "r_er( Y Jdt+ By

The integral on the right is
! *
J (aﬂJdm[J]*—[J]::m*
R

where we have used the initial condition that requires [J] and therefore also [J]* to be zero initially.
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Thus, D—a[ﬁ—— =k [T*+ a[J]*

which is equivalent to eqn 22.25.

The equilibrium constant, assuming unit activity coefficient for the neutral HA, is

_HTAT] A

T [HAWm © | [HA]
Therefore, [H+]=[[-—}§~A%
(HA] [HA]

+2A1"

and log[H']=log K, +log

— —2logy.=|logK,+log———
[A7] [AT]

Write v = & {H'|[B].
Then, logy =log(k [B]) +log[H']

= log(k,[B]) + log [[I:‘f‘]] +247" +logK,

Call the rate in the limit of zero ionic strength ¢° (i.e. involving the terms other than [), then

logv=logt®+ 241"

That is, the logarithm of the rate should depend linearly on the square root of the ionic strength.

v
log—=241" so v=|°x 10247
gyo

That is, the rate depends exponentially on the square root of the ionic strength.

A+BCiP

ks[x—’%}x§§[22.37b]=(kaT)x(NART] ot g aminr (39 36]

F AN Y M

We assume that the only factor that changes between the atomic and molecular case is the ratio of
the partition functions.

For collisions between atoms
qK= gi=10%=gg=¢qf
= (g8)*qd = (10'9)? x (10%*) = 10%

29

10
k,(atoms) oc m =102

For collisions between non-linear molecules

i =Ry (gX P *(gh) = (107°) x () x (10%) = 3 x 10 = g}
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7e= @)XV F (gl = (105 x (1) x (10%) = 3 x 10%

30
k.(molecules) = 3x10% _ IxioH
1% 108
k.(atoms)  107®

=3 x107

Therefore, ~
eretore k.(molecules) 3x10-¥

P22.22  Start from the Butler—Volmer equation [22.65] and expand it in powers of n:

J = Joletom - g-amy
= jll+(-af + L1 -apPnpf2 4 —l+afn —Latn? /24 -}
= jolnf + P -2a) 43

Average over one cycle (of period 2ziw):

Y= UM S + 30~ 200 /2 + -3

2nle
where {n)=0, because ;J coswidi =0
T 1o

2ric
a
(n*) = 374, because ﬂj cos?otdt = 3
0

Therefore, {j}=|+(1-2a)fjym

and {j)=0whene= % For the mean current,

(D)= 3(1-20)f*Sjon}

= 1 ‘276 x (1.0 sz) x (790 x 10~ A CTD_E) X (00389 mv-l) x (IO mV)2

[z

Solutions to applications

P22.24 Collision theory gives for a rate constant with no energy barrier

172 /2
k=Po| L N, 2213 so P=—tr| T
T o, | 8kT

_ k/(dm*mol's) x (10 m* dm )
(o/mm?) x (10" m)® % (6.022 x 10 mol™")

([ 7 (wim,) X (1.6 % 107 kg) .
8 x (1381 10 2T K1) x (298 K)

_(6.61 x 10713k, /(dm’® mol's™!)
B (oinm?) x {u/m )2

541
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The collision cross-section is

12 12 172 17232

Oup = dip, where dAB=l(dA+ dg) = Ga ¥ 50 6M=w

2 12 4

The collision cross-section for O, is listed in the Table 20.1. We would not be far wrong if we took
that of the ethyl radical to equal that of ethene; similarly, we will take that of cyclohexyl to equal

that of benzene. For O, with ethyl

oo (0:402+0.642)
- 4

nm?= 0,51 nm?

 mgm,  (320m) x(29.1m)
B ot m, (320 +29.0im,

(6.61 x 107) x (4.7 x 10°) -
P= =16 x10?]
so (0.51) x (15.2)112 _

For O, with cyclohexyl

15.2m,

(0.40V2 + 0,882
o= f

nm? = (.62 nm?

_ mome _ (32.0m,) x (77.1m,)
T mg+me  (32.0+77.Dm,

_(6.61x107") x (8.4 x10%) .
o (0.62) x (22.6)"2 =|1.8 x 1073

Eqn 22.49 may be written in the form

1 log(k,/k?)
24 [

=22.6m,

zi=

where we have used z, = z, for the cationic protein. This equation suggests that z, can be determined

log(k, /k°

through analysis that uses the mean value of 7z ) from several experiments over a range of

various ionic strengths:

1 [ log(k,/k7)
24 7

We draw up a table that contains the data rows needed for the computation [b° = 1 mol kg™']:

R

e 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350
k ke 8.10 13.30 20.50 27.80 38.10 52.00
log(k, /koW(IIB)S 9.08 9.18 9.28 9.13 9.13 9.17
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Ji2

1 [ log(k,/k2)
2A 11,'2

We used the positive root because the protein is cationic.

<M>=9_1s

Zp =

_I 9.16 _

T\ 2(0.509)

The theoretical treatment of Section 22.9 applies only at relatively high temperatures. At temperatures
above 130 K, the reaction in question is observed to follow a temperature dependence consistent
with eqn 22.62, namely increasing rate with increasing temperature. Below 130 K, the temperature-
dependent terms in eqn 22.62 are replaced by temperature-independent wavefunction overlap integrals.
The reaction proceeds primarily through tunnelling involving nuclear wavefunctions. See the end of
Section 22.9(b).
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Answers to discussion questions

(a) Enzyme-catalyzed reactions that require minutes or hours may be followed with standard
spectroscopic methods, including UV-visible, infrared, fluorescence, and NMR techniques. It
may even be possible to determine the progression of substrate consumption, or product forma-
tion, with a chemical titration or radioactivity assay. Electrical conductivity may be used when
ions are reaction participants; pH measurements are used to follow the reaction rate when an acid
or base is a participant. An inhibitor that binds very strongly to the active site may be used to
quench the reaction at any time, thereby making it possible to separate substrate and product with
a chromatographic method; after which spectroscopic techniques, and the application of the Beer—
Lambert law, may prove useful in the case for which substrate and product have overlapping
spectra.

A stopped-flow technique provides for the rapid mixing that is necessary to follow reactions that
require milliseconds or minutes, Standard spectroscopic, conductivity, or pH measurements are
used to follow the reaction rate.

Very fast reactions may be followed by disturbing an equilibrium system with the excitation energy
of flash photolysis or by a very sudden temperature jump initiated with a large current burst through
the reaction solution. A pulsed laser beam is subsequently used to generate absorption, emission,
or fluorescence spectra and the evolution of such spectra yields reaction rates.

(b) The initial rate of an enzyme-catalyzed reaction is acquired by extrapolation of the time evo-
lution of observed rates to the mnitial mixing time. When repeated over a range of initial substrate
concentrations, it is possible to prepare a double reciprocal, Lineweaver—Burk plot of 1/v, against
1/[S],. It is the intercept and slope of this plot that provides the values of the maximum reaction rate
and the Michaelis constant (see eqn 23.3b). The manner in which an enzyme inhibitor alters the
slope and intercept provides both evidence for the type of inhibition (competitive, uncompetitive,
or non-competitive) and values of inhibitor binding constants (see eqn 23.8).

{(¢) Themolecular shape of a strongly enzyme-binding, competitive inhibitor gives clues about the
intermediate enzyme-substrate activated complex because, like the inhibitor, the activated ES com-
plex must bind strongly to the active site in order to initiate reaction. Clues include charge distribu-
tion, hydrogen bonding, and hydrophobic interactions. The idea of a transition-state intermediate
involves a slight modification of the Michaelis—-Menten mechanism:

E+S =ES=ES*—>FP=E+P
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The activated transition-state enzyme—substrate complex, ES*, is a very short lived intermediate
because it has the activation energy necessary to react. It has been shown that the enzyme has a
higher affinity for the transition-state intermediate than for the substrate and will bind the inter-
mediate more strongly. Good inhibitors are generally transition-state analogues.

Text Figure 23.6 summarizes the important characteristics of the three major modes of enzyme
inhibition: competitive inhibition, uncompetitive inhibition, and non-competitive inhibition.
Mathematical models for inhibition, which are the analogues of the Michaelis—-Menten and
Lineweaver-Burk equations [23.3a and 23.3b], are presented in eqns 23.7 and 23.8.

Lo (%l L s where a=1+[JK, and o'=1+[IVK]
v o 5

K, =[ENIV[EI], K = [ES]I}/[ESI]

UITIHX

In competitive inhibition the inhibitor binds only to the active site of the enzyme and thereby inhibits
the attachment of the substrate. This condition corresponds to « > 1 and «" = 1 (because ESI
does not form). The slope of the Lineweaver—Burk plot increases by a factor of « relative to the
slope for data on the uninhibited enzyme (@ = " = 1). The y-intercept does not change as a result of
competitive inhibition.

In uncompetitive inhibition the inhibitor binds to a site of the enzyme that is removed from the
active site, but only if the substrate is already present. The inhibition occurs because ESI reduces the
concentration of ES, the active type of the complex. In this case & = 1 (because EI does not form)
and &’ > 1. The y-intercept of the Lineweaver-Burk plot increases by a factor of o relative to the
y-intercept for data on the uninhibited enzyme, but the slope does not change.

In non-competitive inhibition (also calied mixed inhibition) the inhibitor binds to a site other than the
active site, and its presence reduces the ability of the substrate to bind to the active site. Inhibition
occurs at both the E and ES sites. This condition corresponds to & > 1 and o’ > 1. Both the slope
and y-intercept of the Lineweaver—Burk plot increase on addition of the inhibitor. Figure 23.6¢
shows the special case of K= K{ and o = ¢, which results in intersection of the lines at the x-axis.

In all cases, the efficiency of the inhibitor may be obtained by determining Xy, and v, from a control
experiment with uninhibited enzyme and then repeating the experiment with a known concentration
of inhibitor. From the slope and y-intercept of the Lineweaver—Burk plot for the inhibited enzyme
[eqn 23.8], the mode of inhibition, the values of & or &', and the values of X, or K{ may be obtained.

The characteristic conditions of the Langmuir isotherm are:

1. Adsorption cannot proceed beyond monolayer coverage.

2. Allsites are equivalent and the surface is uniform.

3. The ability of a molecule to adsorb at a given site is independent of the occupation of neigh-
bouring sites.

For the BET isotherm condition number 1 above is removed and the isotherm applies to multi-layer
coverage.

For the Temkin isotherm condition number 2 is removed and it is assumed that the energetically
most favourable sites are occupied first. The Temkin isotherm corresponds to supposing that the
adsorption enthalpy changes lingarly with pressure.
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The Freundlich isotherm removes condition 2 but this isotherm corresponds to a logarithmic change
in the adsorption enthalpy with pressure.

Solutions to exercises

The fast, reversible step suggests the pre-equilibrium approximation:
[HAH*)
K=-——2 and [HAH']= KTHAJH"]
[(HAJH"]

Thus, the rate of product formation is

A - HAH 1B = [ KTHATT B

v
Since v=——"T2_——[23.3a],
1+ Ky/[S) [ ]

Umae = (1+ K /[Sh v
=(1+0.032/0.875) x (0.205 mmol dm=3s™)

= |0.212 mmol dm3 -1

Kewt = Unax/[Elp [23.4]

= (0.0224 mmol dm s /(1,60 x 105 mmol dm2) =(1.40 x 10*s™!

1= ko /Ky [23.5]
={1.40 x 10s7)/(9.0 x 10° mol dm~3) = |0.015 dm?mol-1s!

Diffusion limits the cataiytic efficiency, n, to a maximum of about 10*-10° dm? mol~' s7!. Since the
catalytic efficiency of this enzyme is much, much smaller than the maximum, the enzyme is not
‘catalytically perfect’.

Eqn 23.7 describes competitive inhibition as the case for which e=1+{I}/K; and ¢’ = 1. Thus,

VTﬂaX

U T+ kISl

By setting the ratio v([T] = 0)/»([T]) equal to 1/0.25 {4.00} and solving for a, we can subsequently
solve for the inhibitor concentration that reduces the catalytic rate by 75%:

o(1]=0) _ 1+ Ky /[Sk

=4.00
v({ID 1+ Ky /[Sh
13330+ Ky/[Sh) - 1
Kn/[Sh
_4000+751.0) =1 _, o
7.51.0
[I]=(a- 1)K,

= 3.40 x (0.56 mmol dm*) ={1.90 mmol dm~
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E23.5(b) The collision frequency, Zy, of gas molecules with an ideally smooth surface area is given by eqn 23.9:

»
Zy=——F  _1239;m=MIN
W Mk TIN g B sl

_ px {(kg m~'s?)Pa} x (10~* m?/cm?)

T 2r x (1381102 J K) x (298.15 K) % (kg mol™)/(6.022 x 102 mol~)}'2{M/(kg mol-')}¥2
piPa

{AMf /{kg mol 1)}V2

= 4.825 % 10”[ Jcm‘2 st at25°C

(a} Nitrogen (M =0.02802 kg mol™)

(i) p=10.0Pa, Z,=|388x10¥cm?s"

(i) p=0.150 pTorr=2.00 x 10-* Pa, Zy = [5.76 x 10" cm? 5"

(b} Methane (M =0.01604 kg mol™)

() p=10.0Pa, Zy=|3.81x 10® cm?s"

(i) p=0.150 wTorr=2.00x 10~ Pa, Zy = |7.62 x 104 cm2 571

E23.6(b) A =nd¥4 = (2.0 mmy/4 = 3.14 x 10~ m?

The collision frequency of the nitrogen gas molecules with surface area 4 equals ZyA.
P
ZyAd=————-——A4[23.9;m=MIN
WA= TN e A 23 Al
p=(ZwA)y X 2uMkT N A
=(5.0 x 10¥s) x {2m(28.02 x 103 kg mol™) x (1.381 x10-2J K)

x (325 K)/(6.022 x 10 mol}}¥2/(3.14 x 10®¥m?}={733 Pa
E23.7(b) The farther apart the atoms responsible for the pattern, the closer the spots appear in the pattern

(see Example 23.3). Tripling the horizontal separation between atoms of the unreconstructed face,
which has LEED patiern (a), yields a reconstructed surface that gives LEED pattern {b).

e o o 0000000

e @ o 0000000

® O o 0000000
(a) (b)

E23.8(b) Let us assume that the carbon monoxide molecules are close packed, as shown in Figure 23.1 as
spheres, in the monolayer. Then, one molecule occupies the parallelogram area of 2\/§r2, where r
is the radius of the adsorbed molecule, which is expected to be comparable to the radius of an
adsorbed nitrogen molecule. Furthermore, let us assume that the collision cross-section of Table
20,1 (o = 0.43 nm? = 4n#?) gives a reasonable estimate of 7. r = (o/4n)"?. With these assumptions the
surface area occupied by one molecule is:

Aporee = 2¥3(0/47) = 36127 = Y3(0.43 nm?)/2n = 0.12 nm?
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In this model the surface area per gram of the catalyst equals A, ..q. N, where N is the number of
adsorbed molecules. N can be calculated with the 0°C data, a temperature that is so high compared
to the boiling point of nitrogen that all molecules are likely to be desorbed from the surface as per-
fect gas.

_p¥V _ {(1.80x10°Pa) x (3.75 x 10-m*)

== =9.94 x 10
KT (1.381x1072J K1y % (273.15K)

Antecae ¥ = (012 x 10785 m?) % (9.94 x 107%) =

Figure 23.1

E200() 6= [23.10]=——=—%2_[23.19]
V. Voo 1+Kp

morn

This rearranges to [Example 23.4]

p_p
V le)ﬂ K Vmon

Hence L_A_BR A
VeV Ve Vam

Solving for V.
o 4\ {108 — 56.4) kPa 3
Vpon = = =
(g Va— pd T3y (108/2.77 — 56.4/1.52) kPa em™

E23.10() The enthalpy of adsorption is typical of (Table 23.2) for which 7, = 1014 s ISection
23.5(b)] because the adsorbate—substrate bond is stiff. The half-life for remaining on the surface is

1y = o5 KT [21.24] = (10~ 5) x (e1S5XEBIUSSY [ 2 —A_ H | =

m oG p 1Ky 0and23.12)

E23.11({b) =
m 6, p 1+Kp

which solves to

K= (mp,/myp) -1 - {r o) X (pdp) =1 % L
;- (mypyfmy) 1- (m/ny;) 2
_ (0.63/0.21) x (4/36.0) -1 y 1

1-(0.63/0.21) 4.0 kPa

= (.083 kPa™
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Therefore,
(0.083 kPa~") x (36.0 kPa) (0.083) x (4.0)
6= ~{075|[23.12] and 6,= ~f0.25
(D + (0:083kPa~") x (36.0 kPa) 0.75]2312) and 6, (1) + (0.083) x (4.0)
= Kp [23.12], which implies that p = 2 i
I+ Kp 1-6 K

(a) p=(0.20/0.80)/0.548 kPa~' =]0.46 kPa

(®) p=(0.75/0.25)/0.548 kPa~' =

6= —%2_123.12], which implies that K =| —— |x |- |.
1+ Kp 1-6 P

K A H( 1 1 Ay H[ 1 1
Additionally, In| =2 |= - 220 — _ _ 1[6.23] =280 — _ _ |[AH =-AH]
sionaly o 1222 L Llgom - Sl L is s —-at

Since 6,=6,, K,/K,=p,/p, and

-
2 _BeH( 1 1) ( 122k mol Y R U W T
7 R \T, T,) |83145JK'mol’ ) |318K 298K

which tmplies that p,=(8.86 kPa) x (e®¥¢)=|12.1kPa|

9=£[23.12],whichimpliesthatK= b X 1 .
1+ Kp 1-6 P
-1
Additionally, In L) :—M 11 [6.23] or A H=—-Rln K X 41 .
K, R \T T, k)\n 71

Since 8, =8/, K,/K, =p,/p, and
-1
AgH = —Rln[ﬂj x (i - i]
2] L, T

-l
350 kPa 1 1
( mol™) X (1.02x103kPa}x(240K 180K} 640 k) mo

The desorption time for a given volume is proportional to the half-life of the absorbed species and,
consequently, the ratio of desorption times at two different temperatures is given by:

HH) = £,(2)/1,,(1) = eFa/RTs o Ea/RT: [23 24] = @ BalVTi-T iR

Solving for the activation energy for desorption, E;, gives:

-1
E,= RIn{rQ)/f{DHVT, - UT,)"" = (83145 K-'mol"') x In[ 8445 J x ( 1 L J

1856 5 012K 873K
=1285 kJ mol-'
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The desorption time, ¢, for the same volume at temperature T is given by:

1 1
t = ((D)efUT-UNVR = (1856 285 x10°J mol! — — e [ /(8. K-'mol™
(De i ( s)exp{( X mol-1) x [T 573 KJI(S 31457 mo )}

! 1
= (1856 343 -
( S)GXP{( )% [Tnooo K 0.873]}

(a) At298K, =156 x 10%s].
(b) At1500 K, z=[1.37 x 10~4s].

The average time of molecular residence is proportional to the half-life of the absorbed species and,
consequently, the ratio of average residence times at two different temperatures is given by:

(1) = £, (2)1,, (1) = eBe /R feEa/RT [23 24] = gfatlT-VTIIR
Solving for the activation energy for desorption, £, gives:

E,= RIn{e)(UT; - VT, = R n{0.65 x 1(1)/e(} (T, — YT)" = R In{0.65} (T, — UT;)!

-

1 1
=(8.3145J K'mol™! 0.65 -——— =1534KJ -l
: o) 5100065 gt -

At 298 K: 1, = 7,65k [23.24] = (0.12 ps) x e04045s/k mol™
At 800 K: 1, = 7,e5/RT [23.24] = (0.12 ps) X @0.150 £¢/ kT ol

(a) E;=20kJImol!

1,,(298 K) = (0.12 ps) x e®42 = 388 ps|, 7,,(800 K) = (0.12 ps) x e1500 =

(b) E;=200kJmol™!

£,,(298 K) = (0.12 ps) x c®*920 = (1.5 % 10225, 7,,,(800 K) = (0.12 ps) x 215020 =

Solutions to problems
Solutions to numerical problems

Umax
(a) v= m [2333]

Taking the inverse and multiplying by v,,,v, we find that

Vpax = U + KMU/[S]O

) v oD v
Thus, v=v,,, — Ky —— (Eadie-Hofstee plot) or |—=—""-—
" Sk Sk Ku Ku
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Alternatively, to see the rationale for the Hanes—Woolf plot of [S],/v against [S],, write eqn 23.3a in
the form

I HCTRSER
[Sh+ Kn

Now divide by [8], and take the inverse to get

E].”_ = _l._[S]ﬂ.,. K

v max vmax

[Hanes—Woolf plot]

(b} The regression slope and intercept of the Eadie-Hofstee data plot of v against v/[S], are - K},
and v,,,, respectively. Alternatively, the regression slope and intercept of the alternative form of the
Eadie—Hofstee data plot of v/[S], against v gives —1/Ky; and v,,,, /Ky, respectively; the slope and
intercept can be used in the calculation of X, and v,,,. In contrast, the Hanes—Woolf plot of [S],/v
against [S], has a regression slope of 1/v,,,, and an intercept of Ky, /v, Once again the slope and
intercept of the latter plot can be used in the caleunlation of Ky and v,,.

(c) We draw up the following table, which includes data rows required for both an Eadie-Hofstee
plot (v against »/[S],, Figure 23.2) and a Hanes—Woolf plot ([S],/v against [S],, Figure 23.3). The
linear regression fit is displayed in each plot.

[ATP)/(umol dm) 0.60 0.80 1.4 2.0 3.0
vi(pmol dm=3 s71) 0.81 0.97 1.30 1.47 1.6%
v[ATP)/s 1.35 1.21 0.929 0.735 0.563
[ATPJivis 0.741 0.826 1.08 1.36 1.78
2
_ 164
Ilﬂ
'?E 1.24
= y=-11015x + 2,3031
g 08 R*=0.998
=
=]
0.4
0 T
0 0.5 1 1.5
v/[S]o/ s
Figure 23.2

Eadie-Hofstee analysis:

Unax = intercept =(2.30 ymol dm>s~| and K, = —sope =[1.10 pmol dm=3

Hanes-Woolf analysis:

Vo, = Lislope = {2.31 umol dm=3s~!| and K, =intercept x v, =|1.10 pmol dm=3 .
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2
1.5
E
) y=04337x+0.479
2
05 4 R?=0.9996
0 T T T T T T
0 0.5 1 1.5 2 25 3 35
[81/umol dm™
Figure 23.3

When using reaction rates v, the Lineweaver—Burk plot without inhibition has the form:
1

—= : + (EJ”L]L [23.3b]

Uax Vrax [S]O

where the intercept and slope are simple functions of v,,, and K. When using reaction rates rela-
tive to a specific, non-inhibited rate (v, = V/Bregrenc), the Lineweaver- Burk plot without inhibition
has the same basic form:

1 1 Ky )1
- = 4+ — —
Ve vmax.rel Umax,rel [S]U

The linear regression fit of the non-inhibited Lineweaver—Burk data plot is

i 1
—=0.797+(2.17 R2=0980
Vyey 217 [CBGP], /102 mol dm™

Consequently, v, .q = 1/intercept = 1/0.797 = 1,25 and
Ky = slope X v =(2.17 x 102 mol dm %) x (1.25) = 2.71 x 10~ mol dm>.

The Lineweaver—Burk plot with inhibition has the basic form:

1 N akKy 11
U Umax,n:l Vhnax rel [S]O

The linear regression fit of the Lineweaver-Burk data plot for phenylbutyrate ion inhibition is

1 1
L 1024601 R2=0972
v OO R 51710 mol dm™

Tel
Therefore, & = intercept X Uy, = 1.02x1.25=1.28 and

00 = 510pe X Vg Koy = (6.01 x 102 mol dm~) x (1.25)(2.71 x 102 mol dm?) =2.77

Since both e > 1 and & ~ 1 (see Section 23.2¢), we conclude that [phenylbutyrate ion is a competitive

@ibitor of carboxypeptidasel.
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The linear regression fit of the Lineweaver—-Burk data plot for benzoate ion inhibition is

1 1
=375+ (3.01) R?=0.999
Vpe +30n [CBGP],/10~2 mol dm">

Therefore, o' = intercept X v,,,,4 = 3.75% 1.25=4.69 and

= 5I0pe X Uy g/ Kyy = (3.01x10°2 mol dm™) x (1.25)/(2.71x10"2 mol dm™) = 1.39

Since both & ~ 1 and a > 1, we conclude that [benzoate ion is an uncompetitive inhibitor of

| carboxypeptidase |
Zy=——F  [239;m= MIN,]
(2rMETIN,)?

_ p x {{kg m~'s2)Pa} x (10~ m?/cm?)
T 21 (1381 x 102 T K-y % (300 K) % (0.03200 kg mol)/(6.022 x 102 mol-)}2
=2.69x10% x(p/Payem2s! for O,at 300K

(a) At100kPa,|Zy=2.69x10%cm?s| (b)) at 1.000 Pa,|Zy =269 x 10" cm™25~!

The nearest neighbour in titanium i1s 291 pm, so the number of atoms per cm? is approximately
1.4 x 10%* (the precise value depends on the details of the packing, which is hep, and the identity of
the surface). The number of collisions per exposed atom is therefore Zy,/1.4 % 10** cm=2,

(a) Whenp=100kPa,Z, =[2.0x10°s| (b) Whenp=1.000Pa,Z, =[2.0x10s"

We follow Example 23.4 of the text, where it is shown that for a Langmuir isotherm

A N
V V., KV,

and draw up the following table:

piPa 25 129 253 540 1000 1593

p/ViPacm™ 595 791 1145 1682 2433 3382

p/Vis plotted against p in Figure 23.4. The plot is observed to be linear so we conclude that the data
fits the Langmuir isotherm for these low pressures and, therefore, low coverages. The regression
slope equals 1/V_; the regression intercept equals 1/KV_. Thus,

V., = lUslope=1/(1.77 cm™) =|0.565 cm?®

and
K=1/V,, x intercept) = 1/(0.565 cm® x 629 Pa cm™%) ={2.81 x [0 Pa~"'

COMMENT. It is unlikely that low-pressure data can be used to obtain an accurate value of the volume cor-
responding to complete coverage. See Problem 23.10 for adsorption data at higher pressures
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4000
y=1.7667x + 629.13

% 3000 R2= 0.9947

Q

& 2000 A

=

= 1000 -

0 T T T
0 400 800 1200 1600
pfPa
Figure 23.4

We assume that the data fit the Langmuir isotherm. To confirm this we plot p/}" against p and expect
a straight line [Example 23.4]. We draw up the following table and a data plot is shown in Figure 23.5:

platm 0.050 0.100 0.150 0.200 0.250
Viem? 1.22 1.33 1.31 1.36 1.40
p/VI(107* atm cm™) 4.10 7.52 11.5 14.7 17.9
20 7
L
16
tTE
g 127
E
X 8+
=
RS
4 -
0 T T T L] 1
0 .05 0.10 0.15 0.20 0.25
p/atm
Figure 23.5
The plot fits closely to a straight line with slope 0.694 cm~, Hence,
V.= lslope = =144 x 1073 dm3 = V¥,
The number of H, molecules corresponding to this volume is
-3 3 23 -1
Ny = PVNy _ (1.00 atm) x (1.44 x 10~ dm’} x (6.022 x 10® mol™') _ 3.87 x 10"

*" RT {0.0821 dm?atm X-"mol ) x (273 K)
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The area occupied is the number of molecules times the area per molecule. The area per molecule
can be estimated from the density of the liquid.

3V 23 3M 23 M
A=n| —| =g —— ¥V = volume of molecule =
4n 4npN, pN,

o 3% (2.02 g mol™") ”
47 % (0.708 g cm™) x (6.022 x 10% mol™)

=341 x10"%cm?

Area occupied = (3.87x 101%) x (3.41 x 10718 cm?) = 1.3 x 10 em? = [1.3 m?

COMMENT. The value for v, calculated here may be compared o the value abtained in Problem 23.8.
The agreement is not good and illustrates the point that these kinds of calculations provide only rough value
surface areas.

P23.12 We assume that the Langmuir isotherm applies.

K] 1
g=—2_12312] and 1-6=
1+ Kp 1+ Kp
For a strongly adsorbed species, Kp > 1 and ! — 8= 1/Kp. Since the reaction rate is proportional to
the pressure of ammonia and the fraction of sites left uncovered by the strongly adsorbed hydrogen
product, we can write

deH3 kcpNHa
— = 1-8)=|-
dt cPNH3( ) KPHZ

To solve the rate law, we write
Pu, = 2{Pon, = Prn,} [NH; - s N, + 3H,)
from which it follows that, with p = Prug

R 2k

¢ p-p 3K

This equation integrates as follows

P T
j[l—&]dp=kjdt
” r 0

or|[£=2 — g Py 2
L B

We write F' = (p,/0)In{p/p,), G=(p — po)it
and obtain G=k+ F' =k + p,F.

Hence, a plot of G against F” should give a straight line with intercept k at F” = . Alternatively, the
difference G — F’ should be a constant, k. We draw up the following table:
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tfs 0 30 60 100 160 200 250
p/kPa 133 11.7 11.2 10.7 10.3 9.9 9.6
Gi{kPas™) —-0.053 —-0.035 -0.026 -0.0188  -0.017 —-0.015
Fi(kPas™) -0.0568  -0.381 -0.0289 -0.0213 -0.0196 -0.0173
(G- F)Hli(kPas™) 0.00349  0.00309 0.00293  0.00230  0.00263  0.00254

Thus, the data fit the rate law, and we find lk =0,0029 kPa s~!| with a standard deviation of
0.0004 kPa s\, :

Application of the van’t Hoff equation [6.21] to adsorption equilibria yields

dinkK _ A H®
dT  RT?

dink -A.H®
dury R

Hence, since A, H ° is expected to have no temperature dependence, a plot of In K against 1/7 should
be a straight line with slope —A,4// */R. The transformed data and plot (Figure 23.6) follow.

[23.15]

TIK 283 298 308 318
10-"K 2,642 2.078 1.286 1.085
1000 K/T 3.53 3.36 3.25 3.14
In X 26.30 26.06 25.58 2541

264 | ¥ =17.824 +2.4134x _

26.2 R2:0946 .............
= N i : i H

258 froeeeeeees ............... ............... ............... e

25.4 HES WS S S SRR W A

3.1 32 33 34 3.5 3.6
1000K/T

Figure 23.6

A H®=—Rx slope =—(8.3145 T mol" K1) x (2.41 x 10° K)

=-20.0 x10% J mol~* =|-20.0 kJ mol~!

The Gibbs energy for absorption is
AyG° = A H® — TA,,S* =-20.0 kY mol™ — (298 K)) x (0.146 kJ mol™' K')

=1—63.5 kY mol|.
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. L. P P 1

We must adapt the Langmuir gas adsorption isotherm, — = =—+
P gmuir g p v v

describes adsorption from solution. This can be done with the transforms: p — concentration, ¢

and ¥ — amount adsorbed per gram adsorbent, s. This gives

[Example 23.4], so that it

Langmuir isotherm and regression analysis:

1
£-< + —— [Langmuir solution isotherm]
s 5. Ks,
This says that a plot of ¢fs against ¢ should be linear and we find that the linear regression fit of the
data gives

1
slope = — = 0.163 g mmol ™, standard deviation = 0.017 g mmol™
S,

ea

1 ..
intercept = o 35.6 (mmol dm™) x (g mmol™), standard deviation

= 5.9 (mmol dm?) x {g mmol)

|R(Langmuir) = 0.973|

slope 0.163 g mmol™

= - = = 0.0046 dro? mmol
intercept  35.6 (mmol dm) X (g mmol™!)

Similarly, the Freundlich solution isotherm [23.20] and regression analysis of the data is:
s=¢(c/mmol dm=3)Y  or In(s/mmol g'} = In(e,/mmol g) + Cl In{c/mmol dm)

This says that a plot of In(s/mmol g-') against In(¢/mmol dm-?) should be linear and we find that the
linear regression fit of the data gives

¢, = e mmol dm™ = 0.139 mmol dm™>, standard deviation = 0.012 mmol dm3

slope = - =0.539, standard deviation = 0.003

&)

| RFreundlich) = 0.999 94]

The Temkin solution isotherm [23.19] and regression analysis gives:
s = ¢, In{c,¢/mmol dm~?)
¢, =1.08 mmol dm, standard deviation = (.14 mmol dm™

¢,=0.074, standard deviation = 0.023

| R(Temkin) = 0.9590|

The correlation coefficients and standard deviations indicate that the |Freundlich isotherm| pro-
vides the best fit of the data.
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Solutions to theoretical problems

The description of the progress of infectious diseases can be represented by the mechanism

S—=I-R

Only the l?irst step is autocatalyticJ, as indicated in the first rate expression. If the three rate equations
are added

dS i, dR _
FTREFTE

and hence there is no change with time of the total population, that is
S+ +R(NH=N
Whether the infection spreads or dies out is determined by

daI
=S8l —al
T = a

At =0, I=T1(0)=I,. Since the process is autocatalytic, I(0) # 0.

dI
[a]m =(rS,—a)l,

| ) . . .
If a>=rS,, [%] < 0, and the infection dies out. If a < r§, [%J > 0 and the infection spreads
=0

=0
(an epidemic). Thus,

a . . a . . .
— < §, | [infection spreads] and |—> 8, [infection dies out]
¥ ¥

Assume that the steady-state approximation is appropriate for both intermediates ((ES] and [ES’]).

For [ES}:

@ = k,[E]iS] - %/[ES] - k,[ES]=0 and [ES] =[ 7 )[E][S]
For [ES']:

d[ljf'] = ko [BS]- kJ[ES']=0 and [ES']= [%][ES}

We now have two equations in the three unknowns [E], [ES], and [ES’]. A third is provided by
the mass-balance expression [E], = [E] + [ES] + [ES"]. These three equations may be solved to give
expressions for each of the three unknowns in terms of the rate constants, [E],, and [S]. (For prac-
tical purposes the free substrate concentration is replaced by [S], because the substrate is typically in
large excess relative to the enzyme.) The expression found for [ES ] is

kok, k. (k. + k)
ky+ k (ke + k)

max K

T

(BST1=17 KMf[S}0

where U= ( K )[E]0 and Ky=
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Substitution into the rate expression for product formation yields the desired equation:

.
= L [ES = ——max___
v=kES1= Ik L

Refer to Figure 23.7.

Figure 23.7

Let the number density of atoms in the solid be A, Then, the number in the annulus between r and
r+dr and thickness dz at a depth z below the surface is 2/ r drdz. The interaction energy of these
atoms and the single adsorbate atom at a height R above the surface is

_ 2ap(rdrdzC
{(R+z)+rP

if the individual atoms interact as —C,/d® with 42 = (R + z)* + 2. The total interaction energy of the
atom with the semi-infinite slab of uniform density is therefore

R r
U=-2 C d dz——— .
™ 6L ’L R+ 2+ 1)

We then nse
T rdr _1 T d(r?) _1 T dx _ 1
o (@ + 1) ) o (@2 + 7P T2 o @+ xp " 4q¢
and obtain
1 “ dz N Cy
V=— O =|—
5 NG L (R+z2) 6R’

This result confirms that U o 1/R%. (A shorter procedure is to use a dimensional argument, but we

need the explicit expression in the following.) When
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12 6
voael o) (o) ]G _Ce
R R R? RS

we also need the contribution from C),

an

- - r 1 dz ZTCNC]}
U =27 Cpy | dr | deme— L = 2aNCx — = 2
™ ”L rL Rezpary N ”XmL (R+2 90K

and therefore the total interaction energy is

_2mNGC,  mNG
TSR 6R?

We can express this result in terms of £ and ¢ by noting that C|, = 4ec'? and C, = 4ec®, for then
9 3
1{eo 1{o
U=8neoN | —| = | ~—| =
MGN[%(RJ 12[1{”
For the position of equilibrium, we look for the value of R for which dU/dR=0:
1{ o° l{ o?
_ |+ -] — = 0
IO(R“’] 4[1{4}]

Therefore, 6%/10R" = o*/4R*, which implies that R = (3)"*¢ = |0.8580 |

For 6 =342 pm, .

du

e 8 3
dr = SN

Solutions to applications: chemical engineering and environmental science

Equilibrium constants vary with temperature according to the van't Hoff equation [6.23 when
A4 H® varies only slightly with temperature], which can be written in the form

},d,H*’[l 1} —160x103 I mol-1 [ 1 1

KK, =e & \T 0)[523]=¢ 831457K-tmal WK 6’3“1: 0.0247

)

As measured by the equilibrinm constant of absorption, NO is less strongly absorbed by a factor
of 0.0247 at 500°C than at 400°C.

(@) Guaer =k (RH)"

With a power law regression analysis we find

k = 0.2289|, standard deviation = 0.0068
1/n=1.6182, standard deviation = 0.0093; {n = 0.6180

R=0.999508
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A linear regression analysis may be performed by transforming the equation to the following form
by taking the logarithm of the Freundlich-type equation.

Ing,. =k + l]n(RH)
n
In £ =-1.4746, standard deviation =0.0068; |k = 0.2289

1 =1.6183, standard deviation = 0.0093; |n =0.6180

H

R =0.999508

The two methods give exactly the same result because the software package for performing the
power law regression performs the transformation to linear form for you. Both methods are actu-
ally performing a linear regression. The correlation coefficient indicates that 99.95% of the data
variation is explained with the Freundlich-type isotherm. The Freundlich-fit hypothesis looks very
good.

(b) The Langmuir-isotherm model describes adsorption sites that are independent and equi-
valent. This assumption seems to be valid for the VOC case in which molecules interact very weakly.
However, water molecules interact much more strongly through forces such as hydrogen bonding
and multilayers may readily form at the lower temperatures. The intermolecular forces of water
apparently cause adsorption sites to become non-equivalent and dependent. In this particular case
the Freundlich-type isotherm becomes the better description.
(€} rvoc=1—Guuer Where  rvoc =gvoc/dvocru

Fvoc =1 — K(RH)!"

1 = ryoc = A(RH)"
To determine the goodness-of-fit values for k and n, we perform a power-law regression fit of
1 — rvoe against RH. Results are:

k =0.5227|, standard deviation = 0.0719

1

— =1.3749, standard deviation = 0.0601; |r = 0.7273
" standard deviation

R=0.99620

Since 99.62% of the variation is explained by the regression, we conclude that the hypothesis that
Pvoc = | — Guae may be very useful. The values of R and » differ significantly from those of part (a).
It may be that water is adsorbing to some portions of the surface and VOC to others.
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