

OPTIMIZATION

Dr. Mohammad Al-Shannag

Introduction -

Optimization &

- Finding the best situations
- searching for either maximum or minimum

اقتران هدف

Max objective function 3 six jezzo Min (0.5)

Examples P(x) = ost, post, conversion, yield, --, etc.

Ex. Hox p(x) p(x, x2) intersection between quations - o graphically contra

Si us secondition X, X2, ... Xn > Decision variables

isocontours of p 5 the line of the same value of the fun ×2

eg p(x,1,x2)= x,2 + x,2 sillo 2/22

 $X_{1}^{*} = 0$ $X_{2}^{*} = 0$ $\rightarrow P(x_{1}, x_{2})$

X. How P=1 X = some value find x2

Objective of the course :

A how to formulate the required optimization problem.

optimization problem - objective function P(x) (make formulation)

- the corresponding constrains

Bhow to find solve the problem to obtain the optimum

E how to analyze the results (sensitivity of the results).

constants from physical properties, assumptions assumed.

	· Choose Initial and
	· Choose Initial quess from the physical situation
	· Choose Initial guess from the physical situation. · Challenge - stepsize
	Sepsite Sepsit Sepsite Sepsite Sepsite Sepsite Sepsite Sepsite Sepsite Sepsite
	CATECON.
	000-1-0
0	Approach of empirical optimization &
01 20 go	- Perform (which is) must be summat beating point
تسي كل العيفرات وتفس واعديب	- Perform (u, bi das) near the current operating point Find the direction which a improves the value of p(x) (baccaray)
حادر عند ع م منظمان أصن	- The the airection which a improves the value of p(x) (baccaray)
متطاعاى	- move along that direction
يهم المهم	- refleat until converge to the optimum
	The same of the sa
	Approach of model optimization s
	- Formulate the optimization publem -
	- start from some initial guess point. (if nut hypothetical, it is the - Find the direction which improves oferation point).
	the p(x) value using the model
Topke pulling	- move along that direction (optimum stepsize) to optimize the target
- 24/6	- repeat until converge.
	The state of the same
	General optimization of the formulation problem
	max. or min. P(x) =
in	pook in bold, to indicate a vector variable, it can be single variable.
	Subject to: (s.t) = constrains $P(x) = 0$ "equality constrains"
optimum put star	equality constrains
Put star	g(x) >, o "in equality constrains"
	$\frac{X}{Min} \leqslant \frac{X}{X} \leqslant \frac{X}{Nox}$ "Nariable bounds"
	the second of th
	P(X): scalar (1 objective function)
- 51	x: column vector of equations of m, dimension
	E : column vector of aguation of
	[[F.] - [0]
	$ \begin{bmatrix} \Gamma_{1} \\ \Gamma_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $
	[+m,] [6]

		Optimization	0 (16	30/1/2019		
	\Rightarrow mox $p(x) \equiv \min p(x)$		Andre Com	x x) - (
	e.g p(x) = 1+x2	P(X)	max g(x) = - p(x) = - (1+ X2)		
	X'' = 0 p(X'') = 1		M. C. X.	x) of b		
	it is min. p(x)	×1	4.			
The Control	> Hr - V	A LANGE OF THE PARTY OF THE PAR	and only the same	1 1 P		
	c In con h Lind	erated of min or r	nax, Just multiply t	29-1		
	of the actionization embl	on his no F(x)=0	g(x) 7,0 and withou	ut vanable sun o		
of the optimization problem has no F(x)=0 g(x) 7,0 and without variable. It is called unconstrained optimization						
e:9 least square method Other wise, it is constrained.						
	ex - physical laws as conservation principles of mass, energy, momentum,					
ideal gas law, thermodynamics law, An, mole conservation						
	- impirical correlations such as Nu= a Re Prc					
come limit		44				
	pinequality constrains so	urces Com no	t equal or <			
	> = - Physical limitation	ns such as				
combination of variable	Ex: Floddin	g distillation conclu	ition in the distillation	Column		
Naga ration	(equipment design). i < c (some certain value).					
1315			relations.			
	- Physical limitations on the decision variables (X): is (conversion, Temp, flow mate,) (X): Thax, Properties Thomas, XA,					
=	> Linear programming (LP)		1.	may be mon		
	LP problem is an optim	citation problem w	Problem with linear functions of $p(x)$, $g(x)$,			
	and f(x). It always ho	$(x) \frac{g}{2}$				
	P(x) = C, X, + C2 X2 +	C3 ×3 + ···				

Scanned by CamScanner

I work in a grant by a low many by the - Fessible region the region in which at X" satisfy all the constrains Feasible Point outrosialism (e) 101 or X200 for (X1) control 101 min. p(x,1x2) = --- subject to (s.t) (x,1x2) 7,0 B 92 (X, X2) 700 (Y) to line hot & XIAIA (XI MOX)

TO STORE TO STORE X MOX

TO STORE TO STORE X MOX $(x_1, x_2) = 0$ 1x, max $y_{2} = 2x_{1} - 3$ domain , sosta Example minimize p(x,, x2) = x,2 + x2 s.t. x,- x2 = 0 [,(x,, x2) constrained problem, there is not opt. X2+X, -1=0 f2(X,, XV) # variable must be bigger Xx Feas Ible Point - X, so ways for optimization 2x1-1=0 X1=12 X2=12 if no constrains to X = X2=0. * * variables - # dependent equality constrains No opportunity for opt. In optimization I from the first is de les los -P We need derivative information second I obtain derivative S(X) - Notation in this course - refresentation of column vector = f , I , x you con view Rank F = [] m, x1 3/12/10/11/11/19 = 3 m2/11 $X = []_{D \times 1}$

word statement of the problem to mathematical equations mad Examples Formulation of the optimization problem (converting the [1.5] optimal scheduling (common in plant design) How many the table contain constants doys per year e -> Define the variables (365 200)3 tAI: # days per year plant A sperates Anduel 1; [day 1 year] should each. plant processes each Production tAz: £813 ~ B ~ £82: ~ B ~ order maximize the annual - Define the constant wellicients (investigation guides who) MA, MAZ MB, MBZ SA, SAZ SB, SBZ -DObjective function (Define) SAIN MAI [=] \$ 1bm 2 day
1bm Year year maximize Publ = p(th, thz, thu EB, EBz). other Cacher = SAINAI EAI + SAZ NAZEAZ+ SBIMBIEBI + SBZMBZEBZ constrains objective function is linear y view ye - Define constrains. موسع تحال. but desn't water O Variable bounds? Can be cancelled . 0 < tA, (365) . 0 < tAz (365) O < tBz (365) 0 < tBz (365) it is preleved @ equality constrains to minimize constrains. EAI+ tAz = 365 EA LBI+ LB2=365 - constrains come explicitly or implicitly - Constrains from Further analysis? Yes. market demand MAIREA, < LE constant of demand. MBZEBZ + MAZEAZ < LZ = constant (another constant) * This problem is linear optimization problem it can be non linear from profit fluctuation (S becomes variable) and thus 8 variables of materials proceeds. You can make sensitively analysis instead of putting variables.

Scanned by CamScanner

4 118,120 B Fundemental models conservation - cell Refulation balance · developed From physical I chemical / biological concept. eg mass balance, energy belonce, thermodynamics (Eos, --), cell populare. bdance, -- , etc. · require knowledge of the system Fundemental models Lumped models to change in space Estate Distributed models Focuses Fit He Variation in time Focusion the Variation in space steady. steady. Dynamic algebric dillerchal ODE PDE note than 2 variables of Il.) indefendent variables space e.I CSTR clarge equation 0.D.E without time chargin at least 1 dimension in space time. ver valació eg PF realy conit by ordinary good mixing 90 PDE to chose improvely and I or i Privales.

producing dovelopment optimization " " west on @ Problem definition phase - define goals) (objectives) -- State assumption (sale) (as much as you can) - define variables and parameters (B) Hodel development phase A+B ->c X4 = 60/ +pt=00-D - define the system or subsystem for modeling. Not sile if I slow vxn - write the mathematical equations; - analyze the degree of Freedom @ solve the model malmatical । यो या व्या व्या कि Im (D) madel validation phase (make sense) - Engineering knowledge . the results make sense? · correct brend - Compare with known results (either experimental or Bublished e data) · Published data onte, post de des males 11 des calibrate themorety - calibrate and validate model. to 10% error it is acciptable. Rule No model is portect magbe the assumptions are not sale feasible region.

* Degree of freedom Dof + DOF = n - m A -111 : Determinat #wariables # #indefendent equations a by rank m = ranc (A) EX AX= b X = n XI b = mx1 A= nxm Rank & highest order of square matrix or submatrix of A with non-zero determinant (IAI) Submetrix in si isi rame. Il in non zero 0 = #Dof & unique solution no opportunity for optimization. # DOF 70 & there is opportunity for optimization and the p(x) comes to get one unique solution. # DOFKO Ono solution.

· Themodynamics

2 sometimes unconstrained single variable problem is sub problem in of the Object to way constrained family.

3 every optimization algorithm includes line search in constrained optimum distance in step moving problems

$$\nabla P(X) = \begin{bmatrix} \frac{\partial P}{\partial X_1} & \frac{\partial P}{\partial X_2} \end{bmatrix} = \begin{bmatrix} 4X_1 - 3X_2 & 3X_1 + 4X_2 \end{bmatrix} \\
\nabla^2 P(X) = H = \begin{bmatrix} \frac{\partial^2 P}{\partial X_1^2} & \frac{\partial^2 P}{\partial X_1 \partial X_2} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -3 & 4 \end{bmatrix} \\
\frac{\partial^2 P}{\partial X_1 \partial X_2} & \frac{\partial^2 P}{\partial X_2^2} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -3 & 4 \end{bmatrix}$$
if it is $X^3 \to P$ matrix half variables find X^* and substitute in matrix

if it is X^3 -D matrix have variables, find X^* and substitute in matrix. Eigen value

$$\begin{bmatrix} 4-\lambda & -3 \\ -3 & 4-\lambda \end{bmatrix} = 0 \qquad (4-\lambda)(4-\lambda) - 9 = 0 \qquad (4-\lambda)^2 - 9 = 0$$

$$\lambda_1 = 7 \quad \lambda_2 = 1 \quad \text{all } + \sqrt{e}$$

H is positive definite -> p(x) is strictly convex and has unique minima

-

6

E

If you want to plot

$$\nabla P(x) = 0^{T}$$
 $\begin{bmatrix}
4x_{1}^{*} - 3x_{2}^{*} \\
-3x_{1}^{*} + 4x_{2}^{*}
\end{bmatrix} = \begin{bmatrix}
0\\
0
\end{bmatrix}$
 $4x_{1} - 3x_{2} = 0$
 $x^{*} = \begin{bmatrix}
0\\
0
\end{bmatrix}$
 $-4x_{1}^{*} + 4x_{2}^{*} = 0$

Example: minimize $p(x) = -2 - x_1^3 e^{(x_2 - x_1^2 - 10(x_1 - x_2)^2)}$ $\nabla p(x) = 0^T \quad dP = 0 \quad 0 = -3 x_1^2 e^{(x_2 - x_1^2 - 10(x_1 - x_2)^2)} + -x_1^3$

$$\frac{dP}{dx_2} = 0 \quad 0 = -3x_1^2 e$$

high non linearity

solve the two highly non linear to get x*

Remark The analytical is not always simple to deal with to alternative is the numircal methods.

27/2/2019 For minimization (maximization) avent ** steepest descent method: -> initial guess point, X'00 of X* for minimization. -> The search direction: S(K) = (-) JX(K) P(X) > Rule: X (K+1) = X (K) + 7 K 5 (K) K=0,1,2,-Ax: optimum step size along the direction 5 (K) Algorithm 1. set k=0 2. select initial guess point x (K) 3. determine 500 = - Vx P(x) 4. perform line search to obtain # XK election = x(x) + x x s(x) only lx is unknown unidirection P(X) = sigle variable p(x(x+1)) = G(\(\cap{k}\)) ophmization ap(x(K+1)) = 0 - Find 2x* 5. evaluate X (K+1) = X (K) + > K 5 (K) convergence Viteria 6. IF & IXi-Xi(K) / IXi(K) < E Stop on Par X 7. K = K+1 8. go to step 3 Example min p(x) = X12 + X2 K=0 $\chi^{(0)} = [2 2]^T$ $\nabla P(X) = [2X_1 \quad 2X_2]^T$ V X10) P(X) = [4 4]T 5(0) = - \ P(X) = [-4 -4] You can take [-1 -1] T if you multiply or divide because it is a vector a vector by scalar الافعل أن لا تبعير الاسارة عسان تقبل لم موجية , ما بيا نقلي عليه الانحال $X_{4} = X_{0} + \lambda_{0} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \lambda_{0} \begin{bmatrix} -4 \\ -4 \end{bmatrix} = \begin{bmatrix} 2 - 4 \lambda_{0} \\ 2 - 4 \lambda_{0} \end{bmatrix}$ Line search : p(x") =p(x", x2") = P(2-420, 2-420)

solve examples on Ch-At (X(K+1) - X(K)) T = - 4 (K) P(X) H-1 (X(K+1) - X(K)) =-H-1 V(K)P(X(K))T $\underline{X}^{(k+1)} = \underline{X}^{(k)} - \underline{H}^{-1}(\underline{X}^{(k)}) \nabla_{X}^{(k)} P(\underline{X}^{(k)})^{T}$ $X^{(K+i)} = X^{(K)} + \lambda_K \xi_K$ $\xi_K = -\frac{1}{4} (X^{(K)}) \Delta^{K(K)} b(X^{(K)})_{\perp}$ 7 K=1 > "Full step Newton's method" -DI A(X(K)) is I or diagonal matrix with same elements. It if not quadratic it changes, you must Find Eigen values, if not tredefiate solve It V > Example Min p(X) = 4 X12 + X22 - 2 X1 X1 use Xo=[1 1]T (a) analytical method TP(X) = OT dP-0 - 8X, -2X2=0 X = LO OJT dP=0 -> 2x2-2x1=0 7/25 5/21 x51 order igt 6/2008/1000 igial las doi de numirical SI (b) Newton's method $\frac{H}{=}(\underline{x}) = \begin{bmatrix} 8 & -2 \\ -2 & 2 \end{bmatrix}$ 1-2X, +2X2 cofactor matrix Inverse () # (x) = (-1) 1+1 Hij Mij : Jeterminant of the matrix that same order of # of n-1 order which excludes $H^{c}(\underline{x}) = \begin{bmatrix} 2 & +2 \end{bmatrix}$ mw i à column j adjoint matrix 13 8 2 Ha = HCT = [22

27/2/2019 For minimization (maximization - ascent * * steepest descent method: -> initial guess point, x'0 of x" for minimization. > The search direction: S(K) = - S(K) P(X)

> Rule: X(K+1) = X(K) + > K S(K) K=0,1,2,-Ix: optimum step size along the direction 5(K) Algorithm 1. set K=0 2. select initial guess point x (K) 3. determine 500 = - Vx P(x) 4. perform line search to obtain # XK algorithm X (K+1) = X(K) + XK S(K) only lk is unknown unidirection P(X) = -Sight which $P(X^{(k+1)}) = G(\lambda_k)$ ophimization $\frac{dP(X^{(k+1)})}{d\lambda_k} = 0$ — Find λ_k 5. evaluate X (K+1) = X (K) + > K 5 (K) convergence Viteria 6. IF & | Xi - Xi | / | Xi (K) | < E stop on Por X 7. K = K+1 8. go to step 3 Example min p(x) = X12 + X2 K=0 $\chi^{(0)} = [2 2]^T$ $\nabla P(X) = [2X_1 \quad 2X_2]^T$ V X(0) P(X) = [4 4]T 5(0) = - & P(X) = [-4 -4] T you can take [-1 -1] T if you multiply or divide because it is a vector a vector by scalar الافعال الله تدوير الاسارة مسان تقبل لم موجه , ما بنا نعلى عالس الاتحال $X_{4}^{(1)} = X_{0}^{(1)} + \lambda_{0} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \lambda_{0} \begin{bmatrix} -4 \\ -4 \end{bmatrix} = \begin{bmatrix} 2 - 4 \\ 2 - 4 \\ 2 \end{bmatrix}$ Line search : p(x") =p(x", x2") = P(2-420, 2-420)

Linear Program	iming LP		Wednesday
* iterations are my			13/3/2019
* why?	when linearization	on leg: secont	method
Some ophimiz-1		- NO	
- Frequently used in optimization	e linear or can	be approximated	by linear torms
- well-developed thiories For L	1.4	17/42 13/5	24 = 1 × 19
- easy to obtain a morries for L	P	19 A 19 A	97.55 3/8-5
- easy to obtain sensitivity info - help to understand the	mation (apalys	is)	A SHOWN DEED
- excellent soft-wares are avoil	able as LINDO	missend specialistic	onemal yet
*General Comulation (not standar	d) of LP problem	v1111 co	nstrained LP is of in
$ \text{Min } p(\underline{X}) = \underline{c}^{T} \underline{X} \qquad \underline{c}^{T} : $	= [c,]; const	art e	quality constrains are
		llicients	and west
$8.4 \overline{A}_{ed} \times = P_{ed}$		Allelas I	
ineg	(cn)		complex mornial
Aineq × > bineq	L J		
$\times_{min} \leq \times \times_{max}$			
representation	-37/3 5 / 24	6 2 2 Lat (0, 10, 13	
Example max acro-	be Xn>3 nom	nore than 3D	S suitsACA
Example max p(x) = 150	X, +175 X2	P=600 87	2
s.t 7x,+11x2		6	3
10X,+8	X2 < 80 (2)	6 4	
X, <9 (3) X,7,04)	2-	16/0
	3 X27106	-2-	1 A J X
1 7x1+11x2=77 x2	= 7-7 x,	-4	
2 10 X1+8 X2=80 X	2 = 10 - \$0 K,	no lakana k	
Amount 262 Silver No.	108	ed true secrets	
* levels of P(x) since	you want max.	increase p(x)	inst on the
slope does at levels of P(x) since not change (a) P=0 0=150x, +	175x 2 Xz = -1	50 X, =0.85+X.	
		+5	
(a) P=6 6=150X,+	75X2 X22	-0.857 x. +6	
(a) P=6 6=150X,+	A CONTRACTOR N	175	ward to draw
(a) $P = 600$ $X_2 = -0.9$	857x, +600 =	-08CTV	"
	(15		AND ADD AND ADD
-D intersection between (080) FXI + 11 X 2 = 77 D X*	, the line sho	Pe is not ask a	& recieve
7x,+11x2=77 -0 X	= [4.9 3.9] T	. Holl as I. S	J nor -0.86 but
10 X1 +8 V2 = 80 P*			both

if p(x) = 160x, -p optimum at $x_1 = 8$ $x_2 = 0$ Vertical fines p(x) = 175x2 - 0 of timem at x,=0 x2=6 harizontal lines. P(X) = 150 X, + 300 X2 at corner corner dlurays, LB the optima is help glat to العالات السيادة الا ميلاً العدد الأفية و ال العداد العالات العداد العالمة العداد العد Imp. Kemane The optimum point is located at one vertix (corner point) of the Feasible region for well-posed LP problem. - Simplex method is based on this fact. all bounded Exception multiple solution (Degeneracy) solution I'm proper formulation - Constrains are divided (Active constrains (bound) it is involved in Finding X* (like 2 Inactive constrains (or bound) it is not involved in finding x" -> Simplex method - The LP problem must be rewritten in a standard form for simplex method - The conditions of standard Form (1) All the constrains must be equations with non-negative RHS collicions 2) All variables must be non-negative (7,0) (3) The p(x) can be max or min. * Some helpful rules :-O For inequality constrains with <: convert this inequality by adding slack variable (570) Example X1+X2 < 6 $X_1 + X_2 + S_1 = 6$ if the constrains represents the limit of usage of resources be the unused amount of such resource

step 1 select entering variable in a way that improve the value of of
X2 is entering variable
step 2 select leaving variable from the basic set such that the entering
variable will be within the Feasible region
befor slep 2, 5,=6 (since x,=0 x2=0)
52 = 5.5 h say we of hum 200 miles Alexander
I want to make 5, pr 52 or 53 equal zero but X2 Still in the Easible regio
(Xi still zero) if Si=0 0.1 Xz=6 Xz=60 is it in the Feasible region? no
if 82=0 0:2 X2=5.5 X2=27.5 → non Feasible
if S3=0 0.4 x2=10 x2=25 -> Feasible (in the bound (vertix))
* So ratio test is needed instead of trying
ratio = RHS the coellicent of now i in the entering variable column.
ai
Then select the row with the smallest ratio to select the leaving variable
a) lip any the Mostor (con deserge evice.)
Step 3 Determine the new basic solution: Use Gaussian - Jordan method
-> Divide the plust equation by the value of pivot element
- The last row becomes (R4)
X2 0 0.25 1 0 0 2.5 25 RHslai → no meanling n
in order to main the coellicient-s of the entering variable = 7em
-> Perform mathematical operations such all the coellicients of the entering
variable column are zero except the pivot element (coellicent=1)
* replace now i by : Ri = Ri - ai * Pivot equation
4
oniult .
White $\rightarrow R_1 = R_1 - (-3)R_4$ White $\rightarrow R_2 = R_2 - (0.1)R_4$ Charge $\rightarrow R_3 = R_3 - (0.2)R_4$
with be $0^- \rightarrow R_2^2 = R_2 - (0.1) R_4$ change $\rightarrow R_3^* = R_3 - (0.2) R_4$ the Rous $\rightarrow R_3^* = R_3 - (0.2) R_4$ the Rous $\rightarrow R_3^* = R_3 - (0.2) R_4$ except $\rightarrow R_3^* = R_3 - (0.2) R_4$
P 1 (-0-25) 0 0 0 7.5 75 X1=0
5, 0 0.175 Q 1 0 -0.25 3.54.5,=3.5
52 0 0.05 0 0 1 -0.5 0.5
X2 0 0.25 1 0 0 2.5 25
* RHS are representing non basic values *
actually it is nonzero * Zero or Zero * non Zero
varable coefficient
still Here is optimization - we welli dent since max. p(x) Track
1, is the enterny vortees
Scanned by CamScanner

RHS	lai	ig variabl	e, mat	e ratio tes	t to choose	leaving variable
				de atems	Constant I	ALL STRIA
10	> -> min>	take S2	Pivo	t equation	in this raw	→ 0/1/0/20 -10
Remark	always R	RHS must	be the,	since it is	the basic v	variables solution
	if it beco	omes -ve	, multif	ily by -1	1 40 11 4	V 12 11 11 11 11 11 11 11 11 11 11 11 11
R	= R	(-025)R3	3 3 4	Maria de la	vien o	3 7 (and 12 2)
R ₂	= R2 -	(0.175) R3	4 41541	A GULE	Residence for a	3 77 6000
				k otes		2 75 3
		<u> pr</u>	p. El S	B	10 mg 1 1 mg 1	1 2 6
PI	0 0	0	5	长5	77.5	1.1
5, 0	0	0 1	-3.5	1-5	1.75	5=175
X, 0	but I was	0 0	20	-10	10	<i>T</i>
X2 C	0	1 0	0	5	22.5	
-						outs of a rec
					w Guig Sell -	
	P* = 77.				satisfied it is f	E E 378
1016 10 C	X = 10			2 1	At at	
	X2 = 22			Variation (Base)	36 37	
				طالحة ومنال	and amou	112
		o o (not in		ا روان معاسد	gra amba	Mr = 0-1,-15
		0		A A	0.00	Tay 6 De la Carte
	23 /				Control of the	at Kilske Ve
Xz		×		~ ~	c 1 20	A 44
	iteration 0			yes o	بسالة الطريق	ps
	^			421		1
	iteration C				1	
			×,			
Starti				0	-	0
	V	. 1 +	0 1	1	A e. A	
	You can	evaluate	p at each	ch vertix.	D higo K	
		100 April 100 Ap			ask	& recieve
					ask	CUIEVE

```
I initial step o is important)
* Initial Feasible solution
-> Select the slace variables as initial basics of non-zero values
-> # of basics = m = # of equations in the standard form
                  n = # of variables in the standard form
      m-m = # of basics with zero values.
- her any equation without slack variable, add what is called artificial variable
      (Ritro) and then select this Rito be in the initial basic set of variables
      ( artificial variable method)
                                     Standard form & min P=4X1+X2
  Example min P=4x1+x2
            S.t: 3x1+ x2=3
                                                          4x, +3x2- X3+R
  drawn since
                                                          3X1+X2+R1=3
                   4x1+3x276
  2 variables
                                                          4x1 +3x2-X3+R2=6
   I not given in & XI, X270 grade:
                    X1+2×2 <4
                                                          x_1 + 2x_2 + x_4 = 4
   question, you Cannot
                                                          X, X2, X3, X4, R, P270
   assume it
                                                        m=3 Basic
      m = 3 basic
     n-m=3 non basic
 * There are two methods deal with the aftificial Formulation in order to get the
        Final optimum solution
         (A) Two-phase method (B) Big - M technique
                min = Ri+Rz kno -ve make we terms from the
                 s.t 3x1 + x2+ R1 = 3 - D R1 = 3 below equations
 optimization of
                        4x, +3x2-x3+R2 = 6-D R2=6-4x, -3x2+ x3
 artificial variables
                         X_1 + 2X_2 + X_4 = 4
                        X1, X2, X3, X4, R, Re 7,0
             \Gamma = 3-3X_1-X_2+6-4X_1-3X_2+X_3 = 9-7X_1-4X_2+X_3
             req. : r+7x,+4x2-x3=9
         Then Tablue
```


Stan	dard from						
	huat va						
Basic	P	X,	X ₂	X3	Хч	RHS	W Inital
P	1	0	0	1/5	0	18/5	
Χ,	0	1	0	1/5	0	3/5	}
X2	0	0	١	-3/5	0	6/5	
→Xų	0	0	6	1		1 -	
Basic	P	×,	X ₂	Xu	RHS		
P	1	0	0	-1/5	17/5		P* = 1715
Χ,	0	B I	0	-1/5	215		X, * = 2/5 y You can check
X ₂	0	0	1	3/5	9/5		X,* = 2/5 2 You can check X2 = 9/5 by substitution
X3	0	0	0	١	1		X3 = 1
							x4 = 0 > all 4 are go
I.F.	all pro	blem is	slack,	all -ve	coellicies	nls 1	This is the easiest way
→ Ir Pe	nalizing! row? -For min		problem	rables in	the original theory and the original theory are the original theory and the original theory are the original through	ginal ob or max Max C	inization problem TX - M & Ri Increasing It will stop from the initial
Preuini	is examp	ole Min	P = 4x	1 + X2			al variables in terms
		X2 + MR					er variables
		X1 + X2+			$R_1 = 3$	-3x,-	- X ₂
	L	1x1 + 3x2	- X3+ R	2 = 6	R2=	6-4×2	$-3 \times_2 + \times_3$
		X1 +2 X2 +	X4=4				
		X, , X2	, X ₃ , x	lu, R.	R2 710		
		n = 6	m=3			7	
	Peq. 8						$6 - 4 \times (-3 \times 2 + \times 3) = 0$ = 9 M look at M
	en						R2 X2 Recieve
st	alting bo	sics & R	C. R2	Xq		ask ,	& recieve
R	etura to	book Pur	the so	oktion.			

Scanned by CamScanner

Try without capielling [Ch. 4

Linear Programming: Duality and Sensitivity Analysis 122

Regenerate it

Add Z wellicery Table 4-3 Solution x_3 Iteration Basic x_1 -8M2 -4 - 3M-12 + M-5 - 2MZ (starting) 10 1 2 x3 enters . X4 8 -> 3 -1 2 R leaves R 32/3 0 $\frac{4}{3} + M$ 0 -7/31 -40/3Z 22/30 x2 enters 1/3 7/3 > X4 0 1/3 8/3 x4 leaves 1 -1/32/3 x_3 2 0 0 40/7 $-\frac{4}{7} + M$ 368/7 -3/7z x_1 enters 0 1/7 1 3/7 -1/722/7 x_2 x3 leaves 5/7 0 1 1/7: 26/7 > X3 2/7 3 0 0 z 3/5 29/5 $-\frac{2}{5} + M$ (optimal) x_2 0 -1/52/5 0------7/5 1 26/5 =· x 1 -1/5---2/5 $X_3 = 0$ $X_4 = 0$ R = 0

X	D
	- K
29/5	-2/5 + M
$y_1 - 0$	$y_2 - (-M)$

Application of the foregoing equation thus yields

$$29/5 = y_1 - 0$$
 and $-2/5 + M = y_2 - (-M)$

We thus obtain $y_1 = 29/5$ and $y_2 = -2/5$, which are the same values as those obtained directly from the optimal dual tableau.

We now show that the optimal dual tableau (Table 4-4) also yields the optimal primal solution directly and by using the equation stated earlier. Observe,

rasky.		Solution	21M	8	12	4	544	3/5	2/5	29/5	7 26-	1/2/2	,		-,
of van		R3	0	0	0	1 *	М—	-1	0	0	y2 - 32	0			
you can reduce the number of variable, you can consider it primed and take the dual, it will repure the original problem.	•	R2	0	0	1	0	12/5 – M	-1/5	1/5						
educe the onsider i	*	R1	0	1	0	0	26/5 - M	7/5	-2/5	1/5					
1		УБ	-M	0	0	ī	0	-	0	0	54				
Lou		J. 4	M-	0	7 9	0	-12/5	1/5	-1/5	-2/5	S				
		у3	M-	T.	0 0	0	-26/5	-7/5	2/5	-1/5	2 2				
) ₂ "	8 – 4M	-2		5-	0	0	1	0	5 8				
		, y,	-8 + 4M	2	- "	0	0	0	T	0	R2 R3		solution.		
		٧٦.	-10 + 4M	- (7 -	1	0	0	0	1	yz' R,		in the solu		
		Basic	3	R ₁	K ₂	113	3	<i>y</i> 5	y2"	у1	35	0:	y ancel		
	Table 4-4	Iteration	(starting)			7	(optimal)				Sexual Se	1-0	- W WOUND	123 _{-ve}	

first, that x_1 , x_2 and x_3 are respectively associated with the first, second, and third dual constraints and, hence, with the artificials R_1 , R_2 , and R_3 .†

Starting Dual Variables	yar R1	n R2	4 - R3
Optimal w-equation coefficients	26/5 - M	12/5 — M	-M
Left minus right sides of the primal constraint associated with			
the starting dual variable	$\langle x_1-M \rangle$	x_2-M	x_3-M
	x_1-M	x_2-M	x3-

Thus we get

$$x_1 = (26/5 - M) + M = 26/5$$

 $x_2 = (12/5 - M) + M = 12/5$
 $x_3 = (-M) + M = 0$

which is the same solution obtained directly in the optimal primal tableau (Table 4-3).

Why should we be interested in obtaining the optimal solution of the primal by solving the dual? The answer is that it may be more advantageous computationally to solve the dual rather than the primal. Recall that the computational effort in linear programming depends more on the number of constraints than on the number of variables. Thus, if the dual happens to have a smaller number of constraints than the primal, generally it will be more efficient to solve the dual, from which the optimal primal solution can then be obtained.

Exercise 4.2-1

Find the optimal dual solution from the optimal primal tableau of each of the following examples in Chapter 3.

(a) Example 3.3–1, Table 3–2.

[Ans. $y_1 = y_2 = 3/2$.]

- (b) Example 3.3–2, Table 3–3. [Ans. $y_1 = 5/8$, $y_2 = 1/8$, $y_3 = 0$.]
- (c) The example in Table 3-1, Section 3.2.3-A. [Ans. $y_1 = 7/5$, $y_2 = 0$, $y_3 = -1/5$.]

The primal and dual solutions in Tables 4-3 and 4-4 reveal two interesting

1. At the optimum iteration we have

$$\max z = \min w = 54\frac{4}{5}$$

This is always true and, indeed, should be consistent with the optimal values of the variables in both problems, namely,

$$z = 5x_1 + 12x_2 + 4x_3 = 5 \times 26/5 + 12 \times 12/5 + 4 \times 0 = 54\frac{5}{4}$$

$$w = 10y_1 + 8y_2 = 10 \times 29/5 + 8 \times (-2/5) = 54\frac{5}{4}$$

sk i belle

🙎 recieve

[†] This statement is based on the (almost) obvious observation that the dual of the dual is the primal. You should verify this by considering the dual as the given problem. Then use x_1 , x_2 , x_3 as its "dual" variables. By applying the rules in Table 4-2, you will find that the resulting "dual" is the original primal!

Scanned by CamScanner

The line
$$T_{X,y} = 0$$
 and $T_{X,y} = 0$ and $T_{X,y} = 0$ and $T_{X,y} = 0$ be the above non-line three equations to get the three solutions so the solutions so the solutions so the three solutions so the solutions of the s

To
$$V_{1}$$
 [2 0] [0] = [0 - 2V_{2}] [0] = 0 - 2V_{2}^{2} = -2V_{2}^{2}

The third solution is 3 lives the local maxima.

The First Solution $X_{1}^{2} = 1/2$ $X_{2}^{2} = -1/2$ $X_{3}^{2} = 1/2$

The First Solution $X_{1}^{2} = 1/2$ $X_{2}^{2} = -1/2$ $X_{3}^{2} = 1/2$

The First Solution gives local minima.

Plant First Solution gives local minima.

Plant First Solution gives local minima.

Promoting Function method (only five min.)

The first Solution gives local minima.

Provided First Solution gives loc

9 (AC 52 1)							
rx		(2 Φ		You can u	use the cu	urvature to	help you
		2 0	72	:0 ,	small	, terms will	1 - 0 -
		.4762 0.47					
200 14	1945	24975 0.40				function	
2000 1.4		2.4998 6.		The Unite	1	Buricus.	
+ 1		2.5	0.5 = P(X*)	1	1.5.2	
	X,	X2 G	6 *	,	backs: 3	ILL - condi	hioning
		spealic er					s very larg
when sub	stitutino	}		Α.	low conv		
63.							
(D) Logarithi					Page 108	01-062-50	1112 (7)
→ hor	inequal	ity constrain	ed problem	/	bega	se Here is n	o ve in Ir
Min	$b(\bar{x})$	=D M	$\lim_{x \to \infty} B(\overline{x}) =$	b(x)Gb	SIN [3: (x)] ,	traction is th
Sot	$\frac{g(x)}{}$					only for action	
1012 112	uhan		6.0.		being dose	, *10 = Dl	n → big
Fx/		$\underline{X} \rightarrow \underline{X}^*$:				6 X) E	
		x1+ X2 7			V2-4710	2 1 3 ARRES	
		9) = (x,-1)2				013-14	- Land
		e w.r.t x				74110	17-4 5,00
emor= B-P	3	X,	X2	P(X)	g(x)	Sing	B(x, g)
1 1 1	10	2.851	3.851				-3.088
	11 1120	1.809	2.809	1.309	0,618	-0.481	0.556
		1.565		6.510	0-01	-0.046	0.556
I don't want		1.5		0.5	0	0	0.5
very small I because of ill	Conditionin	×,*	X ₂		-	4	
4		Sept. 1 and	1000				
	1	12 10 10 10 10 10 10 10 10 10 10 10 10 10	is materi	an roal		1	
				- X	A		
				N. Y. S.	PVE		Res E
					ask ;;	BELLIC VE &	recieve
			542			/	
				1			

	17/3/2019
(D) Mixed penalty-barn	- Entre mater
Min acco	er ranctions method
$\min_{x \in \mathcal{L}(X)} \rho(x)$	
$5.t \underline{f}(\underline{x}) = 0$	
9(x)7/0	A COLUMN TO THE PARTY OF THE PA
P(X,r,S) = P(X)	$)+\frac{f}{2}\sum_{i=1}^{\infty}\left[f_{i}\left(\underline{x}\right)\right]^{2}-\int_{i=1}^{\infty}\int_{1}^{\infty}\left[\int_{1}^{\infty}\left(\underline{x}\right)\right]^{2}dx$
[= 0.1] (C=1 C=10 when you substitute
P=10	in F(x) you must =0
9=1	· You fired in r, if it
	divige stop and search
	Par 8
(E) Successive linear Pr	ngramming (SLP) method
linearization by Ta	
	F(x) g(x) using Taylor series expansion around initial
quess al x*	
	n the Feasible region -> it must satisfy the £60 and
g(x) consta	
	\tilde{x}) + $\nabla P(x) (x - \tilde{x}) \leftarrow it$ is linear
You can s.t.:-	$G_{\lambda} = C_{\lambda} + C_{\lambda} + C_{\lambda}$
remove +(x) = +	$(\tilde{x}) + \nabla_{x} F(x) / (x - \tilde{x}) = 0$
remove $f(x) \cong f$ and mathematical $f(x) \cong f$ $f(x) \cong f(x) \cong f(x)$	(3)
$\overline{g}(X) = \overline{J}$	$(\tilde{x}) + \Delta \tilde{a}(\tilde{x}) / (\tilde{x} - \tilde{x}) / 0$
1 -4	N
· Limit bounds - X	$X - \tilde{X} \leq \Delta$ where Δ limits the change in the variable
Brown of b	of iterations, they called stop bounds. They
0 10	imposed to ensure that the errors between the
	non linear and approximate linear one
	are not too large.
B. Solve the approxima	ate linear programming problem iteratively to get x.
\Rightarrow let $d = x - \tilde{x} =$	x, - x,
	$\begin{bmatrix} X_2 - \tilde{X_2} \\ X_3 - \tilde{X_3} \end{bmatrix}$
$\phi(x) = \rho(x) - \rho(\tilde{x})$	ask & recieve
$\min \phi(x) = c^{T}$	d whore $C^T = \nabla P(X)$ ask as recieve
subject to :	X
Surger,	

```
\overline{A}_{ed} = \overline{P}_{ed} where \overline{A}_{ed} = A E(\overline{X}) / X : P_{ed} = -E(\overline{X})
    Ainer 1 > Piner. where Ainer = Tx g(x)1x; biner = - g(x)
        or < no problem
     Solve in simplex or Lindo
      d < a when you put in Lindo, d must be d=d'-d"
      a-7 b
    Put emer percentage to which is a but absolute value as a teast
     S(emor) LAe
Example Max 2X1+X2 = P(X)
            S.E. X2 + X2 < 25
               x_1^2 - x_2^2 \le 7
  From question
                     X27/0
    Take \tilde{X} = [2 \ 2]^T as an initial guess and \Delta = [1 \ 1]^T
          P(x)=p(2,2)=6
           \phi = P(X) - 6
           C^T = \nabla P(X) = [2 \ 1]
           d = [d, d2]T
           \underline{A}^{\text{ind}} = \nabla_{\underline{X}} g(\underline{X}) = \begin{bmatrix} 2\overline{X}, & 2\overline{X}_2 \\ 2\overline{X}, & -2\overline{X}_2 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & -4 \end{bmatrix}
                                                                · X,2 L(X,) = X,2 but
Deration (X) = P(X)-6
                                                                  requires X.
   max. \alpha(\underline{x}) = 2d_1 + d_2 where C^T = \forall P(\underline{x})
     s.t: 4d, +4d2
              4d1+4d2 <25 You can divide by 4
              4d, -4d2 <7 You can divide by 4
               di <1 d, 71-1
               dz (1 dz 7/1
                                                                                       recieve
```

-

