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Introduction

Objective of regression is to build a model of a set of data
Can be used for prediction.
Interpolation and/or extrapolation.
Optimization.

The parameters in the model are called regression 
coefficients.

Intercept and slope in a linear model.
Parameters (A,B and C) in Antoine equation.

Regressor or (predictor) is (are) the set of independent
variable(s).
Response is the dependent variable.



2

Statistics 905331-09: Linear regression 3

Observation  Hydrocarbon Level Purity 

Number x (%) y (%) 
1 0.99 90.01 
2 1.02 89.05 
3 1.15 91.43 
4 1.29 93.74 
5 1.46 96.73 
6 1.36 94.45 
7 0.87 87.59 
8 1.23 91.77 
9 1.55 99.42 
10 1.40 93.65 
11 1.19 93.54 
12 1.15 92.52 

13 0.98 90.56 
14 1.01 89.54 
15 1.11 89.85 

16 1.20 90.39 
17 1.26 93.25 

18 1.32 93.41 
19 1.43 94.98 
20 0.95 87.33 
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The Simple Linear Regression Model

each observation, Y, can be described by the model

Assumptions for ε
Zero mean value
Variance is σ2.

0 1ŷ xβ β ε= + +

random error term
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Method of Least Squares

The method of least squares is 
used to estimate the parameters, 
β0 and β1 by minimizing the sum 
of the squares of the vertical 
deviations
The sum of the squares of the 
errors SSE (residuals) of the 
observations from the true 
regression line is
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Minimization of Squares

For the function L to be minimum; its derivatives 
with respect to all parameters must be zero.

Generates a system of exactly the size of the number 
of parameters we have at hand (normal equations).
Solution to this system of equation provides 
estimates for the parameters
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Simple Linear Regression Estimates
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Estimating σ2

Unbiased estimator
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Confidence Limits

Under the assumption that the observations are normally 
and independently distributed, a 100(1 – α)% confidence 
interval on the slope β1 in simple linear regression

Similarly, a 100(1 – α)% confidence interval on the 
intercept β0
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Adequacy of a Regression Model

Fitting a regression model requires several 
assumptions.

Errors are uncorrelated random variables with 
mean zero;
Errors have constant variance; and,
Errors be normally distributed.

The analyst should always consider the validity of 
these assumptions to be doubtful and conduct 
analyses to examine the adequacy of the model
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Residual Analysis

The residuals from a regression model are ei = yi - ŷi , 
where yi is an actual observation and ŷi is the corresponding 
fitted value from the regression model. 

Analysis of the residuals is frequently helpful in checking 
the assumption that the errors are approximately normally 
distributed with constant variance, and in determining 
whether additional terms in the model would be useful.
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Figure 11-9 Patterns for 
residual plots. (a) satisfactory, 
(b) funnel, (c) double bow, (d) 
nonlinear. 
[Adapted from Montgomery, 
Peck, and Vining (2001).]
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Normal Probability Plots
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Correlation Coefficient and Coefficient of 
Determination

The coefficient of determination is often used to 
judge the adequacy of a regression model

The range is 0 ≤ R2 ≤ 1.
Correlation coefficient (R) is the square root of R2

The range is -1 ≤ R ≤ 1.
We often refer (loosely) to R2 as the amount of 
variability in the data explained or accounted for by 
the regression model.
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Transformation to a Linear Model

Many models are intrinsically linear i.e., can be 
transformed to linear form by proper manipulations

Power law
Exponential
Saturation
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Power law Exponential Saturation

Transform using 
logarithms then the new 
variables will be ln y and 
ln x. Also, the parameters 
will be ln a and original b.

Transform using 
logarithms then the new 
variables will be ln y and 
original x. Also, the 
parameters will be ln a and 
original b.

Transform using 
reciprocals then the new 
variables will be 1/y and 
1/x. Also, the parameters 
will be b/a and reciprocal 
a.


