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Preface

he pervasive presence of electronic devices and instrumentation in all aspects

of engineering design and analysis is one of the manifestations of the electronic

revolution that has characterized the second half of the 20th century. Every

aspect of engineering practice, and even of everyday life, has been affected in
some way or another by electrical and electronic devices and instruments. Computers
are perhaps the most obvious manifestations of this presence. However, many other
areas of electrical engineering are also important to the practicing engineer, from
mechanical and industrial engineering, to chemical, nuclear, and materials engineer-
ing, to the aerospace and astronautical disciplines, to civil and the emerging field of
biomedical engineering. Engineers today must be able to communicate effectively
within the interdisciplinary teams in which they work.

OBJECTIVES

Engineering education and engineering professional practice have seen some rather
profound changes in the past decade. The integration of electronics and computer
technologies in all engineering academic disciplines and the emergence of digital
electronics and microcomputers as a central element of many engineering products
and processes have become a common theme over the nearly 20 years since the
conception of this book.

The principal objective of the book is to present the principles of electrical, elec-
tronic, and electromechanical engineering to an audience composed of non—electrical
engineering majors, and ranging from sophomore students in their first required in-
troductory electrical engineering course, to seniors, to first-year graduate students en-
rolled in more specialized courses in electronics, electromechanics, and mechatronics.

A second objective is to present these principles by focusing on the impor-
tant results and applications and presenting the students with the most appropriate
analytical and computational tools 1o solve a variety of practical problems.

Finally, a third objective of the book is to illustrate, by way of concrete, fully
worked examples, a number of relevant applications of electrical engineering princi-
ples. These examples are drawn from the author’s industrial research experience and
from ideas contributed by practicing engineers and industrial partners.

The three objectives listed above are met through the use of a number of ped-
agogical features. The next two sections of this preface describe the organization of
the book and the major changes that have been implemented in this fourth edition.

ORGANIZATION AND CONTENT

The book is divided into three parts, devoted to circuits, electronics, and electrome-
chanics. Changes in the contents are described next.

Part I: Circuits

The first part of the book remains essentially unchanged, after the significant revisions
brought by the fourth edition. The only major change is the addition of approximately
110 new homework problems.

© The McGraw-Hill
Companies, 2007
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Part: Il Electronics

Part II, on electronics, presents some new features in the treatment of transistors.
Chapter 10, on bipolar transistors, and Chapter 11, on field-effect transistors, have
been significantly reorganized to focus on the use of these devices in simple but useful
circuits. Modeling emphasis is limited to large-signal models, which are sufficient
for the intended purpose. New examples include the design of simple electric motor
drivers and of battery chargers. These two chapters now present a new, uncomplicated,
and practical treatment of the analysis and design of simple amplifiers and switching
circuits using large-signal models. The revisions were based on a conscious decision
to completely eliminate all of the material related to small-signal models of amplifiers.
Chapter 12, on power electronics, includes two new examples describing power stage
amplifier characteristics. The remainder of the electronics section, Chapters 8 and 9,
and 13, 14, and 15, are mostly unchanged, except for the addition of a handful of
new application-oriented examples. Nearly 100 new homework problems have been
added to Part II.

Part lll: Communication Systems

New in the fifth edition is the inclusion of two chapters on communications. These
chapters have been added at the request of numerous schools, where it is felt that
a modern engineer needs to have exposure to basic principles of communication
systems. Chapter 16 is arevised edition of the an analog communications chapter that
has been available on the book website since the third edition. The intent of the chapter
is to present the basic principles of analog communications systems, leading to a basic
understanding of analog AM and FM systems. Chapter 17, courtesy of Dr. Michael
Carr, of the Ohio State University ElectroScience Laboratory, introduces the basic
principles of digital communications systems. Both chapters focus on applications.

Part 1V: Electromechanics

Part IV on Electromechanics has been revised for accuracy and pedagogy, but its
contents are largely unchanged. This part has been used for many years by the author
as asupplement in a junior-year “System Dynamics” course for mechanical engineers.
The chapters include some New examples and approximately 20 new problems.

Instructors will find additional suggestions on the organization of course mate-
rials at the book’s website http://www.mhhe.com/rizzoni. Suggestions and sample
curricula from users of the book are welcome!

FEATURES OF THE FIFTH EDITION

Pedagogy

The fifth edition continues to offer all of the time-tested pedagogical features available
in the earlier editions.

 Learning Objectives offer an overview of key chapter ideas. Each chapter
opens with a list of major objectives, and throughout the chapter the learning
objective icon indicates targeted references to each objective.
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* Focus on Methodology sections summarize important methods and
procedures for the solution of common problems and assist the student in
developing a methodical approach to problem solving.

* Clearly Hllustrated Examples illustrate relevant applications of electrical
engineering principles. The examples are fully integrated with the “Focus on
Methodology” material, and each one is organized according to a prescribed
set logical steps.

+ Check Your Understanding exercises follow each example in the text and
allow students to confirm their mastery of concepts.

+ Make the Connection sidebars present analogies to students to help them
see the connection of electrical engineering concepts to other engineering
disciplines.

* Focus on Measurements boxes emphasize the great relevance of electrical
engineering to the science and practice of measurements.

* Find It on the Web links included throughout the book give students the
opportunity to further explore practical engineering applications of the
devices and systems that are described in the text.

Supplements

The book includes a wealth of supplements, many available in electronic form. These
include

+ A CD-ROM containing computer-aided example solutions, a list of Web
references for further research, device data sheets, Hewlett-Packard
Instrumentation examples, and a motor control tutorial.

+ A website (Online Learning Center) will be updated to provide students and
instructors with additional resources for teaching and learning. You can find
this site at http://www.mhhe.com/rizzoni

Online Learning Center

(http://www.mhhe.com/rizzoni)
Resources on this site include:

For Students:

* Algorithmic Problems that allow step-by-step problem-solving using a
recursive computational procedure to create an infinite number of problems.

 Device Data Sheets
+ Hewlett-Packard Instrumentation Examples
+ A Motor Control Tutorial, and more...

© The McGraw-Hill
Companies, 2007
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For Instructors:

* PowerPoint presentation slides of important figures from the text

+ Instructor’s Solutions Manual with complete solutions (for instructors
only)

+ COSMOS (Complete Online Solutions Manual Organizing System)

* MATLAB Solution files for selected problems

For Instructors and Students:

- Find It on the Web links, which give students the opportunity to explore, in
greater depth, practical engineering applications of the devices and systems
that are described in the text. In addition, several links to tutorial sites extend
the boundaries of the text recnt research developments, late-breaking science
and technology news, learning resources, and study guides to help you in
your studies and research

* News feeds provide current daily news from The New York Times and other
reliable online news resources related to the topics in the text. While most
students and instructors have access to currents news online, these feeds are
selected based on the topics presented in each chapter of Rizzon’s text.
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+ Alexandros Eleftheriadis, Columbia University
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inconsistencies in the fourth edition. We have gladly accepted all of their suggestions.
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of this book.

* Suresh Kumar R., Amrita School of Engineering, India
* Thomas Schubert, University of San Diego
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* Mohan Krishnan, University of Detroit Mercy
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at Ohio State, for help and advice.

Book prefaces have a way of marking the passage of time. When the first edition
of this book was published, the birth of our first child, Alex, was nearing. Each of
the following two editions was similarly accompanied by the births of Maria and
Michael. Now that we have successfully reached the fifth edition (but only the third
child) I am observing that Alex is beginning to understand some of the principles
exposed in this book through his passion for the FIRST Lego League and the Lego
Mindstorms robots. Through the years, our family continues to be the center of my
life, and I am grateful to Kathryn, Alessandro, Maria, and Michael for all their love.
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GUIDEDTOUR

Learning Objectives offer

an overview of key chapter ideas.
Each chapter opens with a list of
major objectives and throughout
the chapter. The learning objective
icon indicates targeted references
to each objective.

:) Learning Objectives

1. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using node analysis. Sections 3.2 and 3 4.

2. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 3.3 and 3 4.

3. Apply the principle of superposition to linear circuits containing independent sources.
Section 3.5.

4. Compute Thévenin and Norton equivalent circuits for networks containing linear

resistors and independent and dependent sources. Section 3.6.

5. Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables
is constructed, and these equations are solved by means of suitable techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
Lo solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are [ollowed.

Example 3.1 defines all the voltages and currents that are associated with a
cmAnifia Alenie

FOCUSONMETHODOLOGY
COMPUTING THE THEVENIN VOLTAGE

1. Remove the load, leaving the load terminals open-circuited.

Focus on Methodology section
summarize important methods and
procedures for the solution of
common problems and assist the
student in developing a methodical
approach to problem solving.

. Define the open-circuit voltage voc across the open load terminals.

. Apply any preferred method (e.g., node analysis) to solve for voc.

2,
3
4. The Thévenin voltage is vy = voc.

The actual computation of the open-circuit voltage is best illustrated hy e
ples; there is no substitute for practice in becoming familiar with these computa:
To summarize the main points in the computation of open-circuit voltages, cor
the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall th
equivalent resistance of this circuit was given by Rt = Rz + R || R». To con
voc, we disconnect the load, as shown in Figure 3.45, and immediately observe
no current flows through R3, since there is no closed-circuit connection at that br
Therefore, voc must be equal to the voltage across Ry, as illustrated in Figure
Since the only closed circuit is the mesh consisting of vg, R;, and R», the answ
are seeking may be obtained by means of a simple voltage divider:

R

Voc =VR2=Vs " 5
R+ Ry

Tt is instructive to review the basic concepts outlined in the example by
sidering the original circuit and its Thévenin equivalent side by side, as sho
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the
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EXAMPLE 3.8 Mesh Analysis
Problem

Wrire the mesh onrerent saqnarions for the cirenit of Fignee 3009,

Clearly lllustrated Examples
illustrate relevant applications of
electrical engineering principles.

SBoluliun
Keown Quantities: Seance eelages: resisine valuss,

Find: Mesh curment sqaations.

Schematles, Diagrams, Cireults, and Given Data: |\, — [TV ¥ — 6% B — 310y

R BfR Ry 0 Ry 48

Aralpsia: We fllnw the Focus on Mathadolnzy sreps.

Lo Asenne clockwise mesh o rts & unl (5,

2 W reengnive hree ind2pendent wriables, sirce there are aa crent soorces, Slaning

Trann sl §y e sprply KT b altam

b= Ry = dy) = R =l =0
KV spplicd oomead 2 vichls

=Rl == Rally — VR
while in mesh 3 we find

— Ryl — iy = Reby— Katds — il =1

The examples are fully integrated
with the "Focus of Methodology”
material, and each ane is organized
accerding to a prescribed set of
common sense steps.

Flgure 3.19

© The McGraw-Hill
Companies, 2007

Check Your Understanding
exercises follow each example

in the text and allow students to
confirm their mastery of concepts.

CHECK YOUR UNDERSTANDING
Finel m1a current §y in the citeiit shown on the left uding e node volege mcethod.

-4
Ay

ety b l In e aniz

Q)M.s::-u% muE ==mv .‘-.4() muaEae

Lmdd cae voltage 1o by the node voltage method tor the cmeot shown on the nght.
Shrsw that the anawer to Fxa-p'e 2.3 is coraet by applyitg KOL at one o mors nodes.

AHI= UF LENT T A

EXAMPLE 3.5 <|_01

Problem
Tl 1 vanle voliage soalysis nrdete mine e ealiape @ in e cireein ol Figoe 39, Asaone ®
el #y 2808 - 18R 4G RS0 2 A and 5 B
by, v, :‘ "
+ ] A
Solution [)J. SRR 0
Known Quantitics: Yalues o Us resstons ud e cuzreod souzces,

Find: Viltage acmas Ry, -
. . Figure 2.9 Uiwui lr
Analysis; Unie aguin, we ollove e sleps oullned mLe Focus on Methodology bus. Bl 43

1. The reference nede iz devarsd Tn Fiene 3.4,

2. Mexr, we detine the theee node voltaaes oy, g 1. w8 shown in Faure 300

3. Apply KCL uleach ulthe a1 nodes, expressonge cach current in Laens of e adjacen
e wolluges.,

= 1 — i
’ PETT 20 el

1 i
= =1 ande *

— =0 Tdule §
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Make the Connection sidebars
present analogies to students
to help them see the connection
of electrical engineering
concepts to other engineering
disciplines.

cquations obtained at nodes ¢ and b (verify this, as an cxercise). This obscrvation
confirms the statement made earlier:

In a circuit containing n nodes, we can write at most n — | independent
cquations.

Now, in applying the node voltage method, the currents iy, £, and 5 arc expressed as
lunctions of v,, vy, and v,., the independent variables. Ohm’s law requires that i, for
example, be given by

Vg — 0
B = (3.5
Ry l
since it is the potential difference v, — v, across R| that causes current i to flow from
node a to node c. Similarly,

(3.6)

Ry
Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we abtain the following relationships:

Vg Va— Vs

TR R

=0 3.7)

Vg = Up Up

R R

Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice.

Note that these equations may be solved for v, and v, assuming that i5. Ry, Rz, and
R4 are known. The same equations may be reformulated as follows:

Jor (e
(e d)es

Examples 3.2 through 3.4 further illustrate the application of the method.

-0 @38

3.9

I —
LO1 EXAMPLE 3.2 Node Analysis
Problem

Solve [or all unknown currents and vollages in the circuit of igure 3.5,

Known Quantities —Measurement of short-circuit current and open-circuit voltage.
Internal resistance of measuring instrument.

Find—Equivalent resistance Ry ; Thévenin voltage vy = voc.

Schematics, Diagrams, Circuits, and Given Data—Measured voc = 6.5 V; mea-
sured isc = 3.75mA; r, = 15 Q.

Thermal Circuit
Model

The conduction resistance
of the shaft is described by
tha following equation:

_t

AT
9T
R _ AT _ i
=g T

where A; is a cross section-
alaeaand L is the distance
frem tae inner core to the
surface. Tne convection re-
gistance Is described by
s'miar equaticn, nwhich
corvestive heat flow is de-
nea by the film coaf-
ficient of heat transfer, 4:

g =hA;AT
ho AT _ 1
cony = = =

where Ay s the surface arca
of tha shaft in contact with
ths water. The equivalent
thermal resistance and the
oveall cireuit model of the
crarksha’t quenching
process are shown in the
figures below.

R Reo
T O—MANN—A— T
—
q
Thermal resistance

representation of quenching
process

v )

Eleclrical circuil
representing the quenching

Reond

Reens

(Continued)

Find it on the web links
included throughout the book
give students the opportunity
to further explore practical

Network connected for measurement of
open-cireuit voltage (ideal voltmeter)

Figure 3.68

Comments—Nole how easy the experimental method is, provided we
are carcful to account for the internal resistance of the
measuring instruments,

engineering applications of
the devices and systems that
are described in the text.

process
Experimental Determination of Thévenin Equivalent Circuit
Problem:
Determine the Thévenin cquivalent of an unknown circuit from measurements of open-
circuit voltage and short-circuit current. Focus on Measurements
Solution: boxes emphasize the great

relevance of electrical
engineering to the science
and practice of measurements.

One last comment is in order concerning the praclical measurement ol the
internal resistance of a network. In most cases, it is not advisable to actually short-
circuit a network by inserting a series ammeter as shown in Figure 3.67; permanent
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CHAWPTER

INTRODUCTION TO ELECTRICAL
ENGINEERING

he aim of this chapter is to introduce electrical engineering. The chapter is

organized to provide the newcomer with a view of the different specialties

making up electrical engineering and to place the intent and organization of

the book into perspective. Perhaps the first question that surfaces in the mind of
the student approaching the subject is, Why electrical engineering? Since this book is
directed at a readership having a mix of engineering backgrounds (including electrical
engineering), the question is well justified and deserves some discussion. The chapter
begins by defining the various branches of electrical engineering, showing some of
the interactions among them, and illustrating by means of a practical example how
electrical engineering is intimately connected to many other engineering disciplines.
In Section 1.2 mechatronic systems engineering is introduced, with an explanation of
how this book can lay the foundation for interdisciplinary mechatronic product design.
This design approach is illustrated by two examples. A brief historical perspective
is also provided, to outline the growth and development of this relatively young
engineering specialty. Section 1.3 introduces the Engineer-in-Training (EIT) national
examination. In Section 1.5 the fundamental physical quantities and the system of
units are defined, to set the stage for the chapters that follow. Finally, in Section 1.6
the organization of the book is discussed, to give the student, as well as the teacher, a

© The McGraw-Hill
Companies, 2007
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Table 1.1 Electrical
engineering disciplines

Circuit analysis
Electromagnetics
Solid-state electronics
Electric machines
Electric power systems
Digital logic circuits
Computer systems
Communication systems
Electro-optics
Instrumentation systems
Control systems

Front Matter 1. Introduction to Electrical © The McGraw-Hill
Engineering Companies, 2007
Chapter 1 Introduction to Electrical Engineering

sense of continuity in the development of the different subjects covered in Chapters
2 through 20.

1.1 ELECTRICAL ENGINEERING

The typical curriculum of an undergraduate electrical engineering student includes the
subjects listed in Table 1.1. Although the distinction between some of these subjects
is not always clear-cut, the table is sufficiently representative to serve our purposes.
Figure 1.1 illustrates a possible interconnection between the disciplines of Table
1.1. The aim of this book is to introduce the non-electrical engineering student to
those aspects of electrical engineering that are likely to be most relevant to his or her
professional career. Virtually all the topics of Table 1.1 will be touched on in the book,
with varying degrees of emphasis. Example 1.1 illustrates the pervasive presence of
electrical, electronic, and electromechanical devices and systems in a very common
application: the automobile. As you read through the examples, it will be instructive
to refer to Figure 1.1 and Table 1.1.

Engineering
applications
Power
/ systems
Electric
Mathematical 7| machinery [T Physical
foundations / foundations
Network é I A“ak’f_% Electro-
theory electronics \\ —
Logic Digital Solid-state
theory electronics physics
System \ Computer Optics
theory x\ systems /
\ Control
systems

Communication
systems

Instrumentation
systems

Figure 1.1 Electrical engineering disciplines
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EXAMPLE 1.1 Electrical Systems in a Passenger Automobile

A familiar example illustrates how the seemingly disparate specialties of electrical engineering
actually interact to permit the operation of a very familiar engineering system: the automobile.
Figure 1.2 presents a view of electrical engineering systems in a modern automobile. Even in
older vehicles, the electrical system—in effect, an electric circuit—plays a very important part
in the overall operation. (Chapters 2 and 3 describe the basics of electric circuits.) An inductor
coil generates a sufficiently high voltage to allow a spark to form across the spark plug gap,
and to ignite the air-fuel mixture; the coil is supplied by a DC voltage provided by a lead-acid
battery. Ignition circuits are studied in some detail in Chapter 5. In addition to providing the
energy for the ignition circuits, the battery supplies power to many other electrical components,
the most obvious of which are the lights, the windshield wipers, and the radio. Electric power
(Chapter 7) is carried from the battery to all these components by means of a wire harness,
which constitutes a rather elaborate electric circuit (see Figure 2.12 for a closer look). In recent
years, the conventional electric ignition system has been supplanted by electronic ignition; that
is, solid-state electronic devices called transistors have replaced the traditional breaker points.
The advantage of transistorized ignition systems over the conventional mechanical ones is their
greater reliability, ease of control, and life span (mechanical breaker points are subject to wear).
You will study transistors and other electronic devices in Chapters 8, 9, and 10.

Other electrical engineering disciplines are fairly obvious in the automobile. The on-board
radio receives electromagnetic waves by means of the antenna, and decodes the communication
signals to reproduce sounds and speech of remote origin; other common communication sys-
tems that exploit electromagnetics are CB radios and the ever more common cellular phones.
Chapters 16 and 17 describes some of the technology that is behind AM and FM radio and other
common communication systems. But this is not all! The battery is, in effect, a self-contained
12-VDC electric power system, providing the energy for all the aforementioned functions. In
order for the battery to have a useful lifetime, a charging system, composed of an alternator
and of power electronic devices, is present in every automobile. Electric power systems are
covered in Chapter 7 and power electronic devices in Chapter 10. The alternator is an electric
machine, as are the motors that drive the power mirrors, power windows, power seats, and
other convenience features found in luxury cars. Incidentally, the loudspeakers are also electric
machines! All these devices are described in Chapters 18, 19, and 20.

Convenience
Climate control
Ergonomics Safety
(seats, steering wheel, mirrors) Air bags and restraints
Navigation Collision warning
Audio/video/ Internet/ Security systems

Wireless communications

Propulsion
Engine/transmission
Integrated starter/alternator

. . Ride and handling
Electric traction . vyt .
Active/semiactive suspension
kel Antilock brakes

Battery management Electric power steering

Tire pressure control
Four-wheel steering
Stability control

Traction control

Figure 1.2 Electrical engineering systems in the automobile
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The list does not end here, though. In fact, some of the more interesting applications
of electrical engineering to the automobile have not been discussed yet. Consider computer
systems. You are certainly aware that in the last two decades, environmental concerns related
to exhaust emissions from automobiles have led to the introduction of sophisticated engine
emission control systems. The heart of such control systems is a type of computer called a
microprocessor. The microprocessor receives signals from devices (called sensors) that measure
relevant variables—such as the engine speed, the concentration of oxygen in the exhaust gases,
the position of the throttle valve (i.e., the driver’s demand for engine power), and the amount
of air aspirated by the engine—and subsequently computes the optimal amount of fuel and the
correct timing of the spark to result in the cleanest combustion possible under the circumstances.
We present a brief overview of computer systems in Chapter 14. The measurement of the
aforementioned variables falls under the heading of instrumentation, and the interconnection
between the sensors and the microprocessor is usually made up of digital circuits. Chapter 15
is devoted to the subject of measurements and instrumentation, although you will find a feature
titled “Focus on Measurements” in most chapters. Digital circuits are covered in Chapters
13 and 14. As the presence of computers on board becomes more pervasive—in areas such
as antilock braking, electronically controlled suspensions, four-wheel steering systems, and
electronic cruise control—communications among the various on-board computers will have
to occur at faster and faster rates. Someday in the not-so-distant future, these communications
may occur over a fiber-optic network, and electro-optics will replace the conventional wire
harness. Note that electro-optics is already present in some of the more advanced displays that
are part of an automotive instrumentation system.

Finally, today’s vehicles also benefit from the significant advances made in communi-
cation systems. Vehicle navigation systems can include Global Positioning System, or GPS,
technology, as well as a variety of communications and networking technologies, such as wire-
less interfaces (e.g., based on the “Bluetooth” standard) and satellite radio and driver assistance
systems, such as the GM “OnStar” system.

1.2 ELECTRICAL ENGINEERING AS A
FOUNDATION FOR THE DESIGN OF
MECHATRONIC SYSTEMS

Many of today’s machines and processes, ranging from chemical plants to auto-
mobiles, require some form of electronic or computer control for proper operation.
Computer control of machines and processes is common to the automotive, chemical,
aerospace, manufacturing, test and instrumentation, consumer, and industrial elec-
tronics industries. The extensive use of microelectronics in manufacturing systems
and in engineering products and processes has led to a new approach to the design
of such engineering systems. To use a term coined in Japan and widely adopted in
Europe, mechatronic design has surfaced as a new philosophy of design, based on the
integration of existing disciplines—primarily mechanical, and electrical, electronic,
and software engineering.'

A very important issue, often neglected in a strictly disciplinary approach to
engineering education, is the integrated aspect of engineering practice, which is un-
avoidable in the design and analysis of large-scale and/or complex systems. One aim

D, A. Bradley, D. Dawson, N. C. Burd, and A. J. Loader, 1991, Mechatronics, Electronics in Products
and Processes, Chapman and Hall, London. See also ASME/IEEE Transactions on Mechatronics, vol 1,
no. 1, 1996.
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of this book is to give engineering students of different backgrounds exposure to the
integration of electrical, electronic, and software engineering into their domain. This
is accomplished by making use of modern computer-aided tools and by providing
relevant examples and references. Section 1.6 describes how some of these goals are
accomplished.

Examples 1.2 and 1.3 illustrate some of the thinking behind the mechatronic
system design philosophy through two examples: the recently introduced Ford Escape
hybrid-electric SUV and a land speed record electric vehicle.

© The McGraw-Hill
Companies, 2007

EXAMPLE 1.2 Mechatronic Systems—The Ford Escape
Hybrid-Electric SUV

An example of a mechatronic system that is becoming increasingly familiar is found in hybrid-
electric vehicles. A hybrid-electric vehicle (HEV) employs two different energy sources to
provide motive power. Today’s HEVs employ a combination of advanced internal combus-
tion engine technology together with electric machine and battery technology, to provide a
propulsion system that exploits the best features of thermal engines and of electric machines
to provide a greater energy conversion efficiency, and therefore lower fuel consumption. You
will find additional information on HEVs online.

This example focuses on the Ford Escape HEV, shown in Figure 1.3, recently introduced
in the North American market. The Escape HEV is the first commercially produced hybrid-
electric sport utility vehicle. It incorporates a number of features aimed at increasing fuel
economy while maintaining the comfort, performance, and utility that customers have come
to expect from vehicles of this class.

The Ford Escape HEV delivers V-6-like performance and feel with a 4-cylinder engine
and a hybrid drivetrain. Figure 1.4 depicts the appearance of the overall layout of the hybrid

Figure 1.3 Ford Escape HEV (Courtesy: Ford
Motor Company)

FIND 1|

ON THE WEB



0 ‘ Rizzoni: Principles and Front Matter 1. Introduction to Electrical © The McGraw-Hill
Applications of Electrical Engineering Companies, 2007
Engineering, Fifth Edition

6 Chapter 1 Introduction to Electrical Engineering

(b) Escape HEV engine compartment (c) Escape HEV transaxle

Figure 1.4 Ford Escape HEV hybrid drivetrain (Courtesy of Ford Motor Company)



Rizzoni: Principles and Front Matter 1. Introduction to Electrical
Applications of Electrical Engineering
Engineering, Fifth Edition

Chapter 1 Introduction to Electrical Engineering

drivetrain. The vehicle features a 4-cylinder gasoline engine operated according to the Atkinson
cycle (shown in Figure 1.4(b)), an asymmetrical four-stroke cycle (with expansion ratio greater
than the compression ratio) that is more fuel efficient than the traditional Otto cycle in use in the
majority of gasoline fueled vehicles today. The combination of a more efficient (but slightly
less performing) Atkinson cycle engine with the two electric machines incorporated in the
power-split transaxle [Figure 1.4(c)] is capable of torque and acceleration comparable to that
of a V-6 engine, while providing the customer with fuel economy of 35-40 mpg in the city,
and 29-31 mpg on the highway.

Figure 1.5 Details of Escape HEV transaxle (Courtesy: Ford Motor Company)

The transaxle, shown in a cut-away view in Figure 1.5, consists of two electric machines,
both permanent magnet AC machines,? one rated at 45 kW maximum power, used primarily
as a generator, the other rated at 70 kW and used primarily as a motor. The two machines are
mechanically connected through a planetary gear set, similar to the gear set used in conventional

2These types of electric machines are described in Chapters 19 and 20 of this book.

© The McGraw-Hill
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automatic transmissions. The transaxle also incorporates a power converter,® or inverter, that
converts the DC power supplied by the battery pack [Figures 1.6(a) and (b)] to the variable
frequency AC power? required to operate the AC electric machines. In addition to the power
converter, the electronics incorporated into the transaxle include a control module, which
includes various analog and digital electronic circuits,’ including a microcontroller that receives
information from various sensors to determine the best speed and power of operation of the
engine and of each of the two electric machines in the transaxle.

In addition to the energy provided by the fuel stored in a conventional tank, a hybrid vehicle
also stores a limited amount of energy in a battery pack. Figure 1.6(a) depicts the location of
the battery pack; note that the battery pack has been purposely designed to have a flat profile
[see Figure 1.6(b)], so as not to reduce useful cargo space. The battery pack consists of a 330-V
NiMH (Nickel-Metal Hydride) system, made up of numerous battery modules connected in
series and parallel.®

Figure 1.6 Ford Escape HEV battery pack (Courtesy of Ford Motor Company)

Finally, Figure 1.7 depicts the general system operation, showing how the engine and the
generator motor are connected to two of the planetary gear set inputs, while the traction motor
is connected to the output of the gear set, and therefore to the front axle. This picture illustrates
the various possible modes of operation of the vehicle, showing that the vehicle can be powered
by the engine alone, through the mechanical transmission elements, or by the traction motor
alone, or by a combination of the engine and two electric machines. Further, when the vehicle
is decelerating, the mechanical energy stored in the vehicle motion can be in part converted into
electrical energy by the generator motor, and stored in the battery pack for later use. Another
interesting feature of the Escape HEV is that the traction motor is capable of launching the

3Power electronics is the subject of Chapter 12 in this book.
4AC power is the subject of Chapter 7 in this book.
3 Analog and digital electronics are covered in Chapters 8—15.

6Series and parallel circuits are explained in Chapters 2 and 3.
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Figure 1.7 Ford Escape HEV strategy
(Courtesy of Ford Motor Company)

vehicle from zero speed without the need for any engine power. Thus, the engine can be safely
shut off whenever the vehicle stops at a traffic light or in traffic, with significant fuel savings
resulting from the complete elimination of engine idle.

© The McGraw-Hill ‘ a
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EXAMPLE 1.3 Mechatronic Systems—The Buckeye Bullet
Electric Land Speed Record Vehicle

Land Speed Record Racing:

In the early years of modern automobile engineering, it was electric traction that provided most
of the excitement (a surprise, perhaps, to modern internal combustion engine racing enthusiasts).
The vehicle shown in Figure 1.8 was the first vehicle to exceed the 100 km/hr mark—a record
that lasted several years, until the internal combustion engine became the dominant propulsion
system for most of the last one hundred years. In recent years, interest in electric land speed
record racing has once again increased, as both power electronics, electric motor, and battery
technology have seen significant advances, mostly motivated by the emergence of a small but
growing market for electric and especially hybrid-electric vehicles.

Modern land speed record (LSR) racing consists of vehicles traveling on a designated track
to obtain the fastest speed for that specific vehicle’s class. Since the early 1950s, amateurs and
professionals have raced toward land speed records in myriad categories on the Bonneville
Salt Flats, an ancient lake bed spread across 30,000 acres in Utah, 90 miles west of Salt Lake
City. The Salt Flats surface consists of packed salt, making it an ideal place to stage a speed
race due to the perfectly flat surface and to the high-altitude location with lower air density.

The Southern California Timing Association (SCTA) governs LSR racing at Bonneville,
and imposes precise rules that must be respected in order to attempt the record. In addition to
this, the SCTA establishes the standard for the race and the car depending on vehicle class.

FIND IT
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Figure 1.8 “La Jamais Contente” (Never Satisfied) electric racer, the first vehicle to surpass the
100 km/hr mark (105.880 km/hr), driven by Camillo Jenatzy at Acheres, France, on April 29, 1899

Figure 1.9 The Buckeye Bullet at the Bonneville Salt Flats/Photo by Giorgio Rizzoni

Electric vehicles (E class) have no body configuration restriction but there are three different
classes based on the vehicle’s weight, less that of the driver. The vehicle described in this
example, the Buckeye Bullet, shown in Figure 1.9, belongs to class E.III, the unlimited weight
electric class. The race course configuration, shown in Figure 1.10, consists of three different
| parts: the first two miles are used for the acceleration of the vehicle, while the average speed is
ONRGIERAVIEEN  recorded over the third, fourth, and fifth miles. After the fifth mile, the vehicle has two miles

FIND IT
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Figure 1.10 Bonneville course layout/Source: Giorgio Rizzoni

to decelerate using two drag parachutes. If an international record is attempted, the vehicle has
only one hour to make a return run, while for a United States record, four hours are allowed
between runs.

Design of an Electric Streamliner:

Vehicle Design

The Buckeye Bullet design layout is shown in Figure 1.11. The type of vehicle shown in the
drawing is called a streamliner, a term that indicates a vehicle with enclosed wheels and a long,
aerodynamic shape. The solid model of Figure 1.11 shows that the battery pack is located at
the front of the vehicle, with the power converter, motor, transmission, and driveline following
it. The driver is located at the rear of the vehicle in a specially designed roll cage that provides
significant protection. The tail end of the vehicle contains the two parachutes. The design of
the vehicle involved structural design, packaging optimization, the design of front and rear
independent suspension and brake systems, the design of the body shape using computational
fluid dynamics and wind tunnel testing, and dynamic and aerodynamic stability analysis. In this
brief example, we describe only the propulsion system, composed of a motor, power converter
(inverter), and battery pack.

Figure 1.11 Layout of the Buckeye Bullet/Photo by Giorgio Rizzoni

Motor

The required power of the drive motor was determined through simulations of the vehicle; since
motors with higher operating speeds have higher power densities (thus minimizing the weight
for a particular power rating) the motor was designed for a maximum speed of 12,000 rev/min,
and to achieve maximum power in a band between 8,500 and 10,500 rev/min. Also, since the
motor had a specified duty cycle of just 2 minutes at full power in any 45-minute period, the
motor selection was based on a design that allowed the highest specific loading conditions for

© The McGraw-Hill
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the minimum volume/weight. A high-speed cage induction motor’ was selected, using design
procedures proven from other vehicle applications.

The final design from Nigel McQuin provided a 3-phase AC induction machine with
4 poles, 0-10,500 rev/min operating speed range, and a maximum mechanical over-speed of
12,000 rpm. The air gap of the motor was chosen with due regard to the high vibration and rotor
dynamics, consistent with vehicle applications. The stator and rotor laminations® were manufac-
tured of high-frequency grade, low-loss magnetic material to minimize the total iron losses from
both hysteresis and eddy currents at operating frequencies up to 360 Hz. The magnet wire for the
stator winding, inverter duty type, made by Phelps Dodge Company, is specially designed to re-
sist high-voltage switching spikes and to deal well with high vibration and the high-temperature
environment. The rotor cage construction is of cast copper, which minimizes the rotor heating
losses and provides a stiff motor characteristic well suited to inverter drive applications.

To minimize the total weight of the drive motor, an aluminum housing was used. Based
on previous vehicle experience, bearings, shaft seals, and terminal box configurations were
selected for the necessary power rating and operating speeds. In view of the harsh salt envi-
ronment, and the limited duty cycle of operation, a detailed thermal study determined that the
design could be made total-enclosed with no cooling system. The thermal inertia of the motor
housing and stator/rotor iron cores was more than adequate to store the heat losses during the
race trial, with sufficient surface cooling available in the rest period to allow the return race
trial to be completed.

Figure 1.12 500-kW AC induction motor/Photo by Giorgio
Rizzoni

The drive motor and housing assembly was manufactured by Shoemaker Industrial So-
lutions, which coordinated the supply of the custom-cut laminations, coil winding, machining
services, final assembly, and qualification testing. Figure 1.12 depicts a solid model of the motor.

Inverter
To operate an AC induction motor from a battery pack, it is necessary to convert the DC
current and voltage of the battery pack into AC currents and voltages of variable amplitude

"Induction motors are discussed in Chapter 19 of this book.

8You will find a discussion of laminations and magnetic losses in Chapter 18.
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and frequency. This task is performed by a power electronic system called a DC-AC power
converter, or more simply inverter. The inverter used in the Buckeye Bullet (one view is shown
in Figure 1.13) is a modified version of a system produced by Saminco, Inc. for use in electric
buses. The inverter, rated at 900 VDC, uses insulated gate bipolar transistors’ (IGBT) and
operates at a switching frequency greater than 8 kHz. The inverter is provided with a liquid
cooling system to limit the maximum device temperatures. The continuous power rating of the
inverter is 250 kW, but thanks to the liquid cooling it is possible to operate it at significantly
higher power for short periods of time. This power converter includes a microcontroller that
makes the DC-AC power conversion tunable to any motor to optimize the efficiency of the
system. By adjusting the switching frequency of the inverter, it is possible to control motor
torque so as to limit the acceleration and jerk. These actions result in reduced tire slip and
impact loading on the drivetrain.
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Figure 1.13 Details of the inverter/Photo by Giorgio Rizzoni

Another important feature of the inverter is dynamic braking. During gear shifting the drive
motor is slowed from approximately 10,000 rev/min to 7,000 rev/min allowing the the rotational
energy to be temporarily dissipated through a special resistor to permit synchronization of the
rotating parts for the closure of the clutch.

Batteries
The battery pack used in the Buckeye Bullet is made up of over 400 NiMH battery modules
arranged in 20 packs to create a 900 VDC bus, and 20 kW/hr capacity. Figure 1.14 depicts the
battery pack in the vehicle during charging. To maintain a safe system, the pack was designed
such that every part was limited to a maximum voltage of 250 VDC. The packs were designed
to be quickly assembled and disassembled to fulfill the one-hour turn-around requirement for
international speed records.

Temperature plays a key role in the efficiency and power ability of the batteries. For
this reason, they were closely monitored before, during, and after each run. The batteries

9IGBTs and inverters are described in Chapter 12.

© The McGraw-Hill
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Figure 1.14 Battery pack (with cooling fans, used during charging and after a
run)/Photo by Giorgio Rizzoni

were precooled before the vehicle left the starting line to approximately 15°C; the maximum
allowable temperature is 60°C. The cooling fans shown in Figure 1.14 are used to cool the pack

during charging.

Current Records and Future Plans

The Buckeye Bullet became the first electric powered vehicle to exceed 300 mph on October 13,
2004, when it recorded an average speed over two runs of 314.958 mph during the 56th Annual
World Finals at Bonneville Speedway, claiming the new U.S. record and reaching a top speed

of 321.834 mph, the highest ever recorded for an electrically powered vehicle. Figure 1.15
shows the official timing slip for one of the two runs leading to the U.S. record. In addition,
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Figure 1.15 Timing slip from a land speed record run/Source:
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in separate attempts, the Bullet also established a new international record of 271. 737 mph.
Figure 1.16 shows data corresponding to the timing slip of Figure 1.15.

Currently, a new vehicle, named Buckeye Bullet I1, is being planned. The greatest novelty
in the new car will be a hydrogen fuel cell electric power supply system.

Buckeye Bullet record run
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Figure 1.16 Data from the record run of Figure 1.15/Source: Giorgio Rizzoni

© The McGraw-Hill
Companies, 2007

1.3 FUNDAMENTALS OF ENGINEERING
EXAM REVIEW

To become a professional engineer it is necessary to satisfy four requirements. The
first is the completion of a B.S. degree in engineering from an accredited college
or university (although it is theoretically possible to be registered without having
completed a degree). The second is the successful completion of the Fundamentals
of Engineering (FE) Examination. This is an eight-hour exam that covers general
undergraduate engineering education. The third requirement is two to four years of
engineering experience after passing the FE exam. Finally, the fourth requirement is
successful completion of the Principles and Practice of Engineering or Professional
Engineer (PE) Examination.

The FE exam is a two-part national examination, administered by the National
Council of Examiners for Engineers and Surveyors (NCEES) and given twice
a year (in April and October). The exam is divided into two four-hour sessions,
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consisting of 120 questions in the four-hour morning session, and 60 questions in
the four-hour afternoon session. The morning session covers general background in
twelve different areas, one of which is Electricity and Magnetism. The afternoon
session requires the examinee to choose among seven modules — Chemical, Civil,
Electrical, Environmental, Industrial, Mechanical and Other/General engineering.
One of the aims of this book is to assist you in preparing for the Electricity
and Magnetism part of the morning session. This part of the examination consists of
approximately 9% of the morning session, and covers the following topics:
A. Charge, energy, current, voltage, power
B. Work done in moving a charge in an electric field (relationship between
voltage and work)
Force between charges
Current and voltage laws (Kirchhoff, Ohm)
Equivalent circuits (series, parallel)
Capacitance and inductance

Reactance and impedance, susceptance and admittance

T QQmmUn

AC circuits
I. Basic complex algebra

Appendix C contains review of the electrical circuits portion of the FE examination,
including references to the relevant material in the book. In addition, Appendix C
also contains a collection of sample problems — some including a full explanation of
the solution, some with answers supplied separately. This material has been derived
from the author’s experience in co-teaching the FE exam preparation course offered
to Ohio State University seniors.

1.4 BRIEF HISTORY OF ELECTRICAL
ENGINEERING

The historical evolution of electrical engineering can be attributed, in part, to the
work and discoveries of the people in the following list. You will find these scientists,
mathematicians, and physicists referenced throughout the text.

William Gilbert (1540-1603), English physician, founder of magnetic
science, published De Magnete, a treatise on magnetism, in 1600.

Charles A. Coulomb (1736-1806), French engineer and physicist, published
the laws of electrostatics in seven memoirs to the French Academy of Science
between 1785 and 1791. His name is associated with the unit of charge.
James Watt (1736-1819), English inventor, developed the steam engine. His
name is used to represent the unit of power.

Alessandro Volta (1745-1827), Italian physicist, discovered the electric pile.
The unit of electric potential and the alternate name of this quantity (voltage)
are named after him.

Hans Christian Oersted (1777-1851), Danish physicist, discovered the
connection between electricity and magnetism in 1820. The unit of magnetic
field strength is named after him.

André Marie Ampere (1775-1836), French mathematician, chemist, and
physicist, experimentally quantified the relationship between electric current
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and the magnetic field. His works were summarized in a treatise published in
1827. The unit of electric current is named after him.

Georg Simon Ohm (1789-1854), German mathematician, investigated the
relationship between voltage and current and quantified the phenomenon of
resistance. His first results were published in 1827. His name is used to
represent the unit of resistance.

Michael Faraday (1791-1867), English experimenter, demonstrated
electromagnetic induction in 1831. His electric transformer and
electromagnetic generator marked the beginning of the age of electric power.
His name is associated with the unit of capacitance.

Joseph Henry (1797-1878), U.S. physicist, discovered self-induction around
1831, and his name has been designated to represent the unit of inductance.
He had also recognized the essential structure of the telegraph, which was
later perfected by Samuel F. B. Morse.

Carl Friedrich Gauss (1777-1855), German mathematician, and

Wilhelm Eduard Weber (1804-1891), German physicist, published a treatise
in 1833 describing the measurement of the earth’s magnetic field. The gauss is
a unit of magnetic field strength, while the weber is a unit of magnetic flux.
James Clerk Maxwell (1831-1879), Scottish physicist, discovered the
electromagnetic theory of light and the laws of electrodynamics. The modern
theory of electromagnetics is entirely founded upon Maxwell’s equations.
Ernst Werner Siemens (1816-1892) and Wilhelm Siemens (1823-1883),
German inventors and engineers, contributed to the invention and
development of electric machines, as well as to perfecting electrical science.
The modern unit of conductance is named after them.

Heinrich Rudolph Hertz (1857-1894), German scientist and experimenter,
discovered the nature of electromagnetic waves and published his findings in
1888. His name is associated with the unit of frequency.

Nikola Tesla (1856-1943), Croatian inventor, emigrated to the United States
in 1884. He invented polyphase electric power systems and the induction
motor and pioneered modern AC electric power systems. His name is used to
represent the unit of magnetic flux density.

1.5 SYSTEM OF UNITS

This book employs the International System of Units (also called SI, from the French
Systeme International des Unités). SI units are commonly adhered to by virtually all
engineering professional societies. This section summarizes SI units and will serve
as a useful reference in reading the book.

SI units are based on six fundamental quantities, listed in Table 1.2. All other
units may be derived in terms of the fundamental units of Table 1.2. Since, in practice,
one often needs to describe quantities that occur in large multiples or small fractions
of a unit, standard prefixes are used to denote powers of 10 of SI (and derived) units.
These prefixes are listed in Table 1.3. Note that, in general, engineering units are
expressed in powers of 10 that are multiples of 3.

For example, 10~ s would be referred to as 100 x 107¢ s, or 100 us (or, less
frequently, 0.1 ms).

© The McGraw-Hill
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Table 1.2 Sl units Table 1.3 Standard prefixes
Quantity Unit Symbol Prefix Symbol Power
Length Meter m atto a 1018
Mass Kilogram kg femto  f 10-15
Time Second S pico P 10-12
Electric current Ampere A nano n 10~9
Temperature Kelvin K micro  p 10-6
Luminous intensity ~ Candela cd milli m 103

centi c 1072
deci d 10-!
deka da 10
kilo k 103
mega M 10°
giga G 10°
tera T 10'?

1.6 SPECIAL FEATURES OF THIS BOOK

This book includes a number of special features designed to make learning easier
and to allow students to explore the subject matter of the book in greater depth, if
so desired, through the use of computer-aided tools and the Internet. The principal
features of the book are described below.

:) Learning Objectives

1.  The principal learning objectives are clearly identified at the beginning of each
chapter.

2. The symbol s used to identify definitions and derivations critical to the accom-
plishment of a specific learning objective.

3.  Each example is similarly marked.

EXAMPLES

The examples in the book have also been set aside from the main text, so that they can be
easily identified. All examples are solved by following the same basic methodology: A clear
and simple problem statement is given, followed by a solution. The solution consists of several
parts: All known quantities in the problem are summarized, and the problem statement is
translated into a specific objective (e.g., “Find the equivalent resistance R”).

Next, the given data and assumptions are listed, and finally the analysis is presented. The
analysis method is based on the following principle: All problems are solved symbolically first,
to obtain more general solutions that may guide the student in solving homework problems;
the numerical solution is provided at the very end of the analysis. Each problem closes with
comments summarizing the findings and tying the example to other sections of the book.
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The solution methodology used in this book can be used as a general guide to problem-
solving techniques well beyond the material taught in the introductory electrical engineering
courses. The examples in this book are intended to help you develop sound problem-solving
habits for the remainder of your engineering career.

© The McGraw-Hill ‘ a
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CHECK YOUR UNDERSTANDING

Each example is accompanied by at least one drill exercise.

"9STOIAX A} MO[oq JYSII paprAoid ST IomSUE Y], :ToMSUY

Each chapter, especially the early ones, includes “boxes” titled “Focus on
Methodology.” The content of these boxes (which are set aside from the main
text) summarizes important methods and procedures for the solution of common
problems. They usually consist of step-by-step instructions, and are designed to
assist you in methodically solving problems.

MAKE THE
CONNECTION

This feature is devoted to
helping the student make
the connection between
electrical engineering and
other engineering
disciplines. Analogies to
other fields of engineering
will be found in nearly every
chapter.

As stated many times in this book, the need for measurements is a common thread to all
engineering and scientific disciplines. To emphasize the great relevance of electrical en-
gineering to the science and practice of measurements, a special set of examples focuses
on measurement problems. These examples very often relate to disciplines outside elec-
trical engineering (e.g., biomedical, mechanical, thermal, fluid system measurements).
The “Focus on Measurements” sections are intended to stimulate your thinking about
the many possible applications of electrical engineering to measurements in your chosen
field of study. Many of these examples are a direct result of the author’s work as a teacher
and researcher in both mechanical and electrical engineering.

i

Find It on the Web!

The use of the Internet as a resource for knowledge and information is becoming in-
creasingly common. In recognition of this fact, website references have been included
in this book to give you a starting point in the exploration of the world of electrical
engineering. Typical web references give you information on electrical engineering
companies, products, and methods. Some of the sites contain tutorial material that
may supplement the book’s contents.
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Website

The list of features would not be complete without a reference to the book’s web-
site: http://www.mhhe.com/engcs/electrical/rizzoni. Create a bookmark for this site

now! The site is designed to provide up-to-date additions, examples, errata, and other
important information.

HOMEWORK PROBLEMS

1.1 List five applications of electric motors in the 1.3

Electric power systems provide energy in a variety of
common household.

commercial and industrial settings. Make a list of

1.2 By analogy with the discussion of electrical systems systems and devices that receive electric power in
in the automobile, list examples of applications of the
electrical engineering disciplines of Table 1.1 for each
of the following engineering systems:

a. A large office building.
b. A factory floor.

. c. A construction site.
. A ship.

a
b. A commercial passenger aircraft.

. Your household.

o

o

. A chemical process control plant.
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CHAWPTER

FUNDAMENTALS OF ELECTRIC
CIRCUITS

hapter 2 presents the fundamental laws that govern the behavior of electric cir-

cuits, and it serves as the foundation to the remainder of this book. The chapter

begins with a series of definitions to acquaint the reader with electric circuits;

next, the two fundamental laws of circuit analysis are introduced: Kirchhoff’s
current and voltage laws. With the aid of these tools, the concepts of electric power
and the sign convention and methods for describing circuit elements—resistors in
particular—are presented. Following these preliminary topics, the emphasis moves
to basic analysis techniques—voltage and current dividers, and to some application
examples related to the engineering use of these concepts. Examples include a de-
scription of strain gauges, circuits for the measurements of force and other related
mechanical variables, and of the study of an automotive throttle position sensor. The
chapter closes with a brief discussion of electric measuring instruments. The following
box outlines the principal learning objectives of the chapter.

23



Rizzoni: Principles and I. Circuits 2. Fundamentals of Electric © The McGraw-Hill
Applications of Electrical Circuits Companies, 2007
Engineering, Fifth Edition
24 Chapter 2 Fundamentals of Electric Circuits
= Learning Objectives
1. Identify the principal elements of electric circuits: nodes, loops, meshes, branches,
and voltage and current sources. Section 2.1.
MAKE THE 2. Apply Kirchhoff’s laws to simple electric circuits and derive the basic circuit equa-
CONNECTION tions. Sections 2.2 and 2.3.
3.  Apply the passive sign convention and compute the power dissipated by circuit
elements. Calculate the power dissipated by a resistor. Section 2 4.
Mechanical 4. Apply the voltage and current divider laws to calculate unknown variables in simple
(G ravitational) series, parallel, and series-parallel circuits. Sections 2.5 and 2.6.

Analog of Voltage
Sources

The role played by a voltage
source in an electric circuit
is equivalent to that played
by the force of gravity.
Raising a mass with respect
to a reference surface
increases its potential
energy. This potential
energy can be converted to
kinetic energy when the
object moves to a lower
position relative to the
reference surface. The
voltage, or potential
difference across a voltage
source plays an analogous
role, raising the electrical
potential of the circuit, so
that current can flow,
converting the potential
energy within the voltage
source to electric power.

LO1 >

5.  Understand the rules for connecting electric measuring instruments to electric cir-
cuits for the measurement of voltage, current, and power. Sections 2.7 and 2.8.

2.1 DEFINITIONS

In this section, we formally define some variables and concepts that are used in the
remainder of the chapter. First, we define voltage and current sources; next, we define
the concepts of branch, node, loop, and mesh, which form the basis of circuit analysis.

Intuitively, an ideal source is a source that can provide an arbitrary amount
of energy. Ideal sources are divided into two types: voltage sources and current
sources. Of these, you are probably more familiar with the first, since dry-cell, alkaline,
and lead-acid batteries are all voltage sources (they are not ideal, of course). You
might have to think harder to come up with a physical example that approximates
the behavior of an ideal current source; however, reasonably good approximations
of ideal current sources also exist. For instance, a voltage source connected in series
with a circuit element that has a large resistance to the flow of current from the source
provides a nearly constant—though small—current and therefore acts very nearly as
an ideal current source. A battery charger is another example of a device that can
operate as a current source.

Ideal Voltage Sources

An ideal voltage source is an electric device that generates a prescribed voltage at
its terminals. The ability of an ideal voltage source to generate its output voltage is
not affected by the current it must supply to the other circuit elements. Another way
to phrase the same idea is as follows:

An ideal voltage source provides a prescribed voltage across its terminals irre-
spective of the current flowing through it. The amount of current supplied by
the source is determined by the circuit connected to it.

Figure 2.1 depicts various symbols for voltage sources that are employed
throughout this book. Note that the output voltage of an ideal source can be a function
of time. In general, the following notation is employed in this book, unless otherwise
noted. A generic voltage source is denoted by a lowercase v. If it is necessary to
emphasize that the source produces a time-varying voltage, then the notation v(¢) is



9 ‘ Rizzoni: Principles and I. Circuits 2. Fundamentals of Electric © The McGraw-Hill
Applications of Electrical Circuits Companies, 2007

Engineering, Fifth Edition

Part I Circuits 25

Circuit

General symbol A special case: A special case:
for ideal voltage DC voltage sinusoidal
source. Vg (f) source (ideal voltage source,
may be constant battery) vs(t) =V cos ot
(DC source).

Figure 2.1 Ideal voltage sources

employed. Finally, a constant, or direct-current, or DC, voltage source is denoted by
the uppercase character V. Note that by convention the direction of positive current
flow out of a voltage source is out of the positive terminal.

The notion of an ideal voltage source is best appreciated within the context of the
source-load representation of electric circuits. Figure 2.2 depicts the connection of an
energy source with a passive circuit (i.e., a circuit that can absorb and dissipate energy).
Three different representations are shown to illustrate the conceptual, symbolic, and
physical significance of this source-load idea.

i i
O) —)
pd e
Source v Load L :
A Vs v EER + = ~
\41—//( Car battery Headlight
; _
Power flow
(a) Conceptual (b) Symbolic (circuit) (c) Physical
representation representation representation
Figure 2.2 Various representations of an electrical system
In the analysis of electric circuits, we choose to represent the physical reality
of Figure 2.2(c) by means of the approximation provided by ideal circuit elements,
as depicted in Figure 2.2(b).
is,Is
Ideal Current Sources
Anideal current source is a device that can generate a prescribed current independent i, Is C) I::I
of the circuit to which it is connected. To do so, it must be able to generate an arbitrary Circuit
voltage across its terminals. Figure 2.3 depicts the symbol used to represent ideal

19

current sources. By analogy with the definition of the ideal voltage source just stated,

we write that Figure 2.3 Symbol for
ideal current source

Anideal current source provides a prescribed current to any circuit connected
toit. The voltage generated by the source is determined by the circuit connected LO1
to it.
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MAKE THE
CONNECTION

Hydraulic Analog
of Current
Sources

The role played by a current
source in an electric circuit
is very similar to that of a
pump in a hydraulic circuit.
In a pump, an internal
mechanism (pistons, vanes,
or impellers) forces fluid to
be pumped from a reservoir
to a hydraulic circuit. The
volume flow rate of the fluid
g, in cubic meters per
second, in the hydraulic
circuit, is analogous to the
electrical current in the
circuit.

Positive Displacement Pump

slip

pressure

A hydraulic pump

Pump symbols

D=
R

Courtesy: Department of
Energy

Left: Fixed
capacity pump.
Right: Fixed
capacity pump
with two directions
of flow.

Left: Variable
capacity pump.
Right: Variable
capacity pump
with two directions
of flow.
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The same uppercase and lowercase convention used for voltage sources is employed
in denoting current sources.

Dependent (Controlled) Sources

The sources described so far have the capability of generating a prescribed voltage
or current independent of any other element within the circuit. Thus, they are termed
independent sources. There exists another category of sources, however, whose output
(current or voltage) is a function of some other voltage or current in a circuit. These
are called dependent (or controlled) sources. A different symbol, in the shape of
a diamond, is used to represent dependent sources and to distinguish them from
independent sources. The symbols typically used to represent dependent sources are
depicted in Figure 2.4; the table illustrates the relationship between the source voltage
or current and the voltage or current it depends on—v, or i,, respectively—which
can be any voltage or current in the circuit.

Source type Relationship
Voltage controlled voltage source (VCVS) VS = Wy
Vg ig Current controlled voltage source (CCVS) Vg =riy
Voltage controlled current source (VCCS) is =gV,
Current controlled current source (CCCS) is =i,

Figure 2.4 Symbols for dependent sources

Dependent sources are very useful in describing certain types of electronic
circuits. You will encounter dependent sources again in Chapters 8, 10, and 11, when
electronic amplifiers are discussed.

An electrical network is a collection of elements through which current flows.
The following definitions introduce some important elements of a network.

Branch

A branch is any portion of a circuit with two terminals connected to it. A branch may
consist of one or more circuit elements (Figure 2.5). In practice, any circuit element
with two terminals connected to it is a branch.

Node

A node is the junction of two or more branches (one often refers to the junction
of only two branches as a trivial node). Figure 2.6 illustrates the concept. In effect,
any connection that can be accomplished by soldering various terminals together is
a node. It is very important to identify nodes properly in the analysis of electrical
networks.

It is sometimes convenient to use the concept of a supernode. A supernode
is obtained by defining a region that encloses more than one node, as shown in the
rightmost circuit of Figure 2.6. Supernodes can be treated in exactly the same way as
nodes.

< LO1
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a
—— 0
+ V
Branch Branch e
voltage current -
T, m
I — o)
b
A branch Ideal A battery Practical
resistor ammeter

Examples of circuit branches

Figure 2.5 Definition of a branch

Node a
Node ¢ Node a
Vg —_ is
Node

Node b

Node b

Examples of nodes in practical circuits

Figure 2.6 Definitions of node and supernode

Loop

Aloop is any closed connection of branches. Various loop configurations are illustrated ¢ LO1
in Figure 2.7.

Note how two different loops

. N . R
in the same circuit may in-
clude some of the same ele-
ments or branches.
Loop 1 Loop 2 vs = is () R R,
Loop 3 1-loop circuit 3-loop circuit

(How many nodes in
this circuit?)

Figure 2.7 Definition of a loop

Mesh

A mesh is a loop that does not contain other loops. Meshes are an important aid to LO1
certain analysis methods. In Figure 2.7, the circuit with loops 1,2, and 3 consists of two

meshes: Loops 1 and 2 are meshes, but loop 3 is not a mesh, because it encircles both

loops 1 and 2. The one-loop circuit of Figure 2.7 is also a one-mesh circuit. Figure 2.8
illustrates how meshes are simpler to visualize in complex networks than loops are.
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|+

How many loops can you
identify in this four-mesh cir-
cuit? (Answer: 15)

Figure 2.8 Definition of a mesh

Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the relevant
variables as clearly as possible and in systematic fashion. Once the known and un-
known variables have been identified, a set of equations relating these variables is
constructed, and these are solved by means of suitable techniques.

Before introducing methods for the analysis of electric networks, we must
formally present some important laws of circuit analysis.

2.2 CHARGE, CURRENT, AND KIRCHHOFF’S
CURRENT LAW

The earliest accounts of electricity date from about 2,500 years ago, when it was
discovered that static charge on a piece of amber was capable of attracting very light
objects, such as feathers. The word electricity originated about 600 B.C.; it comes from
elektron, which was the ancient Greek word for amber. The true nature of electricity
was not understood until much later, however. Following the work of Alessandro
Volta' and his invention of the copper-zinc battery, it was determined that static
electricity and the current that flows in metal wires connected to a battery are due
to the same fundamental mechanism: the atomic structure of matter, consisting of a
nucleus—neutrons and protons—surrounded by electrons. The fundamental electric
quantity is charge, and the smallest amount of charge that exists is the charge carried
by an electron, equal to

ge =—1.602 x 10717 C 2.1

As you can see, the amount of charge associated with an electron is rather
small. This, of course, has to do with the size of the unit we use to measure charge, the
coulomb (C), named after Charles Coulomb.? However, the definition of the coulomb
leads to an appropriate unit when we define electric current, since current consists of
the flow of very large numbers of charge particles. The other charge-carrying particle
in an atom, the proton, is assigned a plus sign and the same magnitude. The charge
of a proton is

Charles Coulomb (1736-1806).

Photograph courtesy of French qp = +1.602 x 10°¥c (2.2)
Embassy, Washington, District of
Columbia Electrons and protons are often referred to as elementary charges.

ISee brief biography on page 16.
2See brief biography on page 16.
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Electric current is defined as the time rate of change of charge passing through
a predetermined area. Typically, this area is the cross-sectional area of a metal wire;
however, we explore later a number of cases in which the current-carrying material
is not a conducting wire. Figure 2.9 depicts a macroscopic view of the flow of charge ~ Current i = dq/dt is generated by

. . . . . . . the flow of charge through the
in a wire, where we imagine Aqg units of charge flowing through the cross-sectional  c;oss-sectional area A in a

area A in At units of time. The resulting current i is then given by conductor.
i=— — 2.3
A @) g
If we consider the effect of the enormous number of elementary charges actually ‘\
flowing, we can write this relationship in differential form: A
) dq C Figure 2.9 Current flow in

- (2-4) an electric conductor

dt S
The units of current are called amperes, where 1 ampere (A) = 1 coulomb/second
(C/s). The name of the unit is a tribute to the French scientist André-Marie Ampere.>
The electrical engineering convention states that the positive direction of current flow
is that of positive charges. In metallic conductors, however, current is carried by
negative charges; these charges are the free electrons in the conduction band, which
are only weakly attracted to the atomic structure in metallic elements and are therefore
easily displaced in the presence of electric fields.

1

EXAMPLE 2.1 Charge and Current in a Conductor
Problem

Find the total charge in a cylindrical conductor (solid wire) and compute the current flowing
in the wire.

Solution
Known Quantities: Conductor geometry, charge density, charge carrier velocity.
Find: Total charge of carriers Q; current in the wire /.

Schematics, Diagrams, Circuits, and Given Data:
Conductor length: L = 1 m.
Conductor diameter: 2r = 2 x 107> m.
Charge density: n = 10% carriers/m>.
Charge of one electron: g, = —1.602 x 107",
Charge carrier velocity: u = 19.9 x 107° m/s.

Assumptions: None.

Analysis: To compute the total charge in the conductor, we first determine the volume of the
conductor:

Volume = length x cross-sectional area

2 x 1073’
V:anrz:(lm)[z'r(XT) m2:|:7'r><106m3

3See brief biography on page 16.
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Next, we compute the number of carriers (electrons) in the conductor and the total charge:
Number of carriers = volume X carrier density

o carriers

N=Vxn= (rr x 107° m3) (102 3 > = 7 x 10* carriers
m
Charge = number of carriers x charge/carrier

Q=N x g, = (7 x 10% carriers)

C
x (—1.602 x 10*19—> =-50.33 x 10° C

carrier

To compute the current, we consider the velocity of the charge carriers and the charge density
per unit length of the conductor:

Current = carrier charge density per unit length x carrier velocity

I = (% %) x (u ?) - (—50.33 % 10® %) (19.9 x 1076 ?) —_1A

Comments: Charge carrier density is a function of material properties. Carrier velocity is a
function of the applied electric field.

i= Current flowing In order for current to flow, there must exist a closed circuit.
in closed circuit

e

Figure 2.10 depicts a simple circuit, composed of a battery (e.g., a dry-cell or

Light-
bub  alkaline 1.5-V battery) and a lightbulb.
éjﬁly @ Note that in the circuit of Figure 2.10, the current i flowing from the battery to

the lightbulb is equal to the current flowing from the lightbulb to the battery. In other
words, no current (and therefore no charge) is “lost” around the closed circuit. This
principle was observed by the German scientist G. R. Kirchhoff* and is now known as
Kirchhoff’s current law (KCL). Kirchhoff’s current law states that because charge
cannot be created but must be conserved, the sum of the currents at a node must equal
zero. Formally,

Figure 2.10 A simple
electric circuit

N
’N% Z in=0 Kirchhoff’s current law 2.5) < LO2
. . . n=1
) l 13

f

@ @ @ The significance of Kirchhoff’s current law is illustrated in Figure 2.11, where the
simple circuit of Figure 2.10 has been augmented by the addition of two lightbulbs
(note how the two nodes that exist in this circuit have been emphasized by the shaded
I areas). In this illustration, we define currents entering a node as being negative and

Node 2

Illustration of KCL at
node l: =i + i1+ i, + i3=0

4Gustav Robert Kirchhoff (1824—1887), a German scientist, published the first systematic description of
Figure 2.11 Illustration of the laws of circuit analysis. His contribution—though not original in terms of its scientific
Kirchhoff’s current law content—forms the basis of all circuit analysis.



@ | Rizzoni: Principles and I. Circuits 2. Fundamentals of Electric © The McGraw-Hill
Applications of Electrical Circuits Companies, 2007
Engineering, Fifth Edition

Part I Circuits 31

currents exiting the node as being positive. Thus, the resulting expression for node 1
of the circuit of Figure 2.11 is

—i+ii+i+i3=0

Note that if we had assumed that currents entering the node were positive, the result
would not have changed.

Kirchhoff’s current law is one of the fundamental laws of circuit analysis,
making it possible to express currents in a circuit in terms of one another. KCL is
explored further in Examples 2.2 through 2.4.

EXAMPLE 2.2 Kirchhoff’s Current Law Applied to an Automotive
Electrical Harness

Problem
Figure 2.12 shows an automotive battery connected to a variety of circuits in an automobile. FIND IT

. e . a1 RETPRARRADAE
The circuits include headlights, taillights, starter motor, fan, power locks, and dashboard panel. Rt
The battery must supply enough current to independently satisfy the requirements of each of
the “load” circuits. Apply KCL to the automotive circuits. ONTHEWEB

Ibatt

1 head I, tail I, start I fan I locks I, dash
+ < < < < < <
Vi — > > > > > >
batt -—/—_ > > > > b3 S
— > > > S > S

777,
(b)

Figure 2.12 (a) Automotive circuits; (b) equivalent electric circuit
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Solution

Known Quantities: Components of electrical harness: headlights, taillights, starter motor,
fan, power locks, and dashboard panel.

Find: Expression relating battery current to load currents.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.12.
Assumptions: None.

Analysis: Figure 2.12(b) depicts the equivalent electric circuit, illustrating how the current
supplied by the battery must divide among the various circuits. The application of KCL to the
equivalent circuit of Figure 2.12 requires that

Iban - Ihead - Itail - Istart - Ifan - Ilocks - Idash =0

EXAMPLE 2.3 Application of KCL

Problem

Determine the unknown currents in the circuit of Figure 2.13.

—

Node b

Isf &

N~ |

. —

|

Figure 2.13 Demonstration

of KCL

|

Solution

Known Quantities:
Ig=5A I, =2A I, =-3A I;=15A
Find: [y and 4.

Analysis: Two nodes are clearly shown in Figure 2.13 as node a and node b; the third node in the
circuit is the reference (ground) node. In this example we apply KCL at each of the three nodes.

At node a:
Ih+L+1L=0
Ihy+2-3=0

Iy=1A

Note that the three currents are all defined as flowing away from the node, but one of the
currents has a negative value (i.e., it is actually flowing toward the node).

At node b:
Is—13—1,=0
5-15-1,=0

Iy =35A

Note that the current from the battery is defined in a direction opposite to that of the other two
currents (i.e., toward the node instead of away from the node). Thus, in applying KCL, we have
used opposite signs for the first and the latter two currents.

At the reference node: If we use the same convention (positive value for currents entering
the node and negative value for currents exiting the node), we obtain the following equations:

—Is+L+1,=0
—S54+154+1,=0
I, =35A
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Comments: The result obtained at the reference node is exactly the same as we already
calculated at node b. This fact suggests that some redundancy may result when we apply KCL
at each node in a circuit. In Chapter 3 we develop a method called node analysis that ensures
the derivation of the smallest possible set of independent equations.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 2.3 when Ip = 0.5 A, [, =2 A, 3 =7A,and I4 = —1A.
Find I, and I5.

V9= S[puey ¢7— = ] omsuy

EXAMPLE 2.4 Application of KCL

Problem

Apply KCL to the circuit of Figure 2.14, using the concept of supernode to determine the
source current /g;.

Solution

Known Quantities:

L=2A Is=0A

Find: ISl .

Analysis: Treating the supernode as a simple node, we apply KCL at the supernode to obtain =
Is1— I3 —15=0 Figure 2.14 Application of
KCL with d
151 — 13 +15 — 2A with a supernode

Comments: The value of this analysis will become clear when you complete the drill exercise
below.

CHECK YOUR UNDERSTANDING

Use the result of Example 2.4 and the following data to compute the current /s, in the circuit
of Figure 2.14.

L=3A IL=1A

V [ = ] [omsuy
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2.3 VOLTAGE AND KIRCHHOFF’S VOLTAGE
LAW

Charge moving in an electric circuit gives rise to a current, as stated in Section 2.2.
Naturally, it must take some work, or energy, for the charge to move between two
points in a circuit, say, from point a to point b. The total work per unit charge associated
with the motion of charge between two points is called voltage. Thus, the units of
voltage are those of energy per unit charge; they have been called volts in honor of
Alessandro Volta:

1 volt (V) = 13°%4e @) (2.6)
coulomb (C)

The voltage, or potential difference, between two points in a circuit indicates the
energy required to move charge from one point to the other. The role played by a
voltage source in an electric circuit is equivalent to that played by the force of gravity.
Gustav Robert Kirchhoff (1824—  Raising a mass with respect to a reference surface increases its potential energy. This
1887). Photograph courtesy of potential energy can be converted to kinetic energy when the object moves to a lower
Deutsches Museum, Munich. position relative to the reference surface. The voltage, or potential difference, across a
voltage source plays an analogous role, raising the electrical potential of the circuit, so
that charge can move in the circuit, converting the potential energy within the voltage
source to electric power. As will be presently shown, the direction, or polarity, of
the voltage is closely tied to whether energy is being dissipated or generated in the
process. The seemingly abstract concept of work being done in moving charges can
be directly applied to the analysis of electric circuits; consider again the simple circuit
consisting of a battery and a lightbulb. The circuit is drawn again for convenience in
Figure 2.15, with nodes defined by the letters @ and b. Experimental observations led
Kirchhoff to the formulation of the second of his laws, Kirchhoff’s voltage law, or
KYVL. The principle underlying KVL is that no energy is lost or created in an electric
circuit; in circuit terms, the sum of all voltages associated with sources must equal
the sum of the load voltages, so that the net voltage around a closed circuit is zero.

Illustration of Kirchhoff’s ) N N
voltage law: vj = vy If this were not the case, we would need to find a physical explanation for the excess

(or missing) energy not accounted for in the voltages around a circuit. Kirchhoff’s
voltage law may be stated in a form similar to that used for KCL

Figure 2.15 Voltages
around a circuit

N
'—°2> 3 v, =0 Kirchhoff’s voltage law @2.7)

n=1

where the v, are the individual voltages around the closed circuit. To understand this
concept, we must introduce the concept of reference voltage.

In Figure 2.15, the voltage across the lightbulb is the difference between two
node voltages, v, and v,. In a circuit, any one node may be chosen as the reference
node, such that all node voltages may be referenced to this reference voltage. In
Figure 2.15, we could select the voltage at node b as the reference voltage and ob-
serve that the battery’s positive terminal is 1.5 V above the reference voltage. 1t is
convenient to assign a value of zero to reference voltages, since this simplifies the
voltage assignments around the circuit. With reference to Figure 2.15, and assuming
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that v, = 0, we can write
v = 1.5V
V=1V =V, —VUp =0, —0=1v,

but v, and v, are the same voltage, that is, the voltage at node a (referenced to node
b). Thus

UV = Uy

One may think of the work done in moving a charge from point a to point » and
the work done moving it back from b to a as corresponding directly to the voltages
across individual circuit elements. Let Q be the total charge that moves around the
circuit per unit time, giving rise to current i. Then the work W done in moving Q
from b to a (i.e., across the battery) is

Wy =0 x 15V (2.8)

Similarly, work is done in moving Q from a to b, that is, across the lightbulb. Note
that the word potential is quite appropriate as a synonym of voltage, in that voltage
represents the potential energy between two points in a circuit: If we remove the
lightbulb from its connections to the battery, there still exists a voltage across the (now
disconnected) terminals b and a. This is illustrated in Figure 2.16.

A moment’s reflection upon the significance of voltage should suggest that it
must be necessary to specify a sign for this quantity. Consider, again, the same dry-
cell or alkaline battery where, by virtue of an electrochemically induced separation
of charge, a 1.5-V potential difference is generated. The potential generated by the
battery may be used to move charge in a circuit. The rate at which charge is moved
once a closed circuit is established (i.e., the current drawn by the circuit connected to
the battery) depends now on the circuit element we choose to connect to the battery.
Thus, while the voltage across the battery represents the potential for providing energy
to a circuit, the voltage across the lightbulb indicates the amount of work done in
dissipating energy. In the first case, energy is generated; in the second, it is consumed
(note that energy may also be stored, by suitable circuit elements yet to be introduced).
This fundamental distinction requires attention in defining the sign (or polarity) of
voltages.

We shall, in general, refer to elements that provide energy as sources and to
elements that dissipate energy as loads. Standard symbols for a generalized source-
and-load circuit are shown in Figure 2.17. Formal definitions are given later.

Ground

The concept of reference voltage finds a practical use in the ground voltage of a circuit.
Ground represents a specific reference voltage that is usually a clearly identified point
in a circuit. For example, the ground reference voltage can be identified with the case
or enclosure of an instrument, or with the earth itself. In residential electric circuits,
the ground reference is a large conductor that is physically connected to the earth. It
is convenient to assign a potential of 0 V to the ground voltage reference.

The choice of the word ground is not arbitrary. This point can be illustrated by
a simple analogy with the physics of fluid motion. Consider a tank of water, as shown
in Figure 2.18, located at a certain height above the ground. The potential energy due
to gravity will cause water to flow out of the pipe at a certain flow rate. The pressure

© The McGraw-Hill
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The presence of a voltage, v,,
across the open terminals a and b
indicates the potential energy that
can enable the motion of charge,
once a closed circuit is established

to allow current to flow.

Figure 2.16 Concept of
voltage as potential difference

A symbolic representation of
the battery—lightbulb circuit
of Figure 2.15.

Vs /¥
souree O [ena]

Figure 2.17 Sources and
loads in an electric circuit
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that forces water out of the pipe is directly related to the head Ay — &, in such a
way that this pressure is zero when i, = h;. Now the point /43, corresponding to the
ground level, is defined as having zero potential energy. It should be apparent that the
pressure acting on the fluid in the pipe is really caused by the difference in potential
energy (hy — h3) — (hy — h3). It can be seen, then, that it is not necessary to assign
a precise energy level to the height /3; in fact, it would be extremely cumbersome to
do so, since the equations describing the flow of water would then be different, say,
in Denver, Colorado (43 = 1,600 m above sea level), from those that would apply
in Miami, Florida (A3 = 0 m above sea level). You see, then, that it is the relative
difference in potential energy that matters in the water tank problem.

Circuit Circuit
hy—s a % symbol for symbol for
|~ ——1 earth ground chassis ground
— = /
H,O R
hy— >
2 N\\\
Flow of water Vs =R,
from pipe
hs L// zzz J_
Physical ground =

Figure 2.18 Analogy between electrical and earth ground

EXAMPLE 2.5 Kirchhoff’s Voltage Law—Electric Vehicle Battery
Pack

Problem

Figure 2.19(a) depicts the battery pack in the Smokin’ Buckeye electric race car. In this example
we apply KVL to the series connection of 31 twelve-volt batteries that make up the battery
supply for the electric vehicle.

Vban1 Vbem2 Vban,, Vbatty Vbatt;  Vbatty,
AR
{1l
+
+ Power
Vb, — converter | vy
DC-AC converter h - and motor drive
(electric drive) -
é))AC motor
(a) (b) (©)

Figure 2.19 Electric vehicle battery pack: illustration of KVL (a) Courtesy: David H. Koether Photography.
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Solution

Known Quantities: Nominal characteristics of Optima™ lead-acid batteries. FIND IT

=)

Find: Expression relating battery and electric motor drive voltages.

Schematics, Diagrams, Circuits, and Given Data: V,,, = 12 V; Figure 2.19(a), (b) and (c). ON THE WEB
Assumptions: None.

Analysis: Figure 2.19(b) depicts the equivalent electric circuit, illustrating how the voltages
supplied by the battery are applied across the electric drive that powers the vehicle’s 150-kW
three-phase induction motor. The application of KVL to the equivalent circuit of Figure 2.19(b)
requires that:

31
E Vbann - Vdrive =0
n=1

Thus, the electric drive is nominally supplied by a 31 x 12 = 372-V battery pack. In reality, the
voltage supplied by lead-acid batteries varies depending on the state of charge of the battery.
When fully charged, the battery pack of Figure 2.19(a) is closer to supplying around 400 V
(i.e., around 13 V per battery).

EXAMPLE 2.6 Application of KVL @
Problem
Determine the unknown voltage V, by applying KVL to the circuit of Figure 2.20. +V, -

+ V- +
Solution Vea V3
Known Quantities: - - B

Voo =12V Vi=6V V=1V =

Figure 2.20 Circuit for
Find: V,.

Example 2.6
Analysis: Applying KVL around the simple loop, we write
Voo—=Vi =V, —V3=0
Vo=V, =V = V3=12-6-1=5V
Comments: Note that V; is the voltage across two branches in parallel, and it must be equal
for each of the two elements, since the two elements share the same nodes.
EXAMPLE 2.7 Application of KVL <|_02

Problem

Use KVL to determine the unknown voltages V| and V} in the circuit of Figure 2.21.
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By KCL: i| — ip — i3 = 0. In the node
voltage method, we express KCL by

Ya=Vb _Vb=Ve Vb=Vd _

Figure 2.21 Circuit for
Example 2.7
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Solution

Known Quantities:

V=12V Vg =-4V  V,=2V  V3=6V Vs=12V

Find: V1 N V4 .

Analysis: To determine the unknown voltages, we apply KVL clockwise around each of the
three meshes:

Vo = Vi—=V,—V3=0
Vo—Va+V4s=0
Vi—Vy—Vs5=0

Next, we substitute numerical values:

12-Vi—-2-6=0

Vi=4V
2— (=4 +V,=0

Vi=—-6V
6—(—6) — Vs =0

Vs=12V

Comments: In Chapter 3 we develop a systematic procedure called mesh analysis to solve
this kind of problem.

CHECK YOUR UNDERSTANDING

Use the outer loop (around the outside perimeter of the circuit) to solve for V.

SA0(QeE Se awes Iomsuy

2.4 ELECTRIC POWER AND SIGN CONVENTION

The definition of voltage as work per unit charge lends itself very conveniently to
the introduction of power. Recall that power is defined as the work done per unit
time. Thus, the power P either generated or dissipated by a circuit element can be
represented by the following relationship:

work charge

= voltage x current .9)

"~ time  charge time
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The electric power generated by an active element, or that dissipated or stored
by a passive element, is equal to the product of the voltage across the element
and the current flowing through it.

P =VI (2.10)

It is easy to verify that the units of voltage (joules per coulomb) times current
(coulombs per second) are indeed those of power (joules per second, or watts).

It is important to realize that, just like voltage, power is a signed quantity,
and it is necessary to make a distinction between positive and negative power. This
distinction can be understood with reference to Figure 2.22, in which two circuits are
shown side by side. The polarity of the voltage across circuit A and the direction of
the current through it indicate that the circuit is doing work in moving charge from
a lower potential to a higher potential. On the other hand, circuit B is dissipating
energy, because the direction of the current indicates that charge is being displaced
from a higher potential to a lower potential. To avoid confusion with regard to the
sign of power, the electrical engineering community uniformly adopts the passive
sign convention, which simply states that the power dissipated by a load is a positive
quantity (or, conversely, that the power generated by a source is a positive quantity).
Another way of phrasing the same concept is to state that if current flows from a
higher to a lower voltage (plus to minus), the power is dissipated and will be a
positive quantity.

It is important to note also that the actual numerical values of voltages and
currents do not matter: Once the proper reference directions have been established
and the passive sign convention has been applied consistently, the answer will be
correct regardless of the reference direction chosen. Examples 2.8 and 2.9 illustrate
this point.

THE PASSIVE SIGN CONVENTION

1. Choose an arbitrary direction of current flow.
2. Label polarities of all active elements (voltage and current sources).

3. Assign polarities to all passive elements (resistors and other loads); for
passive elements, current always flows into the positive terminal.

4. Compute the power dissipated by each element according to the following
rule: If positive current flows into the positive terminal of an element, then
the power dissipated is positive (i.e., the element absorbs power); if the
current leaves the positive terminal of an element, then the power
dissipated is negative (i.e., the element delivers power).

© The McGraw-Hill
Companies, 2007

<LO3

v Circuit
A

Power dissipated =
v(=i)=(-v)i=—vi

Power generated = vi
i
—

Circuit v

Power dissipated = vi
Power generated =

v(=i)=(v)i=—vi

Figure 2.22 The passive
sign convention

<LO3
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LO3 EXAMPLE 2.8 Use of the Passive Sigh Convention
Problem
[Load 1 Apply the passive sign convention to the circuit of Figure 2.23.
+ N
VB —
K
Solution
i 2 23 Known Quantities: Voltages across each circuit element; current in circuit.
igure 2.

i=01A =4V

V3=—12V V1=—8V
i=—0.1A vy=-4V

(b)
Figure 2.24

Find: Power dissipated or generated by each element.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.24(a) and (b). The voltage drop
across load 1 is 8 V, that across load 2 is 4 V; the current in the circuit is 0.1 A.

Assumptions: None.

Analysis: Note that the sign convention is independent of the current direction we choose. We
now apply the method twice to the same circuit. Following the passive sign convention, we
first select an arbitrary direction for the current in the circuit; the example will be repeated for
both possible directions of current flow to demonstrate that the methodology is sound.

1. Assume clockwise direction of current flow, as shown in Figure 2.24(a).

2. Label polarity of voltage source, as shown in Figure 2.24(a); since the arbitrarily chosen
direction of the current is consistent with the true polarity of the voltage source, the source
voltage will be a positive quantity.

3. Assign polarity to each passive element, as shown in Figure 2.24(a).
4. Compute the power dissipated by each element: Since current flows from — to + through
the battery, the power dissipated by this element will be a negative quantity:
Pp=—-vp xi=—-12Vx01A=-12W

that is, the battery generates 1.2 watts (W). The power dissipated by the two loads will
be a positive quantity in both cases, since current flows from plus to minus:

Pi=v,xi=8Vx01A=08W
Pr=uv;xi=4Vx01A=04W

Next, we repeat the analysis, assuming counterclockwise current direction.

1. Assume counterclockwise direction of current flow, as shown in Figure 2.24(b).

2. Label polarity of voltage source, as shown in Figure 2.24(b); since the arbitrarily chosen
direction of the current is not consistent with the true polarity of the voltage source, the
source voltage will be a negative quantity.

3. Assign polarity to each passive element, as shown in Figure 2.24(b).

4. Compute the power dissipated by each element: Since current flows from plus to minus
through the battery, the power dissipated by this element will be a positive quantity;
however, the source voltage is a negative quantity:

Py=vg xi=(—12V)(0.1A) = —12W

that is, the battery generates 1.2 W, as in the previous case. The power dissipated by the
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two loads will be a positive quantity in both cases, since current flows from plus to minus:
Pi=vyxi=8Vx01A=08W
Po=v;xi=4Vx01A=04W

Comments: It should be apparent that the most important step in the example is the correct

assignment of source voltage; passive elements will always result in positive power dissipation.

Note also that energy is conserved, as the sum of the power dissipated by source and loads is
zero. In other words: Power supplied always equals power dissipated.

EXAMPLE 2.9 <L03

Problem

For the circuit shown in Figure 2.25, determine which components are absorbing power and
which are delivering power. Is conservation of power satisfied? Explain your answer.

-3V+ 2A
B
Solution +
. [D] 10V E:|

Known Quantities: Current through elements D and E; voltage across elements B, C, E. A

SV+ l
Find: Which components are absorbing power, which are supplying power; verify the conser- c
vation of power.

Figure 2.25

Analysis: By KCL, the current through element B is 5 A, to the right. By KVL,
—v,—34+104+5=0

Therefore, the voltage across element A is
v, =12V (positive at the top)

A supplies (12 V)(5 A) = 60 W

B supplies B V)(SA)=15W

C absorbs (5 V)(5A) =25W

D absorbs (10 V)(3A) =30 W

E absorbs (10 V)(2 A) =20 W

Total power supplied = 60W + 15W = 75W

Total power absorbed = 25W + 30W + 20W = 75W

Total power supplied = Total power absorbed, so conservation of power is satisfied

Comments: The procedure described in this example can be easily conducted experimentally,
by performing simple voltage and current measurements. Measuring devices are introduced in
Section 2.8.

CHECK YOUR UNDERSTANDING

Compute the current flowing through each of the headlights of Example 2.2 if each headlight
has a power rating of 50 W. How much power is the battery providing?

Determine which circuit element in the following illustration (left) is supplying power and
which is dissipating power. Also determine the amount of power dissipated and supplied.
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+
22A

A o B B Q L

iy #iz ¢i3

If the battery in the accompanying diagram (above, right) supplies a total of 10 mW to the three
elements shown and /; = 2 mA and i, = 1.5 mA, what is the current /3? If i{ = 1 mA and
i3 = 1.5 mA, what is i,?

Vwo=Uiym - =9
"M 8°0€ SOTRdISSIP g ‘M 8°0€ SOTddns ¥ "M 00T 'V LTy = 9] = 9] s1omsuy

2.5 CIRCUIT ELEMENTS AND THEIR i-v
CHARACTERISTICS

The relationship between current and voltage at the terminals of a circuit element
defines the behavior of that element within the circuit. In this section we introduce
a graphical means of representing the terminal characteristics of circuit elements.
Figure 2.26 depicts the representation that is employed throughout the chapter to
denote a generalized circuit element: The variable i represents the current flowing
through the element, while v is the potential difference, or voltage, across the element.

Suppose now that a known voltage were imposed across a circuit element. The
current that would flow, as a consequence of this voltage, and the voltage itself form a
unique pair of values. If the voltage applied to the element were varied and the resulting
current measured, it would be possible to construct a functional relationship between
voltage and current known as the i-v characteristic (or volt-ampere characteristic).
Such a relationship defines the circuit element, in the sense that if we impose any
prescribed voltage (or current), the resulting current (or voltage) is directly obtainable
from the i-v characteristic. A direct consequence is that the power dissipated (or
generated) by the element may also be determined from the i-v curve.

Figure 2.27 depicts an experiment for empirically determining the i-v charac-
teristic of a tungsten filament lightbulb. A variable voltage source is used to apply
various voltages, and the current flowing through the element is measured for each
applied voltage.

We could certainly express the i-v characteristic of a circuit element in func-
tional form:

i=f) v=g@ 2.11)

In some circumstances, however, the graphical representation is more desirable, es-
pecially if there is no simple functional form relating voltage to current. The simplest
form of the i-v characteristic for a circuit element is a straight line, that is,

i =kv 2.12)

with & being a constant.



@ ‘ Rizzoni: Principles and I. Circuits 2. Fundamentals of Electric © The McGraw-Hill
Applications of Electrical Circuits Companies, 2007
Engineering, Fifth Edition

Part I Circuits

i (amps)
05

0.4
03
02

0.1,

I T T Y Y |
-60 -50 —40 -30 -20 —10 04~ 10 20 30 40 50 60 v (volts)

01}
Current -

F meter . _/)'2 |
031

Variable + -
voltage v 04
source -
0.5

Figure 2.27 Volt-ampere characteristic of a tungsten lightbulb

We can also relate the graphical i-v representation of circuit elements to the i
power dissipated or generated by a circuit element. For example, the graphical rep- 8 |-
resentation of the lightbulb i-v characteristic of Figure 2.27 illustrates that when a z B
positive current flows through the bulb, the voltage is positive, and conversely, a nega- 5 |-
tive current flow corresponds to a negative voltage. In both cases the power dissipated 4 [
by the device is a positive quantity, as it should be, on the basis of the discussion of ; B
Section 2.4, since the lightbulb is a passive device. Note that the i-v characteristic 1 |-
appears in only two of the four possible quadrants in the i-v plane. In the other two | ————=+—=—+>

quadrants, the product of voltage and current (i.e., power) is negative, and an i-v curve i-v characteristic
with a portion in either of these quadrants therefore corresponds to power generated. of a 3-A current source
This is not possible for a passive load such as a lightbulb; however, there are elec-

tronic devices that can operate, for example, in three of the four quadrants of the i-v i
characteristic and can therefore act as sources of energy for specific combinations of 8 [
voltages and currents. An example of this dual behavior is introduced in Chapter 9, z B
where it is shown that the photodiode can act either in a passive mode (as a light s |-
sensor) or in an active mode (as a solar cell). 4

The i-v characteristics of ideal current and voltage sources can also be useful in ; B
visually representing their behavior. An ideal voltage source generates a prescribed 1 |-
voltage independent of the current drawn from the load; thus, its i-v characteristicisa (53 4+ ¢ > ¢ =
straight vertical line with a voltage axis intercept corresponding to the source voltage. i characteristic
Similarly, the i-v characteristic of an ideal current source is a horizontal line with a of a 6-V voltage source
current axis intercept corresponding to the source current. Figure 2.28 depicts these  Figure 2.28 i-v
behaviors. characteristics of ideal

sources

2.6 RESISTANCE AND OHM’S LAW

When electric current flows through a metal wire or through other circuit elements,
it encounters a certain amount of resistance, the magnitude of which depends on
the electrical properties of the material. Resistance to the flow of current may be
undesired—for example, in the case of lead wires and connection cable—or it may
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MAKE THE
CONNECTION

Electric Circuit
Analogs of
Hydraulic
Systems—Fluid
Resistance

A useful analogy can be
made between the flow of
electric current through
electric components and the
flow of incompressible fluids
(e.g., water, oil) through
hydraulic components. The
analogy starts with the
observation that the volume
flow rate of a fluid in a pipe
is analogous to current flow
in a conductor. Similarly,
pressure drop across the
pipe is analogous to voltage
drop across a resistor. The
figure below depicts this
relationship graphically. The
fluid resistance opposed by
the pipe to the fluid flow is
analogous to an electrical
resistance: The pressure
difference between the two
ends of the pipe causes
fluid flow, much as a
potential difference across a
resistor forces a current flow.
This analogy is explored
further in Chapter 4.

R
v e—MWW—e v,
Y
1
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Analogy between
electrical and fluid
resistance
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be exploited in an electric circuit in a useful way. Nevertheless, practically all circuit
elements exhibit some resistance; as a consequence, current flowing through an el-
ement will cause energy to be dissipated in the form of heat. An ideal resistor is a
device that exhibits linear resistance properties according to Ohm’s law, which states
that

V =IR Ohm’s law (2.13)

that is, that the voltage across an element is directly proportional to the current flow
through it. The value of the resistance R is measured in units of ohms (£2), where

1Q=1V/A (2.14)

The resistance of a material depends on a property called resistivity, denoted by
the symbol p; the inverse of resistivity is called conductivity and is denoted by the
symbol o . For a cylindrical resistance element (shown in Figure 2.29), the resistance
is proportional to the length of the sample / and inversely proportional to its cross-
sectional area A and conductivity o.

l
R=—— (2.15)
oA
i i
——
o——
N
| R=— RZ v 1/R
T oA =

A

o—— v

Physical resistors i-v characteristic
with resistance R.
Typical materials are

carbon, metal film.

Circuit symbol

Figure 2.29 The resistance element

It is often convenient to define the conductance of a circuit element as the
inverse of its resistance. The symbol used to denote the conductance of an element is
G, where

1
G = R siemens (S) where 1S=1A/NV (2.16)
Thus, Ohm’s law can be restated in terms of conductance as
I =GV 2.17)

Ohm’s law is an empirical relationship that finds widespread application in
electrical engineering because of its simplicity. It is, however, only an approximation
of the physics of electrically conducting materials. Typically, the linear relationship
between voltage and current in electrical conductors does not apply at very high
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voltages and currents. Further, not all electrically conducting materials exhibit linear
behavior even for small voltages and currents. It is usually true, however, that for
some range of voltages and currents, most elements display a linear i-v characteris-

tic. Figure 2.30 illustrates how the linear resistance concept may apply to elements I S
with nonlinear i-v characteristics, by graphically defining the linear portion of the | |
i-v characteristic of two common electrical devices: the lightbulb, which we have o | __ Linear
already encountered, and the semiconductor diode, which we study in greater detail 3 | Tnee
in Chapter 9. Table 2.1 lists the conductivity of many common materials. ! ! v
I I
/ i
| |
Table 2.1 Resistivity of common Lightbulb
materials at room temperature )
- — L
Material Resistivity (£2-m) i
Aluminum 2733 x 1078 o Linear
Copper 1.725 x 107% P 1 ranee
Gold 2271 x 1078 ! |
Iron 9.98 x 1078 A
Nickel 7.20 x 1078 |
Platinum 10.8 x 1078 P
Silver 1.629 x 1078 i | v
Carbon 3.5 %1073 ; !
\ I
I I
P
Exponential i-v
characteristic
The typical construction and the circuit symbol of the resistor are shown in (semiconductor diode)
Figure 2.29. Resistors made of cylindrical sections of carbon (with resistivity p =  Eigure 2.30
3.5 x 1073 Q-m) are very common and are commercially available in a wide range of
values for several power ratings (as explained shortly). Another common construction
technique for resistors employs metal film. A common power rating for resistors used
in electronic circuits (e.g., in most consumer electronic appliances such as radios and
television sets) is % W. Table 2.2 lists the standard values for commonly used resistors
and the color code associated with these values (i.e., the common combinations of
the digits b1 b,b3 as defined in Figure 2.31). For example, if the first three color bands
on a resistor show the colors red (b; = 2), violet (b, = 7), and yellow (b3 = 4), the
resistance value can be interpreted as follows:
R =27 x 10* = 270,000 Q = 270 k2
by by by b
Table 2.2 Common resistor values (%-, %-, %-, 1-, 2-W rating) —| I_l I_l H I_l I—
Q2 Code @  Multiplier | k2 Multiplier | k2 Multiplier | k Multiplier Colorbands
10 Brn-blk-blk 100 Brown 1.0 Red 10 Orange 100 Yellow
12 Brn-red-blk 120 Brown 1.2 Red 12 Orange 120 Yellow black O blue 6
15 Brn-grn-blk 150 Brown 1.5 Red 15 Orange 150 Yellow brown 1 violet 7
18 Brn-gry-blk 180 Brown 1.8 Red 18 Orange 180 Yellow red 2 gray 8
22 Red-red-blk | 220 Brown 2.2 Red 22  Orange 220 Yellow orange 3 white 9
27 Red-vit-blk | 270 Brown 2.7 Red 27 Orange 270 Yellow yellow 4 silver 10?
33 Org-org-blk | 330 Brown 33 Red 33 Orange 330 Yellow green 5 gold 5%
39 Org-wht-blk | 390 Brown 3.9 Red 39 Orange 390 Yellow . b
47 Ylw-vlt-blk | 470 Brown 47 Red 47 Orange 470 Yellow Resistor value = (b; by) X 10
56 Grn-blublk | 560 Brown 56 Red 56 Orange 560 Yellow by =% tolerance in actual value
68 Blu-gry-blk | 680 Brown 6.8 Red 68 Orange 680 Yellow Fi .
82 Gry-red-blk | 820 Brown 82 Red 82 Orange 820 Yellow igure 2.31 Resistor color

code
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In Table 2.2, the leftmost column represents the complete color code; columns
to the right of it only show the third color, since this is the only one that changes. For
example, a 10-€2 resistor has the code brown-black-black, while a 100-£2 resistor has
the code of brown-black-brown.

In addition to the resistance in ohms, the maximum allowable power dissipation
(or power rating) is typically specified for commercial resistors. Exceeding this
power rating leads to overheating and can cause the resistor to literally burn up. For
aresistor R, the power dissipated can be expressed, with Ohm’s law substituted into
equation 2.10, by

V2
P=VI=IR=— (2.18)
R
That is, the power dissipated by a resistor is proportional to the square of the current
flowing through it, as well as the square of the voltage across it. Example 2.10 illus-
trates how you can make use of the power rating to determine whether a given resistor
will be suitable for a certain application.

FIND IT

ON THE WEB

EXAMPLE 2.10 Using Resistor Power Ratings
Problem

Determine the minimum resistor size that can be connected to a given battery without exceeding
the resistor’s %—W power rating.

Solution
Known Quantities: Resistor power rating = 0.25 W. Battery voltages: 1.5 and 3 V.
Find: The smallest size %—W resistor that can be connected to each battery.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.32, Figure 2.33.

raY )
\J S
+ li + l[
15V =R
<
3V R
o
Figure 2.32
A
\J

Figure 2.33

Analysis: We first need to obtain an expression for resistor power dissipation as a function
of its resistance. We know that P = VI and that V = IR. Thus, the power dissipated by any
resistor is

1%
Pr=VxI=Vx—=—
R R
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Since the maximum allowable power dissipation is 0.25 W, we can write V2/R < 0.25,
or R > V?2/0.25. Thus, fora 1.5-V battery, the minimum size resistor will be R = 1.52/0.25 =
9 Q. For a 3-V battery the minimum size resistor will be R = 32/0.25 = 36 Q.

Comments: Sizing resistors on the basis of power rating is very important in practice. Note
how the minimum resistor size quadrupled as we doubled the voltage across it. This is because
power increases as the square of the voltage. Remember that exceeding power ratings will
inevitably lead to resistor failure!

CHECK YOUR UNDERSTANDING

A typical electronic power supply provides =12 V. What is the size of the smallest i—W resistor
that could be placed across (in parallel with) the power supply? (Hint: You may think of the
supply as a 24-V supply.)

The circuit in the accompanying illustration contains a battery, a resistor, and an unknown
circuit element.

1. If the voltage Viuery is 1.45 V and i = 5 mA, find power supplied to or by the battery. Voattery <

2. Repeatpart 1ifi = —2 mA. Unknown
element
The battery in the accompanying circuit supplies power to resistors R;, R, and R3. Use KCL -

to determine the current ip, and find the power supplied by the battery if Viyery = 3 V.

ip
—

L < <
Vattery C_) R, Sk 3R

<

ii1=0.2mA ii2:0.4mA Li3:1.2mA

MU ¢ =T tyurg | =
‘(03 pariddns) M ¢ 0T X 6°C = %d “(Aq pariddns) M ¢_0T X §T°L = 'd & $0E°T sTomsuy

Open and Short Circuits

Two convenient idealizations of the resistance element are provided by the limiting
cases of Ohm’s law as the resistance of a circuit element approaches zero or infinity. A
circuit element with resistance approaching zero is called a short circuit. Intuitively,
we would expect a short circuit to allow for unimpeded flow of current. In fact,
metallic conductors (e.g., short wires of large diameter) approximate the behavior of
a short circuit. Formally, a short circuit is defined as a circuit element across which o ——
the voltage is zero, regardless of the current flowing through it. Figure 2.34 depicts o

. . . . . The short circuit:
the circuit symbol for an ideal short circuit. v R=0

Physically, any wire or other metallic conductor will exhibit some resistance, v =0 for any i

though small. For practical purposes, however, many elements approximate a short -o———
circuit quite accurately under certain conditions. For example, a large-diameter copper  Figure 2.34 The short
pipe is effectively a short circuit in the context of a residential electric power supply,  circuit
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FIND IT

ON THE WEB

v R — oo

i=0 for any v

Figure 2.35 The open
circuit

The current i flows through each of
the four series elements. Thus, by
KVL,

1.5=V1+V2+V3

Ry

REQ
R

Ry

N series resistors are equivalent to
a single resistor equal to the sum of
the individual resistances.

Figure 2.36

i
——
+ oj
The open circuit:
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while in a low-power microelectronic circuit (e.g., an FM radio) a short length of
24-gauge wire (refer to Table 2.3 for the resistance of 24-gauge wire) is a more than
adequate short circuit. Table 2.3 summarizes the resistance for a given length of some
commonly used gauges of electrical wire. Additional information on American Wire
Gauge Standards may be found on the internet.

Table 2.3 Resistance of copper wire

Number of Diameter per  Resistance per

AWG size  strands strand (in) 1,000 ft (2)
24 Solid 0.0201 28.4
24 7 0.0080 28.4
22 Solid 0.0254 18.0
22 7 0.0100 19.0
20 Solid 0.0320 11.3
20 7 0.0126 11.9
18 Solid 0.0403 7.2
18 7 0.0159 7.5
16 Solid 0.0508 4.5
16 19 0.0113 4.7
14 Solid 0.0641 2.52
12 Solid 0.0808 1.62
10 Solid 0.1019 1.02
8 Solid 0.1285 0.64
6 Solid 0.1620 04
4 Solid 0.2043 0.25
2 Solid 0.2576 0.16

A circuit element whose resistance approaches infinity is called an open circuit.
Intuitively, we would expect no current to flow through an open circuit, since it offers
infinite resistance to any current. In an open circuit, we would expect to see zero
current regardless of the externally applied voltage. Figure 2.35 illustrates this idea.

In practice, it is not too difficult to approximate an open circuit: Any break in
continuity in a conducting path amounts to an open circuit. The idealization of the open
circuit, as defined in Figure 2.35, does not hold, however, for very high voltages. The
insulating material between two insulated terminals will break down at a sufficiently
high voltage. If the insulator is air, ionized particles in the neighborhood of the two
conducting elements may lead to the phenomenon of arcing; in other words, a pulse of
current may be generated that momentarily jumps a gap between conductors (thanks
to this principle, we are able to ignite the air-fuel mixture in a spark-ignition internal
combustion engine by means of spark plugs). The ideal open and short circuits are
useful concepts and find extensive use in circuit analysis.

Series Resistors and the Voltage Divider Rule

Although electric circuits can take rather complicated forms, even the most involved
circuits can be reduced to combinations of circuit elements in parallel and in series.
Thus, it is important that you become acquainted with parallel and series circuits as
early as possible, even before formally approaching the topic of network analysis.
Parallel and series circuits have a direct relationship with Kirchhoff’s laws. The ob-
jective of this section and the next is to illustrate two common circuits based on series
and parallel combinations of resistors: the voltage and current dividers. These circuits
form the basis of all network analysis; it is therefore important to master these topics
as early as possible.

For an example of a series circuit, refer to the circuit of Figure 2.36, where a bat-
tery has been connected to resistors Ry, R,, and R3. The following definition applies:
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Definition

Two or more circuit elements are said to be in series if the current from one
element exclusively flows into the next element. From KCL, it then follows that
all series elements have the same current.

By applying KVL, you can verify that the sum of the voltages across the three resistors
equals the voltage externally provided by the battery

1.5V=U1+U2+U3

And since, according to Ohm’s law, the separate voltages can be expressed by the
relations

UIZiRl UQZiRz U3:iR3
we can therefore write
1.5V=i(Ri + R+ R3)

This simple result illustrates a very important principle: To the battery, the three series
resistors appear as a single equivalent resistance of value Rgq, where

Req =R+ Ry + R;

The three resistors could thus be replaced by a single resistor of value Rgq without
changing the amount of current required of the battery. From this result we may
extrapolate to the more general relationship defining the equivalent resistance of N
series resistors

N
Rpq = Z R, Equivalent series resistance 2.19)

n=1

which is also illustrated in Figure 2.36. A concept very closely tied to series resistors
is that of the voltage divider. This terminology originates from the observation that
the source voltage in the circuit of Figure 2.36 divides among the three resistors
according to KVL. If we now observe that the series current i is given by

. 1.5V 1.5V
1 = =
Rgq Ri+R+R;3

we can write each of the voltages across the resistors as:

. Ry

v = lR1 = —(15 V)
REQ
. R>

Uy = le = —(15 V)

. R3
V3 = lR3 = R—(IS V)
EQ

© The McGraw-Hill
Companies, 2007
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That is,

The voltage across each resistor in a series circuit is directly proportional to the
ratio of its resistance to the total series resistance of the circuit.

An instructive exercise consists of verifying that KVL is still satisfied, by adding the
voltage drops around the circuit and equating their sum to the source voltage:

R, R, R;
Vtmtvs=—15V)+ —=(15V)+—(1.5V)=15V
REQ REQ REQ

since REQ =Ri+R)+R3

Therefore, since KVL is satisfied, we are certain that the voltage divider rule is
consistent with Kirchhoff’s laws. By virtue of the voltage divider rule, then, we can
always determine the proportion in which voltage drops are distributed around a
circuit. This result is useful in reducing complicated circuits to simpler forms. The
general form of the voltage divider rule for a circuit with N series resistors and a
voltage source is

Rﬂ
R+ R+ 4R+ + Ry

v, Vs Voltage divider (2.20)

R3 Vi

+ oy, -

Figure 2.37

EXAMPLE 2.11 Voltage Divider

Problem

Determine the voltage v; in the circuit of Figure 2.37.

Solution
Known Quantities: Source voltage, resistance values.
Find: Unknown voltage vs.

Schematics, Diagrams, Circuits, and Given Data: Ry = 10Q; R, =6 Q; R; =8 Q;
Vs = 3 V. Figure 2.37.

Analysis: Figure 2.37 indicates a reference direction for the current (dictated by the polarity
of the voltage source). Following the passive sign convention, we label the polarities of the
three resistors, and apply KVL to determine that

Vs—vl—vz—v3:0
The voltage divider rule tells us that

R; 8

=3 x =1V
Ri+R,+ R 104+6+8

U3:VSX
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Comments: Application of the voltage divider rule to a series circuit is very straightforward.
The difficulty usually arises in determining whether a circuit is in fact a series circuit. This
point is explored later in this section, and in Example 2.13.

CHECK YOUR UNDERSTANDING

Repeat Example 2.11 by reversing the reference direction of the current, to show that the same
result is obtained.

Parallel Resistors and the Current Divider Rule

A concept analogous to that of the voltage divider may be developed by applying
Kirchhoff’s current law to a circuit containing only parallel resistances.

Definition

Two or more circuit elements are said to be in parallel if the elements share LO4
the same terminals. From KVL, it follows that the elements will have the same
voltage.

Figure 2.38 illustrates the notion of parallel resistors connected to an ideal current
source. Kirchhoff’s current law requires that the sum of the currents into, say, the top
node of the circuit be zero:

is =11 +ir+1i3
But by virtue of Ohm’s law we may express each current as follows:

v . v . v

i1 = — Ip = — I3 = —
R, R, R;

since, by definition, the same voltage v appears across each element. Kirchhoff’s
current law may then be restated as follows:

) 1 n 1 n 1
is=v|—+4+—+4+ —
s Ri R, R;3

KCL app)h/ed at this node o [ o——
+
- - . - >
[y [y [iB SR TRy TR TR, SRy = Reo
= = = >
is = R =R, Ry v 9 3 3 <
> >
(e, nnlaiate alulntutel o—
- N resistors in parallel are equivalent to a single equivalent
The voltage v appears across ea?h parallel resistor with resistance equal to the inverse of the sum of
element; by KCL, is =iy + i + i3 the inverse resistances.

Figure 2.38 Parallel circuits
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Note that this equation can be also written in terms of a single equivalent resistance
1

is=v—
REQ

1 1 1 1

where — ==+ -+ =
Req R R, Rz

As illustrated in Figure 2.38, we can generalize this result to an arbitrary number of
resistors connected in parallel by stating that N resistors in parallel act as a single
equivalent resistance Rgq given by the expression

LS S S 2.21)
Reo Ri R, Ry '
| .
or R = quwalent parallel 2.22)
1/Ri+1/Ry+---+1/Ry resistance

Very often in the remainder of this book we refer to the parallel combination of two
or more resistors with the notation

Rill Ryl ---

where the symbol || signifies “in parallel with.”

From the results shown in equations 2.21 and 2.22, which were obtained directly
from KCL, the current divider rule can be easily derived. Consider, again, the three-
resistor circuit of Figure 2.38. From the expressions already derived from each of the
currents i, i», and i3, we can write

. v . v . v
i1 =— ih = — i3 = —
1 R 2 R, 3 R,

and since v = Rgqis, these currents may be expressed by
) Req . 1/R; . 1/R, )
1 = —]lIs = s = ls

R, 1/Rgq 1I/R; +1/Ry + 1/R3

) 1/R> )
ih = i
T UR /R + /Ry
. 1/R3
13 =

I
1/R, +1/Ry+ 1/Rs °

We can easily see that the current in a parallel circuit divides in inverse proportion
to the resistances of the individual parallel elements. The general expression for the
current divider for a circuit with N parallel resistors is the following:

B 1/R, ; Current
R, +1/Ry+ -+ 1/Ry+---+ /Ry °  divider

(2.23)

i/1

Example 2.12 illustrates the application of the current divider rule.
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EXAMPLE 2.12 Current Divider < LO4
Problem
Determine the current i, in the circuit of Figure 2.39. i i )
fi ti b
EERl Is EERz EER3
Solution
Known Quantities: Source current, resistance values. Figure 2.39
Find: Unknown current 7.
Schematics, Diagrams, Circuits, and Given Data: R, = 10 Q; R, =2 Q; R; =20 Q;
Is = 4 A. Figure 2.39.
Analysis: Application of the current divider rule yields
1/R, 1
iy =I5 x =4x ——— =06154A
1/R1+1/R2+1/R3 E+§ 50
Comments: While application of the current divider rule to a parallel circuit is very straight-
forward, it is sometimes not so obvious whether two or more resistors are actually in parallel.
A method for ensuring that circuit elements are connected in parallel is explored later in this
section, and in Example 2.13.
CHECK YOUR UNDERSTANDING
Verify that KCL is satisfied by the current divider rule and that the source current /g divides in
inverse proportion to the parallel resistors R;, R», and Rj in the circuit of Figure 2.39. (This
should not be a surprise, since we would expect to see more current flow through the smaller
resistance.)
Much of the resistive network analysis that is presented in Chapter 3 is based
on the simple principles of voltage and current dividers introduced in this section.
Unfortunately, practical circuits are rarely composed of only parallel or only series
elements. The following examples and Check Your Understanding exercises illustrate
some simple and slightly more advanced circuits that combine parallel and series
elements.
EXAMPLE 2.13 Series-Parallel Circuit < LO4
Problem

Determine the voltage v in the circuit of Figure 2.40.
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Solution
Known Quantities: Source voltage, resistance values.
Find: Unknown voltage v.

Schematics, Diagrams, Circuits, and Given Data: See Figures 2.40, 2.41.

AAAA

—AAAA
\AAAJ
Vs
i
Figure 2.40

R, Elements in parallel
A
+ YVVy T
> > >
Rv ZR /D EERZ v EER3
Vs <
Equivalent circuit
Figure 2.41

Analysis: The circuit of Figure 2.40 is neither a series nor a parallel circuit because the
following two conditions do not apply:

1. The current through all resistors is the same (series circuit condition).

2. The voltage across all resistors is the same (parallel circuit condition).

The circuit takes a much simpler appearance once it becomes evident that the same voltage
appears across both R, and Rz and, therefore, that these elements are in parallel. If these two
resistors are replaced by a single equivalent resistor according to the procedures described in
this section, the circuit of Figure 2.41 is obtained. Note that now the equivalent circuit is a
simple series circuit, and the voltage divider rule can be applied to determine that

Ry ||R;

V= —————— g
Ry + Ry||R3

while the current is found to be
. Us
=
Ri + Ry||R3

Comments: Systematic methods for analyzing arbitrary circuit configurations are explored
in Chapter 3.

CHECK YOUR UNDERSTANDING

Consider the circuit of Figure 2.40, without resistor R3. Calculate the value of the voltage v if
the source voltage is vg =5 V and R, = R, = 1 kQ.

Repeat when resistor Rj is in the circuit and its value is R3; = 1 k2.
Repeat when resistor Rj is in the circuit and its value is Rz = 0.1 k.

A L9TY'0= @A L9'T = A 0S'T = @ SIomsuy
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EXAMPLE 2.14 The Wheatstone Bridge LO4
Problem
The Wheatstone bridge is a resistive circuit that is frequently encountered in a variety of FIND 1T

measurement circuits. The general form of the bridge circuit is shown in Figure 2.42(a), where
R1, R,, and R; are known while R, is an unknown resistance, to be determined. The circuit
may also be redrawn as shown in Figure 2.42(b). The latter circuit is used to demonstrate the  |EETT=T
voltage divider rule in a mixed series-parallel circuit. The objective is to determine the unknown

resistance R .

1. Find the value of the voltage v,, = v, — vpq in terms of the four resistances and the
source voltage vs. Note that since the reference point d is the same for both voltages, we
can also write v, = v, — vp.

2. f Ri =R, =R3; =1k, vs =12V, and v,, = 12 mV, what is the value of R, ?

Solution
Known Quantities: Source voltage, resistance values, bridge voltage.
Find: Unknown resistance R,.

Schematics, Diagrams, Circuits, and Given Data: See Figure 2.42.
R] =Rz = R3 = 1kQ, Vg = 12V, Vap = 12 mV.

Analysis:

1. First we observe that the circuit consists of the parallel combination of three subcircuits:
the voltage source, the series combination of R; and R», and the series combination of R3 )
and R, . Since these three subcircuits are in parallel, the same voltage will appear across
each of them, namely, the source voltage vs.

Thus, the source voltage divides between each resistor pair Ry — R, and R; — R,
according to the voltage divider rule: v,, is the fraction of the source voltage appearing
across R,, while vy, is the voltage appearing across R, :

bridge circuits

R, R

Vg = Vg——— and Upg = Vg———
TR+ R, "~ SR +R,

Finally, the voltage difference between points a and b is given by

R, R,
Vap = Vgd — Upd = V), —
b d bd s R +R, Rs+R.

This result is very useful and quite general.

2. To solve for the unknown resistance, we substitute the numerical values in the preceding
equation to obtain

1,000 R,
0.012 = 12( )

2,000 1,000 + R,

which may be solved for R, to yield
R, =996 Q

Figure 2.42 Wheatstone
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Comments: The Wheatstone bridge finds application in many measurement circuits and

instruments.

CHECK YOUR UNDERSTANDING

Use the results of part 1 of Example 2.14 to find the condition for which the voltage v,, =
v, — VU, 18 equal to zero (this is called the balanced condition for the bridge). Does this result
necessarily require that all four resistors be identical? Why?

Y = Y'Y omsuy

Problem:

Solution:

Figure 2.43 (a) Picture of
throttle postion sensor.
(Courtesy: CTS Corporation.)

Resistive Throttle Position Sensor

The aim of this example is to determine the calibration of an automotive resistive throttle
position sensor, shown in Figure 2.43(a). Figure 2.43(b) and (c) depicts the geometry
of the throttle plate and the equivalent circuit of the throttle sensor. The throttle plate in
a typical throttle body has a useful measurement range of just under 90°, from closed
throttle to wide-open throttle. The possible mechanical range of rotation of the sensor is
usually somewhat greater.

‘Wide-open
throttle angle

Closed ==
throttle
angle

Figure 2.43 (b) Throttle
blade geometry

Known Quantities — Functional specifications of throttle position sensor.

(Continued)
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Ro

— Vs

Figure 2.43 (c) Throttle
position sensor equivalent circuit

Find — Calibration of sensor in volts per degree of throttle plate opening.
Schematics, Diagrams, Circuits, and Given Data—

Functional specifications of throttle position sensor

Total resistance = R0 + Ro 12 kQ

Ry 3 kR

Input Vg 5V + 4% regulated
Output Viensor 5% to 95% Vp
Current draw /g <20 mA
Recommended load R <220k
Electrical travel,! maximum 112°

!Note that in actual operation the sensor will only be actuated
between 2° and 90°.

Assumptions— Assume a nominal supply voltage of 5 V and total throttle plate travel
of 88°, with a closed-throttle angle of 2° and a wide-open throttle angle of 90°.
Analysis—The equivalent circuit describing the resistive potentiometer that makes up
the sensor is shown in Figure 2.43(c). The wiper arm, that is, the moving part of the
potentiometer, defines a voltage proportional to position. The actual construction of the
potentiometer is in the shape of a circle—the figure depicts the potentiometer resistor as a
straight line for simplicity. The range of the potentiometer (see specifications above) is 2°
to 112° for a resistance of 3 to 12 kS2; thus, the calibration constant of the potentiometer
is

r 112 -2

P 123

The sensor voltage is proportional to the ratio AR /Rensor, such that

AR AR
Vsensor = VB T (5 V) A
RO + Rsensor 12

=0.417 AR v (AR inkQ)
The calibration of the throttle position sensor is

0

= 12.22°/kQ, such that 0 = kyt AR

Vsensor =0.417 AR = 0.417

pot
The calibration curve for the sensor is shown in Figure 2.43(d).

(Continued)
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Throttle position sensor calibration curve
35
3
> d
§ 25 e
g 2
g 7
> 15 7
2
g 1
© 0.5 —A4
o A

0 10 20 30 40 50 60 70 80 90
Throttle position, degrees

Figure 2.43 (d) Calibration curve
for throttle position sensor

So if the throttle is closed, the sensor voltage will be
Vsensor =0

and if the throttle is wide open

0 v 90°
Visensor = 0.417 AR = 0.417— = 0.417 —

— —307V
Koot kQ 12.22°/kQ2

Comments—The fixed resistor R, prevents the wiper arm from shorting to ground.
Note that the throttle position measurement does not use the entire range of rotation of
the sensor.

FIND IT

Find It on the Web!—If you are interested in learning more about the
throttle position sensors described in this example, and about potentiome-
ters and resistive position sensors, their web links are included in the
CD-ROM.

ON THE WEB

Focus
MEASURF
.{eﬁ

e el

Resistance Strain Gauges

S . . . FIND IT
Another common application of the resistance concept to engineering mea-

surements is the resistance strain gauge. Strain gauges are devices that are
bonded to the surface of an object, and whose resistance varies as a func-
tion of the surface strain experienced by the object. Strain gauges may be
used to perform measurements of strain, stress, force, torque, and pressure. Recall that the
resistance of a cylindrical conductor of cross-sectional area A, length L, and conductivity
o is given by the expression
L

oA

If the conductor is compressed or elongated as a consequence of an external force, its
dimensions will change, and with them its resistance. In particular, if the conductor is
stretched, its cross-sectional area decreases and the resistance increases. If the conductor

ON THE WEB

(Continued)
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is compressed, its resistance decreases, since the length L decreases. The relationship
between change in resistance and change in length is given by the gauge factor GF,
defined by

_ AR/R
T AL/L

And since the strain € is defined as the fractional change in length of an object by the
formula
AL
€= —

L
the change in resistance due to an applied strain € is given by
AR = RoGF e

where Ry is the resistance of the strain gauge under no strain and is called the zero strain
resistance. The value of GF for resistance strain gauges made of metal foil is usually
about 2.

Figure 2.44 depicts a typical foil strain gauge. The maximum strain that can be
measured by a foil gauge is about 0.4 to 0.5 percent; that is, AL/L = 0.004 — 0.005.
For a 120-2 gauge, this corresponds to a change in resistance on the order of 0.96 to
1.2 Q. Although this change in resistance is very small, it can be detected by means of
suitable circuitry. Resistance strain gauges are usually connected in a circuit called the
Wheatstone bridge, which we analyze later in this chapter.

The foil is formed by a photo-
etching process and is less than
0.00002 in thick. Typical resistance
values are 120, 350, and 1,000 Q.
The wide areas are bonding pads
for electrical connections.

R Circuit symbol for
G .
the strain gauge

Figure 2.44 Metal-foil resistance strain gauge.

Comments—Resistance strain gauges find application in many measurement circuits
and instruments. The measurement of force is one such application, shown next.

The Wheatstone Bridge and Force Measurements Focy: 3 ON
EMENTS

MEASUF

Strain gauges are frequently employed in the measurement of force. One of the simplest
applications of strain gauges is in the measurement of the force applied to a cantilever
beam, as illustrated in Figure 2.45. Four strain gauges are employed in this case, of which
two are bonded to the upper surface of the beam at a distance L from the point where the
external force F is applied and two are bonded on the lower surface, also at a distance L.
Under the influence of the external force, the beam deforms and causes the upper gauges
to extend and the lower gauges to compress. Thus, the resistance of the upper gauges

(Continued)
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R;, R3 bonded
to bottom surface

X
Beam cross section |:| h
T

Figure 2.45 A force-measuring instrument

will increase by an amount AR, and that of the lower gauges will decrease by an equal
amount, assuming that the gauges are symmetrically placed. Let R, and R4 be the upper
gauges and R, and R; the lower gauges. Thus, under the influence of the external force,
we have
Ri=Rs=Ro+ AR
R, = R; =Ry — AR
where R, is the zero strain resistance of the gauges. It can be shown from elementary
statics that the relationship between the strain € and a force F
applied at a distance L for a cantilever beam is
6LF
€= ———
wh?Y
where /& and w are as defined in Figure 2.45 and Y is the beam’s modulus of elasticity.
In the circuit of Figure 2.45, the currents i, and i, are given by
Vs . vsg
=— and ip= ——
Ri+R» Rs+ Ry
The bridge output voltage is defined by v, = v, — v, and may be found from the following
expression:

lq

vsR vsR
Vo = ipRy — igRy = ——2 _ 572
R+ R, R, +R,
Ro + AR Ry — AR

TS R+ AR+ Ry— AR “Ro+ AR + Ro— AR

A
= vsR—O = vgGF e
where the expression for AR /R, was obtained in “Focus on Measurements: Resistance
Strain Gauges.” Thus, it is possible to obtain a relationship between the output voltage of
the bridge circuit and the force F as follows:

6LF 6vsGFL
v, = v5GF e = vsGF —— = ———F = kF
wh?Y wh?Y
where £ is the calibration constant for this force transducer.

. . . . FIND IT
Comments— Strain gauge bridges are commonly used in mechanical, — [F5ardie.

chemical, aerospace, biomedical, and civil engineering
applications (and wherever measurements of force, pres-
sure, torque, stress, or strain are sought). ON THE WEB
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CHECK YOUR UNDERSTANDING

Compute the full-scale (i.e., largest) output voltage for the force-measuring apparatus of “Focus
on Measurements: The Wheatstone Bridge and Force Measurements.” Assume that the strain
gauge bridge is to measure forces ranging from 0 to 500 newtons (N), L = 0.3 m, w = 0.05m,
h =0.01m,GF = 2, and the modulus of elasticity for the beam is 69 x 10° N/m? (aluminum).
The source voltage is 12 V. What is the calibration constant of this force transducer?

N/AW GTI°0 = ¥ ‘AW 979 = (91808 [In]) “ 1omsuy

2.7 PRACTICAL VOLTAGE AND CURRENT
SOURCES

The idealized models of voltage and current sources we discussed in Section 2.1
fail to consider the internal resistance of practical voltage and current sources. The
objective of this section is to extend the ideal models to models that are capable of
describing the physical limitations of the voltage and current sources used in practice.
Consider, for example, the model of an ideal voltage source shown in Figure 2.1. As
the load resistance R decreases, the source is required to provide increasing amounts
of current to maintain the voltage vg(¢) across its terminals:
. vs(t)
i(t) = R

This circuit suggests that the ideal voltage source is required to provide an infinite
amount of current to the load, in the limit as the load resistance approaches zero.
Naturally, you can see that this is impossible; for example, think about the ratings of
a conventional car battery: 12 V, 450 ampere-hours (A-h). This implies that there is
a limit (albeit a large one) to the amount of current a practical source can deliver to
a load. Fortunately, it is not necessary to delve too deeply into the physical nature
of each type of source to describe the behavior of a practical voltage source: The
limitations of practical sources can be approximated quite simply by exploiting the
notion of the internal resistance of a source. Although the models described in this
section are only approximations of the actual behavior of energy sources, they will
provide good insight into the limitations of practical voltage and current sources.
Figure 2.46 depicts a model for a practical voltage source, composed of an ideal
voltage source vg in series with a resistance rg. The resistance rg in effect poses a
limit to the maximum current the voltage source can provide:

[smax = E (2.25)
s

(2.24)

Typically, rs is small. Note, however, that its presence affects the voltage across
the load resistance: Now this voltage is no longer equal to the source voltage. Since
the current provided by the source is

; s (2.26)
is = —— .
ST s+ R,
the load voltage can be determined to be
Ry
= jiR; = vg—"— 2.27
v = Isikp = Vs s+ R, ( )
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Practical voltage
source

The maximum (short circuit)
current which can be supplied
by a practical voltage source is

Vs

Ismax =

Figure 2.46 Practical
voltage source
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T Thus, in the limit as the source internal resistance rg approaches zero, the load voltage
vy becomes exactly equal to the source voltage. It should be apparent that a desirable
feature of an ideal voltage source is a very small internal resistance, so that the
current requirements of an arbitrary load may be satisfied. Often, the effective internal
resistance of a voltage source is quoted in the technical specifications for the source,
so that the user may take this parameter into account.

A similar modification of the ideal current source model is useful to describe
A model for practical current the behavior of a practical current source. The circuit illustrated in Figure 2.47 depicts

sources consists of an ideal source 5 gjmple representation of a practical current source, consisting of an ideal source in
in parallel with an internal

J) I = +0
=
=
AAAA
YWy

resistance. parallel with a resistor. Note that as the load resistance approaches infinity (i.e., an
T open circuit), the output voltage of the current source approaches its limit
| | .
: Lo VSmax = IsT's (2.28)
1 1 +
i | A good current source should be able to approximate the behavior of an ideal current

<4 . . . . .

i s sElVs source. Therefore, a desirable characteristic for the internal resistance of a current
: i _ source is that it be as large as possible.
i L—0
i I

____________ | 2.8 MEASURING DEVICES

Maximum output
voltage for practical In this section, you should gain a basic understanding of the desirable properties of

Z;rerfrlctlff;rflz:gth practical devices for the measurement of electrical parameters. The measurements

most often of interest are those of current, voltage, power, and resistance. In analogy
with the models we have just developed to describe the nonideal behavior of volt-
Figure 2.47 Practical age and current sources, we similarly present circuit models for practical measuring
current source instruments suitable for describing the nonideal properties of these devices.

Vs max = Isl's

The Ohmmeter

The ohmmeter is a device that when connected across a circuit element, can mea-
sure the resistance of the element. Figure 2.48 depicts the circuit connection of an
ohmmeter to a resistor. One important rule needs to be remembered:

The resistance of an element can be measured only when the element is discon-
nected from any other circuit.

Symbol for Circuit for the
ohmmeter measurement of
resistance R

) The Ammeter
Figure 2.48 Ohmmeter

and measurement of The ammeter is a device that when connected in series with a circuit element, can

resistance measure the current flowing through the element. Figure 2.49 illustrates this idea.
From Figure 2.49, two requirements are evident for obtaining a correct measurement
of current:

LO5 1. The ammeter must be placed in series with the element whose current is
to be measured (e.g., resistor R;).
2. The ammeter should not restrict the flow of current (i.e., cause a voltage
drop), or else it will not be measuring the true current flowing in the
circuit. An ideal ammeter has zero internal resistance.

LO5
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Ry
L
S
vs S:Rz
i
Symbol for A series Circuit for the measurement
ideal ammeter circuit of the current i

Figure 2.49 Measurement of current

The Voltmeter

The voltmeter is a device that can measure the voltage across a circuit element. Since
voltage is the difference in potential between two points in a circuit, the voltmeter
needs to be connected across the element whose voltage we wish to measure. A
voltmeter must also fulfill two requirements:

1. The voltmeter must be placed in parallel with the element whose voltage LO5
it is measuring.
2. The voltmeter should draw no current away from the element whose
voltage it is measuring, or else it will not be measuring the true voltage
across that element. Thus, an ideal voltmeter has infinite internal
resistance.

Figure 2.50 illustrates these two points.

o)
R R’y
YVy
+ + + < )
> > ImS
vs v ZR; vs R, C\D v2 " <V
iy~ iy - -
o
A series Ideal Circuit for the measurement Practical
circuit voltmeter of the voltage v voltmeter
Figure 2.50 Measurement of voltage T
Once again, the definitions just stated for the ideal voltmeter and ammeter need
to be augmented by considering the practical limitations of the devices. A practical
ammeter will contribute some series resistance to the circuit in which it is measuring o
current; a practical voltmeter will not act as an ideal open circuit but will always
draw some current from the measured circuit. The homework problems verify that J)
these practical restrictions do not necessarily pose a limit to the accuracy of the Practical
measurements obtainable with practical measuring devices, as long as the internal ammeter

resistance of the measuring devices is known. Figure 2.51 depicts the circuit models .
. Figure 2.51 Models for
for the practical ammeter and voltmeter. practical ammeter and voltmeter
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All the considerations that pertain to practical ammeters and voltmeters can be
applied to the operation of a wattmeter, an instrument that provides a measurement of
the power dissipated by a circuit element, since the wattmeter is in effect made up of a
combination of a voltmeter and an ammeter. Figure 2.52 depicts the typical connection
of a wattmeter in the same series circuit used in the preceding paragraphs. In effect,
the wattmeter measures the current flowing through the load and, simultaneously, the
voltage across it and multiplies the two to provide a reading of the power dissipated
by the load. The internal power consumption of a practical wattmeter is explored in
the homework problems.

——
Ry L Ry
_MM,_( W >_ AN e
+ +

> >
vs (D Ry vs () 0 mZR,
- <> - <>

Measurement of the power Internal wattmeter connections
dissipated in the resistor R,:
P 2=V2 i

Figure 2.52 Measurement of power

Conclusion

The objective of this chapter was to introduce the background needed in the following chapters
for the analysis of linear resistive circuits. The following box outlines the principal learning
objectives of the chapter.

1. Identify the principal elements of electric circuits: nodes, loops, meshes, branches, and
voltage and current sources. These elements will be common to all electric circuits
analyzed in the book.

2. Apply Ohm’s and Kirchhoff’s laws to simple electric circuits and derive the basic circuit
equations. Mastery of these laws is essential to writing the correct equations for electric
circuits.

3. Apply the passive sign convention and compute the power dissipated by circuit elements.
The passive sign convention is a fundamental skill needed to derive the correct equations
for an electric circuit.

4. Apply the voltage and current divider laws to calculate unknown variables in simple
series, parallel, and series-parallel circuits. The chapter includes examples of practical
circuits to demonstrate the application of these principles.

5. Understand the rules for connecting electric measuring instruments to electric circuits
for the measurement of voltage, current, and power. Practical engineering measurement
systems are introduced in these sections.
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HOMEWORK PROBLEMS
Section 2.1: Definitions 175V
]

2.1 Anisolated free electron is traveling through an Eﬂ 15V

electric field from some initial point where its i

coulombic potential energy per unit charge (voltage) is 8 125V

17 kJ/C and velocity = 93 Mm/s to some final point &

where its coulombic potential energy per unit charge is Y

6 kJ/C. Determine the change in velocity of the

electron. Neglect gravitational forces. 0

t

2.2 The unit used for voltage is the volt, for current the

ampere, and for resistance the ohm. Using the

definitions of voltage, current, and resistance, express g

each quantity in fundamental MKS units. % S0mA
2.3 The capacity of a car battery is usually specified in g 20mA |-

ampere-hours. A battery rated at, say, 100 A-h should &

be able to supply 100 A for 1 h, 50 A for 2 h, 25 A for ‘

4h, 1 A for 100 h, or any other combination yielding a 0 oh 10h

product of 100 A-h. Figure P2.4

a. How many coulombs of charge should we be able
to draw from a fully charged 100 A-h battery?

b. How many electrons does your answer to part a
require?

2.4 The charge cycle shown in Figure P2.4 is an example
of a two-rate charge. The current is held constant at 50
mA for 5 h. Then it is switched to 20 mA for the next
5 h. Find

a. The total charge transferred to the battery.
b. The energy transferred to the battery.

Hint: Recall that energy w is the integral of power, or
P =dw/dt.

2.5 Batteries (e.g., lead-acid batteries) store chemical
energy and convert it to electric energy on demand.
Batteries do not store electric charge or charge carriers.
Charge carriers (electrons) enter one terminal of the
battery, acquire electrical potential energy, and exit
from the other terminal at a lower voltage. Remember
the electron has a negative charge! It is convenient to
think of positive carriers flowing in the opposite
direction, that is, conventional current, and exiting at a
higher voltage. All currents in this course, unless
otherwise stated, are conventional current. (Benjamin
Franklin caused this mess!) For a battery with a rated
voltage = 12 V and a rated capacity = 350 A-h,
determine

a. The rated chemical energy stored in the battery.

b. The total charge that can be supplied at the rated
voltage.

2.6 What determines the following?

a. How much current is supplied (at a constant
voltage) by an ideal voltage source.

b. How much voltage is supplied (at a constant
current) by an ideal current source.

2.7 Anautomotive battery is rated at 120 A-h. This
means that under certain test conditions it can output
1 A at 12 V for 120 h (under other test conditions, the
battery may have other ratings).

a. How much total energy is stored in the battery?

b. If the headlights are left on overnight (8 h), how
much energy will still be stored in the battery in the
morning? (Assume a 150-W total power rating for
both headlights together.)

2.8 A car battery kept in storage in the basement needs
recharging. If the voltage and the current provided by
the charger during a charge cycle are shown in Figure
P2.8,

a. Find the total charge transferred to the battery.
b. Find the total energy transferred to the battery.

2.9 Suppose the current flowing through a wire is given
by the curve shown in Figure P2.9.

a. Find the amount of charge, ¢, that flows through
the wire betweenty = 0and t, = 1 s.

b. Repeat partafors, =2,3,4,5,6,7,8,9,and 10 s.
c. Sketch g(¢) forO <t <10s.
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v(t), volts

\J

0 1 2 3

t, hours

\/

t, hours

Figure P2.8

Figure P2.9

2.10 The charging scheme used in Figure P2.10 is an
example of a constant-voltage charge with current
limit. The charger voltage is such that the current into
the battery does not exceed 100 mA, as shown in
Figure P2.10. The charger’s voltage increases to the

2. Fundamentals of Electric
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maximum of 9 V, as shown in Figure P2.10. The
battery is charged for 6 h. Find:

a. The total charge delivered to the battery.

b. The energy transferred to the battery during the
charging cycle.

Hint: Recall that the energy, w, is the integral of power, or
P =dw/dt.

A
(5] —
%D 9V
E:
2 V() =6.81+0.19¢"82y, 0<r<2h
£ V=9V, t=2h
A7y
l | l >
2h 4h 6h t

A
5 100 mA,
E
g
>
5 i()=100mA, 0<r<2h
3 i(H)=100 e 2082 WA t>2h

| | .

Figure P2.10

2.11 The charging scheme used in Figure P2.11 is an
example of a constant-current charge cycle. The
charger voltage is controlled such that the current into
the battery is held constant at 40 mA, as shown in
Figure P2.11. The battery is charged for 6 h. Find:

a. The total charge delivered to the battery.

b. The energy transferred to the battery during the
charging cycle.
Hint: Recall that the energy, w, is the integral of power, or
P =dw/dt.
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v(7) = 1.5 — 0.3¢~(t—2hrs)/0.4 hrs

o L5V —

8

S

212V

s

5

A 075V

L V() = 1.2 — 0.45¢ 104 hrs
| | | >
2h 4h 6h P
A

=

(5]

E

3

-

s

5

40 mA

| | >

2h 4h 6h t

Figure P2.11

2.12 The charging scheme used in Figure P2.12 is called
a tapered-current charge cycle. The current starts at
the highest level and then decreases with time for the
entire charge cycle, as shown. The battery is charged
for 12 h. Find:

a. The total charge delivered to the battery.
b. The energy transferred to the battery during the
charging cycle.

Hint: Recall that the energy, w, is the integral of power, or
P =dw/dt.

Sections 2.2, 2.3: KCL, KVL

2.13 Use Kirchhoff’s current law to determine the
unknown currents in the circuit of Figure P2.13.
Assume that Ip = —2 A, I, = —4 A, Iy =8 A, and
Vs =12 V.

2.14 Apply KCL to find the current ; in the circuit of
Figure P2.14.

2.15 Apply KCL to find the current / in the circuit of
Figure P2.15.

2. Fundamentals of Electric
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V(l‘) =12 —3¢-5t/12hrs
A i
° |
=) '
] i
) |
z i
) '
2 |
= '
/M i
| >
12h t
A
5
B
=}
3]
E LA i(t) = ¢—5t/12hrs A
=
m
| >
12h t

Figure P2.12

L
<
>
Rz R,
p:
s
-
>
b ==

+__ s
Vs = Rz
- | AAAA
VVVv
RS —_—

Figure P2.13
i

AN

6A

A

2A
Figure P2.14



Rizzoni: Principles and I. Circuits 2. Fundamentals of Electric

Applications of Electrical Circuits

Engineering, Fifth Edition

68 Chapter 2 Fundamentals of Electric Circuits

i 6A

A

2A
Figure P2.15

2.16 Apply KCL to find the voltages v; and v, in Figure

P2.16.
+ 3V - - 10V +
A AMA
VVVy Wy
R
+ +
Ci)SV %E vy 3A 2}

Figure P2.16

2.17 Use Ohm’s Law and KCL to determine the current
I, in the circuit of Figure P2.17.

A

15Q

—_
o
>

w
[=)
e}
A
\AAAL
AAAA
YVVY
oy

|||—

Figure P2.17
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Section 2.4: Sign Convention

2.18 In the circuits of Figure P2.18, the directions of
current and polarities of voltage have already been
defined. Find the actual values of the indicated currents

and voltages.

30Q
MW o
—— +
I
+ + 2 o
15v(* L1z v,
7o}
(@)
<+> 14 A + L k=
— > 20Q <
\4 E: 2* g 30Q
(b)
30 Q
MW
——
I

©
Figure P2.18

2.19 Find the power delivered by each source in the

circuits of Figure P2.19.
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v Load 2A (*)

(o}

(@)

Load C'D 9V

4A
(®)
Figure P2.19

2.20 Determine which elements in the circuit of Figure
P2.20 are supplying power and which are dissipating
power. Also determine the amount of power dissipated

2. Fundamentals of Electric

and supplied.
+15V
B

25A

_»

. -
A -12V 271V C

+

Figure P2.20

2.21 In the circuit of Figure P2.21, determine the power
absorbed by the resistor R and the power delivered by
the current source.

© The McGraw-Hill
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I
S
<
+

+ 3V -~

AA
v

5
>
>
>

<
<
<
<

=
+

O SOR

AAMAA
\AAAZ

Figure P2.21

2.22 For the circuit shown in Figure P2.22:

a. Determine which components are absorbing power
and which are delivering power.

b. Is conservation of power satisfied? Explain your
answer.

Figure P2.22

2.23 For the circuit shown in Figure P2.23, determine
the power absorbed by the 5 € resistor.

5Q
MWW

20V C"’) 15Q

Figure P2.23

2.24 For the circuit shown in Figure P2.24, determine
which components are supplying power and which are
dissipating power. Also determine the amount of
power dissipated and supplied.
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+ 10V
4 A
—— B
; T — 2
A 4 .
1 100V 100 vV C 0V E
+
-10V D

Figure P2.24

2.25 For the circuit shown in Figure P2.25. determine
which components are supplying power and which are
dissipating power. Also determine the amount of
power dissipated and supplied.

+ 2V _

4A¢ 6A

Fan

Figure P2.25

2.26 If an electric heater requires 23 A at 110V,
determine

a. The power it dissipates as heat or other losses.

b. The energy dissipated by the heater in a 24-h
period.

c. The cost of the energy if the power company
charges at the rate 6 cents/kWh.

2. Fundamentals of Electric

© The McGraw-Hill
Companies, 2007

Fundamentals of Electric Circuits

2.27 1In the circuit shown in Figure P2.27, determine the
terminal voltage of the source, the power supplied to
the circuit (or load), and the efficiency of the circuit.
Assume that the only loss is due to the internal
resistance of the source. Efficiency is defined as the
ratio of load power to source power.

Ve=12V

Rs = 5kQ

R, =7kQ

Yvyvy

I
|
I
I
L
I
I
1
|
I
1

Nonideal source

Figure P2.27

2.28 A 24-volt automotive battery is connected to two
headlights, such that the two loads are in parallel; each
of the headlights is intended to be a 75-W load,
however, a 100-W headlight is mistakenly installed.
What is the resistance of each headlight, and what is
the total resistance seen by the battery?

2.29 What is the equivalent resistance seen by the
battery of Problem 2.28 if two 15-W taillights are
added (in parallel) to the two 75-W (each)
headlights?

2.30 For the circuit shown in Figure P2.30, determine
the power absorbed by the variable resistor R, ranging
from O to 20 2. Plot the power absorption as a
function of R.

5Q

20V€D

Figure P2.30

2.31 Refer to Figure P2.31.
a. Find the total power supplied by the ideal source.

b. Find the power dissipated and lost within the
nonideal source.
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c. What is the power supplied by the source to the
circuit as modeled by the load resistance?

d. Plot the terminal voltage and power supplied to the
circuit as a function of current.

Repeat Iy =0, 5, 10, 20, 30 A.
Ve =12V

Rs =03

Nonideal source

Figure P2.31

2.32 In the circuit of Figure P2.32, if v; = v/4 and the
power delivered by the source is 40 mW, find R, v, vy,
and . Given: R; =8k, R, = 10k, R; = 12 k.

Ry
AAAA
YVVY
+
<
Vl::Rz
_<>
16
<
RS
<>
AAA
\AAJ
R;

Figure P2.32

2.33 A GE SoftWhite Longlife lightbulb is rated as
follows:

Pr = rated power = 60 W

Por = rated optical power = 820 lumens (Im) (average)

1
1 lumen = 50 w

Operating life = 1,500 h (average)
Vg = rated operating voltage = 115V

The resistance of the filament of the bulb, measured
with a standard multimeter, is 16.7 2. When the bulb
is connected into a circuit and is operating at the rated
values given above, determine

a. The resistance of the filament.

b. The efficiency of the bulb.

2.34 An incandescent lightbulb rated at 100 W will
dissipate 100 W as heat and light when connected
across a 110-V ideal voltage source. If three of these

2. Fundamentals of Electric
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bulbs are connected in series across the same source,
determine the power each bulb will dissipate.

2.35 An incandescent lightbulb rated at 60 W will
dissipate 60 W as heat and light when connected
across a 100-V ideal voltage source. A 100-W bulb
will dissipate 100 W when connected across the same
source. If the bulbs are connected in series across the
same source, determine the power that either one of the
two bulbs will dissipate.

2.36 For the circuit shown in Figure P2.36, find
. The equivalent resistance seen by the source.

a
b. The current .

o

The power delivered by the source.
d. The voltages v, and v;,.
e. The minimum power rating required for R;.

Given: v =24 V,Ry=8Q,Ri =102, R, =2 Q.

Ry Ry

Figure P2.36

2.37 For the circuit shown in Figure P2.37, find
a. The currents #; and i,.

b. The power delivered by the 3-A current source and
by the 12-V voltage source.

c. The total power dissipated by the circuit.

LetRl =25 Q,RZI 1OQ,R3 :59,R4:7§2,and
express i1 and i, as functions of v. (Hint: Apply KCL at the
node between R; and R3.)

R R

1V 3
AAA AAAA
\AAA/ Yvvy

-

b
sa®d ilT sk 2v()Z

AAAA
Y

Figure P2.37

2.38 Determine the power delivered by the dependent
source in the circuit of Figure P2.38.
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YVvyy \AAAJ
15Q 70 !
0512 ( 4V 50
_ s

Figure P2.38

2.39 Consider NiMH hobbyist batteries shown in the
circuit of Figure P2.39.

a. IfV; =120V,R; =0.15Q and R, =2.55 @,
find the load current /;, and the power dissipated by
the load.

b. If we connect a second battery in parallel with
battery 1 that has voltage V, = 12 V and
R, = 0.28 2, will the load current /; increase or
decrease? Will the power dissipated by the load
increase or decrease? By how much?

ILL
R,
B S
R =
=V
Load
Battery #1
O
I I ILL +
R, Ry L
SR VL
—V, =17
)
Load
Battery #2 Battery #1

Figure P2.39

2.40 With no load attached, the voltage at the terminals
of a particular power supply is 50.8 V. When a 10-W
load is attached, the voltage drops to 49 V.

a. Determine vg and Ry for this nonideal source.

b. What voltage would be measured at the terminals
in the presence of a 15-Q2 load resistor?

c. How much current could be drawn from this power
supply under short-circuit conditions?

2.41 A 220-V electric heater has two heating coils
which can be switched such that either coil can be used
independently or the two can be connected in series or
parallel, yielding a total of four possible configurations.
If the warmest setting corresponds to 2,000-W power
dissipation and the coolest corresponds to 300 W, find

2. Fundamentals of Electric
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a. The resistance of each of the two coils.

b. The power dissipation for each of the other two
possible arrangements.

Sections 2.5, 2.6: Resistance and
Ohm’s Law

2.42 For the circuits of Figure P2.42, determine the
resistor values (including the power rating) necessary
to achieve the indicated voltages. Resistors are
available in 13-, 1/4-, 1/5-, and 1-W ratings.

< _
E3 R, =15kQ
50V C"’) Y
Vour=20V
L
_l_
(a)
Rh
‘O
Vour=225V
Ra
_l_
(b)
A
Ry=14Q
R, %’
110V <+>
= ——o
Vour=28.3V
R, =27 kQ
(©)

Figure P2.42



@ ‘ Rizzoni: Principles and

I. Circuits
Applications of Electrical Circuits
Engineering, Fifth Edition

2.43 For the circuit shown in Figure P2.43, find

The equivalent resistance seen by the source.

ISH

The current 7.

o

The power delivered by the source.

&

The voltages vy, vs.

e. The minimum power rating required for R;.

20 6Q
MWW AW
—> tov -
1
6V <+> Ry=40Q vy

Figure P2.43

2.44 Find the equivalent resistance seen by the source in
Figure P2.44, and use result to find 7, i}, and v.

2Q

©
<
Q::E)
Nl
o]
~
[\S}
o]
A
YWy
.t

Figure P2.44

2.45 Find the equivalent resistance seen by the source
and the current / in the circuit of Figure P2.45.

1Q 4Q

8Q

sov <+> 90 Q

Figure P2.45
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2.46 In the circuit of Figure P2.46, the power absorbed
by the 15-Q2 resistor is 15 W. Find R.

R 4Q
AAA AAAA
YVVYY YVVY
6Q E;
<>
< <
+ 150 2 240 2
25V \= < <
40 40%
<> <>

Figure P2.46

2.47 Find the equivalent resistance between terminals a
and b in the circuit of Figure P2.47.

3Q
a o—— MM
6Q
12Q
4Q
MWW
4Q 4Q L
% 2Q
2Q
b o AV

Figure P2.47

2.48 For the circuit shown in Figure P2.48, find the
equivalent resistance seen by the source. How much
power is delivered by the source?

7Q 4Q 2Q
——WW AW

Ouav 60 §39 %19

5Q

AAA
\AAAJ

Figure P2.48
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2.49 For the circuit shown in Figure P2.49, find the
equivalent resistance, where Ry =5 Q, Ry =
1kQ, Ry = Ry = 100 Q, Rs = 9.1  and

Rs =1k Q.
R
— AW
R,
o——AMWW
| | 1 L R,
TN T T
o

Figure P2.49

2.50 Cheap resistors are fabricated by depositing a thin
layer of carbon onto a nonconducting cylindrical
substrate (see Figure P2.50). If such a cylinder has
radius a and length d, determine the thickness of the
film required for a resistance R if

a =1 mm R =33kQ

1 S

c=—=29M— d=9mm
P m

Neglect the end surfaces of the cylinder and assume
that the thickness is much smaller than the radius.

/At

Figure P2.50

2.51 The resistive elements of fuses, lightbulbs, heaters,
etc., are significantly nonlinear (i.e., the resistance is
dependent on the current through the element).

2. Fundamentals of Electric
Circuits
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Assume the resistance of a fuse (Figure P2.51) is given
by the expression R = Ro[1 + A(T — Ty)] with

T —Ty=kP; Ty =25°C; A =0.7[°C]™};

k =0.35°C/W; Ry = 0.11 Q; and P is the power
dissipated in the resistive element of the fuse.
Determine the rated current at which the circuit will
melt and open, that is, “blow” (Hint: The fuse blows
when R becomes infinite.)

Fuse

Figure P2.51

2.52 Use Kirchhoff’s current law and Ohm’s law to
determine the current in each of the resistors R4, Rs,
and Rg in the circuit of Figure P2.52. Vg = 10V,

R =20Q,R, =402, R3 =102, R4y = R5 =
R =15Q.

Ry

AAAA
YVVY

Rz%?&
«
R4§5:ER6§

L

Figure P2.52

2.53 With reference to Problem 2.13, use Kirchhoff’s
current law and Ohm’s law to find the resistances R,
Ry, R3, Ry, and Rs if Ry = 2 Q. Assume R, = 3R,
and R, = 1R,.

254 AssumingR; =2Q, R, =5Q,R; =4,
Ri=1Q,Rs=3Q,1,=4A, and Vg = 54V in the
circuit of Figure P2.13, use Kirchhoff’s current law
and Ohm’s law to find

a. 10, 11, 13, and Is.

b. Ro.

255 AssumingRy=2Q, R =1, R, =4/3%,
R; =6, and Vg = 12 V in the circuit of Figure
P2.55, use Kirchhoff’s voltage law and Ohm’s law to
find
a. i,, Iy, and i..

b. The current through each resistance.
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Ro Ry
O
= =
< i 2R
RO:: ‘\l_a) e —»Req Ry R3

(:52/
=
I
AAAA
YVVY
@)

R4

v, —___— @ EERa Figure P2.59

2.60 Find the equivalent resistance seen by the source
and the current i in the circuit of Figure P2.60. Given:

+ V,=12V,Ry=4Q, R, =22, R, = 50 Q,

R;=8Q,R;, =102, Rs =122, Rg = 6 Q.

Figure P2.55

R, R3 Rs
256 AssumingRy=2Q,R =22, R =5,
R; =4 A, and V5 = 24 V in the circuit of Figure e ) \‘, .
P2.55, use Kirchhoff’s voltage law and Ohm’s law to S\< R# R¢
find

a. i,, I, and i..

b. The voltage across each resistance. Figure P2.60

2.57 Assume that the voltage source in the circuit of 2.61 In the circuit of Figure P2.61, the power absorbed
Figure P2.55 is now replaced by a current source, and by the 20-Q resistor is 20 W. Find R. Given: V; = 50
Ry=1Q,R =3Q,R,=2Q,R; =4A, and V,Ri=20Q,R,=5Q,R; =2Q,R, =8¢,

Is = 12 A. Use Kirchhoff’s voltage law and Ohm’s Rs =8, Re =30 Q.
law to determine the voltage across each resistance. "

2.58 The voltage divider network of Figure P2.58 is "R
expected to provide 5 V at the output. The resistors, 4
however, may not be exactly the same; that is, their + L
tolerances are such that the resistances may not be Vs (fD R EE
exactly 5 k2. N )

a. If the resistors have £10 percent tolerance, find the
worst-case output voltages.

b. Find these voltages for tolerances of +5 percent.

Given: v = 10 V, R, = 5k, R, = 5 kQ. Figure P2.61

2.62 Determine the equivalent resistance of the infinite

network of resistors in the circuit of Figure P2.62.
R 1 O:AVAVAVA AVAVAVA AVAVAVA AVAVAVA VAVAVA \—o
VCi') R, R R LR LR Lk
+ — R RS RS RS ——
Ry Vout R R T R T R T R Continues...
_ O=AVAVAVA AVAVAVA AVAVAVAV AVAVAVAV AVAVAVA \—o
Figure P2.62
or the circuit shown in Figure P2.63 find Fgure H2.88 2.63
he equivalent resistance seen by the source.
he current through and the power absorbed by the 2.59 Find the equivalent resistance of the circuit of b.
)-Q2 resistance. Given: Vg = 110V, R =90 €, Figure P2.59 by combining resistors in series and in
» =500, R; =402, R, =20, Rs =30, parallel. Ry =4 Q, R, =12Q, R, =8Q, R; =2,

s = 10 2, R; = 60 2, Rz = 80 Q. Ry=16Q,Rs=5Q
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Vs e R, R3 R
MW
L)

Rg

Figure P2.63

2.64 In the circuit of Figure P2.64, find the equivalent
resistance looking in at terminals @ and b if terminals ¢
and d are open and again if terminals ¢ and d are
shorted together. Also, find the equivalent resistance
looking in at terminals ¢ and d if terminals ¢ and b are
open and if terminals a and b are shorted together.

Figure P2.64

2.65 At an engineering site which you are supervising, a
1-horsepower motor must be sited a distance d from a
portable generator (Figure P2.65). Assume the
generator can be modeled as an ideal source with the
voltage given. The nameplate on the motor gives the
following rated voltages and the corresponding
full-load current:

Ve =110V
VMmin =105V — IM L = 7.10 A
VMmax =117V > Iy =637 A

If d = 150 m and the motor must deliver its full-rated
power, determine the minimum AWG conductors
which must be used in a rubber-insulated cable.
Assume that the only losses in the circuit occur in the
wires.

Conductors

o ]

d
Cable

Figure P2.65
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2.66 In the bridge circuit in Figure P2.66, if nodes (or
terminals) C and D are shorted and

R, =22k
Ry = 4.7kQ

R, = 18k
R, = 3.3kQ

determine the equivalent resistance between the nodes
or terminals A and B.

Figure P2.66

2.67 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.67.

Ve=12V
Ry =11kQ R; = 6.8kQ
R, =220k Ry =022 mQ

Figure P2.67

2.68 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.67.

Vs=5V
Ry =22kQ R, =18k
R; =4.7kQ Ry =33kQ

2.69 Determine the voltage across R; in Figure P2.69.

Vs =12V R =1.7mQ
Ry =3kQ  R;=10kQ
AAAA
VVVv
Ry
() ‘7/5 R2<E R}%E
+

Figure P2.69
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Sections 2.7, 2.8: Practical Sources
and Measuring Devices

2.70 A thermistor is a nonlinear device which changes
its terminal resistance value as its surrounding
temperature changes. The resistance and temperature
generally have a relation in the form of

Ru(T) = Roe P70

where Ry, = resistance at temperature 7', Q
Ry = resistance at temperature 7o = 298 K, 2
B = material constant, K~!

T, T, = absolute temperature, K

a. If Ry =300 2 and 8 = —0.01 K1, plot Ry (T) as
a function of the surrounding temperature 7' for
350 < T < 750.

b. If the thermistor is in parallel with a 250-Q2 resistor,
find the expression for the equivalent resistance and
plot Ry, (T) on the same graph for part a.

2.71 A moving-coil meter movement has a meter
resistance ry; = 200 €2, and full-scale deflection is
caused by a meter current /,, = 10 ;#A. The movement
must be used to indicate pressure measured by the
sensor up to a maximum of 100 kPa. See Figure P2.71.

a. Draw a circuit required to do this, showing all
appropriate connections between the terminals of
the sensor and meter movement.

b. Determine the value of each component in the
circuit.

c. What is the linear range, that is, the minimum and
maximum pressure that can accurately be

measured?
Rg
+ " %E
Vs
Sensor Meter
10 [ B
= F ]
E s5E =
~ r ]
=~ N ]
0 PN PRI S NI S S N S ST A BRI N A A AR
0 50 100
P (kPa)

Figure P2.71
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2.72 The circuit of Figure P2.72 is used to measure the
internal impedance of a battery. The battery being
tested is a NiMH battery cell.

a. A fresh battery is being tested, and it is found that
the voltage Vo, is 2.28 V with the switch open and
2.27 V with the switch closed. Find the internal
resistance of the battery.

b. The same battery is tested one year later, and V,, is
found to be 2.2 V with the switch open but 0.31 V
with the switch closed. Find the internal resistance
of the battery.

Voul

Battery — Switch

Figure P2.72

2.73 Consider the practical ammeter, described in
Figure P2.73, consisting of an ideal ammeter in series
with a 1-k2 resistor. The meter sees a full-scale
deflection when the current through it is 30 pA. If we
desire to construct a multirange ammeter reading
full-scale values of 10 mA, 100 mA, and 1 A,
depending on the setting of a rotary switch, determine
appropriate values of Ry, R,, and Rs.

Switch

Figure P2.73

2.74 A circuit that measures the internal resistance of a
practical ammeter is shown in Figure P2.74, where
Rs =50,000 2, Vs = 12V, and R, is a variable
resistor that can be adjusted at will.

a. Assume that r, < 50,000 Q2. Estimate the current .

b. If the meter displays a current of 150 A when
R, =15 , find the internal resistance of the meter
ra-
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Figure P2.74

2.75 A practical voltmeter has an internal resistance r,.
‘What is the value of r,, if the meter reads 11.81 V
when connected as shown in Figure P2.75.

J
Source

Voltmeter
Rg =25kQ
Vs=12V

Figure P2.75

2.76 Using the circuit of Figure P2.75, find the voltage
that the meter reads if Vg = 24 V and Ry has the
following values:

Ry =0.2r,,04r,, 0.6r,, 1.2r,,, 4r,,, 6r,,, and 10r,,.
How large (or small) should the internal resistance of
the meter be relative to Rg?

2.77 A voltmeter is used to determine the voltage across
aresistive element in the circuit of Figure P2.77. The
instrument is modeled by an ideal voltmeter in parallel
with a 120-k2 resistor, as shown. The meter is placed
to measure the voltage across R;. Assume R; = 8 k€2,
R, =22k, R; =50kQ, Ry = 125k, and
Is = 120 mA. Find the voltage across R, with and
without the voltmeter in the circuit for the following

values:
a. Ry =100 Q2
b. Ry =1k
c. R4y=10kQ
d. Ry =100k
2.78 An ammeter is used as shown in Figure P2.78. The

ammeter model consists of an ideal ammeter in series

2. Fundamentals of Electric
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YVVY
R,
R;
> >
1, 120 kQ
SCD R% R2§ °
R4 VR
4
. o

Figure P2.77

with a resistance. The ammeter model is placed in the
branch as shown in the figure. Find the current through Rs
both with and without the ammeter in the circuit for the
following values, assuming that Ry = 20 @2, R, =

800 2, R, =600 2, R; =1.2kQ, Ry = 150 €, and

Vs =24 V.

a. Rs = 1k
b. Rs =100 Q
c. Rs=10Q
d Rs=1Q

Ammeter internal model

o—(A—wn—o
25Q

Figure P2.78

2.79 Shown in Figure P2.79 is an aluminum
cantilevered beam loaded by the force F'. Strain gauges
R, R,, R;, and R, are attached to the beam as shown
in Figure P2.79 and connected into the circuit shown.
The force causes a tension stress on the top of the
beam that causes the length (and therefore the
resistance) of R and R, to increase and a compression
stress on the bottom of the beam that causes the length
(and therefore the resistance) of R, and R; to decrease.
This causes a voltage of 50 mV at node B with respect
to node A. Determine the force if

L=03m
Y = 69 GN/m?

R, = 1k

w = 25 mm

V=12V
h = 100 mm
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increase and a compression stress on the bottom of the
R, R, F l j_ beam that causes the length (and therefore the
| h_ [ | resistance) of R, and R; to decrease. This generates a
R, R; % |<_>| voltage between nodes B and A. Determine this
w voltage if F = 1.3 MN and

L B S R, =1kQ Vs =24V L=17m
R=Z 3SR
'= 3 w =3 cm h=7em Y =200GN/m’
C_‘) Ve A¢— Ve +¢B l #
< < R R F
RE 3R — 5[]
R, R Ny
. = P
Figure P2.79
< <E
2.80 Shown in Figure P2.80 is a structural steel Rz kK
cantilevered beam loaded by a force F'. Strain gauges C_) Vs A¢$— Vg +¢B
R, R>, R3, and R, are attached to the beam as shown R2:: < R
and connected into the circuit shown. The force causes b b

a tension stress on the top of the beam that causes the
length (and therefore the resistance) of R; and R4 to Figure P2.80
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CHAWPTER

RESISTIVE NETWORK ANALYSIS

hapter 3 illustrates the fundamental techniques for the analysis of resistive

circuits. The chapter begins with the definition of network variables and of

network analysis problems. Next, the two most widely applied methods—

node analysis and mesh analysis—are introduced. These are the most gener-
ally applicable circuit solution techniques used to derive the equations of all electric
circuits; their application to resistive circuits in this chapter is intended to acquaint
you with these methods, which are used throughout the book. The second solution
method presented is based on the principle of superposition, which is applicable only
to linear circuits. Next, the concept of Thévenin and Norton equivalent circuits is
explored, which leads to a discussion of maximum power transfer in electric circuits
and facilitates the ensuing discussion of nonlinear loads and load-line analysis. At
the conclusion of the chapter, you should have developed confidence in your ability
to compute numerical solutions for a wide range of resistive circuits. The following
box outlines the principal learning objectives of the chapter.
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:) Learning Objectives

1. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using node analysis. Sections 3.2 and 3 4.

2. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 3.3 and 3 4.

3. Apply the principle of superposition to linear circuits containing independent sources.
Section 3.5.

4.  Compute Thévenin and Norton equivalent circuits for networks containing linear
resistors and independent and dependent sources. Section 3.6.

5.  Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables
is constructed, and these equations are solved by means of suitable techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a
specific circuit.

Figure 3.1

EXAMPLE 3.1

Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of Figure 3.1.

Solution

The following node voltages may be identified:

Node voltages Branch voltages

v, = vg (source voltage) vg =1v; — Vg = v,

Vp = VR, URy = Vg — Vp
Ve = VRy VR, = Vp — V4 = Vp
vg = 0 (ground) VRy = Vp — Ve

VR, = Ve — V4 = V¢

Comments: Currents i,, i,, and i, are loop currents, but only i, and i, are mesh currents.
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In the example, we have identified a total of 9 variables! It should be clear that
some method is needed to organize the wealth of information that can be generated
simply by applying Ohm’s law at each branch in a circuit. What would be desirable at
this point is ameans of reducing the number of equations needed to solve a circuit to the
minimum necessary, that is, a method for obtaining N equations in N unknowns. The
remainder of the chapter is devoted to the development of systematic circuit analysis
methods that will greatly simplify the solution of electrical network problems.

3.2 THE NODE VOLTAGE METHOD

Node voltage analysis is the most general method for the analysis of electric circuits.
In this section, its application to linear resistive circuits is illustrated. The node voltage
method is based on defining the voltage at each node as an independent variable. One
of the nodes is selected as a reference node (usually—but not necessarily—ground),
and each of the other node voltages is referenced to this node. Once each node voltage
is defined, Ohm’s law may be applied between any two adjacent nodes to determine
the current flowing in each branch. In the node voltage method, each branch current
is expressed in terms of one or more node voltages; thus, currents do not explicitly
enter into the equations. Figure 3.2 illustrates how to define branch currents in this
method. You may recall a similar description given in Chapter 2.

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

Yi=0

Figure 3.3 illustrates this procedure.

(3.1)

In the node voltage method, we By KCL: i — i — i3 = 0. In the node
assign the node voltages v, and vp; voltage method, we express KCL by
the branch current flowing from a Ya=Vb Vb=Ve Vb=Vd _
to b is then expressed in terms of R, R, R;

these node voltages.
Va—Vp
R

R
Va O——MWW——O v

—
1

1=

Figure 3.2 Branch current
formulation in node analysis

Figure 3.3 Use of KCL in
node analysis

The systematic application of this method to a circuit with n nodes leads to
writing n linear equations. However, one of the node voltages is the reference voltage
and is therefore already known, since it is usually assumed to be zero (recall that
the choice of reference voltage is dictated mostly by convenience, as explained in
Chapter 2). Thus, we can write n — 1 independent linear equations in the n — 1 inde-
pendent variables (the node voltages). Node analysis provides the minimum number
of equations required to solve the circuit, since any branch voltage or current may be
determined from knowledge of node voltages.
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Thermal Systems

A useful analogy can be
found between electric cir-
cuits and thermal systems.
The table below illustrates
the correspondence be-
tween electric circuit var-
iables and thermal system
variables, showing that the
difference in electrical po-
tential is analogous to the
temperature difference be-
tween two bodies. When-
ever there is a temperature
difference between two bod-
ies, Newton’s law of cooling
requires that heat flow from
the warmer body to the
cooler one. The flow of heat
is therefore analogous to the
flow of current. Heat flow
can take place based on
one of three mechanisms:
(1) conduction, (2) convec-
tion, and (3) radiation. In this
sidebar we only consider
the first two, for simplicity.

Electrical Thermal
variable variable
Voltage Temperature
difference difference
v, [V] AT, [°C]
Current Heat flux
i, A q, W]
Resistance Thermal
R, [22/m] resistance
R, [°C/W]
Resistivity Conduction
p, [2/m] heat-transfer
coefficient
=]
k| ———
m—°C
(No exact Convection
electrical heat-transfer
analogy) coefficient, or

film coefficient
of heat-transfer

h w
Tl m?2—-°C
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Thermal
Resistance

To explain thermal resis-
tance, consider a heat treat-
ed engine crankshaft that
has just completed some
thermal treatment. Assume
that the shaft is to be
quenched in a water bath at
ambient temperature (see
the figure below). Heat flows
from within the shaft to the
surface of the shaft, and
then from the shaft surface
to the water. This process
continues until the tempera-
ture of the shaft is equal to
that of the water.

The first mode of heat
transfer in the above de-
scription is called conduc-
tion, and it occurs because
the thermal conductivity of
steel causes heat to flow
from the higher temperature
inner core to the lower-
temperature surface. The
heat transfer conduction
coefficient k is analogous to
the resistivity p of an electric
conductor.

The second mode of
heat transfer, convection,
takes place at the boundary
of two dissimilar materials
(steel and water here). Heat
transfer between the shaft
and water is dependent on
the surface area of the shaft
in contact with the water A
and is determined by the
heat transfer convection
coefficient h.

L™

Tshaft Twaler
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The node analysis method may also be defined as a sequence of steps, as outlined
in the following box:

NODE VOLTAGE ANALYSIS METHOD

1. Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes are referenced to this node.

2. Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit is associated with a
dependent variable. If a node is not connected to a voltage source, then its
voltage is treated as an independent variable.

3. Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

4. Solve the linear system of n — 1 — m unknowns.

Engine crankshaft
quenched in water bath.

Following the procedure outlined in the box guarantees that the correct solution to a
given circuit will be found, provided that the nodes are properly identified and KCL
is applied consistently. As an illustration of the method, consider the circuit shown in
Figure 3.4. The circuitis shown in two different forms to illustrate equivalent graphical
representations of the same circuit. The circuit on the right leaves no question where
the nodes are. The direction of current flow is selected arbitrarily (assuming that ig is
a positive current). Application of KCL at node a yields

is—i1—i,=0 3.2)
whereas at node b
ih—iz=0 3.3)

It is instructive to verify (at least the first time the method is applied) that it is not

necessary to apply KCL at the reference node. The equation obtained at node c,
i +iz—is=0 (34)

is not independent of equations 3.2 and 3.3; in fact, it may be obtained by adding the

Figure 3.4 Tllustration of node analysis

<LO1
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equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier:

In a circuit containing n nodes, we can write at most n — 1 independent
equations.

Now, in applying the node voltage method, the currents i, i», and i3 are expressed as
functions of v,, vy, and v., the independent variables. Ohm’s law requires that iy, for
example, be given by

) Vg — Ve
i1 = R—1 @3.5)
since it is the potential difference v, — v, across R that causes current i; to flow from
node a to node c. Similarly,
Vg — Up
R>
Up — Ve
R;

i =
(3.6)

iy =

Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we obtain the following relationships:

(3.7)

3.8)
Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice.

Note that these equations may be solved for v, and v, assuming that is, R;, R,, and
R; are known. The same equations may be reformulated as follows:

1 i 1 " 1 .
— 4+ — ), —— v, =
Ri R R,)" T

1 5 1 5 1 0
—_ va R o Vy =
R> R, R;3 b

Examples 3.2 through 3.4 further illustrate the application of the method.

(3.9)

EXAMPLE 3.2 Node Analysis
Problem

Solve for all unknown currents and voltages in the circuit of Figure 3.5.

Solution

Known Quantities: Source currents, resistor values.
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Thermal Circuit
Model

The conduction resistance
of the shaft is described by
the following equation:

kA

g= AT
R _AT _ L
cond = q _kAl

where A; is a cross section-
al area and L is the distance
from the inner core to the
surface. The convection re-
sistance is described by a
similar equation, in which
convective heat flow is de-
scribed by the film coef-
ficient of heat transfer, h:

g = hA, AT
AT 1
Rconv = 7 = m

where A is the surface area
of the shaft in contact with
the water. The equivalent
thermal resistance and the
overall circuit model of the
crankshaft quenching
process are shown in the
figures below.

Rcond Reonv
Tshatt O—"WW—MWN—0 Ty aer

q

Thermal resistance
representation of quenching
process

=@ D

Electrical circuit
representing the quenching
process

Reond

Reony
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Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: [, = 10 mA; I, = 50 mA;
R =1kQ; Ry =2KkQ; R; = 10kRQ; Ry, = 2kQ.

Analysis: We follow the steps outlined in the Focus on Methodology box:

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. The circuit of Figure 3.5 is shown again in Figure 3.6, and two nodes are also shown in
the figure. Thus, there are two independent variables in this circuit: vy, vs.

R; Node 1 —
AAAA 3
\AAAL AAAA

YV

R, =
AAA R,
YYVY AAAA

YVVY

T N~———— ¢ +
< +
C) <;R1 :>R4 <> () Rl E% R4 3% <>
I, I T, s < h
Figure 3.5
— Node 2
R;
AAAA
VVVL
——
e (
AAAA
TYYWVT \_/¢
< +<>¢
® 2z O
I, - I
ov
Figure 3.6
3. Applying KCL at nodes 1 and 2, we obtain
U1—0 vV — U2 vV — U
I — — — =0 node 1

R, R, R;

- - —0
viTv  UiT% 277 -0 node?
R, R Ra

Now we can write the same equations more systematically as a function of the unknown
node voltages, as was done in equation 3.9.

! + ! + ! + ! ! 1 de 1
— 4+ —4+ = —— = — | = node
Rl "R, Ry) ! R, Ry) !

L1 Y (LI I de 2
—— —— v — 4+ — 4+ — == node
R Ry " \R "Ry R, :

4. We finally solve the system of equations. With some manipulation, the equations finally
lead to the following form:

1.6v; — 0.6v, = 10
—0.61}1 + 1.11}2 = -50
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These equations may be solved simultaneously to obtain

v =—13.57V
vy = —52.86 V

Knowing the node voltages, we can determine each of the branch currents and voltages
in the circuit. For example, the current through the 10-k<2 resistor is given by

v — U

=3.93mA
10,000

ioke =

indicating that the initial (arbitrary) choice of direction for this current was the same as
the actual direction of current flow. As another example, consider the current through the
1-k€2 resistor:

. V1

i = ——=—-13.57TmA

12T 1,000
In this case, the current is negative, indicating that current actually flows from ground
to node 1, as it should, since the voltage at node 1 is negative with respect to ground.
You may continue the branch-by-branch analysis started in this example to verify that the
solution obtained in the example is indeed correct.

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (we could use the opposite
convention), but we shall use it consistently in this book.

EXAMPLE 3.3 Node Analysis LO1
Problem
Write the nodal equations and solve for the node voltages in the circuit of Figure 3.7. R
YVVY
Solution OO
Known Quantities: Source currents, resistor values.

Find: All node voltages and branch currents.

.||—<

Schematics, Diagrams, Circuits, and Given Data: i, = 1 mA; i, =2 mA; R, = 1kQ; Figure 3.7
R, =500 Q; R; =2.2kQ; Ry =4.7kQ.

Analysis: We follow the steps of the Focus on Methodology box.

1. The reference (ground) node is chosen to be the node at the bottom of the circuit. (v—”- ﬁﬁﬁ_icv"\>
— gg —
2. See Figure 3.8. Two nodes remain after the selection of the reference node. Let us label *i ir W
. . . 1 4
these a and b and define voltages v, and v,. Both nodes are associated with independent + + +

. ::R R :: . 1
variables. ta = b

AAAA
YVVY
=

£

3. We apply KCL at each of nodes a and b: b ﬂ
v, Vg — v < =
ia——“—“ibzo node a ov
R] Rz -
Va —% , iy — Yo%y node b Figure 3.8

R, Ry Ry
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and rewrite the equations to obtain a linear system:
1 N 1 N 1 .
o = ) Va —%5 |V =la
R, R, R,

LY, (L, 1, ,
—— ) v, — — — v, =
R, R TR TR)T

4. Substituting the numerical values in these equations, we get

3x 1030, —2x 103y, =1 x 1073
—2x 1073y, +2.67 x 1073y, =2 x 1073

or 3v, —2v, =1
—2v, +2.67v, =2

The solution v, = 1.667 V, v, = 2 V may then be obtained by solving the system of
equations.

EXAMPLE 3.4 Solution of Linear System of Equations Using
Cramer’s Rule

Problem

Solve the circuit equations obtained in Example 3.3, using Cramer’s rule (see Appendix A).

Solution
Known Quantities: Linear system of equations.
Find: Node voltages.

Analysis: The system of equations generated in Example 3.3 may also be solved by using
linear algebra methods, by recognizing that the system of equations can be written as

= alln -]

By using Cramer’s rule (see Appendix A), the solution for the two unknown variables v, and
v, can be written as follows:

1 -2 ‘
v, = ‘ 2 267 _ _(H@2.67) = (=2)2) _ 6.67 1667V
3 -2 (3)(2.67) — (=2)(=2) 4
-2 267
=5
_ -2 2 - 8
vy = = =-=2V
3 -2 3)2.67) — (=2)(=2) 4
-2 267

The result is the same as in Example 3.3.

Comments: While Cramer’s rule is an efficient solution method for simple circuits (e.g.,
two nodes), it is customary to use computer-aided methods for larger circuits. Once the nodal
equations have been set in the general form presented in equation 3.9, a variety of computer
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aids may be employed to compute the solution. You will find the solution to the same example
computed using MathCad™ in the electronic files that accompany this book.

CHECK YOUR UNDERSTANDING

Find the current i/, in the circuit shown on the left, using the node voltage method.

- Vx +
¢¢¢V N&%V . ¢¢¢V %ANN
100 Q 50Q L:L 10Q 30Q

—_— < <
— 1oV 2AC> 20 Q20 O3
— T2

\AAAJ
\AAAJ
\AAAJ

D1asoaz
<

<
75 Q3
<

Find the voltage v, by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL at one or more nodes.

A 81— 'V LS8T () :SToMsUY

EXAMPLE 3.5 <|_01

Problem
Use the node voltage analysis to determine the voltage v in the circuit of Figure 3.9. Assume R,
that R, =2Q, Ry =1Q, Ry =4Q, R, =3Q,1, =2A,and I, = 3 A. MW -
2
Vi uiA 2\ W
Yyvy u

+< <
Solution I VZR; RZ
Known Quantities: Values of the resistors and the current sources.

Find: Voltage across Rj.
Figure 3.9 Circuit for
Analysis: Once again, we follow the steps outlined in the Focus on Methodology box. Example 3.5

1. The reference node is denoted in Figure 3.9.
2. Next, we define the three node voltages v, v,, v3, as shown in Figure 3.9.
3. Apply KCL at each of the n — 1 nodes, expressing each current in terms of the adjacent

node voltages.

BTU L RTU 20 node

R, R,
VvV — U2 1%}
——+05L=0 de 2
R, R3+2 node
v — v v
L3 2 _,=0 node3
R, Ry

4. Solve the linear system of n — 1 — m unknowns. Finally, we write the system of equations
resulting from the application of KCL at the three nodes associated with independent
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variables:
(=1 =2)v; +2v + v =4 node 1
vy + (=1 —4)v, 4+ Ovz = —12 node 2
3v; 4+ 0vy + (=2 —3)v3 = 18 node 3

The resulting system of three equations in three unknowns can now be solved. Starting
with the node 2 and node 3 equations, we write

du, + 12
V= ——
5
3u, — 18
B=Ts

Substituting each of variables v, and v into the node 1 equation and solving for v; provides

4 12 3v; — 18
v+ 1. vy _

—3u; +2 S 3 =4 = vy=-35V

After substituting v, into the node 2 and node 3 equations, we obtain
v, =-04V and v3=-57V
Therefore, we find
v=v,=-04V
Comments: Note that we have chosen to assign a plus sign to currents entering a node and

a minus sign to currents exiting a node; this choice is arbitrary (the opposite sign convention
could be used), but we shall use it consistently in this book.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.5 when the direction of the current sources becomes the
opposite. Find v.

A ¥'0 = a Iomsuy

Node Analysis with Voltage Sources

In the preceding examples, we considered exclusively circuits containing current
sources. It is natural that one will also encounter circuits containing voltage sources,
in practice. The circuit of Figure 3.10 is used to illustrate how node analysis is applied
to a circuit containing voltage sources. Once again, we follow the steps outlined in
the Focus on Methodology box.

Step 1: Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes will be referenced to this node.

The reference node is denoted by the ground symbol in Figure 3.10.

Step 2: Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit will be associated with a
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dependent variable. If a node is not connected to a voltage source, then its voltage is
treated as an independent variable.

Next, we define the three node voltages v,, vp, v, as shown in Figure 3.10. We note
that v, is a dependent voltage. We write a simple equation for this dependent voltage,
noting that v, is equal to the source voltage vs: v, = vs.

Step 3: Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

We apply KCL at the two nodes associated with the independent variables v, and v,.:

Atnode b:
Vg — Up v, —0 vy — v, 0
R R Ry
: g ’ (3.10a)
Vs — VUp Up Up — VU
or - — = =0
R, R, R5
Atnode ¢
Up — Ve Ve .
R 3.10b
R R, + 15 ( )

Step 4: Solve the linear system of n — 1 — m unknowns.

Finally, we write the system of equations resulting from the application of KCL at
the two nodes associated with independent variables:

1 n 1 n 1 n 1 1
— — — )V —— | Ve = — VU
R] R2 R'g b R} Rl

The resulting system of two equations in two unknowns can now be solved.

@3.11)
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Figure 3.10 Node analysis
with voltage sources

EXAMPLE 3.6

Problem

Use node analysis to determine the current ; flowing through the voltage source in the circuit
of Figure 3.11. Assume that R} = 2 Q,R, =2 Q,R3 =4 Q, Ry =3 Q2,1 =2A, and
V=3V.

Solution

Known Quantities: Resistance values; current and voltage source values.

Find: The current i through the voltage source.

Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.11.

2. We define the three node voltages v, v,, and vz, as shown in Figure 3.11. We note that
v, and vz are dependent on each other. One way to represent this dependency is to treat v,

< LO1

R,
VI AAKA V2 YV %
\AAAJ u
<> . >
1 R;Z L RZ
> >

Figure 3.11 Circuit for
Example 3.6
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as an independent voltage and to observe that v; = v, + 3 V, since the potential at node
3 must be 3 V higher than at node 2 by virtue of the presence of the voltage source. Note
that since we have an expression for the voltage at node 3 in terms of v,, we will only
need to write two nodal equations to solve this three-node circuit.

3. We apply KCL at the two nodes associated with the independent variables v; and v;:

U3 — Vg vy — Vg

—1=0 node 1
R, R,

———1=0 node 2

where I = + —

4. Finally, we write the system of equations resulting from the application of KCL at the two
nodes associated with independent variables:

—2v; +1v, +1v3 =4 node 1
1201 + (—=9)v, + (—10)v3 =0 node 2
Considering that v = v, + 3 V, we write
—2v; +2v, =1
12v; + (—19)v, =30

The resulting system of the two equations in two unknowns can now be solved. Solving
the two equations for v; and v, gives

vy =-564V and v, =-5.14V
This provides

v =1v1,+3V=-214V

Therefore, the current through the voltage source i is

=1.04A

U3 — V; U3 —214+564 —2.14
+= = +
R, R4 2 3

Comments: Knowing all the three node voltages, we now can compute the current flowing
through each of the resistances as follows: i; = |v3 — vi|/R; (to left), i» = |v2 — vi|/R> (to
left), i3 = |v2|/R; (upward), and iy = |vs|/ R4 (upward).

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.6 when the direction of the current source becomes the
opposite. Find the node voltages and i.

VIET=1PUB ALY =S AILT = A1TS = Talomsuy
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3.3 THE MESH CURRENT METHOD

The second method of circuit analysis discussed in this chapter employs mesh cur-
rents as the independent variables. The idea is to write the appropriate number of
independent equations, using mesh currents as the independent variables. Subsequent
application of Kirchhoff’s voltage law around each mesh provides the desired system
of equations.

In the mesh current method, we observe that a current flowing through a re-
sistor in a specified direction defines the polarity of the voltage across the resistor,
as illustrated in Figure 3.12, and that the sum of the voltages around a closed circuit
must equal zero, by KVL. Once a convention is established regarding the direction of
current flow around a mesh, simple application of KVL provides the desired equation.
Figure 3.13 illustrates this point.

The number of equations one obtains by this technique is equal to the number of
meshes in the circuit. All branch currents and voltages may subsequently be obtained
from the mesh currents, as will presently be shown. Since meshes are easily identified
in a circuit, this method provides a very efficient and systematic procedure for the
analysis of electric circuits. The following box outlines the procedure used in applying
the mesh current method to a linear circuit.

In mesh analysis, it is important to be consistent in choosing the direction
of current flow. To avoid confusion in writing the circuit equations, unknown mesh
currents are defined exclusively clockwise when we are using this method. To illustrate
the mesh current method, consider the simple two-mesh circuit shown in Figure 3.14.
This circuit is used to generate two equations in the two unknowns, the mesh currents i
and i,. Itis instructive to first consider each mesh by itself. Beginning with mesh 1, note
that the voltages around the mesh have been assigned in Figure 3.15 according to the
direction of the mesh current i;. Recall that as long as signs are assigned consistently,
an arbitrary direction may be assumed for any current in a circuit; if the resulting
numerical answer for the current is negative, then the chosen reference direction is
opposite to the direction of actual current flow. Thus, one need not be concerned about
the actual direction of current flow in mesh analysis, once the directions of the mesh
currents have been assigned. The correct solution will result, eventually.

According to the sign convention, then, the voltages v, and v, are defined as
shown in Figure 3.15. Now, it is important to observe that while mesh current i is equal
to the current flowing through resistor R; (and is therefore also the branch current
through R;), it is not equal to the current through R,. The branch current through R,
is the difference between the two mesh currents iy — i,. Thus, since the polarity of
voltage v, has already been assigned, according to the convention discussed in the
previous paragraph, it follows that the voltage v, is given by

v = (i1 — )R, (3.12)
Finally, the complete expression for mesh 1 is
Us—ilRl—(il—iz)RQZO (3.13)

The same line of reasoning applies to the second mesh. Figure 3.16 depicts
the voltage assignment around the second mesh, following the clockwise direction of
mesh current i,. The mesh current i, is also the branch current through resistors R3
and R4; however, the current through the resistor that is shared by the two meshes,
denoted by R,, is now equal to i, — iy; the voltage across this resistor is

vy = (i — iR 3.19)
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The current i, defined as flowing
from left to right, establishes the
polarity of the voltage across R.

+ g —

o———WW—>0

R
Figure 3.12 Basic
principle of mesh analysis

Once the direction of current flow
has been selected, KVL requires
that v — v, —v3=0.

+ V2
AAAA
YYVY
Ry
+ +
<
Vi <> Ry Zv;
i <
A mesh

Figure 3.13 Use of KVL
in mesh analysis

R, Ry
AAA AAAA
\AAA/ \AAAJ

ax . <: . <:
Vs <> i JZR, L 2Ry
- < <

Figure 3.14 A two-mesh
circuit

Mesh 1: KVL requires that

vg—v; — v, =0, where v; = ijR;,
vy = (i1 — )R
R, R,
AAA AAA
+ VJVV_ \AAAJ

1
+
+ . = . NS
vs(_ )R & SRy
> >

Figure 3.15 Assignment of
currents and voltages around
mesh 1
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Mesh 2: KVL requires that

V+3+vy=0

where

vy = (i —iDRy

V3 =0R;

vy =IDRy

R, Ry
AAA AAAA
VVVY T VYW

V3

. <> . =<
" G):D RZ:E ? @4:
— < <

+

Figure 3.16 Assignment of
currents and voltages around
mesh 2

YVVY
I = +

~

LO2 >
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and the complete expression for mesh 2 is

(i —i1)Ry+ 2R3+ 2Ry =0 3.15)

Why is the expression for v, obtained in equation 3.14 different from equation
3.127? The reason for this apparent discrepancy is that the voltage assignment for each
mesh was dictated by the (clockwise) mesh current. Thus, since the mesh currents
flow through R, in opposing directions, the voltage assignments for v, in the two
meshes are also opposite. This is perhaps a potential source of confusion in applying
the mesh current method; you should be very careful to carry out the assignment of
the voltages around each mesh separately.

Combining the equations for the two meshes, we obtain the following system
of equations:

(R1 4+ Ry)i1 — Raip = vg

. . 3.16)
—Ryii1 + (Ry + R3 + Ry)in =0

These equations may be solved simultaneously to obtain the desired solution, namely,
the mesh currents i; and i,. You should verify that knowledge of the mesh currents
permits determination of all the other voltages and currents in the circuit. Examples
3.7, 3.8 and 3.9 further illustrate some of the details of this method.

MESH CURRENT ANALYSIS METHOD

1. Define each mesh current consistently. Unknown mesh currents will be
always defined in the clockwise direction; known mesh currents (i.e.,
when a current source is present) will always be defined in the direction of
the current source.

2. In a circuit with n meshes and m current sources, n — m independent
equations will result. The unknown mesh currents are the n —m
independent variables.

3. Apply KVL to each mesh containing an unknown mesh current,
expressing each voltage in terms of one or more mesh currents.

4. Solve the linear system of n — m unknowns.

LO2 >

Figure 3.17

EXAMPLE 3.7 Mesh Analysis
Problem

Find the mesh currents in the circuit of Figure 3.17.

Solution
Known Quantities: Source voltages; resistor values.

Find: Mesh currents.
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Schematics, Diagrams, Circuits, and Given Data: V, =10V;V, =9V;V; =1V,
R] =59;R2=109;R3 ZSQ;R4 =5Q.

Analysis: We follow the steps outlined in the Focus on Methodology box.

1. Assume clockwise mesh currents /7 and i5.
2. The circuit of Figure 3.17 will yield two equations in the two unknowns #; and i5.

3. Itisinstructive to consider each mesh separately in writing the mesh equations; to this end,
Figure 3.18 depicts the appropriate voltage assignments around the two meshes, based
on the assumed directions of the mesh currents. From Figure 3.18, we write the mesh
equations:

Vi—Riiy = V2= Ro(iy —i2) =0
Ry(iy — i) + Vo — R3ip — V3 — Ryin =0
Rearranging the linear system of the equation, we obtain
15i; — 10 =1
—10i; + 20i, =8
4. The equations above can be solved to obtain i; and i,:

ii=05A and i, =0.65A

Comments: Note how the voltage v, across resistor R, has different polarity in Figure 3.18,
depending on whether we are working in mesh 1 or mesh 2.

© The McGraw-Hill ‘ @

Companies, 2007

95

Analysis of mesh 2

Figure 3.18

EXAMPLE 3.8 Mesh Analysis
Problem

Write the mesh current equations for the circuit of Figure 3.19.

Solution
Known Quantities: Source voltages; resistor values.
Find: Mesh current equations.

Schematics, Diagrams, Circuits, and Given Data: V, =12V;V, =6V, R, =3 Q;
R2=89;R3=6Q;R4=4Q.
Analysis: We follow the Focus on Methodology steps.

1. Assume clockwise mesh currents i1, i», and i3.

2. We recognize three independent variables, since there are no current sources. Starting
from mesh 1, we apply KVL to obtain

Vi—Ri(iy —i3) = Ra(iy — i) =0
KVL applied to mesh 2 yields

—Ry(iy —i1) = R3(ia —i3) + V=0
while in mesh 3 we find

—Ri (i3 —i1) — R4iz — R3(i3 — i) =0

Ry
AAAA
\AAAJ
i3
Rl 3
AAAA AAAA
YVVY yyy
O NEO
. > .
T D T @ T
Figure 3.19
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These equations can be rearranged in standard form to obtain
B+8)i; —8i, —3i3=12
—8i; +(64+8)i, —6i3=06
—3i;—6i, +3+6+4)i3=0

You may verify that KVL holds around any one of the meshes, as a test to check that the
answer is indeed correct.

CHECK YOUR UNDERSTANDING

Find the unknown voltage v, by mesh current analysis in the circuit on the left.

60 2 3
AAAA AAAA AAAA
\AAA \AAAJ \AAAJ
| SQ L+
< < >
003 soZn 2v(®) saZin (Disv
1 15v - 1

Find the unknown current /,., using the mesh current method in the circuit on the right.

V T A G sIomsuy

Figure 3.20

EXAMPLE 3.9 Mesh Analysis

Problem

The circuit of Figure 3.20 is a simplified DC circuit model of a three-wire electrical distribution
service to residential and commercial buildings. The two ideal sources and the resistances Ry
and Rs represent the equivalent circuit of the distribution system; R; and R, represent 110-V
lighting and utility loads of 800 and 300 W, respectively. Resistance Rj3 represents a 220-V
heating load of about 3 kW. Determine the voltages across the three loads.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.20are Vg; = Voo =110 V; Ry = Rs = 1.3 Q; Ry = 15Q; R, =40Q; R; = 16 Q.
Find: v, vy, and vs.

Analysis: We follow the mesh current analysis method.

1. The (three) clockwise unknown mesh currents are shown in Figure 3.20. Next, we write
the mesh equations.

2. No current sources are present; thus we have three independent variables. Applying KVL
to each mesh containing an unknown mesh current and expressing each voltage in terms
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of one or more mesh currents, we get the following:
Mesh 1:
Vsi — Ryl — Ri(Ih — 13) =0
Mesh 2:
Vso = Ro(la — I3) — Rsl, =0
Mesh 3:
—Ri(Iz3 = 1)) = Rsl3 — Ro(l3 — ) =0

With some rearrangements, we obtain the following system of three equations in three
unknown mesh currents.

—(Ri+ R + Rz =V
—(Ry + Rs)l, + Ry I3 = =V,
Rili + Ry, — (R + Ry + R3)13 =0

Next, we substitute numerical values for the elements and express the equations in a matrix
form as shown.

—16.3 0 15 A —110
0 —41.3 40 L, | =] —110
15 40 —71 I 0

which can be expressed as
[RII]=1[V]

with a solution of
[I]1=[RI'[V]

The solution to the matrix problem can then be carried out using manual or numerical
techniques. In this case, we have used Matlab™ to compute the inverse of the 3 x 3 matrix.
Using Matlab™ to compute the inverse matrix, we obtain

~0.1072  —0.0483 —0.0499
[RI"'=| —0.0483 —0.0750 —0.0525
~0.0499 —0.0525 —0.0542

The value of current in each mesh can now be determined:

—0.1072 —0.0483 —0.0499 ~110 17.11
[[1=[R]"'[V]=| —0.0483 —0.0750 —0.0525 ~110 | =| 13.57
—0.0499 —0.0525 —0.0542 0 11.26

Therefore, we find
I =1711A I, =1357A I =1126A
‘We can now obtain the voltages across the three loads, keeping in mind the ground location:
Ve, =Rl — ) =87.75V
Ve, = —Ro(l — I3) = =92.40 V
Vg, = R31; =180.16 V
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Figure 3.21 Circuit used
to demonstrate mesh analysis
with current sources
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CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.9, using node voltage analysis instead of the mesh current
analysis.

A9T'08T = S¥A A OV’ T6— = YA ‘A CL'L8 = 1¥A Tomsuy

Mesh Analysis with Current Sources

In the preceding examples, we considered exclusively circuits containing voltage
sources. It is natural to also encounter circuits containing current sources, in prac-
tice. The circuit of Figure 3.21 illustrates how mesh analysis is applied to a circuit
containing current sources. Once again, we follow the steps outlined in the Focus on
Methodology box.

Step 1: Define each mesh current consistently. Unknown mesh currents are always
defined in the clockwise direction; known mesh currents (i.e., when a current source
is present) are always defined in the direction of the current source.

The mesh currents are shown in Figure 3.21. Note that since a current source de-
fines the current in mesh 2, this (known) mesh current is in the counterclockwise
direction.

Step 2: In a circuit with n meshes and m current sources, n — m independent
equations will result. The unknown mesh currents are the n — m independent
variables.

In this illustration, the presence of the current source has significantly simplified the
problem: There is only one unknown mesh current, and it is i;.

Step 3: Apply KVL to each mesh containing an unknown mesh current, expressing
each voltage in terms of one or more mesh currents.

We apply KVL around the mesh containing the unknown mesh current:

Vs — Riiy — Ry(iy +1s) =0

. 3.17)
or (R + Ry)i; = Vg — Ryl
Step 4: Solve the linear system of n — m unknowns.
Vs — Ry
=25 (3.18)
R+ R,

LO2 >

EXAMPLE 3.10 Mesh Analysis with Current Sources
Problem

Find the mesh currents in the circuit of Figure 3.22.
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Solution
. 13
Known Quantities: Source current and voltage; resistor values. R, Rs
. VAVAVAV ‘V‘VAVAV
Find: Mesh currents. ;
14

R2=89;R3=6Q;R4=4Q.

Schematics, Diagrams, Circuits, and Given Data: | =05A;V =6V; R, =3 Q; C) Q §§R2 C <_>
I 3 i

Analysis: We follow the Focus on Measurements steps.

. L . Figure 3.22
1. Assume clockwise mesh currents i1, i», and i3.
2. Starting from mesh 1, we see immediately that the current source forces the mesh current
to be equal to /:
i =1
3. There is no need to write any further equations around mesh 1, since we already know the
value of the mesh current. Now we turn to meshes 2 and 3 to obtain
—Rz(lz—ll)—R3(l2—l3)+V =0 mesh 2
—Rl(i3—il)—R4i3—R3(i3—i2)=0 mesh 3
Rearranging the equations and substituting the known value of /;, we obtain a system of
two equations in two unknowns:
14i, — 6i3 = 10
—6i, +13i3=1.5
4. These can be solved to obtain
ip=095A iz=055A
As usual, you should verify that the solution is correct by applying KVL.
Comments: Note that the current source has actually simplified the problem by constraining
a mesh current to a fixed value.
CHECK YOUR UNDERSTANDING
Show that the equations given in Example 3.10 are correct, by applying KCL at each node.
EXAMPLE 3.11 Mesh Analysis with Current Sources <|_02

Problem

Find the unknown voltage v, in the circuit of Figure 3.23.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.23: Vs =10 V; Is =2A; Ry =5Q; R, =2 Q; and R3 =4 Q.
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Figure 3.23 Illustration of
mesh analysis in the presence of
current sources

|||—

I. Circuits 3. Resistive Network © The McGraw-Hill

Analysis Companies, 2007

Chapter 3 Resistive Network Analysis

Find: v,.
Analysis: We observe that the second mesh current must be equal to the current source:
=1
Thus, the unknown voltage, v,, can be obtained applying KVL to mesh 2:
(2 —i2)R3s — iRy — v, =0
vy =I5 (R + R3)
To find the current i/; we apply KVL to mesh 1:
Vs —i1R1 — (i1 —i2)) R, =0
Vs + iRy =11 (R1 +Ry)

but, sincei, = I,

. Vs+ IRy

10+2x2
1 =

=2A

T (Ri+R) 5+2

Comments: Note that the presence of the current source reduces the number of unknown
mesh currents by one. Thus, we were able to find v, without the need to solve simultaneous
equations.

LO1, L02>

CHECK YOUR UNDERSTANDING

Find the value of the current i, if the value of the current source is changed to 1 A.

V IL'T :Tomsuy

3.4 NODE AND MESH ANALYSIS WITH
CONTROLLED SOURCES

The methods just described also apply, with relatively minor modifications, in the
presence of dependent (controlled) sources. Solution methods that allow for the pres-
ence of controlled sources are particularly useful in the study of transistor amplifiers
in Chapters 8 and 9. Recall from the discussion in Section 2.1 that a dependent source
generates a voltage or current that depends on the value of another voltage or current
in the circuit. When a dependent source is present in a circuit to be analyzed by node
or mesh analysis, we can initially treat it as an ideal source and write the node or mesh
equations accordingly. In addition to the equation obtained in this fashion, there is an
equation relating the dependent source to one of the circuit voltages or currents. This
constraint equation can then be substituted in the set of equations obtained by the
techniques of node and mesh analysis, and the equations can subsequently be solved
for the unknowns.
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Figure 3.24 Circuit with dependent source

It is important to remark that once the constraint equation has been substi-
tuted in the initial system of equations, the number of unknowns remains unchanged.
Consider, for example, the circuit of Figure 3.24, which is a simplified model of a
bipolar transistor amplifier (transistors are introduced in Chapter 9). In the circuit of
Figure 3.24, two nodes are easily recognized, and therefore node analysis is chosen
as the preferred method. Applying KCL at node 1, we obtain the following equation:

1 1
g = — 3.19
is = vy (Rs + Rh) (3.19)

KCL applied at the second node yields

. 1%}
Biy+—=0 (3.20)
Rc
Next, observe that current i, can be determined by means of a simple current divider:
1/R R
ip = /Re _ _; s (3.21)

Is =1s
1/Ry + 1/Rg Ry + Rs

This is the constraint equation, which when inserted in equation 3.20, yields a system
of two equations:

. 1 n 1
is=v | —+ —
s 1 R R,

. Rs ()

—Bisp— = o
Ry +Rs Rc¢

which can be used to solve for v; and v,. Note that, in this particular case, the two

equations are independent of each other. Example 3.12 illustrates a case in which the

resulting equations are not independent.

(3.22)
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EXAMPLE 3.12 Analysis with Dependent Sources

Problem

Find the node voltages in the circuit of Figure 3.25.

Solution

Known Quantities: Source current; resistor values; dependent voltage source relationship.

< LO1, LO2
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v, R y R vy Find: Unknown node voltage v.
AAAA AAAA
Yvyvy Yyvy

Schematics, Diagrams, Circuits, and Given Data: | =0.5A; Ri =5Q; R, =2 Q;
_> v, I () Vs S§R3 R; = 4 Q. Dependent source relationship: v, = 2 X vs.

Analysis:

1. Assume the reference node is at the bottom of the circuit. Use node analysis.
2. The two independent variables are v and vs.

Figure 3.25 .
3. Applying KCL to node v, we find that

vx—v+1 v—v3_0
R, R,

Applying KCL to node v;, we find

v-v v _
R; R;

If we substitute the dependent source relationship into the first equation, we obtain a
system of equations in the two unknowns v and vs:

4. Substituting numerical values, we obtain
0.7v — 0.9v; = 0.5
—0.5v +0.75v; =0
Solution of the above equations yields v =5 V; v3 = 3.33 V.

CHECK YOUR UNDERSTANDING

Solve the same circuit if v, = 21/.

AP | S
[ = A 7 = acemsuy

A

<

LO1, LO2 > EXAMPLE 3.13 Mesh Analysis with Dependent Sources

Problem

Determine the voltage “gain” A, = v, /v; in the circuit of Figure 3.26.
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Figure 3.26 Circuit containing
dependent source

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.26 are Ry =1 Q; R, =0.5Q; R; =0.25Q; Ry =0.25 Q; Rs =0.25 Q.

Find: A, = vy/v;.

Analysis: We note first that the two voltages we seek can be expressed as follows: v =

Ry(iy — i2), and v, = Rsiz. Next, we follow the mesh current analysis method.

1. The mesh currents are defined in Figure 3.26.
2. No current sources are present; thus we have three independent variables, the currents 7,
iz, and i3.
3. Apply KVL at each mesh.
For mesh 1:
v — Riiy — Ry(i; — i) =0
or rearranging the equation gives

(R1 + Ro)i1 + (—R2)ir + (0)iz = vy

For mesh 2:
v — R3iz — R4(iz — 13) +2v=0
Rearranging the equation and substituing the expression v = — R, (i, — i;), we obtain

—Ry(i2 — 1) — R3iy — Ru(iz — i3) = 2Rz(i2 — 1) =0
(=3R2)i1 + BRy + R3 + Ry)ir — (Ry)iz =0
For mesh 3:
—2v — R4(i3 — 12) — R5i3 =0
substituting the expression for v = R,(i; — i») and rearranging, we obtain
—2Ry(i1 —i2) — R4(i3 —iz) — Rsi3 =0
2Ryi1 — 2Ry + Ry)ia + (R4 + Rs)is =0
Finally, we can write the system of equations
(R1+ Ry) (—R2) 0 i v

(=3R)  @BRy+R3+Ry)  (—Ry) b [=] 0
(2Ry) —(2R2+Rs)  (Rs+Rs) i3 0

© The McGraw-Hill
Companies, 2007
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which can be written as

[R][i] = [v]

with solution
[i1=[R]'[v]

4. Solve the linear system of n — m unknowns. The system of equations is

1.5 -0.5 0 i] L]
-1.5 2 —0.25 ih [=1]1 0
1 —125 05 is 0

Thus, to solve for the unknown mesh currents, we must compute the inverse of the matrix
of resistances R. Using Matlab™ to compute the inverse, we obtain

0.88 0.32 0.16
[R] ! = 0.64 096 0.48
—0.16 176 2.88

i v 0.88 032 0.16 v
i |=[RI™'| 0 |= 0.64 096 0.48 0
is 0 ~0.16 176 2.88 0

and therefore

il = 0.881}1
iz = 0.321}1
i3 = 0.161}1

Observing that v, = Rsi3, we can compute the desired answer:

Uy = R5i3 = R5(016U1) = 025(0161}1)

1%} 0.041)1
A= — = =0.04
Uy vy

Comments: The Matlab™ commands required to obtain the inverse of matrix R are listed
below.

R=[1.5 -0.5 0; -1.5 2 -0.25; 1 -1.25 0.5];
Rinv=inv (R) ;

The presence of a dependent source did not really affect the solution method. Systematic
application of mesh analysis provided the desired answer. Is mesh analysis the most efficient
solution method? Hint: See the exercise below.

CHECK YOUR UNDERSTANDING

Determine the number of independent equations required to solve the circuit of Example 3.13
using node analysis. Which method would you use?

The current source i, is related to the voltage v, in the figure on the left by the relation

Uy

3

iy =

Find the voltage across the 8-S resistor by node analysis.
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Find the unknown current i, in the figure on the right, using the mesh current method. The
dependent voltage source is related to current i;, through the 12-2 resistor by v, = 2iy,.

V 6€°T ‘A TI 0M, :SIomsuy

Remarks on Node Voltage and Mesh Current Methods

The techniques presented in this section and the two preceding sections find use more
generally than just in the analysis of resistive circuits. These methods should be viewed
as general techniques for the analysis of any linear circuit; they provide systematic and
effective means of obtaining the minimum number of equations necessary to solve a
network problem. Since these methods are based on the fundamental laws of circuit
analysis, KVL and KCL, they also apply to electric circuits containing nonlinear
circuit elements, such as those to be introduced later in this chapter.

You should master both methods as early as possible. Proficiency in these circuit
analysis techniques will greatly simplify the learning process for more advanced
concepts.

3.5 THE PRINCIPLE OF SUPERPOSITION

This brief section discusses a concept that is frequently called upon in the analysis
of linear circuits. Rather than a precise analysis technique, like the mesh current and
node voltage methods, the principle of superposition is a conceptual aid that can be
very useful in visualizing the behavior of a circuit containing multiple sources. The
principle of superposition applies to any linear system and for a linear circuit may be
stated as follows:

In a linear circuit containing N sources, each branch voltage and current is the
sum of N voltages and currents, each of which may be computed by setting all
but one source equal to zero and solving the circuit containing that single source.

An elementary illustration of the concept may easily be obtained by simply consid-
ering a circuit with two sources connected in series, as shown in Figure 3.27.
The circuit of Figure 3.27 is more formally analyzed as follows. The current i
flowing in the circuit on the left-hand side of Figure 3.27 may be expressed as
g1 +VUp2  VUpl | Up2

== % T“Rtr-mtm 329

Figure 3.27 also depicts the circuit as being equivalent to the combined effects of

© The McGraw-Hill
Companies, 2007
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v v
B2 e : L B2 L
Rz = RZ + RZ  The net current through
v e i 3 ipy h iny J  Ris the sum of the in-
Bl VB1 L.
dividual source currents:
i=1ip +ig.

Figure 3.27 The principle of superposition

two circuits, each containing a single source. In each of the two subcircuits, a short
circuit has been substituted for the missing battery. This should appear as a sensible
procedure, since a short circuit, by definition, will always “see” zero voltage across
itself, and therefore this procedure is equivalent to “zeroing” the output of one of the
voltage sources.

If, on the other hand, we wished to cancel the effects of a current source, it
would stand to reason that an open circuit could be substituted for the current source,
since an open circuit is, by definition, a circuit element through which no current can
flow (and which therefore generates zero current). These basic principles are used
frequently in the analysis of circuits and are summarized in Figure 3.28.

LO3 1. In order to set a voltage source equal to zero, we replace it with a short circuit.
R R

AA }A AA }A
VWy VWy

. > . >

Vs is Si Ry is 2R,
<> <>
A circuit The same circuit with vg= 0

2. In order to set a current source equal to zero, we replace it with an open circuit.

R
AAA
YVvy
< <
Vs Is =k Vs =k
<> T <>
A circuit The same circuit with ig=0

Figure 3.28 Zeroing voltage and current sources

The principle of superposition can easily be applied to circuits containing mul-
tiple sources and is sometimes an effective solution technique. More often, however,
other methods result in a more efficient solution. Example 3.14 further illustrates
the use of superposition to analyze a simple network. The Check Your Understand-
ing exercises at the end of the section illustrate the fact that superposition is often a
cumbersome solution method.

LO3 EXAMPLE 3.14 Principle of Superposition
Problem

Determine the current i, in the circuit of Figure 3.29(a), using the principle of superposition.
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Solution

Known Quantities: Source voltage and current values; resistor values.

Find: Unknown current i,.

GivenData: Vs =10V;Ig=2A; R =5Q; R, =2Q; R; =4 Q.

Assumptions: Assume the reference node is at the bottom of the circuit. (a)

Figure 3.29 (a) Circuit for
the illustration of the principle
of superposition

Analysis: Part 1 : Zero the current source. Once the current source has been set to zero (replaced
by an open circuit), the resulting circuit is a simple series circuit shown in Figure 3.29(b); the
current flowing in this circuit i;_y is the current we seek. Since the total series resistance is
54+2+4=11%, we find thati,_y = 10/11 = 0.909 A.

Part 2: Zero the voltage source. After we zero the voltage source by replacing it with a R, R,
short circuit, the resulting circuit consists of three parallel branches shown in Figure 3.29(c):
On the left we have a single 5-£2 resistor; in the center we have a —2-A current source (negative
because the source current is shown to flow into the ground node); on the right we have a total ~ v;
resistance of 2 + 4 = 6 Q. Using the current divider rule, we find that the current flowing in
the right branch i,_; is given by

o

2
I

1
s = 707 (~2) = ~0909 A ®)
T Figure 3.29 (b) Circuit
5 6 with current source set to zero

And, finally, the unknown current i is found to be

.. . R
=iy +ir;=0A VAVAIVAV AW

Comments: Superposition is not always a very efficient tool. Beginners may find it prefer-

able to rely on more systematic methods, such as node analysis, to solve circuits. Eventually, Is 3

experience will suggest the preferred method for any given circuit. @ @

Figure 3.29 (¢)
CHECK YOUR UNDERSTANDING Circuit with voltage source
set to zero
In Example 3.15, verify that the same answer is obtained by mesh or node analysis.

EXAMPLE 3.15 Principle of Superposition LO3
Problem
Determine the voltage across resistor R in the circuit of Figure 3.30. - ks 3
HONE- 3
p- v, _
Solution
(@)

Known Quantities: The values of the voltage sources and of the resistors in the circuit of ) o
Figure 3.30are [ = 12 A; Vg =12 V; R =1 Q; Rg = 0.3 Q; R =023 Q. Figure 3.30 (a) Circuit

used to demonstrate the
Find: The voltage across R. principle of superposition
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Figure 3.30 (b) Circuit
obtained by suppressing the
voltage source
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Figure 3.30 (c¢) Circuit
obtained by suppressing the
current source
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network
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Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage
source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and
apply KCL:

Veer | Veer | Ve
-1 =0
B+ Ry + Ro + R

Ip 12

- = =138V
1/Ry +1/RG +1/R ~ 1/1+1/03+1/0.23

Vr-1

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as
shown in Figure 3.30(c), and apply KCL:

VR*V + VR*V - VG + VR*V
Ry R R

B Ve /R B 12/0.3
" 1/Rg+1/Rc+1/R ~ 1/1+1/03+1/0.23

Ve_v =461V

Finally, we compute the voltage across R as the sum of its two components:
Ve =Ve_1 +Vry =59V

Comments: Superposition essentially doubles the work required to solve this problem. The
voltage across R can easily be determined by using a single KCL.

CHECK YOUR UNDERSTANDING

In Example 3.15, verify that the same answer can be obtained by a single application of KCL.
Find the voltages v, and v, for the circuits of Example 3.7 by superposition.
Solve Example 3.7, using superposition.

Solve Example 3.10, using superposition.

3.6 ONE-PORT NETWORKS AND EQUIVALENT
CIRCUITS

You may recall that, in the discussion of ideal sources in Chapter 2, the flow of
energy from a source to a load was described in a very general form, by showing
the connection of two “black boxes” labeled source and load (see Figure 2.2). In the
same figure, two other descriptions were shown: a symbolic one, depicting an ideal
voltage source and an ideal resistor; and a physical representation, in which the load
was represented by a headlight and the source by an automotive battery. Whatever
the form chosen for source-load representation, each block—source or load—may
be viewed as a two-terminal device, described by an i-v characteristic. This general
circuit representation is shown in Figure 3.31. This configuration is called a one-port
network and is particularly useful for introducing the notion of equivalent circuits.
Note that the network of Figure 3.31 is completely described by its i-v characteristic;
this point is best illustrated by Example 3.16.
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EXAMPLE 3.16 Equivalent Resistance Calculation LO4
Problem
Determine the source (load) current i in the circuit of Figure 3.32, using equivalent resistance
ideas.
i
—_—
<
<> <> <>
Vs v SR SR Z2R;
< <> <
Source Load

Figure 3.32 Illustration of

equivalent-circuit concept
Solution
Known Quantities: Source voltage, resistor values.
Find: Source current.
Given Data: Figures 3.32 and 3.33. %
Assumptions: Assume the reference node is at the bottom of the circuit. EERI EERZ 2R

-< <> <

Analysis: Insofar as the source is concerned, the three parallel resistors appear identical to a o

single equivalent resistance of value

o 1
TR+ 1Ry + 1Ry

Thus, we can replace the three load resistors with the single equivalent resistor Rgq, as shown
in Figure 3.33, and calculate

. vs

1= —
Comments: Similarly, insofar as the load is concerned, it would not matter whether the source
consisted, say, of a single 6-V battery or of four 1.5-V batteries connected in series.

Load circuit

oO—

<

<R
> NEQ
S

o_

Equivalent
load circuit

Figure 3.33 Equivalent load
resistance concept

For the remainder of this section, we focus on developing techniques for com-
puting equivalent representations of linear networks. Such representations are useful
in deriving some simple—yet general—results for linear circuits, as well as analyzing
simple nonlinear circuits.

Thévenin and Norton Equivalent Circuits

This section discusses one of the most important topics in the analysis of electric
circuits: the concept of an equivalent circuit. We show that it is always possible to
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view even a very complicated circuit in terms of much simpler equivalent source and
load circuits, and that the transformations leading to equivalent circuits are easily
managed, with a little practice. In studying node voltage and mesh current analysis,
you may have observed that there is a certain correspondence (called duality) between
current sources and voltage sources, on one hand, and parallel and series circuits, on
the other. This duality appears again very clearly in the analysis of equivalent circuits:
It will shortly be shown that equivalent circuits fall into one of two classes, involving
either voltage or current sources and (respectively) either series or parallel resistors,
reflecting this same principle of duality. The discussion of equivalent circuits begins
with the statement of two very important theorems, summarized in Figures 3.34 and
3.35.

Source Load — 5 v Load

-
o
=Y

Ol = +0

<4+

Figure 3.34 Illustration of Thévenin theorem

Source Load

Yyvy

. <
Load —_— iy Ry 2

Ol < +0
Ol < +0

Figure 3.35 Illustration of Norton theorem

LO4 > The Thévenin Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit
consisting of an ideal voltage source vy in series with an equivalent resistance
Rr.

LO4 > The Norton Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit
consisting of an ideal current source iy in parallel with an equivalent resistance
Ry.

The first obvious question to arise is, How are these equivalent source voltages,
currents, and resistances computed? The next few sections illustrate the computation
of these equivalent circuit parameters, mostly through examples. A substantial number
of Check Your Understanding exercises are also provided, with the following caution:
The only way to master the computation of Thévenin and Norton equivalent circuits
is by patient repetition.
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Determination of Norton or Thévenin Equivalent
Resistance

In this subsection, we illustrate the calculation of the equivalent resistance of a network
containing only linear resistors and independent sources. The first step in computing
a Thévenin or Norton equivalent circuit consists of finding the equivalent resistance
presented by the circuit at its terminals. This is done by setting all sources in the circuit
equal to zero and computing the effective resistance between terminals. The voltage
and current sources present in the circuit are set to zero by the same technique used
with the principle of superposition: Voltage sources are replaced by short circuits;
current sources, by open circuits. To illustrate the procedure, consider the simple
circuit of Figure 3.36; the objective is to compute the equivalent resistance the load
Ry “sees” at port a-b.

To compute the equivalent resistance, we remove the load resistance from the
circuit and replace the voltage source vg by a short circuit. At this point—seen from
the load terminals—the circuit appears as shown in Figure 3.37. You can see that
R, and R, are in parallel, since they are connected between the same two nodes. If
the total resistance between terminals @ and b is denoted by Rr, its value can be
determined as follows:

Rr =R;+Ri | Rz (3.24)

An alternative way of viewing Ry is depicted in Figure 3.38, where a hypo-
thetical 1-A current source has been connected to terminals @ and b. The voltage v,
appearing across the a-b pair is then numerically equal to Ry (only because is =
1 A!). With the 1-A source current flowing in the circuit, it should be apparent that
the source current encounters R3 as a resistor in series with the parallel combination
of R; and R,, prior to completing the loop.

Summarizing the procedure, we can produce a set of simple rules as an aid in
the computation of the Thévenin (or Norton) equivalent resistance for a linear resis-
tive circuit that does not contain dependent sources. The case of circuits containing
dependent sources is outlined later in this section.

COMPUTATION OF EQUIVALENT RESISTANCE OF A ONE-PORT
NETWORK THAT DOES NOT CONTAIN DEPENDENT SOURCES
1. Remove the load.
2. Zero all independent voltage and current sources.

3. Compute the total resistance between load terminals, with the load
removed. This resistance is equivalent to that which would be encountered
by a current source connected to the circuit in place of the load.

‘We note immediately that this procedure yields a result that is independent of
the load. This is a very desirable feature, since once the equivalent resistance has been
identified for a source circuit, the equivalent circuit remains unchanged if we connect
a different load. The following examples further illustrate the procedure.

© The McGraw-Hill
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Vs R, R,

AAAA
\AAAJ

b
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Circuit with load removed
for computation of Rr. The voltage
source is replaced by a short circuit.

Figure 3.36 Computation

of Thévenin resistance
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YWy
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YWy
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Figure 3.37 Equivalent
resistance seen by the load

What is the total resistance the
current is will encounter in flowing
around the circuit?

R; a
AAAA
VYVVy
+
<> <>
RiZ R,Z Vi is
<> <>
l b
R;
<> <>
S S . .
le; ::Rz s Is

Rr=RiIIRy + R;

Figure 3.38 An alternative
method of determining the
Thévenin resistance
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LO4 EXAMPLE 3.17 Thévenin Equivalent Resistance

Problem

Find the Thévenin equivalent resistance seen by the load R in the circuit of Figure 3.39.

AAAA AAAA
Yyvy \AAAJ
< < <
RZ 3R, I SR R
<> <> <

Figure 3.39

Solution
Known Quantities: Resistor and current source values.
Find: Thévenin equivalent resistance Rr.

Schematics, Diagrams, Circuits, and Given Data: R, =20Q; R, =20Q;1 =5 A;
R; =10Q; R, =20Q; Rs = 10Q2.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Focus on Methodology box introduced in this section, we first set

Alff A ‘ff A J\a) the current source equal to zero, by replacing it with an open circuit. The resulting circuit is
e ey depicted in Figure 3.40. Looking into terminal a-b, we recognize that, starting from the left
RS Sk Sk (away from the load) and moving to the right (toward the load), the equivalent resistance is
T N given by the expression
o Ry = [((Ri[IR2) + R3) [|R4] + Rs
= [((20]|20) + 10) [|20] + 10 =20 @
Figure 3.40

Comments: Note that the reduction of the circuit started at the farthest point away from the
load.

CHECK YOUR UNDERSTANDING

Find the Thévenin equivalent resistance of the circuit below, as seen by the load resistor R .

25kQ a
AAAA )
Yyyy ~
<>
3kQT 5kQ
> <> <>
1 5kQ = SR
<> <> -<
2kQT 5V
>

O
b

Find the Thévenin equivalent resistance seen by the load resistor Ry, in the following circuit.



Rizzoni: Principles and I. Circuits 3. Resistive Network © The McGraw-Hill ‘ @
Applications of Electrical Analysis Companies, 2007
Engineering, Fifth Edition

Part I Circuits 113

2Q
AAAA
Yvyy

6Q 2Q 5Q a

AAAA AAAA AAAA O

YVYVY YVvy YVVY ~

wov(*t
< = <
05A<> 403 303 2R,
10 Q
b
B L= L1y AT = Ly srmsuy
EXAMPLE 3.18 Thévenin Equivalent Resistance LO4

Problem

Compute the Thévenin equivalent resistance seen by the load in the circuit of Figure 3.41.

R, 3 a
AAAA AAAA O
Yyvy YVvy ~
<> < <
\% =R, 1 <R, SR
< < >
o
O
b
Figure 3.41

Solution
Known Quantities: Resistor values.
Find: Thévenin equivalent resistance Rr.

Schematics, Diagrams, Circuits, and GivenData: V =5V,;R; =2Q; R, =2Q;R; =1Q;
I =1A,R;=2%.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin equivalent resistance Focus on Methodology box, we first
set the current source equal to zero, by replacing it with an open circuit, then set the voltage
source equal to zero by replacing it with a short circuit. The resulting circuit is depicted in
Figure 3.42. Looking into terminal a-b, we recognize that, starting from the left (away from

a
the load) and moving to the right (toward the load), the equivalent resistance is given by the Wy ©
expression s & <

RZ 2R SR
Ry = ((R1]|R2) + R3) || R4 T 7 )
=(@I)+DI2=1 °
Comments: Note that the reduction of the circuit started at the farthest point away from the Figure 3.42

load.
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CHECK YOUR UNDERSTANDING

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor R .

2kQ

3kQ 6 kQ a
AAAA AAAA AAAA O
\AAA/ VVYY VVVY ~

L > - > >

< < s S b3

= < < < P
IMQZ 2kQ z 20V < 6kQ 3 kQ:: ::RL

O
O
b

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor Ry, .

10 Q a
AAAA O
YWy O

1Q

yyvy
AA

Yyvy
&

<> <
2100 20053
> <

<
<

12V

S¥e]

B90L = 1Y ‘BAETY = Ly s1omsuy

As a final note, the Thévenin and Norton equivalent resistances are one and the
same quantity:

Rr = Ry (3.25)

Therefore, the preceding discussion holds whether we wish to compute a Norton or
a Thévenin equivalent circuit. From here on, we use the notation Ry exclusively, for
both Thévenin and Norton equivalents.

Computing the Thévenin Voltage

This section describes the computation of the Thévenin equivalent voltage vr for an
arbitrary linear resistive circuit containing independent voltage and current sources
and linear resistors. The Thévenin equivalent voltage is defined as follows:

The equivalent (Thévenin) source voltage is equal to the open-circuit voltage
present at the load terminals (with the load removed).

This states that to compute v, it is sufficient to remove the load and to compute
the open-circuit voltage at the one-port terminals. Figure 3.43 illustrates that the open-

circuit voltage voc and the Thévenin voltage vy must be the same if the Thévenin

theorem is to hold. This is true because in the circuit consisting of vy and Rr, the
voltage voc must equal vr, since no current flows through Ry and therefore the voltage
across Ry is zero. Kirchhoff’s voltage law confirms that

vr = R7(0) + voc = voc (3.26)

< LO4
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COMPUTING THE THEVENIN VOLTAGE < LO2

1. Remove the load, leaving the load terminals open-circuited.

2. Define the open-circuit voltage voc across the open load terminals.
3. Apply any preferred method (e.g., node analysis) to solve for voc.
4. The Thévenin voltage is v7 = voc.

The actual computation of the open-circuit voltage is best illustrated by exam-
ples; there is no substitute for practice in becoming familiar with these computations.
To summarize the main points in the computation of open-circuit voltages, consider

the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall that the Ry Rs ‘
equivalent resistance of this circuit was given by R = R3 + R; || R,. To compute #’L
voc, we disconnect the load, as shown in Figure 3.45, and immediately observe that v RZ R,
no current flows through R, since there is no closed-circuit connection at that branch. 7

Therefore, voc must be equal to the voltage across R, as illustrated in Figure 3.46.

Since the only closed circuit is the mesh consisting of vg, R;, and R,, the answer we

. R R I Figure 3.44
are seeking may be obtained by means of a simple voltage divider:
v v v R2 R, R;
OC = UR2 = VUs——— A
Ri+ Ry YWy °+
It is instructive to review the basic concepts outlined in the example by con- 2R, Voc
sidering the original circuit and its Thévenin equivalent side by side, as shown in T
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the cur- o
rent drawn by the load i, is the same in both circuits, that current being given by Figure 3.45
R 1 v
i =vg - —— . = (3.27)
Ri+Ry (Rs+Ri|[[R)+R. Rr+RL R,
—/W\—o0
+
R, Ry Ry + R IR, Yoo
- '
Vs Ry SE R, Vs Ry R, O
< R +R,
Figure 3.46
A circuit Its Thévenin equivalent
Figure 3.47 A circuit and its Thévenin equivalent
The computation of Thévenin equivalent circuits is further illustrated in Exam-
ples 3.19 and 3.20.
EXAMPLE 3.19 Thévenin Equivalent Voltage LO4
(Open-Circuit Voltage)

Problem

Compute the open-circuit voltage voc in the circuit of Figure 3.48.
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Solution

Known Quantities: Source voltage, resistor values.
Find: Open-circuit voltage voc.

Schematics, Diagrams, Circuits, and Given Data: V =12 V; R =1Q; R, = 10Q;
R; =10Q; Ry =20 Q.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin voltage Focus on Methodology box, first we remove the
load and label the open-circuit voltage voc. Next, we observe that since v, is equal to the
reference voltage (i.e., zero), the node voltage v, will be equal, numerically, to the open-circuit
voltage. If we define the other node voltage to be v, node analysis is the natural technique
for arriving at the solution. Figure 3.48 depicts the original circuit ready for node analysis.
Applying KCL at the two nodes, we obtain the following two equations:

V—-v v v—va_o

R, R, Ry
vV — v, Vg

0

Ry Ry
Substituting numerical values gives

12—v v v — v,

1 10 10

=0

vV — v, Vg
_ 2 _0
10 20
In matrix form we can write
1.2 -0.1 v 12
—-0.1  0.15 v | | o

Solving the above matrix equations yields v = 10.588 V and v, = 7.059 V. Thus, voc =
v, — v, =7.059 V.

Comments: Note that the determination of the Thévenin voltage is nothing more than the
careful application of the basic circuit analysis methods presented in earlier sections. The only
difference is that we first need to properly identify and define the open-circuit load voltage.

CHECK YOUR UNDERSTANDING

Find the open-circuit voltage voc for the circuit of Figure 3.48 if R; =5 Q.

A 8T [ToMSUY
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EXAMPLE 3.20 Load Current Calculation by Thévenin LO4
Equivalent Method
Problem
Compute the load current i by the Thévenin equivalent method in the circuit of Figure 3.49. a
w’
R, X
Solution 1 () sti R;
\4
Known Quantities: Source voltage, resistor values.
Find: Load current i. b
. . . i Figure 3.49
Schematics, Diagrams, Circuits, and Given Data: V =24V, =3 A; R, =4 Q;
a
Assumptions: Assume the reference node is at the bottom of the circuit. O
Analysis: We first compute the Thévenin equivalent resistance. According to the method RI:E R, s
proposed earlier, we zero the two sources by shorting the voltage source and opening the T T
current source. The resulting circuit is shown in Figure 3.50. We can clearly see that Ry = o
Ri|R; =4|12=3 Q. b
Following the Thévenin voltage Focus on Methodology box, first we remove the load .
L N A Figure 3.50
and label the open-circuit voltage voc. The circuit is shown in Figure 3.51. Next, we observe
that since v, is equal to the reference voltage (i.e., zero), the node voltage v, will be equal,
numerically, to the open-circuit voltage. In this circuit, a single nodal equation is required to OV,
arrive at the solution: R,
L+
V — v, v, <
41— =0 ® ®E
R,y R> \%4
Substituting numerical values, we find that v, = voc = vy =27 V. O vy
Finally, we assemble the Thévenin equivalent circuit, shown in Figure 3.52, and reconnect =
the load resistor. Now the load current can be easily computed to be Figure 3.51
v 27
i=——— =" =3A
Rr+R, 3+6 o
Comments: It may appear that the calculation of load current by the Thévenin equivalent w
method leads to more complex calculations than, say, node voltage analysis (you might wish -~ 60

to try solving the same circuit by node analysis to verify this). However, there is one major
advantage to equivalent circuit analysis: Should the load change (as is often the case in many
practical engineering situations), the equivalent circuit calculations still hold, and only the
(trivial) last step in the above example needs to be repeated. Thus, knowing the Thévenin
equivalent of a particular circuit can be very useful whenever we need to perform computations ~ Figure 3.52 Thévenin
pertaining to any load quantity. equivalent

CHECK YOUR UNDERSTANDING

With reference to Figure 3.44, find the load current i;, by mesh analysis if vs = 10 V, R; =
R; =50, R, =100 2, and R, = 150 .

Find the Thévenin equivalent circuit seen by the load resistor R, for the circuit in the figure
on the left.
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Find the Thévenin equivalent circuit for the circuit in the figure on the right.

=)
n
>
AAAA
\AAAs
-
=)
o]

15V 0.25A 2300

100 Q 20
AA

—_
—_

50V 4 R,

IS
)
AAAA
VWV
|
>
|
>
)
S
]
AAAA
Wy
-
=)
]
AAAA
YWy

LO4 >

One-port ¢ isc
network

> .
ERT =Ry ¢ Isc

=
AAAA

Figure 3.53 Illustration of
Norton equivalent circuit

Short circuit
replacing the load

Figure 3.54 Computation
of Norton current

"APOL'0 = la =00
01 = LY TA§ = 1= 0035 0g = Ly 1V LS8T00 = ! :s1omsUY

Computing the Norton Current

The computation of the Norton equivalent current is very similar in concept to that
of the Thévenin voltage. The following definition serves as a starting point:

Definition

The Norton equivalent current is equal to the short-circuit current that would
flow if the load were replaced by a short circuit.

An explanation for the definition of the Norton current is easily found by considering,
again, an arbitrary one-port network, as shown in Figure 3.53, where the one-port
network is shown together with its Norton equivalent circuit.

It should be clear that the current isc flowing through the short circuit replacing
the load is exactly the Norton current i, since all the source current in the circuit of
Figure 3.53 must flow through the short circuit. Consider the circuit of Figure 3.54,
shown with a short circuit in place of the load resistance. Any of the techniques
presented in this chapter could be employed to determine the current isc. In this
particular case, mesh analysis is a convenient tool, once it is recognized that the
short-circuit current is a mesh current. Let i; and i, = isc be the mesh currents in the
circuit of Figure 3.54. Then the following mesh equations can be derived and solved
for the short-circuit current:

(R1 + R2)i1 — Ryisc = vy
—Raiy + (R2 + R3)isc =0
An alternative formulation would employ node analysis to derive the equation

Vs — VU v v
ROR R
leading to
Ry R;
V= Vg

RiR3 + RoR3 + R R
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COMPUTING THE NORTON CURRENT @

1. Replace the load with a short circuit.

2. Define the short-circuit current isc to be the Norton equivalent current.
3. Apply any preferred method (e.g., node analysis) to solve for isc.

4. The Norton current iS iy = isc.

Recognizing that isc = v/R3, we can determine the Norton current to be
- v N Ust
" Ry RiRy+R:R3 +RiR,

Thus, conceptually, the computation of the Norton current simply requires identifying
the appropriate short-circuit current. Example 3.21 further illustrates this idea.

in

EXAMPLE 3.21 Norton Equivalent Circuit <|_04
Problem
Determine the Norton current and the Norton equivalent for the circuit of Figure 3.55. 4 Ry a
O
Solution o zhk ke
b
Known Quantities: Source voltage and current; resistor values. o)
Find: Equivalent resistance Ry; Norton current iy = igc. Figure 3.55
Schematics, Diagrams, Circuits, and GivenData: V =6V, =2A; R, =6Q; R, =3 Q; Ry, a
R; =2 Q. l AMWW—O
Assumptions: Assume the reference node is at the bottom of the circuit. s R, s R,
Analysis: We first compute the Thévenin equivalent resistance. We zero the two sources by T
shorting the voltage source and opening the current source. The resulting circuit is shown in 2
Figure 3.56. We can clearly see that Ry = R|||R, + R; = 6|3 +2 =4 Q. i
Next we compute the Norton current. Following the Norton current Focus on Methodology Figure 3.56
box, first we replace the load with a short circuit and label the short-circuit current isc. The
circuit is shown in Figure 3.57 ready for node voltage analysis. Note that we have identified two v R

node voltages v; and v,, and that the voltage source requires that v, — v; = V. The unknown
current flowing through the voltage source is labeled i. L= = L .
Now we are ready to apply the node analysis method. 1 ;ERl EERZ fse

1. The reference node is the ground node in Figure 3.57.

2. The two nodes v; and v, are also identified in the figure; note that the voltage source im- ——
poses the constraint v, = v; + V. Thus only one of the two nodes leads to an independent Figure 3.57 Circuit of
equation. The unknown current / provides the second independent variable, as you will Example 3.21 ready for node
see in the next step. analysis
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3. Applying KCL at nodes 1 and 2, we obtain the following set of equations:
v .
I ———-i=0 node 1
i————=0 node 2

Next, we eliminate v; by substituting v; = v, — V in the first equation:
Uy — Vv

1

I — —1=0 node 1

and we rewrite the equations in matrix form, recognizing that the unknowns are ; and v,.
Note that the short-circuit current is isc = v,/ R3; thus we will seek to solve for v,.

1 i 1%
Ry i1 "tw
11+1 V2 0
L R R

Substituting numerical values, we obtain

[ 1 0.1667 i ] [3
| -1 0.8333 v |~ Lo

a
O
and we can numerically solve for the two unknowns to find thati =2.5 Aand v, =3 V.
SE 40 Finally, the Norton or short-circuit current is iy = isc = v,/R; = 1.5 A.
Comments: In this example it was not obvious whether node analysis, mesh analysis, or
2 superposition might be the quickest method to arrive at the answer. It would be a very good

exercise to try the other two methods and compare the complexity of the three solutions. The

complete Norton equivalent circuit is shown in Figure 3.58.

equivalent circuit

CHECK YOUR UNDERSTANDING

Repeat Example 3.21, using mesh analysis. Note that in this case one of the three mesh currents

is known, and therefore the complexity of the solution will be unchanged.

Source Transformations

This section illustrates source transformations, a procedure that may be very useful
in the computation of equivalent circuits, permitting, in some circumstances, replace-
ment of current sources with voltage sources and vice versa. The Norton and Thévenin
theorems state that any one-port network can be represented by a voltage source in
series with a resistance, or by a current source in parallel with a resistance, and that
either of these representations is equivalent to the original circuit, as illustrated in

Figure 3.59.

An extension of this result is that any circuit in Thévenin equivalent form may
be replaced by a circuit in Norton equivalent form, provided that we use the following

relationship:

L04> vr = RTiN
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Thévenin equivalent Norton equivalent

Figure 3.59 Equivalence of Thévenin and Norton representations

Thus, the subcircuit to the left of the dashed line in Figure 3.60 may be replaced by its
Norton equivalent, as shown in the figure. Then the computation of isc becomes very
straightforward, since the three resistors are in parallel with the current source and
therefore a simple current divider may be used to compute the short-circuit current.
Observe that the short-circuit current is the current flowing through R3; therefore,

_ I/R; Us vsR,

" 1/R,+1/Ry+1/Rs R, R\R3+ RRs+ R\R,
which is the identical result obtained for the same circuit in the preceding section,
as you may easily verify. This source transformation method can be very useful, if
employed correctly. Figure 3.61 shows how to recognize subcircuits amenable to

such source transformations. Example 3.22 is a numerical example illustrating the
procedure.

isc =iy (3.29)

© The McGraw-Hill
Companies, 2007
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Figure 3.60 Effect of source

transformation
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Thévenin subcircuits Norton subcircuits
Figure 3.61 Subcircuits amenable to source transformation
EXAMPLE 3.22 Source Transformations LO4

Problem

Compute the Norton equivalent of the circuit of Figure 3.62 using source transformations.

Solution
Known Quantities: Source voltages and current; resistor values.
Find: Equivalent resistance Ry; Norton current iy = igc.

Schematics, Diagrams, Circuits, and Given Data: V; =50V; I =05A;V, =5V,
R, =100 Q; R, =100 Q; R; =200 Q; R, = 160 Q.
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R, a Ry a
AAAA ) AAAA
YVyvy Yyyvyy
< R3 >
v®) O3 2R
— =< <
Va
1] #» b
Figure 3.62

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: First, we sketch the circuit again, to take advantage of the source transformation
technique; we emphasize the location of the nodes for this purpose, as shown in Figure 3.63.
Nodes o’ and b’ have been purposely separated from nodes a” and b” even though these are the
same pairs of nodes. We can now replace the branch consisting of V| and R, which appears
between nodes a” and b”, with an equivalent Norton circuit with Norton current source V; /R,
and equivalent resistance R;. Similarly, the series branch between nodes a’ and b’ is replaced
by an equivalent Norton circuit with Norton current source V,/R3 and equivalent resistance
R;. The result of these manipulations is shown in Figure 3.64. The same circuit is now depicted
in Figure 3.65 with numerical values substituted for each component. Note how easy it is to
visualize the equivalent resistance: If each current source is replaced by an open circuit, we find

Rr = Ry||Rs||Rs]| + R4 = 200]]100]|100 + 160 = 200 £

R, a" a’ R, a
R
v, Cf) i R, R
Vi
e — _L Ny
b" L v b
Figure 3.63
a" a’ Ry a
< So N AAAA
- YVyy
Vi < 12 <
HOEIENIOF S OF .
“—>
— I = >
Figure 3.64
160 Q a
AAAA
YVvy
50 5 1 < < <
2V D LN C) z = >3
100A > 200A<> 2 <:IOOQ :>100§2 <:20052 R;

Figure 3.65
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The calculation of the Norton current is similarly straightforward, since it simply involves
summing the currents:

in=05-0.025-0.5=-0.025A
Figure 3.66 depicts the complete Norton equivalent circuit connected to the load.

Comments: Itisnotalways possible to reduce a circuit as easily as was shown in this example
by means of source transformations. However, it may be advantageous to use source transfor-
mation as a means of converting parts of a circuit to a different form, perhaps more naturally
suited to a particular solution method (e.g., node analysis).

© The McGraw-Hi
Companies, 2007
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Ry

Experimental Determination of Thévenin and
Norton Equivalents

The idea of equivalent circuits as a means of representing complex and sometimes
unknown networks is useful not only analytically, but in practical engineering appli-
cations as well. It is very useful to have a measure, for example, of the equivalent
internal resistance of an instrument, so as to have an idea of its power requirements
and limitations. Fortunately, Thévenin and Norton equivalent circuits can also be eval-
uated experimentally by means of very simple techniques. The basic idea is that the
Thévenin voltage is an open-circuit voltage and the Norton current is a short-circuit
current. It should therefore be possible to conduct appropriate measurements to de-
termine these quantities. Once vy and iy are known, we can determine the Thévenin
resistance of the circuit being analyzed according to the relationship

Ry =L (3.30)

IN
How are vy and iy measured, then?

Figure 3.67 illustrates the measurement of the open-circuit voltage and short-
circuit current for an arbitrary network connected to any load and also illustrates that
the procedure requires some special attention, because of the nonideal nature of any
practical measuring instrument. The figure clearly illustrates that in the presence of
finite meter resistance r,,,, one must take this quantity into account in the computation
of the short-circuit current and open-circuit voltage; voc and isc appear between
quotation marks in the figure specifically to illustrate that the measured “open-circuit
voltage” and “short-circuit current” are in fact affected by the internal resistance of
the measuring instrument and are not the true quantities.

You should verify that the following expressions for the true short-circuit current
and open-circuit voltage apply (see the material on nonideal measuring instruments
in Section 2.8):

(3.31)

rm
where iy is the ideal Norton current, vy is the Thévenin voltage, and Ry is the
true Thévenin resistance. If you recall the earlier discussion of the properties of
ideal ammeters and voltmeters, you will recall that for an ideal ammeter, 7, should
approach zero, while in an ideal voltmeter, the internal resistance should approach an
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a
O
A
Unknown Load
network
b

An unknown network connected to a load
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network
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A
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Network connected for measurement of short-circuit current
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~
&

Unknown . , C)
network voc \J

SO

Network connected for measurement of open-circuit voltage

Figure 3.67 Measurement of open-circuit voltage
and short-circuit current

open circuit (infinity); thus, the two expressions just given permit the determination
of the true Thévenin and Norton equivalent sources from an (imperfect) measurement
of the open-circuit voltage and short-circuit current, provided that the internal meter
resistance r,, is known. Note also that, in practice, the internal resistance of voltmeters
is sufficiently high to be considered infinite relative to the equivalent resistance of
most practical circuits; on the other hand, it is impossible to construct an ammeter
that has zero internal resistance. If the internal ammeter resistance is known, however,
a reasonably accurate measurement of short-circuit current may be obtained. The
following Focus on Measurements box illustrates the point.

Experimental Determination of Thévenin Equivalent Circuit

Problem:
Determine the Thévenin equivalent of an unknown circuit from measurements of open-
circuit voltage and short-circuit current.

Solution:

Known Quantities—Measurement of short-circuit current and open-circuit voltage.
Internal resistance of measuring instrument.

Find —Equivalent resistance Rr; Thévenin voltage vy = voc.

Schematics, Diagrams, Circuits, and Given Data—Measured voc = 6.5 V; mea-

sured isc = 3.75 mA; r,, = 15 Q.
(Continued)
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(Concluded)

Assumptions—The unknown circuit is a linear circuit containing ideal sources and
resistors only.

Analysis—The unknown circuit, shown on the top left in Figure 3.68, is replaced by
its Thévenin equivalent and is connected to an ammeter for a measurement of the short-
circuit current (Figure 3.68, top right), and then to a voltmeter for the measurement of the
open-circuit voltage (Figure 3.68, bottom). The open-circuit voltage measurement yields
the Thévenin voltage:

Voc = Ur =65V

To determine the equivalent resistance, we observe in the figure depicting the voltage
measurement that, according to the circuit diagram,

voc
- = RT + Im
Isc
Thus,
voc
Rr=——r,=1733-15=1,718 Q
Isc
Rr a
a
o A
An unknown circuit Lo_ad vr C)
terminals = P <
Isc >
—o0
b )
b
Network connected for measurement of
short-circuit current (practical ammeter)
Ry a
—WW—O——
+
o R ©
b
Network connected for measurement of
open-circuit voltage (ideal voltmeter)
Figure 3.68

Comments—Note how easy the experimental method is, provided we U L

are careful to account for the internal resistance of the
measuring instruments.

ON THE WEB

One last comment is in order concerning the practical measurement of the
internal resistance of a network. In most cases, it is not advisable to actually short-
circuit a network by inserting a series ammeter as shown in Figure 3.67; permanent
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will allow for maximum power
transfer?

Figure 3.69 Power transfer
between source and load
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damage to the circuit or to the ammeter may be a consequence. For example, imagine
that you wanted to estimate the internal resistance of an automotive battery; connecting
a laboratory ammeter between the battery terminals would surely result in immediate
loss of the instrument. Most ammeters are not designed to withstand currents of
such magnitude. Thus, the experimenter should pay attention to the capabilities of
the ammeters and voltmeters used in measurements of this type, as well as to the
(approximate) power ratings of any sources present. However, there are established
techniques especially designed to measure large currents.

3.7 MAXIMUM POWER TRANSFER

The reduction of any linear resistive circuit to its Thévenin or Norton equivalent
form is a very convenient conceptualization, as far as the computation of load-related
quantities is concerned. One such computation is that of the power absorbed by the
load. The Thévenin and Norton models imply that some of the power generated by
the source will necessarily be dissipated by the internal circuits within the source.
Given this unavoidable power loss, a logical question to ask is, How much power
can be transferred to the load from the source under the most ideal conditions? Or,
alternatively, what s the value of the load resistance that will absorb maximum power
from the source? The answer to these questions is contained in the maximum power
transfer theorem, which is the subject of this section.

The model employed in the discussion of power transfer is illustrated in Figure
3.69, where a practical source is represented by means of its Thévenin equivalent
circuit. The maximum power transfer problem is easily formulated if we consider
that the power absorbed by the load Py is given by

PL=iiR;, (3.32)
and that the load current is given by the familiar expression

. ur

ip=——— 3.33

"7 RL+Rr 3-33)
Combining the two expressions, we can compute the load power as

UZ
pp=—_T p 3.34
TR+ R -39

To find the value of R; that maximizes the expression for P, (assuming that V; and
Rr are fixed), the simple maximization problem

dPp

— =0 3.35

iR, (3.35)
must be solved. Computing the derivative, we obtain the following expression:

dapy v2(Ry + Rr)* — 2v3R.(RL + Rr)

= 3.36

dRy, (RL + Rr)* (3-36)
which leads to the expression

(R. + Rr)> —2R. (R + Rp) =0 (3.37)

It is easy to verify that the solution of this equation is

R. = Ry (3.38)
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Thus, to transfer maximum power to a load, the equivalent source and load resistances
must be matched, that is, equal to each other. Figure 3.70 depicts a plot of the load
power divided by vZ versus the ratio of R, to Rr. Note that this value is maximum
when R; = Ry.

Graphical representation of maximum power transfer

025
02 / \
N
i \\
-
~
% 015 N
g I ~
]
(=9
o \
801
3
\
£
Z
0.05
0
o 1 2 3 4 5 6 7 8 9 10

Normalized resistance R; /Ry

Figure 3.70 Graphical representation of maximum power transfer

This analysis shows that to transfer maximum power to a load, given a fixed
equivalent source resistance, the load resistance must match the equivalent source
resistance. What if we reversed the problem statement and required that the load
resistance be fixed? What would then be the value of source resistance that maximizes
the power transfer in this case? The answer to this question can be easily obtained by
solving the Check Your Understanding exercises at the end of the section.

A problemrelated to power transfer is that of source loading. This phenomenon,
which is illustrated in Figure 3.71, may be explained as follows: When a practical
voltage source is connected to a load, the current that flows from the source to the
load will cause a voltage drop across the internal source resistance viy; as a conse-
quence, the voltage actually seen by the load will be somewhat lower than the open-
circuit voltage of the source. As stated earlier, the open-circuit voltage is equal to the
Thévenin voltage. The extent of the internal voltage drop within the source depends on
the amount of current drawn by the load. With reference to Figure 3.72, this internal
drop is equal to iRr, and therefore the load voltage will be

vy = vr — IRT (3.39)

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

In the case of a current source, the internal resistance will draw some current
away from the load because of the presence of the internal source resistance; this
current is denoted by ij, in Figure 3.71. Thus the load will receive only part of the
short-circuit current available from the source (the Norton current):

v

i =iy — — 3.40
L IN Ry ( )
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Source Load

Figure 3.71 Source
loading effects
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Figure 3.72 A simplified model of an audio system

It is therefore desirable to have a very large internal resistance in a practical current
source. You may wish to refer to the discussion of practical sources to verify that the
earlier interpretation of practical sources can be expanded in light of the more recent
discussion of equivalent circuits.

EXAMPLE 3.23 Maximum Power Transfer

Problem

Use the maximum power transfer theorem to determine the increase in power delivered to a
loudspeaker resulting from matching the speaker load resistance to the amplifier equivalent
source resistance.

Solution

Known Quantities: Source equivalent resistance Rr; unmatched speaker load resistance Ryy;
matched loudspeaker load resistance Ry ;.

Find: Difference between power delivered to loudspeaker with unmatched and matched loads,
and corresponding percentage increase.

Schematics, Diagrams, Circuits, and Given Data: Ry = 8 Q; Ry = 16 Q; Ry = 8 Q.

Assumptions: The amplifier can be modeled as a linear resistive circuit, for the purposes of
this analysis.

Analysis: Imagine that we have unknowingly connected an 8-2 amplifier to a 16-2 speaker.
We can compute the power delivered to the speaker as follows. The load voltage is found by
using the voltage divider rule:

Riy 2

R Y
R+ Rr | !

VLU
3

and the load power is then computed to be

2 4 2
Po= 2w _ 2T _ 0027802
RLU 9 RLU
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Let us now repeat the calculation for the case of a matched 8-2 speaker resistance Ryy;. Let
the new load voltage be vy and the corresponding load power be Ppy. Then

1
UM = EUT
and
2 1 2
Py =M _ YT _ 00312502
RLM 4 RLM

The increase in load power is therefore

_0.03125 — 0.0278

AP = x 100 = 12.5%
0.0278

Comments: Inpractice, an audio amplifier and a speaker are not well represented by the simple
resistive Thévenin equivalent models used in the present example. Circuits that are appropriate
to model amplifiers and loudspeakers are presented in later chapters. The audiophile can find
further information concerning hi-fi circuits in Chapters 7 and 16.

Focus on Computer-Aided Tools: A very nice illustration of the maximum power transfer
theorem based on MathCad™ may be found in the Web references.

© The McGraw-Hill
Companies, 2007
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CHECK YOUR UNDERSTANDING

A practical voltage source has an internal resistance of 1.2 2 and generates a 30-V output under
open-circuit conditions. What is the smallest load resistance we can connect to the source if
we do not wish the load voltage to drop by more than 2 percent with respect to the source
open-circuit voltage?

A practical current source has an internal resistance of 12 k€2 and generates a 200-mA output
under short-circuit conditions. What percentage drop in load current will be experienced (with
respect to the short-circuit condition) if a 200-£2 load is connected to the current source?
Repeat the derivation leading to equation 3.38 for the case where the load resistance is fixed
and the source resistance is variable. That is, differentiate the expression for the load power,
P, with respect to Ry instead of R;. What is the value of Rg that results in maximum power
transfer to the load?

0="Y ‘%t9'T ‘75 §8C :SToMSUY

3.8 NONLINEAR CIRCUIT ELEMENTS

Until now the focus of this chapter has been on linear circuits, containing ideal voltage
and current sources, and linear resistors. In effect, one reason for the simplicity of some
of the techniques illustrated earlier is the ability to utilize Ohm’s law as a simple, linear
description of the i-v characteristic of an ideal resistor. In many practical instances,
however, the engineer is faced with elements exhibiting a nonlinear i -v characteristic.
This section explores two methods for analyzing nonlinear circuit elements.
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Description of Nonlinear Elements

There are a number of useful cases in which a simple functional relationship exists
between voltage and current in a nonlinear circuit element. For example, Figure 3.73
depicts an element with an exponential i-v characteristic, described by the following
equations:

oav

v>0

v=<0

i =1 0€

. 3.41)

i =—1 0
There exists, in fact, a circuit element (the semiconductor diode) that very nearly
satisfies this simple relationship. The difficulty in the i-v relationship of equation
3.41 is that it is not possible, in general, to obtain a closed-form analytical solution,
even for a very simple circuit.

With the knowledge of equivalent circuits you have just acquired, one approach
to analyzing a circuit containing a nonlinear element might be to treat the nonlinear
element as a load and to compute the Thévenin equivalent of the remaining circuit, as
shown in Figure 3.74. Applying KVL, the following equation may then be obtained:

vr = Rriy + v, (3.42)

To obtain the second equation needed to solve for both the unknown voltage v,
and the unknown current 7, it is necessary to resort to the i-v description of the
nonlinear element, namely, equation 3.41. If, for the moment, only positive voltages
are considered, the circuit is completely described by the following system:

iy = Ipe*™ vy >0

. 3.43)
vr = Rriy + vy
The two parts of equation 3.43 represent a system of two equations in two unknowns;
however, one of these equations is nonlinear. If we solve for the load voltage and
current, for example, by substituting the expression for i, in the linear equation, we
obtain the following expression:

vr = eroemj\ =+ vy (3.44)

or

Uy = Ur — RT]()(?‘”‘ (3.45)

Equations 3.44 and 3.45 do not have a closed-form solution; that is, they are tran-
scendental equations. How can v, be found? One possibility is to generate a solution
numerically, by guessing an initial value (for example, v, = 0) and iterating until a
sufficiently precise solution is found. This solution is explored further in the home-
work problems. Another method is based on a graphical analysis of the circuit and is
described in the following section.

Graphical (Load-Line) Analysis of Nonlinear Circuits

The nonlinear system of equations of the previous section may be analyzed in a
different light, by considering the graphical representation of equation 3.42, which
may also be written as

1 1%
. 3.46
Ry v Ry ( )

Iy =—
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vr i-v curve of “exponential resistor”
Ry

i=1,e"v>0

Solution

© The McGraw-Hill
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Load-line equation: i_= v+ —
B Ry
vr Vi
Figure 3.75 Load line Figure 3.76 Graphical solution of equations 3.44 and 3.45

We notice, first, that equation 3.46 describes the behavior of any load, linear or
nonlinear, since we have made no assumptions regarding the nature of the load voltage
and current. Second, it is the equation of a line in the i, v, plane, with slope —1/R¢
and i, intercept Vr/Rr. This equation is referred to as the load-line equation; its
graphical interpretation is very useful and is shown in Figure 3.75.

The load-line equation is but one of two i-v characteristics we have available,
the other being the nonlinear-device characteristic of equation 3.41. The intersection
of the two curves yields the solution of our nonlinear system of equations. This result
is depicted in Figure 3.76.

Finally, another important point should be emphasized: The linear network
reduction methods introduced in the preceding sections can always be employed to
reduce any circuit containing a single nonlinear element to the Thévenin equivalent
form, as illustrated in Figure 3.77. The key is to identify the nonlinear element and to
treat it as a load. Thus, the equivalent-circuit solution methods developed earlier can
be very useful in simplifying problems in which a nonlinear load is present. Examples
3.24 and 3.25 further illustrate the load-line analysis method.

Ry

o v

Linear y_ | Nonlinear v
x T
network load

o |

Figure 3.77 Transformation of nonlinear circuit of Thévenin equivalent

Nonlinear
load

<L06
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EXAMPLE 3.24 Nonlinear Load Power Dissipation

Problem

A linear generator is connected to anonlinear load in the configuration of Figure 3.77. Determine
the power dissipated by the load.

<L06
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Solution

Known Quantities: Generator Thévenin equivalent circuit; load i-v characteristic and load
line.

Find: Power dissipated by load P,..
Schematics, Diagrams, Circuits, and Given Data: Ry = 30 Q; vy =15 V.
Assumptions: None.

Analysis: We can model the circuit as shown in Figure 3.77. The objective is to determine the
voltage v, and the current i, using graphical methods. The load-line equation for the circuit
is given by the expression
1 v
om
Rr Rr
or
. 1 n 15
Iy = ——Uy + —
30 30
This equation represents a line in the i, v, plane, with i, intercept at 0.5 A and v, intercept at
15 V. To determine the operating point of the circuit, we superimpose the load line on the device
i-v characteristic, as shown in Figure 3.78, and determine the solution by finding the intersection
of the load line with the device curve. Inspection of the graph reveals that the intersection point
is given approximately by

ip=0.14 A v, =11V
and therefore the power dissipated by the nonlinear load is
P,=0.14x11=154W

It is important to observe that the result obtained in this example is, in essence, a description
of experimental procedures, indicating that the analytical concepts developed in this chapter
also apply to practical measurements.

1.0
0.8 Device i-v /
’ characteristic
4
4
@ 0.6
a,
g 0.5 A — II
= Load line /-
~ 0.4 —
TN /
N
.02 ~ A~
[5G gy pp pp— ap—— ——
LN
0.0 !
0 101 X 20 30
! 15V
Vx
V.(volts)

Figure 3.78
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CHECK YOUR UNDERSTANDING

Example 3.24 demonstrates a graphical solution method. Sometimes it is possible to determine
the solution for a nonlinear load by analytical methods. Imagine that the same generator of
Example 3.24 is now connected to a “square law” load, that is, one for which v, = ﬁif, with
B = 0.1. Determine the load current i,.. [Hint: Assume that only positive solutions are possible,
given the polarity of the generator.]

V G0 = '1:Iomsuy

EXAMPLE 3.25 Load Line Analysis LO6
Problem

A temperature sensor has a nonlinear i-v characteristic, shown in the figure on the left. The
load is connected to a circuit represented by its Thévenin equivalent circuit. Determine the
current flowing through the temperature sensor. The circuit connection is identical to that of
Figure 3.77.

Solution
Known Quantities: Ry =6.67 Q2; Vy =1.67V.i, =0.14 — 0.03v§.
Find: 1i,.

Analysis: The figure on the left depicts the device i-v characteristic. The figure on the right
depicts a plot of both the device i-v characteristic and the load line obtained from

1 vr
iy = ——vy + — = —0.15v, +0.25
X RT X RT X
02 Nonlinear load i-v characteristic 0o Graphical solution by load line analysis
: - I I I I I
0.18 \\ Nonlinear load i-v curve L
. 0.18 1 Load line
0.16 0.16
0.14 < 0.14
< — El —~
o 012 £ 0.12 AN
5 3
E ool ™~ < 0l O
o <
e \ 3
g 008 — 0.08 N\
- \
0.06 0.06 N\, \\\
0.04 0.04 N
0.02 0.02 \
0 N\
0 02 04 06 08 1 12 14 16 18 2 00 02 04 06 08 1 12 14 16 18 2
Load voltage, V Load voltage, V

(a) (b)
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The solution for v, and i, occurs at the intersection of the device and load-line characteristics:
iy ~0.12A,v, 09 V.

CHECK YOUR UNDERSTANDING

Knowing that the load i-v characteristic is given exactly by the expression i, = 0.14 —
0.03v2, determine the load current i, . [Hint: Assume that only positive solutions are possible,
given the polarity of the generator.]

VOIT'0 = "1 :Iomsuy

Conclusion

The objective of this chapter is to provide a practical introduction to the analysis of linear
resistive circuits. The emphasis on examples is important at this stage, since we believe that
familiarity with the basic circuit analysis techniques will greatly ease the task of learning more
advanced ideas in circuits and electronics. In particular, your goal at this point should be to
have mastered six analysis methods, summarized as follows:

1.,2.  Node voltage and mesh current analysis. These methods are analogous in concept;
the choice of a preferred method depends on the specific circuit. They are generally
applicable to the circuits we analyze in this book and are amenable to solution by
matrix methods.

3. The principle of superposition. This is primarily a conceptual aid that may simplify the
solution of circuits containing multiple sources. It is usually not an efficient method.

4. Thévenin and Norton equivalents. The notion of equivalent circuits is at the heart of
circuit analysis. Complete mastery of the reduction of linear resistive circuits to either
equivalent form is a must.

5. Maximum lower transfer. Equivalent circuits provide a very clear explanation of how
power is transferred from a source to a load.

6. Numerical and graphical analysis. These methods apply in the case of nonlinear
circuit elements. The load-line analysis method is intuitively appealing and is
employed again in this book to analyze electronic devices.

The material covered in this chapter is essential to the development of more advanced
techniques throughout the remainder of the book.

HOMEWORK PROBLEMS

1Q
Sections 3.2 through 3.4: 4 AMY Y2 AN
Node Mesh Analysis
3.1 Use node voltage analysis to find the voltages V; and 4 AC) %E 3Q 2Q Eé 1Q
V), for the circuit of Figure P3.1.
3.2 Using node voltage analysis, find the voltages V| and

V, for the circuit of Figure P3.2.

|||—

Figure P3.1
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3.3 Using node voltage analysis in the circuit of Figure

P3.3, find the voltage v across the 0.25-ohm resistance.

05Q
AAAA
Yvvy
ot
e ©
N
=
O v 3 0250 0303
<

Figure P3.3

3.4 Using node voltage analysis in the circuit of Figure
P3.4, find the current i through the voltage source.

050
AAAA
YVYVYy
050 3V
A ()
YVYVY u
—
i
=
() 2A 0250 03303
>

Figure P3.4

3.5 In the circuit shown in Figure P3.5, the mesh
currents are

LL=5A L=3A L=T7A

Determine the branch currents through:

a.Rl. b. Rz. C. R3.

3. Resistive Network
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R,
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AAAA
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Figure P3.5
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=
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3.6 In the circuit shown in Figure P3.5, the source and
node voltages are

Vs = Vs =110V
Vi=103V  Vy=-107V

Determine the voltage across each of the five resistors.

3.7 Using node voltage analysis in the circuit of Figure
P3.7, find the currents iy and i,. Ry =3 Q; R, = 1 Q;

R; =6Q.
R,
AAAA
YYVY
> >
1A illigRl izﬁg& 2A
Figure P3.7

3.8 Use the mesh analysis to determine the currents i;
and i, in the circuit of Figure P3.7.

3.9 Using node voltage analysis in the circuit of Figure
P3.9, find the current i through the voltage source. Let
R, =100 Q; R, =5Q; R3; =200 2; Ry =50 2;
V=50V;1=02A.

R,
AAAA
YVvy
Ry
VL AAAA VR AR
Yvvy \\’/
> - X
SR; 1! R4i§
< -
Figure P3.9

3.10 Using node voltage analysis in the circuit of Figure
P3.10, find the three indicated node voltages. Let
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I=02A;R =200Q; R, =759Q; Ry =25 gu g 813 & L

Ry =509 Rs=1009; V = 10 V. @1 gn o o gm L
[Gl=| & T and [I] =

8n1 8n2 8nn I,

\AAAS

b. Write the matrix form of the node voltage equations

again, using the following formulas:
gii = y_ conductances connected to node
gij = —»_ conductances shared by nodes i and j
I; = " all source currents into node i
Figure P3.10
3.11 Using node voltage analysis in the circuit of Figure Gy v,
P3.11, find the current /; drawn from the independent X
voltage source. LetV =3 V; R, = % Q; R, = % Q;
Ri=1Q R =1Q R =12 1=05A.
Ry Ry Ry Vi
—
i S
\% :ERz I Rs -
s @
Figure P3.11

3.12 Find the power delivered to the load resistor R for
the circuit of Figure P3.12, using node voltage
analysis, giventhat Ry =2 Q, Ry = Ry = R, =4 Q,
Vs =4V,and Iy =05 A.

Figure P3.13

3.14 Using mesh current analysis, find the currents i,

and i, for the circuit of Figure P3.14.

R
SIS
+
1Q 2Q
AA AAAA
S s WW VWy
S R < R V
> K > L
<

- V= @ 2 30 @ =
Load
Figure P3.12
3.13 Figure P3.14

a. For the circuit of Figure P3.13, write the node equations
necessary to find voltages Vi, V>, and V3. Note that

G = 1/R = conductance. From the results, note the
interesting form that the matrices [G] and [/ ] have taken in
the equation [G] [V] = [I] where

3.15 Using mesh current analysis, find the currents I,

and [, and the voltage across the top 10-2 resistor in
the circuit of Figure P3.15.

=2V
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40Q

3.16 Using mesh current analysis, find the voltage, v,
across the 3-2 resistor in the circuit of Figure P3.16.

1Q

2Q
2Q 1V<+>
1Q
————WwW————
s 30 s
2 te =z

Figure P3.16

3.17 Using mesh current analysis, find the currents I,
I, and I5 and the voltage across the 40-S2 resistor in

© The McGraw-Hill
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the circuit of Figure P3.17 (assume polarity according
to Iy).

20 1Q 30
MWW

—WW
+
2V<i> 30 v ( 2A 20
5 U I

Figure P3.17

3.18 Using mesh current analysis, find the voltage, v,
across the source in the circuit of Figure P3.18.

2Q 1Q 3Q

2V<i> ‘3;39

Figure P3.18

3.19 a. For the circuit of Figure P3.19, write the mesh
equations in matrix form. Notice the form of the [R]
and [V ]| matrices in the [R][I] = [V ], where

ri ri2 rz s T v,
ral ;o e e Ty Vs
R] = and [V] =
[R] a1 V]
Vv,
| rnl rnz oo e rnn i n

b. Write the matrix form of the mesh equations again by
using the following formulas:

rii = Y resistances around loop i

rij = —y_ resistances shared by loops i and j

V; = Y source voltages around loop i
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3.22 For the circuit of Figure P3.22 determine

a. The most efficient way to solve for the voltage
across R3. Prove your case.

b. The voltage across Rs.

1. Circuits
Applications of Electrical Analysis
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Ry
A
VWWv
Ry3 /13> Ry
AW AAAA
VWWv

R,

AAMA
\AAAZ

1

Figure P3.19

3.20 For the circuit of Figure P3.20, use mesh current
analysis to find the matrices required to solve the
circuit, and solve for the unknown currents. [Hint: you
may find source transformations useful.]

2® )

Figure P3.20

3.21 In the circuit in Figure P3.21, assume the source
voltage and source current and all resistances are
known.

a. Write the node equations required to determine the
node voltages.

b. Write the matrix solution for each node voltage in
terms of the known parameters.

R,
A
WW
L
<
<R
>R,
S
R
AAA
() I VVVy
+ =
Vs(t R
_ -

Figure P3.21

Vei = Vs = 110V

R, =500mQ R, =167 m
R; = 700 m2
Ry =200mQ  Rs =333mQ

Figure P3.22

3.23 In the circuit shown in Figure P3.23, Vs, and R,
model a temperature sensor, i.e.,

Ve = kT k=10V/C
Va1 =24V R, =R, =12kQ
R, =3kQ R; =10k

R, =24k Vrs = —2.524V

The voltage across Rz, which is given, indicates the
temperature. Determine the temperature.

AAAA
YVYY
=
9

R;
A
YVVy

+ -
on LI
— Rs S

Figure P3.23

3.24 Using KCL, perform node analysis on the circuit
shown in Figure P3.24, and determine the voltage
across R,. Note that one source is a controlled voltage
source! Let Vg =5V; Ay =70; Ry =2.2kQ;

R, = 1.8kQ; R; = 6.8kQ2; Ry =220 Q.
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Ve~
R,
+ < Ry
¥s Rz +
AyVri

Figure P3.24

3.25 Using mesh current analysis, find the voltage v
across Ry in the circuit of Figure P3.25. Let
VS] = 12V, VSZ =5V, R] ISOQ,
R2=R3=209; R4=1OQ; R5=1SQ

<
R3 <
p:

YVVy
=
&
AAAA
YVVy

Figure P3.25

3.26 Use mesh current analysis to solve for the voltage v
across the current source in the circuit of Figure P3.26.
LetV=3V;I1=05A; R =20%; R, =30%Q;
Ry =10 Ry =30 9 Rs =20 Q.

R R; R,
—AAAA AAAA AAAA
YVVY \AAAJ Yvy

Figure P3.26

3.27 Use mesh current analysis to find the current i in
the circuit of Figure P3.27. Let V =5.6 V;
Ry =509 R, = 1.2kQ; Ry = 330 2; g,, = 0.2 S;
Ry =440 Q.
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Ry R i i
Voo
+ < <
C_) wZR 4 RZ
- gmvx

Figure P3.27

3.28 Using mesh current analysis, find the current i
through the voltage source in the circuit of Figure P3.9.

3.29 Using mesh current analysis, find the current i in
the circuit of Figure P3.10.

3.30 Using mesh current analysis, find the current i in
the circuit of Figure P3.30.

Figure P3.30

3.31 Using mesh current analysis, find the voltage gain
A, = v2/v; in the circuit of Figure P3.31.

4Q

40

~
0
A
Yy
<
N

Figure P3.31

3.32 In the circuit shown in Figure P3.32:

Vi = Vgy = 450 V
Ri=Rs=025Q
Ri=8Q R,=5Q
Ry =32Q

Determine, using KCL and node analysis, the voltage
across Ri, R», and R;.
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=
&
vy

A\

Figure P3.32

3.33 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse “blows” (i.e., it
becomes an open circuit).

Ve = Vg =115V
Ri=R, =59
R4:R5:200m§2

Ry =10

Normally, the voltages across R;, R», and Rz are
106.5, —106.5, and 213.0 V. If F; now blows, or
opens, determine, using KCL and node analysis, the
new voltages across R;, R, and Rs.

AAAA

Figure P3.33

3.34 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through

a fuse, it “blows” and the fuse becomes an open circuit.

Ve = Vg =120V
Ri=R, =29
R4:R5:250m§2

R, =8

If F; blows, or opens, determine, using KCL and node
analysis, the voltages across R, Rz, R3, and F].
3.35 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply

3. Resistive Network
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industrial loads, particularly rotating machines.

Vs = Vo = Vg3 = 170 V
Ry1 = Ry, =Ry, =0.7Q
R=19Q R, =23Q
Ri=11Q

a. Determine the number of unknown node voltages
and mesh currents.

b. Compute the node voltages v|, vy, and vj. With
respect to v),.

V3 Vé

Figure P3.35

3.36 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
industrial loads, particularly rotating machines.

Vs = Vy = Vi3 = 170 V
Rwi=Rys = Ry =0.7Q
R=19Q R, =23Q
Ri=11Q

Node analysis with KCL and a ground at the terminal
common to the three sources gives the only unknown
node voltage Vy = 28.94 V. If the node voltages in a
circuit are known, all other voltages and currents in the
circuit can be determined. Determine the current
through and voltage across R;.

3.37 The circuit shown in Figure P3.35 is a simplified
DC version of a typical three-wire, three-phase AC
Y-Y distribution system. Write the mesh (or loop)
equations and any additional equations required to
determine the current through R, in the circuit shown.

3.38 Determine the branch currents, using KVL and
loop analysis in the circuit of Figure P3.35.
Voo =Vs3 =110V Vsi =90V
R =79¢Q Ry=R3=37Q
Rwi=Rw, =Ry; =13Q
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3.39 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse blows (i.e., it
becomes an open circuit).

Vsi=Vsa =115V
Ri=R,=5¢Q
Ry = Rs =200 m2

R;=10¢Q

Determine, using KVL and a mesh analysis, the
voltages across Ry, R,, and R; under normal
conditions (i.e., no blown fuses).

Section 3.5: Superposition

3.40 With reference to Figure P3.40, determine the
current through R; due only to the source Vs,.

Vei =110V Vi =90V
R, =560Q  R,=35kQ
Ry =810 Q

Figure P3.40

3.41 Determine, using superposition, the voltage across
R in the circuit of Figure P3.41.

Iz=12A Rz=19Q
V=12V  R;=03Q
R =023Q
Rg
()13 E%RB RS%
p: + 3
Vo

Figure P3.41

3.42 Using superposition, determine the voltage across
R> in the circuit of Figure P3.42.

Vo =Vg =12V
R =R, =R; = 1 kQ
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R
AMA
YYVY
R,

<4 + <>

RS

<_> ‘_ISI + 3 <:

Vs2

Figure P3.42

3.43 With reference to Figure P3.43, using
superposition, determine the component of the current
through R; that is due to V.

Vs = Vg = 450 V

R =7Q R, =5Q
R; =10Q Ri=Rs=1Q
AAAA
YYVY
+ R L
S
Vsi b
_ L
RZ
+ >
+ <
(_)Vsz 2R,
R
AAAA
YVyvy

Figure P3.43

3.44 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase electrical distribution
system.

Vsi=Ve=Ves =170V
Rwi =Ry, =Ry3;=07Q
Ri=19Q R, =23¢Q
Ry =11Q
To prove how cumbersome and inefficient (although

sometimes necessary) the method is, determine, using
superposition, the current through R;.

3.45 Repeat Problem 3.9, using the principle of
superposition.

3.46 Repeat Problem 3.10, using the principle of
superposition.

3.47 Repeat Problem 3.11, using the principle of
superposition.

3.48 Repeat Problem 3.23, using the principle of
superposition.

3.49 Repeat Problem 3.25, using the principle of
superposition.

3.50 Repeat Problem 3.26, using the principle of
superposition.
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Section 3.6: Equivalent Circuits

3.51 Find the Thévenin equivalent circuit as seen by the
3-Q resistor for the circuit of Figure P3.51.

5Q 1Q
——— W AAA
VWWv

+
C_) 36V 40 30

Figure P3.51

3.52 Find the voltage v across the 3-Q resistor in the
circuit of Figure P3.52 by replacing the remainder of
the circuit with its Thévenin equivalent.

2Q
AAA
VVVv

3V
2Q

)

E— O

2A<‘D 40 30

AAMA
\AAAZ
=

Figure P3.52

3.53 Find the Norton equivalent of the circuit to the left
of the 2-Q resistor in the Figure P3.53.

1Q 1Q 3Q
— W W WY

2VC_'> 3Q () 2A 2Q

Figure P3.53

3.54 Find the Norton equivalent to the left of terminals
a and b of the circuit shown in Figure P3.54.

3. Resistive Network
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5Q
- MW—
1Q 3Q
AAAA AvA O a

On g

Figure P3.54

3.55 Find the Thévenin equivalent circuit that the load
sees for the circuit of Figure P3.55.

1 kQ 1Q 3Q

AA
v

v@® 1kQ @) 1oma R,

Figure P3.55

3.56 Find the Thévenin equivalent resistance seen by the
load resistor R, in the circuit of Figure P3.56.

500
— W
500 500 .
_WA’ AVAVAVV
(—) () gé 000 3 R,

100 Q

Figure P3.56

3.57 Find the Thévenin equivalent of the circuit
connected to Ry, in Figure P3.57.
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8Q 2Q 8Q
_MN\I A Av‘v‘v Av"v"v"v -
2vQ® 8Q 230 IR
< <
b
Figure P3.57
3.58 Find the Thévenin equivalent of the circuit
connected to R, in Figure P3.58, where R; = 10 €,
Ry=209Q,R, =0.1Q,and R, = 1 Q.
Rp Rp Rp a
_W/‘v A‘/V‘/‘v Av"vAv"v
15V D R, %E R, %E R,
AW
b
R, R, R,

Figure P3.58

3.59 The Wheatstone bridge circuit shown in Figure
P3.59 is used in a number of practical applications.
One traditional use is in determining the value of an
unknown resistor R,.

Find the value of the voltage V,, = V, — V,, in terms of
R,R,,and V.

IfR=1kR, Vs =12Vand V, = 12 mV, what is the
value of R, ?

Figure P3.59

3.60 It is sometimes useful to compute a Thévenin
equivalent circuit for a Wheatstone bridge. For the
circuit of Figure P3.60,

© The McGraw-Hill
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Find the Thévenin equivalent resistance seen by the
load resistor R .

IfVeg =12V, R = R, = R3 = 1k, and R, is the
resistance found in part b of the previous problem,
use the Thévenin equivalent to compute the power
dissipated by R, if R, = 500 Q.

Find the power dissipated by the Thévenin
equivalent resistance Ry with R, included in the
circuit.

Find the power dissipated by the bridge without the
load resistor in the circuit.

Figure P3.60

3.61 The circuit shown in Figure P3.61 is in the form of
what is known as a differential amplifier. Find the
expression for vy in terms of v; and v, using
Thévenin’s or Norton’s theorem.

—— ——

AAAA AAAA
YVVY YVVY
20

} LR OE

v Ci) L o Vo + 00— (i’) v,
>
§§ 40 40 §>

Figure P3.61

3.62 Find the Thévenin equivalent resistance seen by

resistor R3 in the circuit of Figure P3.5. Compute the
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Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.63 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.10. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.64 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.11. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.65 Find the Thévenin equivalent resistance seen by
resistor Rj in the circuit of Figure P3.23. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R; is the load.

3.66 Find the Thévenin equivalent resistance seen by
resistor Ry in the circuit of Figure P3.25. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R, is the load.

3.67 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.26. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.68 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.41. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R is the load.

3.69 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.43. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.70 In the circuit shown in Figure P3.70, Vg models the
voltage produced by the generator in a power plant,
and Rs models the losses in the generator, distribution
wire, and transformers. The three resistances model
the various loads connected to the system by a
customer. How much does the voltage across the total
load change when the customer connects the third load
R; in parallel with the other two loads?

Vi=110V Ry =19 mQ
Ri=R,=930mQ  R; =100 m
Rg
2R 3R 2R
. p: p:
Vs
Power Customer
plant

Figure P3.70

3.71 In the circuit shown in Figure P3.71, Vg models the
voltage produced by the generator in a power plant,
and Rg models the losses in the generator, distribution
wire, and transformers. Resistances R, R», and R;
model the various loads connected by a customer. How
much does the voltage across the total load change
when the customer closes switch S3 and connects the
third load Rj; in parallel with the other two loads?

Vg =450V Rs =19 mQ
R1=R2=1.3Q R3:500m§2

1
i s
1 AAA —L
1 YWV—T
H 1 S3
1 1
1 1
' i
1 +
+ 1< <
:< Vs 1SR 2R Ry
1 13 -
1 1
1 1
1 1
1 1
1 1
1 T
1 1
[
LPower system

Figure P3.71

3.72 A nonideal voltage source is modeled in Figure
P3.72 as an ideal source in series with a resistance that
models the internal losses, that is, dissipates the same
power as the internal losses. In the circuit shown in
Figure P3.72, with the load resistor removed so that the
current is zero (i.e., no load), the terminal voltage of
the source is measured and is 20 V. Then, with
R; = 2.7 k€, the terminal voltage is again measured
and is now 18 V. Determine the internal resistance and
the voltage of the ideal source.

It

Vr

T
<t
AA
\AAAS
=
&~

Nonideal source

Figure P3.72

Section 3.7: Maximum Power Transfer
3.73 The equivalent circuit of Figure P3.73 has
V; =12V Ry =8Q

If the conditions for maximum power transfer exist,
determine
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a. The value of R; .
b. The power developed in R .

c. The efficiency of the circuit, that is, the ratio of
power absorbed by the load to power supplied by
the source.

Vr Ry

Figure P3.73

3.74 The equivalent circuit of Figure P3.73 has
V=35V Rr =600

If the conditions for maximum power transfer exist,
determine

a. The value of R; .
b. The power developed in R .
c. The efficiency of the circuit.

3.75 A nonideal voltage source can be modeled as an
ideal voltage source in series with a resistance
representing the internal losses of the source, as shown

in Figure P3.75. A load is connected across the
terminals of the nonideal source.

Ve =12V Rs=03¢Q
a. Plot the power dissipated in the load as a function

of the load resistance. What can you conclude from
your plot?

b. Prove, analytically, that your conclusion is valid in
all cases.

Figure P3.75

Section 3.8: Nonlinear Circuit Elements

3.76 Write the node voltage equations in terms of v; and
v, for the circuit of Figure P3.76. The two nonlinear
resistors are characterized by

i, = 20}

ib = Ug + 10Ub
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Do not solve the resulting equations.

la R,
Vi — — Vo
| I | R
+ Vg - b

>
1AC> 210 RbI:
<>

Figure P3.76

3.77 We have seen that some devices do not have a
linear current—voltage characteristic for all ; and v, that
is, R is not constant for all values of current and
voltage. For many devices, however, we can estimate
the characteristics by piecewise linear approximation.
For a portion of the characteristic curve around an
operating point, the slope of the curve is relatively
constant. The inverse of this slope at the operating
point is defined as incremental resistance Ry,.:

v
dl

N

Rinc == ~ —
Al

[Vo.lo] [Vo,Iol

where [Vy, o] is the operating point of the circuit.

a. For the circuit of Figure P3.77, find the operating
point of the element that has the characteristic
curve shown.

b. Find the incremental resistance of the nonlinear
element at the operating point of part a.

c. If Vr is increased to 20 V, find the new operating
point and the new incremental resistance.

Ry
Vr Nonlinear
element
Vp=15V R;=200Q
1
1=0.0025V?2
%

Figure P3.77
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3.78 The device in the circuit in Figure P3.78 is an
induction motor with the nonlinear i-v characteristic
shown. Determine the current through and the voltage
across the nonlinear device.

Ve =450V R=9Q
607\\\ TT T T 11T L L TTT]
r STALL ]
¢40? 1 .
z F ]
Q r ]
20 -
ol b
150 300 450
vp (V)——
(a) (b)

Figure P3.78

3.79 The nonlinear device in the circuit shown in Figure

P3.79 has the i-v characteristic given.
Ve=Vm=15V R=R,4=60Q

Determine the voltage across and the current through
the nonlinear device.

(a)

30 EEEEEES o R
T207 ]
2 f ]
g N ]
2 10| ]

L ‘——‘——v)\\\\‘\\\ \\\\—

0.5 1.0 1.5
vp (V) ——

(b)
Figure P3.79
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3.80 The resistance of the nonlinear device in the circuit
in Figure P3.80 is a nonlinear function of pressure. The
i-v characteristic of the device is shown as a family of
curves for various pressures. Construct the DC load
line. Plot the voltage across the device as a function of
pressure. Determine the current through the device
when P = 30 psig.

Vs=Vm=25V R=R.=125Q

(a)

30
40

20

T
EEERENE N

ip (MA)——

1.0 2.0 3.0
vp (V) ——

(b)
Figure P3.80

3.81 The nonlinear device in the circuit shown in Figure
P3.81 has the i-v characteristic

ip = Le™/"
I,=10"" A
Vs=Vm=15V
R =R, =602

Vy =26 mV

Determine an expression for the DC load line. Then
use an iterative technique to determine the voltage
across and current through the nonlinear device.

Figure P3.81
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3.82 The resistance of the nonlinear device in the

circuits shown in Figure P3.82 is a nonlinear function

of pressure. The i-v characteristic of the device is
shown as a family of curves for various pressures.

Construct the DC load line and determine the current

through the device when P = 40 psig.
Ve=Vm =25V R=R,=125Q

30 prrrr T T T

20|

ip (MA)——

o

1.0 2.0 3.0
vp (V) ——

(b)
Figure P3.82

3.83 The voltage-current (ip — vp) relationship of a
semiconductor diode may be approximated by the
expression

. Up
lD:ISAT eXp m —1
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where, at room temperature,

Isar = 10712 A
% =0.0259V

a. Given the circuit of Figure P3.83, use graphical
analysis to find the diode current and diode voltage
if Rr =22Qand Vy =12 V.

b. Write a computer program in Matlab™ (or in any
other programming language) that will find the
diode voltage and current using the flowchart
shown in Figure P3.83.

T
. 9Vpi
ipp=Igar {eXP(W)_I}

Vr D '_ \%4

Figure P3.83
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CHAWPTER

AC NETWORK ANALYSIS

hapter 4 is dedicated to two main ideas: energy storage (dynamic) circuit

elements and the analysis of AC circuits excited by sinusoidal voltages and

currents. Dynamic circuit elements, that is, capacitors and inductors, are de-

fined. These are circuit elements that are described by an i-v characteristic of
differential or integral form. Next, time-dependent signal sources and the concepts of
average and root-mean-square (rms) values are introduced. Special emphasis is placed
on sinusoidal signals, as this class of signals is especially important in the analysis of
electric circuits (think, e.g., of the fact that all electric power for residential and indus-
trial uses comes in sinusoidal form). Once these basic elements have been presented,
the focus shifts to how to write circuit equations when time-dependent sources and
dynamic elements are present: The equations that result from the application of KVL
and KCL take the form of differential equations. The general solution of these differ-
ential equations is covered in Chapter 5. The remainder of the chapter discusses one
particular case: the solution of circuit differential equations when the excitation is a
sinusoidal voltage or current; a very powerful method, phasor analysis, is introduced
along with the related concept of impedance. This methodology effectively converts
the circuit differential equations to algebraic equations in which complex algebra
notation is used to arrive at the solution. Phasor analysis is then used to demonstrate

149
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Capacitance

We continue the analogy
between electrical and hy-
draulic circuits. If a vessel
has some elasticity, energy
is stored in the expansion
and contraction of the ves-
sel walls (this should remind
you of a mechanical spring).
This phenomenon gives rise
to fluid capacitance effect
very similar to electrical
capacitance. The energy
stored in the compression
and expansion of the gas is
of the potential energy type.
Figure 4.1 depicts a gas-
bag accumulator: a two-
chamber arrangement that
permits fluid to displace a
membrane separating the
incompressible fluid from a
compressible fluid (e.g.,
air). The analogy shown in
Figure 4.1 assumes that the
reference pressure py is
zero (“ground” or reference
pressure), and that v; is
ground. The analog equa-
tions are given below.
dAp dp
ar=Cr— - =Cr;

_c dAv c dvy
=] = _
dt dt
. g Po 2
LN
+ +
p
C Av Cr1~Ap
qf—
V2 Po

Figure 4.1 Analogy
between electrical and fluid
capacitance
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Chapter 4 AC Network Analysis

that all the network analysis techniques of Chapter 3 are applicable to the analysis of
dynamic circuits with sinusoidal excitations, and a number of examples are presented.

:) Learning Objectives

1. Compute currents, voltages, and energy stored in capacitors and inductors.

Section 1.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Section 2.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Section 3.

4.  Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa; and represent circuits using impedances. Section 4.

5. Apply the circuit analysis methods of Chapter 3 to AC circuits in phasor form.
Section 5.

4.1 ENERGY STORAGE (DYNAMIC) CIRCUIT

ELEMENTS

The ideal resistor was introduced through Ohm’s law in Chapter 2 as a useful ide-
alization of many practical electrical devices. However, in addition to resistance to
the flow of electric current, which is purely a dissipative (i.e., an energy loss) phe-
nomenon, electric devices may exhibit energy storage properties, much in the same
way as a spring or a flywheel can store mechanical energy. Two distinct mechanisms
for energy storage exist in electric circuits: capacitance and inductance, both of
which lead to the storage of energy in an electromagnetic field. For the purpose of
this discussion, it will not be necessary to enter into a detailed electromagnetic analy-
sis of these devices. Rather, two ideal circuit elements will be introduced to represent
the ideal properties of capacitive and inductive energy storage: the ideal capacitor
and the ideal inductor. It should be stated clearly that ideal capacitors and inductors
do not exist, strictly speaking; however, just like the ideal resistor, these “ideal” ele-
ments are very useful for understanding the behavior of physical circuits. In practice,
any component of an electric circuit will exhibit some resistance, some inductance,
and some capacitance—that is, some energy dissipation and some energy storage.
The sidebar on hydraulic analogs of electric circuits illustrates that the concept of
capacitance does not just apply to electric circuits.

The Ideal Capacitor

A physical capacitor is a device that can store energy in the form of a charge separa-
tion when appropriately polarized by an electric field (i.e., a voltage). The simplest
capacitor configuration consists of two parallel conducting plates of cross-sectional
area A, separated by air (or another dielectric! material, such as mica or Teflon).
Figure 4.2 depicts a typical configuration and the circuit symbol for a capacitor.

1A dielectric material is a material that is not an electrical conductor but contains a large number of
electric dipoles, which become polarized in the presence of an electric field.
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The presence of an insulating material between the conducting plates does not o—F —

allow for the flow of DC current; thus, a capacitor acts as an open circuit in the pres- ¥

ence of DC current. However, if the voltage present at the capacitor terminals changes

as a function of time, so will the charge that has accumulated at the two capacitor Q

plates, since the degree of polarization is a function of the applied electric field, which d

is time-varying. In a capacitor, the charge separation caused by the polarization of Q

the dielectric is proportional to the external voltage, that is, to the applied electric

field _ A
O—

Parallel-plate capacitor with air
gap d (air is the dielectric)

0=CV .1)

where the parameter C is called the capacitance of the element and is a measure of
the ability of the device to accumulate, or store, charge. The unit of capacitance is + d
coulomb per volt and is called the farad (F). The farad is an unpractically large
unit for many common electronic circuit applications; therefore it is common to use
microfarads (1 uF = 10~% F) or picofarads (1 pF = 10~'? F). From equation 4.1 it
becomes apparent that if the external voltage applied to the capacitor plates changes
in time, so will the charge that is internally stored by the capacitor:

€= permittivity of air

=88s4x10-2 E

Circuit
symbol

q(t) =Cu(t) (4.2) Figure 4.2 Structure of
parallel-plate capacitor

Thus, although no current can flow through a capacitor if the voltage across it is
constant, a time-varying voltage will cause charge to vary in time.

The change with time in the stored charge is analogous to a current. You can
easily see this by recalling the definition of current given in Chapter 2, where it was
stated that

dq(t
i(t) = % 4.3)

thatis, electric current corresponds to the time rate of change of charge. Differentiating
equation 4.2, one can obtain a relationship between the current and voltage in a
capacitor:

do(t <:
it)y=C_ % i-v relation for capacitor 4.4 LO1

Equation 4.4 is the defining circuit law for a capacitor. If the differential equation that
defines the i -v relationship for a capacitor is integrated, one can obtain the following
relationship for the voltage across a capacitor:

1 t
ve(t) = Ef, ic (tHhdt' 4.5)

o0
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v(5) vy ~C2

-v3+

Cro= ——————
R 1

atata

Capacitances in series combine

like resistors in parallel

C —— . .
+ i) i‘l llz
v(t) —~C ~C

li;

= C;

CEQ=C1+C2+C3

Capacitances in parallel add

Figure 4.3 Combining
capacitors in a circuit
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Equation 4.5 indicates that the capacitor voltage depends on the past current through
the capacitor, up until the present time ¢. Of course, one does not usually have precise
information regarding the flow of capacitor current for all past time, and so it is useful
to define the initial voltage (or initial condition) for the capacitor according to the
following, where t, is an arbitrary initial time:

to

1
Vo=vc(t =ty = Ef ic(f,) dt’ 4.6)

—00

The capacitor voltage is now given by the expression

1 t
ve (1) = c f icthydt'+Vy  t>19 4.7)

fo

The significance of the initial voltage V, is simply that at time 7y some charge is
stored in the capacitor, giving rise to a voltage v¢ (fp), according to the relationship
0 = CV. Knowledge of this initial condition is sufficient to account for the entire
history of the capacitor current.

Capacitors connected in series and parallel can be combined to yield a single
equivalent capacitance. The rule of thumb, which is illustrated in Figure 4.3, is the
following:

Capacitors in parallel add. Capacitors in series combine according to the same
rules used for resistors connected in parallel.

It is very easy to prove that capacitors in series combine as shown in
Figure 4.3, using the definition of equation 4.5. Consider the three capacitors in
series in the circuit of Figure 4.3. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

v(t) = vi(1) + vi (1) +v1(1)

1 1 1 !
= — i) dt' + — it dt + —f i(t)dt
Cl —00 C2 —00 C? —00

(1 N 1 N 1>f’ (o) di!
= —_— —_— —_— 17 [
Ci G GC3)J)

Thus, the voltage across the three series capacitors is the same as would be seen across
a single equivalent capacitor Ceq with 1/Ceq = 1/Cy + 1/C2 + 1/C3, as illustrated
in Figure 4.3. You can easily use the same method to prove that the three parallel
capacitors in the bottom half of Figure 4.3 combine as do resistors in series.

t

4.8)

LO1 >

FIND IT

ON THE WEB

EXAMPLE 4.1 Charge Separation in Ultracapacitors

Problem

Ultracapacitors are finding application in a variety of fields, including as a replacement or
supplement for batteries in hybrid-electric vehicles. In this example you will make your first
acquaintance with these devices.

An ultracapacitor, or “supercapacitor,” stores energy electrostatically by polarizing an
electrolytic solution. Although it is an electrochemical device (also known as an electrochem-
ical double-layer capacitor), there are no chemical reactions involved in its energy storage

< LO1
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mechanism. This mechanism is highly reversible, allowing the ultracapacitor to be charged
and discharged hundreds of thousands of times. An ultracapacitor can be viewed as two nonre-
active porous plates suspended within an electrolyte, with a voltage applied across the plates.
The applied potential on the positive plate attracts the negative ions in the electrolyte, while
the potential on the negative plate attracts the positive ions. This effectively creates two layers
of capacitive storage, one where the charges are separated at the positive plate and another at
the negative plate.

Recall that capacitors store energy in the form of separated electric charge. The greater
the area for storing charge and the closer the separated charges, the greater the capacitance. A
conventional capacitor gets its area from plates of a flat, conductive material. To achieve high
capacitance, this material can be wound in great lengths, and sometimes a texture is imprinted
on it to increase its surface area. A conventional capacitor separates its charged plates with a
dielectric material, sometimes a plastic or paper film, or a ceramic. These dielectrics can be
made only as thin as the available films or applied materials.

An ultracapacitor gets its area from a porous carbon-based electrode material, as shown
in Figure 4.4. The porous structure of this material allows its surface area to approach 2,000
square meters per gram (m?/g), much greater than can be accomplished using flat or textured
films and plates. An ultracapacitor’s charge separation distance is determined by the size of
the ions in the electrolyte, which are attracted to the charged electrode. This charge separation
[less than 10 angstroms (A)] is much smaller than can be achieved using conventional dielectric
materials. The combination of enormous surface area and extremely small charge separation
gives the ultracapacitor its outstanding capacitance relative to conventional capacitors.

Use the data provided to calculate the charge stored in an ultracapacitor, and calculate
how long it will take to discharge the capacitor at the maximum current rate.

Solution

Known Quantities: Technical specifications are as follows:

Capacitance 100 F (—10%/ + 30%)

Series resistance  DC 15 mQ (£25%)
1kHz 7 mQ2(£25%)

Voltage Continuous 2.5 V; Peak 2.7 V

Rated current 25A

Find: Charge separation at nominal voltage and time to complete discharge at maximum
current rate.

Analysis: Based on the definition of charge storage in a capacitor, we calculate
Q0=CV =100Fx25V=250C

To calculate how long it would take to discharge the ultracapacitor, we approximate the defining
differential equation (4.4) as follows:
. _dq _Aq

T A
Since we know that the discharge current is 25 A and the available charge separation is 250 F,
we can calculate the time to complete discharge, assuming a constant 25-A discharge:
_Ag 250C

Ar=20 _27 o
i 25A

Comments: We shall continue our exploration of ultracapacitors in Chapter 5. In particular,
we shall look more closely at the charging and discharging behavior of these devices, taking
into consideration their internal resistance.

© The McGraw-Hill
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Electrolyte
; Separator

Figure 4.4 Ultracapacitor
structure
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CHECK YOUR UNDERSTANDING

Compare the charge separation achieved in this ultracapacitor with a (similarly sized) elec-
trolytic capacitor used in power electronics applications, by calculating the charge separation
for a 2,000-1F electrolytic capacitor rated at 400 V.

D 80 :Iomsuy

EXAMPLE 4.2 Calculating Capacitor Current from Voltage

Problem

Calculate the current through a capacitor from knowledge of its terminal voltage.

Solution

Known Quantities: Capacitor terminal voltage; capacitance value.
Find: Capacitor current.

Assumptions: The initial current through the capacitor is zero.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 5(1 — e™"/ 1076) volts; ¢+ > O s;
C = 0.1 uF. The terminal voltage is plotted in Figure 4.5.

Assumptions: The capacitor is initially discharged: v(t = 0) = 0.

Analysis: Using the defining differential relationship for the capacitor, we may obtain the
current by differentiating the voltage:

(e*'/“’"”) =059 A >0

A plot of the capacitor current is shown in Figure 4.6. Note how the current jumps to 0.5 A
instantaneously as the voltage rises exponentially: The ability of a capacitor’s current to change
instantaneously is an important property of capacitors.

Comments: As the voltage approaches the constant value 5 V, the capacitor reaches its max-
imum charge storage capability for that voltage (since Q = CV') and no more current flows
through the capacitor. The total charge stored is Q = 0.5x 107° C. This is a fairly small amount
of charge, but it can produce a substantial amount of current for a brief time. For example, the

fully charged capacitor could provide 100 mA of current for a time equal to 5 us:
AQ 05x10°°
I=—=——=01A

At 5x 106

There are many useful applications of this energy storage property of capacitors in practical
circuits.
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CHECK YOUR UNDERSTANDING

The voltage waveform shown below appears across a 1,000-uF capacitor. Plot the capacitor
current i¢ (t).

v(n) (V)

15
10
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EXAMPLE 4.3 Calculating Capacitor Voltage from Current and
Initial Conditions

Problem

Calculate the voltage across a capacitor from knowledge of its current and initial state of charge.

Solution
Known Quantities: Capacitor current; initial capacitor voltage; capacitance value.
Find: Capacitor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0 t<0s
ic(ty=1 10 mA 0<tr<ls
0 t>1s

vwe(=0)=2V  C =1,000uF

The capacitor current is plotted in Figure 4.7(a).

10 12
9 11
8 10
< 7 9
6 > 8
Es S 7
=4 =6
=3 5
2 4
1 3
0 2
-02 0 02 04 06 08 1 1.2 -02 0 02 04 06 08 1 12
Time (s) Time (s)
() (b)
Figure 4.7

Assumptions: The capacitor is initially charged such that ve(t =) =0) =2 V.

Analysis: Using the defining integral relationship for the capacitor, we may obtain the voltage
by integrating the current:
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1 t
ve(t) = - / i) di'+velio) 1> 1o
C o

1 (! I
—/ Idt + Vo= —t+Vy=10t+2V 0<t<ls
cly C

12V t>1s

Comments: Once the current stops, at ¢+ = 1 s, the capacitor voltage cannot develop any
further but remains at the maximum value it reached at # = 1 s: vc(t = 1) = 12 V. The
final value of the capacitor voltage after the current source has stopped charging the capacitor
depends on two factors: (1) the initial value of the capacitor voltage and (2) the history of the
capacitor current. Figure 4.7(a) and (b) depicts the two waveforms.

© The McGraw-Hill
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CHECK YOUR UNDERSTANDING

Find the maximum current through the capacitor of Example 4.3 if the capacitor voltage is
described by vc(t) =5t +3 Vfor0 <z <S5s.

VW G :ToMSUY

Physical capacitors are rarely constructed of two parallel plates separated by
air, because this configuration yields very low values of capacitance, unless one is
willing to tolerate very large plate areas. To increase the capacitance (i.e., the ability
to store energy), physical capacitors are often made of tightly rolled sheets of metal
film, with a dielectric (paper or Mylar) sandwiched in between. Table 4.1 illustrates
typical values, materials, maximum voltage ratings, and useful frequency ranges for
various types of capacitors. The voltage rating is particularly important, because any
insulator will break down if a sufficiently high voltage is applied across it.

Table 4.1 Capacitors

Capacitance Maximum voltage  Frequency range
Material range V) (Hz)
Mica 1pFto 0.1 uF 100-600 1031010
Ceramic 10 pFto 1 uF 50-1,000 1031010
Mylar 0.001 uFto 10 uF  50-500 102108
Paper 1,000 pF to 50 uF ~ 100-105 102-108
Electrolytic 0.1 uFto 0.2 F 3-600 10-10*

Energy Storage in Capacitors

You may recall that the capacitor was described earlier in this section as an en-
ergy storage element. An expression for the energy stored in the capacitor We (¢)
may be derived easily if we recall that energy is the integral of power, and that the

FIND IT

ON THE WEB
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instantaneous power in a circuit element is equal to the product of voltage and current:

We () = / Pc(th) dt’
:/vc(t’)ic(t/) dt’ 4.9)

_ / vehe e 4y

dt’

1
We(t) = EC vé (1) Energy stored in a capacitor (J)

Example 4.4 illustrates the calculation of the energy stored in a capacitor.

EXAMPLE 4.4 Energy Storage in Ultracapacitors

Problem

Determine the energy stored in the ultracapacitor of Example 4.1.

Solution
Known Quantities: See Example 4.1.
Find: Energy stored in capacitor.

Analysis: To calculate the energy, we use equation 4.9:

1
We = -Cvi = 5(100 F)2.5V)?2 =312.57

N —

CHECK YOUR UNDERSTANDING

Compare the energy stored in this ultracapacitor with a (similarly sized) electrolytic capacitor
used in power electronics applications, by calculating the charge separation for a 2,000-uF
electrolytic capacitor rated at 400 V.

£ 097 :Tomsuy
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Capacitive Displacement Transducer and Microphone

As shown in Figure 4.2, the capacitance of a parallel-plate capacitor is given by the
expression

eA

C =
d

where ¢ is the permittivity of the dielectric material, A is the area of each of the plates,
and d is their separation. The permittivity of air is &g = 8.854 x 102 F/m, so that
two parallel plates of area 1 m?, separated by a distance of 1 mm, would give rise to a
capacitance of 8.854 x 103 uF, a very small value for a very large plate area. This relative
inefficiency makes parallel-plate capacitors impractical for use in electronic circuits. On
the other hand, parallel-plate capacitors find application as motion transducers, that is, as
devices that can measure the motion or displacement of an object. In a capacitive motion
transducer, the air gap between the plates is designed to be variable, typically by fixing
one plate and connecting the other to an object in motion. Using the capacitance value
just derived for a parallel-plate capacitor, one can obtain the expression

8854 x 1074

X

C

where C is the capacitance in picofarads, A is the area of the plates in square millimeters,
and x is the (variable) distance in millimeters. It is important to observe that the change
in capacitance caused by the displacement of one of the plates is nonlinear, since the
capacitance varies as the inverse of the displacement. For small displacements, however,
the capacitance varies approximately in a linear fashion.

The sensitivity S of this motion transducer is defined as the slope of the change in
capacitance per change in displacement x, according to the relation

o_dC _ 88541074 pF
T dx 2x2 mm

Thus, the sensitivity increases for small displacements. This behavior can be verified by
plotting the capacitance as a function of x and noting that as x approaches zero, the slope
of the nonlinear C (x) curve becomes steeper (thus the greater sensitivity). Figure 4.8 de-
picts this behavior for a transducer with area equal to 10 mm?.

This simple capacitive displacement transducer actually finds use
in the popular capacitive (or condenser) microphone, in which the
sound pressure waves act to displace one of the capacitor plates. The
change in capacitance can then be converted to a change in voltage or

FIND IT

ON THE WEB

Capacitance versus displacement
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\
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Figure 4.8 Response of a capacitive displacement transducer
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(Concluded)

current by means of a suitable circuit. An extension of this concept that permits measure-
ment of differential pressures is shown in simplified form in Figure 4.9. In the figure, a
three-terminal variable capacitor is shown to be made up of two fixed surfaces (typically,
spherical depressions ground into glass disks and coated with a conducting material) and
of a deflecting plate (typically made of steel) sandwiched between the glass disks. Pres-
sure inlet orifices are provided, so that the deflecting plate can come into contact with the
fluid whose pressure it is measuring. When the pressure on both sides of the deflecting
plate is the same, the capacitance between terminals b and d, denoted by Cj,, will be
equal to that between terminals b and ¢, denoted by Cy,.. If any pressure differential exists,
the two capacitances will change, with an increase on the side where the deflecting plate
has come closer to the fixed surface and a corresponding decrease on the other side.

This behavior is ideally suited for the application of a bridge circuit, similar to the
Wheatstone bridge circuitillustrated in Example 2.14, and also shown in Figure 4.9. In the
bridge circuit, the output voltage v, is precisely balanced when the differential pressure
across the transducer is zero, but it will deviate from zero whenever the two capacitances
are not identical because of a pressure differential across the transducer. We shall analyze
the bridge circuit later.

Thin deflecting plate d

/leed surfaces

vs(®) :)

Pressure inlet

Che
c b d
o—foI—-o =
c b d Bridge configuration

Circuit model

Figure 4.9 Capacitive pressure transducer and related bridge circuit

The Ideal Inductor

The ideal inductor is an element that has the ability to store energy in a magnetic
field. Inductors are typically made by winding a coil of wire around a core, which
can be an insulator or a ferromagnetic material, as shown in Figure 4.10. When a
current flows through the coil, a magnetic field is established, as you may recall from
early physics experiments with electromagnets.? Just as we found an analogy between
electric and fluid circuits for the capacitor, we can describe a phenomenon similar
to inductance in hydraulic circuits, as explained in the sidebar. In an ideal inductor,
the resistance of the wire is zero, so that a constant current through the inductor will
flow freely without causing a voltage drop. In other words, the ideal inductor acts as a

2See also Chapter 16.
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L= L%’

(a) Circuit symbol

Toroidal inductor

(b) Magnetic flux lines in the vicinity of a current-carrying coil (c) Practical inductors

Figure 4.10 Inductance and practical inductors

short circuit in the presence of DC. If a time-varying voltage is established across the
inductor, a corresponding current will result, according to the following relationship:

dip (1)

t)y=1L
vr (1) dt

i-v relation for inductor 4.10)

where L is called the inductance of the coil and is measured in henrys (H), where
1H =1V-s/A (4.11)

Henrys are reasonable units for practical inductors; millihenrys (mH) and micro-
henrys (nH) are also used.

Itis instructive to compare equation 4.10, which defines the behavior of an ideal
inductor, with the expression relating capacitor current and voltage:

dvc (1)

ic(t) =C
ic(t) dr

@.12)
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Inertance

The fluid inertance para-
meter is analogous to induc-
tance in the electric circuit.
Fluid inertance, as the name
suggests, is caused by the
inertial properties, i.e., the
mass, of the fluid in motion.
As you know from physics, a
particle in motion has kinetic
energy associated with it;
fluid in motion consists of a
collection of particles, and it
also therefore must have ki-
netic energy storage proper-
ties. (think of water flowing
out of a fire hose!). The
equations that define the
analogy are given below

dq

AP=P1—P2=Ifftf
A Ldi
v=v—v=L—
1—v2 o

Figure 4.11 depicts the
analogy between electrical
inductance and fluid
inertance. These analogies
and the energy equations
that apply to electrical and
fluid circuit elements are
summarized in Table 4.2.

i —
Vi O— L0 2
+ Av —
—> D I 1
ar p 'f p
+ Ap -

Figure 4.11 Analogy
between fluid inertance and
electrical inductance
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‘We note that the roles of voltage and current are reversed in the two elements, but that
both are described by a differential equation of the same form. This duality between
inductors and capacitors can be exploited to derive the same basic results for the
inductor that we already have for the capacitor, simply by replacing the capacitance
parameter C with the inductance L and voltage with current (and vice versa) in
the equations we derived for the capacitor. Thus, the inductor current is found by
integrating the voltage across the inductor:

i —1 ’
L(r)_zﬁm

If the current flowing through the inductor at time ¢ = #, is known to be Iy, with

v (t) dt’ 4.13)

1 fo
Iy=ir(t =1t) = —f UL(I/) dt’ 4.14)
LJ o
then the inductor current can be found according to the equation
1 t
ir(t) = Zf v (t) dt' + I t>1 4.15)
fo

Series and parallel combinations of inductors behave as resistors, as illustrated in
Figure 4.12, and stated as follows:

Inductors in series add. Inductors in parallel combine according to the same
rules used for resistors connected in parallel.

Table 4.2 Analogy between electric and fluid circuits

Electrical element
Property or equation Hydraulic analogy
Potential variable Voltage or potential difference | Pressure difference
Flow variable Current flow Fluid volume flow rate
Resistance Resistor R Fluid resistor R ¢
Capacitance Capacitor C Fluid capacitor C ¢
Inductance Inductor L Fluid inertor /¢
Power dissipation P =i’R Py = quch
Potential energy storage | W, = %C v? W, = %C f p?
Kinetic energy storage Wi = %Li 2 Wi = %I f{[%

< LO1
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V([)LEQ =Li+Ly)+ L3

-2 o+

Ls
Inductances in series add

Inductances in parallel combine
like resistors in parallel

Figure 4.12 Combining inductors in a circuit

Itis very easy to prove that inductors in series combine as shown in Figure 4.12,
using the definition of equation 4.10. Consider the three inductors in series in the
circuit on the left of Figure 4.12. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

di(t) VL di(t) ny di(t)

t
v(®) d d d

vi() + i) +vi1(t) =L,

i (4.16)

=(L L L
(L1 + Ly + L3) i

Thus, the voltage across the three series inductors is the same that would be seen
across a single equivalent inductor Ly with Leq = L; + L» + L3, as illustrated
in Figure 4.12. You can easily use the same method to prove that the three parallel
inductors on the right half of Figure 4.12 combine as resistors in parallel do.

EXAMPLE 4.5 Calculating Inductor Voltage from Current <|_01

Problem

Calculate the voltage across the inductor from knowledge of its current.

Solution
Known Quantities: Inductor current; inductance value.
Find: Inductor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0 mA t < 1lms
0.1 0.1
—— 4+ —1¢ mA 1<t<5ms
4 4
ir(t) = 0.1 mA 5<t<9ms
0.1 0.1
13x — — —t mA 9<t<13ms
4 4
0 mA t > 13ms

L=10H
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Figure 4.14

The inductor current is plotted in Figure 4.13.
Assumptions: i;(t =0) <0.

Analysis: Using the defining differential relationship for the inductor, we may obtain the
voltage by differentiating the current:

dip (1)
dt

v(t) =L

Piecewise differentiating the expression for the inductor current, we obtain

ov t < 1ms
025V l<t<5ms
v (t) = ov 5<t<9ms
—-0.25V 9<t<13ms
ov t > 13 ms

The inductor voltage is plotted in Figure 4.14.

Comments: Note how the inductor voltage has the ability to change instantaneously!

CHECK YOUR UNDERSTANDING

The current waveform shown below flows through a 50-mH inductor. Plot the inductor voltage
v ().

i (7) (mA)

NN
0 12345678
t (ms)
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EXAMPLE 4.6 Calculating Inductor Current from Voltage LO1
Problem

Calculate the current through the inductor from knowledge of the terminal voltage and of the
initial current.

Solution
Known Quantities: Inductor voltage; initial condition (current at + = 0); inductance value.
Find: Inductor current.

Schematics, Diagrams, Circuits, and Given Data:

ov t<0s
v(t) = —10 mV O0<t<1s
ov t>1s

L =10 mH; ip(t=0=I0=0A
The terminal voltage is plotted in Figure 4.15(a).

Assumptions: i;(t =0) =1, =0.

0 0
1 -0.1
-2 -0.2 \\
~ 3 03 N\
E -4 <« 04
E -5 = -05
-6 < 06
> -7 0.7 \\
-8 -0.8 \
-9 -0.9
-10 -1
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
Time (s) Time (s)
(a) (b)

Figure 4.15
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Analysis: Using the defining integral relationship for the inductor, we may obtain the voltage
by integrating the current:

1 t

iL(t):z/ v(r) dt’ +ip(t) t>ty
L]

1/ﬂ( 10 x 1073) dt'+1 —_072t+0— tA 0<r<l1

LJo x °= o2 = =r=7°

-1A t>1s
The inductor current is plotted in Figure 4.15b.

Comments: Note how the inductor voltage has the ability to change instantaneously!

LO1 >

CHECK YOUR UNDERSTANDING

Find the maximum voltage across the inductor of Example 4.6 if the inductor current voltage
is described by iy (f) = 2t amperes for 0 <t < 2.

AW 0T Iomsuy

Energy Storage in Inductors

The magnetic energy stored in anideal inductor may be found from a power calculation
by following the same procedure employed for the ideal capacitor. The instantaneous
power in the inductor is given by

di®) _ d [%Lif(r)} @.17)

Pty =i () = iL()L — = = —

Integrating the power, we obtain the total energy stored in the inductor, as shown in
the following equation:

/ / d 1 . 7 ’
WL(r):fPL(r)dr :fﬁ [ZLzz(r )} dt (4.18)

1
Wr(t) = ELi f (1) Energy stored in an inductor (J)

Note, once again, the duality with the expression for the energy stored in a capacitor,
in equation 4.9.
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EXAMPLE 4.7 Energy Storage in an Ignition Coil <|_01

Problem

Determine the energy stored in an automotive ignition coil.

Solution
Known Quantities: Inductor current initial condition (current at # = 0); inductance value.
Find: Energy stored in inductor.
Schematics, Diagrams, Circuits, and Given Data: L = 10mH;i; = [, = 8 A.
Analysis:

1 1

WL=5L1'§=5 x 1072 x 64 = 32 x 107 = 320 mJ

Comments: A more detailed analysis of an automotive ignition coil is presented in Chapter
5 to accompany the discussion of transient voltages and currents.

CHECK YOUR UNDERSTANDING

Calculate and plot the inductor energy and power for a 50-mH inductor subject to the current
waveform shown below. What is the energy stored at t = 3 ms? Assume i (—oo) = 0.

i () (mA)

15
10
5

(NN
0 12345678

t (ms)

[(Meg=(@wg=1m

ISIMISYIO 0 } = (nd
swog > 7>¢ (M §TT°0—)UST— ¢-0T X 00)

sSwo9g < 7 9-01 X 679°0
sw9>7>¢ 001+ (¢ 01 X §T) — 19610 ¢ = ()M
swg>7>(0 [ -0l X629°¢ JIoMSUY

4.2 TIME-DEPENDENT SIGNAL SOURCES

In Chapter 2, the general concept of an ideal energy source was introduced. In this
chapter, it will be useful to specifically consider sources that generate time-varying
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voltages and currents and, in particular, sinusoidal sources. Figure 4.16 illustrates the
convention that will be employed to denote time-dependent signal sources.

v (0 (1) v (@), i1)

—o

Generalized time-dependent sources Sinusoidal source

Figure 4.16 Time-dependent signal sources

One of the most important classes of time-dependent signals is that of periodic
signals. These signals appear frequently in practical applications and are a useful
approximation of many physical phenomena. A periodic signal x (¢) is a signal that
satisfies the equation

x(t) =x(t+nT) n=123,... 4.19)

where T is the period of x (¢). Figure 4.17 illustrates a number of periodic waveforms
that are typically encountered in the study of electric circuits. Waveforms such as the
sine, triangle, square, pulse, and sawtooth waves are provided in the form of voltages
(or, less frequently, currents) by commercially available signal (or waveform) gen-
erators. Such instruments allow for selection of the waveform peak amplitude, and
of its period.

As stated in the introduction, sinusoidal waveforms constitute by far the most
important class of time-dependent signals. Figure 4.18 depicts the relevant parameters
of a sinusoidal waveform. A generalized sinusoid is defined as

x(t) = Acos(wt + ¢) 4.20)

where A is the amplitude, » the radian frequency, and ¢ the phase. Figure 4.18
summarizes the definitions of A, w, and ¢ for the waveforms

x1(t) = Acos(wt) and X (t) = Acos(wt + ¢)

where
1
f = natural frequency = T cycles/s, or Hz
w = radian frequency =2xf rad/s
At 4.21)
¢ =2m— rad
T
At
=360 — deg
T

The phase shift ¢ permits the representation of an arbitrary sinusoidal signal. Thus,
the choice of the reference cosine function to represent sinusoidal signals—arbitrary
as it may appear at first—does not restrict the ability to represent all sinusoids. For
example, one can represent a sine wave in terms of a cosine wave simply by introducing
a phase shift of 7 /2 rad:

Asin(wr) = A cos (wr - %) 4.22)
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Although one usually employs the variable o (in units of radians per second)
to denote sinusoidal frequency, it is common to refer to natural frequency f in units
of cycles per second, or hertz (Hz). The reader with some training in music theory
knows that a sinusoid represents what in music is called a pure tone; an A-440,
for example, is a tone at a frequency of 440 Hz. It is important to be aware of the
factor of 2z that differentiates radian frequency (in units of radians per second)
from natural frequency (in units of hertz). The distinction between the two units of
frequency—which are otherwise completely equivalent—is whether one chooses to
define frequency in terms of revolutions around a trigonometric circle (in which case
the resulting units are radians per second) or to interpret frequency as a repetition rate
(cycles per second), in which case the units are hertz. The relationship between the
two is the following:

w=2rf Radian frequency 4.23)

Why Sinusoids?

By now you should have developed a healthy curiosity about why so much attention
is being devoted to sinusoidal signals. Perhaps the simplest explanation is that the
electric power used for industrial and household applications worldwide is generated
and delivered in the form of either 50- or 60-Hz sinusoidal voltages and currents.
Chapter 7 will provide more details regarding the analysis of electric power circuits.
The more ambitious reader may explore the box “Fourier Analysis” in Chapter 6 to
obtain a more comprehensive explanation of the importance of sinusoidal signals.
Note that the methods developed in this section and the subsequent sections apply to
many engineering systems, not just to electric circuits, and will be encountered again
in the study of dynamic-system modeling and of control systems.

Average and RMS Values

Now that a number of different signal waveforms have been defined, it is appropriate
to define suitable measurements for quantifying the strength of a time-varying electric
signal. The most common types of measurements are the average (or DC) value of a
signal waveform—which corresponds to just measuring the mean voltage or current
over a period of time—and the root-mean-square (or rms) value, which takes into
account the fluctuations of the signal about its average value. Formally, the operation
of computing the average value of a signal corresponds to integrating the signal
waveform over some (presumably, suitably chosen) period of time. We define the
time-averaged value of a signal x (¢) as

1 T
(x()) = T f x() dt’ Average value 4.24)
0

where T is the period of integration. Figure 4.19 illustrates how this process does,
in fact, correspond to computing the average amplitude of x(¢) over a period of T
seconds.

© The McGraw-Hill
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MAKE THE
CONNECTION

Why Do We Use
Units of Radians
for the Phase
Angle ¢?

The engineer finds it frequ-
ently more intuitive to refer
to the phase angle in units
of degrees; however, to use
consistent units in the argu-
ment (the quantity in the
parentheses) of the expres-
sion x(¢) = A sin(wt + ¢), we
must express ¢ in units of
radians, since the units of wt
are [w]-[t] = (rad/s)-s = rad.
Thus, we will consistently
use units of radians for the
phase angle ¢ in all expres-
sions of the form x(z) = A sin
(ot + ¢). To be consistent is
especially important when
one is performing numerical
calculations; if one used
units of degrees for ¢ in
calculating the value of

x(t) = A sin(wt + ¢) ata
given ¢, the answer would
be incorrect.

Figure 4.19 Averaging a
signal waveform
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LO2 >

EXAMPLE 4.8 Average Value of Sinusoidal Waveform

Problem

Compute the average value of the signal x(¢) = 10 cos(100¢).

Solution
Known Quantities: Functional form of the periodic signal x ().
Find: Average value of x(¢).

Analysis: The signal is periodic with period T = 27 /w = 27 /100; thus we need to integrate
over only one period to compute the average value:

272/100
—/ x(t) dt' = —/ 10 cos(100¢) dt

— (sm(2ﬂ) —sin(0)) =0

(x(0)

Comments: The average value of a sinusoidal signal is zero, independent of its amplitude
and frequency.

CHECK YOUR UNDERSTANDING

Express the voltage v(r) = 155.6sin(377¢t 4+ 7/6) in cosine form. You should note that the
radian frequency w = 377 will recur very often, since 377 = 2w (60); that is, 377 is the radian
equivalent of the natural frequency of 60 cycles/s, which is the frequency of the electric power
generated in North America.

Compute the average value of the sawtooth waveform shown in the figure below.

v () (V)
i W

0 10 20 1 (ms)

Compute the average value of the shifted triangle wave shown below.

v(H) V)
3

0 5 10 t(ms)

AST=((a) A cT= (D) (¢/x—1,,£)s05 9°¢CT = (J)a SIoMSUY

The result of Example 4.8 can be generalized to state that
(Acos (wt +¢)) =0 4.25)
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a result that might be perplexing at first: If any sinusoidal voltage or current has
zero average value, is its average power equal to zero? Clearly, the answer must be
no. Otherwise, it would be impossible to illuminate households and streets and power
industrial machinery with 60-Hz sinusoidal current! There must be another way, then,
of quantifying the strength of an AC signal.

Very conveniently, a useful measure of the voltage of an AC waveform is the
rms value of the signal x(¢), defined as follows:

1 T
Xrms = 4 T f xX2(t")dt’ Root-mean-square value 4.26)
0

Note immediately that if x(¢) is a voltage, the resulting x,m,s will also have units of
volts. If you analyze equation 4.26, you can see that, in effect, the rms value consists
of the square root of the average (or mean) of the square of the signal. Thus, the
notation rms indicates exactly the operations performed on x (¢) in order to obtain its
rms value.

The definition of rms value does not help explain why one might be interested
in using this quantity. The usefulness of rms values for AC signals in general, and
for AC voltages and current in particular, can be explained easily with reference to
Figure 4.20. In this figure, the same resistor is connected to two different voltage
sources: a DC source and an AC source. We now ask, What is the effective value
of the current from the DC source such that the average power dissipated by the
resistor in the DC circuit is exactly the same as the average power dissipated by the
same resistor in the AC circuit? The direct current /¢ is called the effective value of
the alternating current, which is denoted by i, (). To answer this question, we assume
that v,.(¢#) and therefore i,.(¢) are periodic signals with period 7. We then use the
definition of average value of a signal given in equation 4.24 to compute the total
energy dissipated by R during one period in the circuit of Figure 4.20(b):

T T
W =TPyx =T (p(t)) = f p)dt = f Ri2 (¢ dt' = I%R 4.27)
0 0

T
It = | f 2. dt' = I 4.28)
0

Thus,

A
YVVy
=

Vo = 7, \ER vac<r+> (t) @

L

(@ (b)

Figure 4.20 AC and DC circuits used to
illustrate the concept of effective and rms values
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That is,

The rms, or effective, value of the current i,.(¢) is the DC that causes the same
average power (or energy) to be dissipated by the resistor.

From here on we shall use the notation Vs, or \7, and [y, OT I , to refer to the
effective (or rms) value of a voltage or current.

LO2 >

EXAMPLE 4.9 RMS Value of Sinusoidal Waveform

Problem

Compute the rms value of the sinusoidal current i (#) = I cos(wt).

Solution
Known Quantities: Functional form of the periodic signal i (¢).
Find: RMS value of i (¢).

Analysis: Applying the definition of rms value in equation 4.26, we compute

1 T w 27w
fms = 1 = / P2 dt' = | — / 17 cos*(wt') dt’
T 0 2 0
o (7011
= [— I? | = 4+ = cosRut') | dt’
\/271/0 [2+200s(w )i|

1 27 /w 12
— |+ 2 ~_ cosQat) df’
2 T )y 2

At this point, we recognize that the integral under the square root sign is equal to zero (see
Example 4.8), because we are integrating a sinusoidal waveform over two periods. Hence,

. 1
Ims = —= = 0.7071

2

where [ is the peak value of the waveform i (¢).

Comments: The rms value of a sinusoidal signal is equal to 0.707 times the peak value,
independent of its amplitude and frequency.

CHECK YOUR UNDERSTANDING

Find the rms value of the sawtooth wave of the exercise accompanying Example 4.8.

Find the rms value of the half cosine wave shown in the next figure.
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x (1)

In

_T T 2T
2 0 3 2 2n 2 ot (rad)
x(t)=cost for%ﬁwl<g
=0 for%s(nm%n o=1

ASO fA 68°C sIomsuy

Example 4.9 illustrates how the rms value of a sinusoid is proportional to its
peak amplitude. The factor of 0.707 = 1/+/2 is a useful number to remember, since
it applies to any sinusoidal signal. It is not, however, generally applicable to signal
waveforms other than sinusoids, as the Check Your Understanding exercises have
illustrated.

4.3 SOLUTION OF CIRCUITS CONTAINING
ENERGY STORAGE ELEMENTS
(DYNAMIC CIRCUITS)

Sections 4.1 and 4.2 introduced energy storage elements and time-dependent signal

sources. The logical next task is to analyze the behavior of circuits containing such

elements. The major difference between the analysis of the resistive circuits studied in

Chapters 2 and 3 and the circuits we explore in the remainder of this chapter is that now o™

the equations that result from applying Kirchhoff’s laws are differential equations, {9)

as opposed to the algebraic equations obtained in solving resistive circuits. Consider,

for example, the circuit of Figure 4.21, which consists of the series connection of a

voltage source, a resistor, and a capacitor. Applying KCL at the node connecting the A circuit containing energy-storage

. . . .. . . . elements is described by a
resistor to the capacitor and using the definition of capacitor current in equation 4.4, gitferential equation. lee

we obtain the following equations: differential equation describing the
series RC circuit shown is
. vs(t) —vc(t) . dvc (1) dic 1 . _d
ix(t) = == =) =C— 4.29) @ RO d
+ Vg —
Or AVAVAVAV .
R lcl
el L Lty = -t 430) W]
—VUc () = —vgl . E
dic " RC VT RC so@ T ez
Equation 4.30 is a first-order, linear, ordinary differential equation in the variable vc.
Alternatively, we could derive an equivalent relationship by applying KVL around J_

the circuit of Figure 4.21:

@.31) Flgl..lr.'e 4.21 Circuit
containing energy storage
element

—vs(t) + vg(t) +vc () =0

Observing that iz (t) = ic(¢) and using the capacitor equation 4.5, we can write

t

—vg(t) + Ric(t) + éf ic(thdt' =0 4.32)

—00
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Equation 4.32 is an integral equation, which may be converted to the more familiar
form of a differential equation by differentiating both sides; recalling that

d t
— [f ic(r’)dr’] =ic(t) (4.33)
dt | J_s
we obtain the first-order, linear, ordinary differential equation
dic (1) 1 . 1 dvs(t)
—ic(t) = — 4.34
ar TRCODTR T4 @.34)

Equations 4.30 and 4.34 are very similar; the principal differences are the variable in
the differential equation [vc (¢) versus ic(¢)] and the right-hand side. Solving either
equation for the unknown variable permits the computation of all voltages and currents
in the circuit.

Note to the Instructor: If so desired, the remainder of this
chapter can be skipped, and the course can continue with
Chapter 5 without any loss of continuity.

Forced Response of Circuits Excited
by Sinusoidal Sources

Consider again the circuit of Figure 4.21, where now the external source produces a
sinusoidal voltage, described by the expression
vs(t) =V cos wt 4.35)

Substituting the expression V cos(wt) in place of the source voltage vg(¢) in the differ-
ential equation obtained earlier (equation 4.30), we obtain the following differential
equation:

d

1 1
— —vec = —V coswt 4.36
TR TRl Tohii (4.36)

Since the forcing function is a sinusoid, the solution may also be assumed to be of
the same form. An expression for v¢ (¢) is then

ve(t) = Asinwt + B cos wt 4.37)
which is equivalent to

ve (t) = C cos(wt + @) (4.38)
Substituting equation 4.37 in the differential equation for ve (t) and solving for the

coefficients A and B yield the expression

1
Awcoswt — Bwsinwt + — (A sinwt + B cos wt)
. RC (4.39)
= —V coswt
RC COs @

and if the coefficients of like terms are grouped, the following equation is obtained:

A o)sinar+ (Aot B — Y st =0 (4.40)
RC w wl w RC RC COSwt = .
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The coefficients of sin wt and cos wt must both be identically zero in order for equation
4.40 to hold. Thus,

and 4.41)

The unknown coefficients A and B may now be determined by solving equation 4.41:
B VwRC
1+ w*(RC)?
B 1%
1+ w*(RC)?
Thus, the solution for v¢ (¢) may be written as follows:
VwRC
1 + w?(RC)?
This response is plotted in Figure 4.22.

The solution method outlined in the previous paragraphs can become quite
complicated for circuits containing a large number of elements; in particular, one
may need to solve higher-order differential equations if more than one energy storage
element is present in the circuit. A simpler and preferred method for the solution
of AC circuits is presented in Section 4.4. This brief section has provided a simple,

but complete, illustration of the key elements of AC circuit analysis. These can be
summarized in the following statement:

(4.42)

Vv
sin wt + T o2 (RC)2 cos wt 4.43)

ve(®) = T ?(RC)?

In a sinusoidally excited linear circuit, all branch voltages and currents are sinu-
soids at the same frequency as the excitation signal. The amplitudes of these volt-
ages and currents are a scaled version of the excitation amplitude, and the volt-
ages and currents may be shifted in phase with respect to the excitation signal.

These observations indicate that three parameters uniquely define a sinusoid: fre-
quency, amplitude, and phase. But if this is the case, is it necessary to carry the
“excess luggage,” that is, the sinusoidal functions? Might it be possible to simply
keep track of the three parameters just mentioned? Fortunately, the answers to these
two questions are no and yes, respectively. Section 4.4 describes the use of a notation
that, with the aid of complex algebra, eliminates the need for the sinusoidal functions
of time, and for the formulation and solution of differential equations, permitting the
use of simpler algebraic methods.

4.4 PHASOR SOLUTION OF CIRCUITS WITH
SINUSOIDAL EXCITATION

In this section, we introduce an efficient notation to make it possible to represent
sinusoidal signals as complex numbers, and to eliminate the need for solving differ-
ential equations. The student who needs a brief review of complex algebra will find a
reasonably complete treatment in Appendix A, including solved examples and Check
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Figure 4.22 Waveforms for
the AC circuit of Figure 4.21
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Your Understanding exercises. For the remainder of the chapter, it will be assumed
that you are familiar with both the rectangular and the polar forms of complex num-
ber coordinates; with the conversion between these two forms; and with the basic
operations of addition, subtraction, multiplication, and division of complex numbers.

Euler’s Identity

Named after the Swiss mathematician Leonhard Euler (the last name is pronounced
“Qiler”), Euler’s identity forms the basis of phasor notation. Simply stated, the identity
defines the complex exponential ¢/ as a point in the complex plane, which may be
represented by real and imaginary components:

e/’ = cos® + jsino 4.44)
Leonhard Euler (1707-1783). Figure 4.1.23 illustrates how the eomplex exponential may be visgalized. as a point (or
Photograph courtesy of vector, if referenced to the origin) in the complex plane. Note immediately that the
Deutsches Museum, Munich. magnitude of e/ 0 is equal to 1:
le?] =1 (4.45)
Im since
s |cosO + jsin@] = vcos2 6 + sin?6 = 1 (4.46)
_ RS 4 and note also that writing Euler’s identity corresponds to equating the polar form of a
s 9$ v dCh complex number to its rectangular form. For example, consider a vector of length A
-1 ~cos6~ 1/ ! Re  making an angle 6 with the real axis. The following equation illustrates the relationship
between the rectangular and polar forms:
= Ae’’ = Acos® + jAsingd = AL (4.47)
e/=cos 0 +;sin 6 In effect, Euler’s identity is simply a trigonometric relationship in the complex plane.
Figure 4.23 Euler’s identity
Phasors

To see how complex numbers can be used to represent sinusoidal signals, rewrite the
expression for a generalized sinusoid in light of Euler’s equation:

Acos(wt + 0) = Re (Ae/ @ +9) (4.48)
This equality is easily verified by expanding the right-hand side, as follows:
Re (Ae/@+9) = Re [A cos(wt + 0) + jAsin(wt + 6)]
= Acos(wt + 0)
We see, then, that it is possible to express a generalized sinusoid as the real part of
a complex vector whose argument, or angle, is given by wt + 6 and whose length,
or magnitude, is equal to the peak amplitude of the sinusoid. The complex phasor

corresponding to the sinusoidal signal A cos(wt + 0) is therefore defined to be the
complex number Ae/?:

Ae’? = complex phasor notation for A cos(wt 4+ 6) = AZ60 (4.49)

It is important to explicitly point out that this is a definition. Phasor notation arises
from equation 4.48; however, this expression is simplified (for convenience, as will
be promptly shown) by removing the “real part of” operator (Re) and factoring out
and deleting the term ¢/“, Equation 4.50 illustrates the simplification:

Acos(wt + 6) = Re (A4e/ @) = Re (4e/?e/™") (4.50)



@ ‘ Rizzoni: Principles and I. Circuits 4. AC Network Analysis © The McGraw-Hill
Applications of Electrical Companies, 2007
Engineering, Fifth Edition

Part I Circuits

The reason for this simplification is simply mathematical convenience, as will become
apparent in the following examples; you will have to remember that the ¢/’ term that
was removed from the complex form of the sinusoid is really still present, indicating
the specific frequency of the sinusoidal signal w. With these caveats, you should now
be prepared to use the newly found phasor to analyze AC circuits. The following
comments summarize the important points developed thus far in the section. Please
note that the concept of phasor has no real physical significance. It is a convenient
mathematical tool that simplifies the solution of AC circuits.

< LO4

. Any sinusoidal signal may be mathematically represented in one of two

ways: a time-domain form
v(t) = Acos(wt + 60)

and a frequency-domain (or phasor) form
V(jw) = Ael? = A0

Note the jo in the notation V(jw), indicating the e/’ dependence of the
phasor. In the remainder of this chapter, bold uppercase quantities indicate
phasor voltages or currents.

. A phasor is a complex number, expressed in polar form, consisting of a

magnitude equal to the peak amplitude of the sinusoidal signal and a
phase angle equal to the phase shift of the sinusoidal signal referenced to
a cosine signal.

. When one is using phasor notation, it is important to note the specific

frequency o of the sinusoidal signal, since this is not explicitly apparent in
the phasor expression.

177

EXAMPLE 4.10 Addition of Two Sinusoidal Sources in Phasor

Problem

< LO4
Notation

Compute the phasor voltage resulting from the series connection of two sinusoidal voltage  V2() e
sources (Figure 4.24).

vi(f) @

Solution

Known Quantities: l

Find:

vi (1) = 15 cos (377: n %) \

vy (1) = 15 cos (377: n ;T—Z) \ s

Equivalent phasor voltage vg(t). Figure 4.24
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Analysis: Write the two voltages in phasor form:
b4
Vi(jo) = 1542 v

Va(jw) = 1567712 — 1541”—2 \
Convert the phasor voltages from polar to rectangular form:

Vi(jw) =10.61 + j10.61 V
Vy(jw) = 1449+ j3.88 V

Then
Vs(jo) = Vi(jo) + Va(jw) = 25.10 + j14.49 = 28.98¢/™/° = 28.984% v
Now we can convert Vs(jw) to its time-domain form:

vs(t) = 28.98 cos (377: n %) \

Comments: Note that we could have obtained the same result by adding the two sinusoids in
the time domain, using trigonometric identities:

vi (1) = 15 cos (377: n %) = 15cos % cos(377t) — 15 sin % sin(3771)  V

(1) = 15 cos (377: n ;T_z) = 15cos % cos(377¢) — 15 sin 1”—2 sin(3771)  V

Combining like terms, we obtain
0+ v =15 ( i ”) (377 ~ 15 (si T 4 sin 2 ) in(3771)
v v = COS — COS — ) cOoS — s — sSin — ) Sin
! : 4 12 4 12

= 15[1.673 cos(377t) — 0.966sin(377¢)]

0.966

= 15/(1.673)2 + (0.966)? x cos [377: + arctan (—1'673)]

—15 [1.93200s (377: + %)] — 28.98 cos (377: + %) v

The above expression is, of course, identical to the one obtained by using phasor notation,
but it required a greater amount of computation. In general, phasor analysis greatly simplifies
calculations related to sinusoidal voltages and currents.

CHECK YOUR UNDERSTANDING

Add the sinusoidal voltages v, () = A cos(wt + ¢) and v,(t) = B cos(wt + 6) using phasor
notation, and then convert back to time-domain form.

a. A=15V,¢ =10 B =32V,0 =25
b. A=50V,¢ =—-60° B=24V,0 =15°.

(PRI Z9S9"() — I@)S098°09 = Ca + la (q)
(PRI QZCE ) + 1®)S00 [9°p = Ta + la (B) :STomsuy
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It should be apparent by now that phasor notation can be a very efficient tech-
nique to solve AC circuit problems. The following sections continue to develop this
new method to build your confidence in using it.

Superposition of AC Signals

Example 4.10 explored the combined effect of two sinusoidal sources of different
phase and amplitude, but of the same frequency. It is important to realize that the
simple answer obtained there does not apply to the superposition of two (or more)
sinusoidal sources that are not at the same frequency. In this subsection, the case of
two sinusoidal sources oscillating at different frequencies is used to illustrate how
phasor analysis can deal with this, more general case.

The circuit shown in Figure 4.25 depicts a source excited by two current sources
connected in parallel, where

L) L)

i1(t) = Ay cos(wt)

) Ao cos 4.51)
i2(f) = Az cos(wnt) Figure 4.25 Superposition
f AC
The load current is equal to the sum of the two source currents; that is, °
i (t) =i (t) +i2(t) 4.52)
or, in phasor form,
LL=L+1L 4.53)

At this point, you might be tempted to write I, and I, in a more explicit phasor form
as

I 1= A 1€ jo
o 4.54)
12 = A2€ J

and to add the two phasors, using the familiar techniques of complex algebra. However,
this approach would be incorrect. Whenever a sinusoidal signal is expressed in phasor
notation, the term ¢/’ is implicitly present, where w is the actual radian frequency
of the signal. In our example, the two frequencies are not the same, as can be verified
by writing the phasor currents in the form of equation 4.50:

I, = Re (A;e/%i™)
e (4.55)
I, = Re (A,e/%i?")
Since phasor notation does not explicitly include the /' factor, this can lead to
serious errors if you are not careful! The two phasors of equation 4.54 cannot be
added, but must be kept separate; thus, the only unambiguous expression for the load
current in this case is equation 4.52. To complete the analysis of any circuit with
multiple sinusoidal sources at different frequencies using phasors, it is necessary
to solve the circuit separately for each signal and then add the individual answers
obtained for the different excitation sources. Example 4.11 illustrates the response of
a circuit with two separate AC excitations using AC superposition.
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|_04> EXAMPLE 4.11 AC Superposition

Problem
2 VR(D Compute the voltages vg;(¢) and vg,(¢) in the circuit of Figure 4.26.
‘V‘V‘VAV
4 2
is(t nZER t
s() VRl(_):> 1 vs(?) Solution
Known Quantities:

R =150Q,R,=50Q
is(t) = 0.5cos[27(1001)] A

Figure 4.26
vs(t) = 20cos[27(1,000¢)] v
Find: vg;(t) and vgy(2).
Analysis: Since the two sources are at different frequencies, we must compute a separate
solution for each. Consider the current source first, with the voltage source set to zero (short
LVRD circuit) as shown in Figure 4.27. The circuit thus obtained is a simple current divider. Write
A'%AVA' the source current in phasor notation:
+ 2 ;
> j = Jjo = =
i) ( VR[(Z)SERl Is(jw) = 0.5¢ 0.5£0 A o = 27100 rad/s
-7 Then
Ve(Is) =1 ks R, =0.5 20 30 150 = 18.75 £0 v
Flgure 4.27 RI\1S) = SR1+R2 =Y. 150+50 - .
w =27 (100) rad/s
Vea(Is) =1 Ry R, =0.5£0 150 50 = 18.75 £0 v
RS R 4R, T 150+50) 7~

w = 27 (100) rad/s

Next, we consider the voltage source, with the current source set to zero (open circuit), as

LR shown in Figure 4.28. We first write the source voltage in phasor notation:

. R, Vs(jow) = 20e/° = 2020 v o = 27(1,000) rad/s
Vi, () EE R vs(®) Then we apply the voltage divider law, to obtain

i V¢i(Vs) =V Ry —2040( 150 >—1540 v
Figure 4.28 R SR1+R2 - 150+50)

w = 27 (1,000) rad/s
R, 50
Vga(Vg) =—Vg——— = 2040 ———— | = —5£40 =547 v
Ri+ R, 150 + 50

w = 27 (1,000) rad/s

Now we can determine the voltage across each resistor by adding the contributions from each
source and converting the phasor form to time-domain representation:

Ve = Vei(Is) + Vei(Vs)
Vi (t) = 18.75 cos[27(100¢)] + 15cos[27(1,0006)]  V

©
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and
Vga = Vea(Is) + Vo (Vs)
VRa(t) = 18.75cos[27(100¢)] + 5 cos[27(1,000¢) + 7] \"

Comments: Note that it is impossible to simplify the final expression any further, because the
two components of each voltage are at different frequencies.

CHECK YOUR UNDERSTANDING

Add the sinusoidal currents i1 (#) = A cos(wt 4+ ¢) and i,(¢) = B cos(wt + ) for
a. A=0.09A,¢=72°% B =0.12A,6 =20°.
b. A=0.82A,¢=-30B=05A,0=-36°

(LEYS'0 — 1)s00T¢ | = U+ 11(q) H(EEL'0 + 1@)S00 6170 = 2 + 1 (B) :S1omsuy

Impedance

We now analyze the i-v relationship of the three ideal circuit elements in light of
the new phasor notation. The result will be a new formulation in which resistors,
capacitors, and inductors will be described in the same notation. A direct consequence
of this result will be that the circuit theorems of Chapter 3 will be extended to AC
circuits. In the context of AC circuits, any one of the three ideal circuit elements defined
so far will be described by a parameter called impedance, which may be viewed as a
complex resistance. The impedance concept is equivalent to stating that capacitors and
inductors act as frequency-dependent resistors, that is, as resistors whose resistance

is a function of the frequency of the sinusoidal excitation. Figure 4.29 depicts the
same circuit represented in conventional form (top) and in phasor-impedance form i) c v

(bottom); the latter representation explicitly shows phasor voltages and currents and
treats the circuit element as a generalized “impedance.” It will presently be shown that

each of the three ideal circuit elements may be represented by one such impedance AC circuits
element.

Let the source voltage in the circuit of Figure 4.29 be defined by

vs(t) = Acoswt  or  Vs(jw) = Ae’" = AL0 (4.56)

without loss of generality. Then the current i (¢) is defined by the i-v relationship
for each circuit element. Let us examine the frequency-dependent properties of the
resistor, inductor, and capacitor, one at a time.

The Resistor AC circuits in

phasor/impedance form
Ohm’s law dictates the well-known relationship v = iR. In the case of sinusoidal

sources, then, the current flowing through the resistor of Figure 4.29 may be expressed
as

Figure 4.29 The
impedance element

i(t) = USIS) - %Cos wt (4.57)
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Converting the voltage vg(¢) and the current i (¢) to phasor notation, we obtain the
following expressions:

V(jo) = AL0

_ A (4.58)
I(jo) = 2 £0

The relationship between Vz and I in the complex plane is shown in Figure 4.30.
Finally, the impedance of the resistor is defined as the ratio of the phasor voltage
across the resistor to the phasor current flowing through it, and the symbol Zy, is used
to denote it:

Vz(jow) _
I(jw)

Zr(jow) = R Impedance of a resistor 4.59)

Equation 4.59 corresponds to Ohm’s law in phasor form, and the result should be
intuitively appealing: Ohm’s law applies to a resistor independent of the particular
form of the voltages and currents (whether AC or DC, for instance). The ratio of phasor
voltage to phasor current has a very simple form in the case of the resistor. In general,
however, the impedance of an element is a complex function of frequency, as it must
be, since it is the ratio of two phasor quantities, which are frequency-dependent. This
property will become apparent when the impedances of the inductor and capacitor
are defined.

The Inductor
Recall the defining relationships for the ideal inductor (equations 4.10 and 4.13),

repeated here for convenience:

dip (1)
dt

1
ir(t) = ZfUL(f/)

Let vy (¢) = vs(¢) and iz (t) = i(¢t) in the circuit of Figure 4.29. Then the following
expression may be derived for the inductor current:

vp(t) =L
(4.60)

1
ir() =i(t) = zfvs(r’) dt’
ir(t) = %fAcos ot dt’ 4.61)

= — sin wt
wlL

Note how a dependence on the radian frequency of the source is clearly present in the
expression for the inductor current. Further, the inductor current is shifted in phase
(by 90°) with respect to the voltage. This fact can be seen by writing the inductor
voltage and current in time-domain form:

vg(t) = v, (t) = Acoswt
4.62)

A T
i(0) = iL(t) = — cos (a)r . 5)
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It is evident that the current is not just a scaled version of the source voltage, as it was
for the resistor. Its magnitude depends on the frequency w, and it is shifted (delayed)
in phase by 7 /2 rad, or 90°. Using phasor notation, equation 4.62 becomes

Vz(jw) = AZ0
Iiw) = A P T (4.63)
J@)= wlL 2

The relationship between the phasor voltage and current is shown in Figure 4.31.
Thus, the impedance of the inductor is defined as follows:

. Vz(jo) T Impedance of
Z (jo) = o) = a)LAE = joL an inductor 4.64) CLO4
Note that the inductor now appears to behave as a complex frequency-dependent Imaginary

resistor, and that the magnitude of this complex resistor wL is proportional to the
signal frequency w. Thus, an inductor will “impede” current flow in proportion to the
sinusoidal frequency of the source signal. This means that at low signal frequencies,
an inductor acts somewhat as a short circuit, while at high frequencies it tends to
behave more as an open circuit.

I / .2 Rel

The Capacitor

Figure 4.31 Phasor
voltage and current
relationships for an

dve ( f) inductor
dt

Ananalogous procedure may be followed to derive the equivalent result for a capacitor.
Beginning with the defining relationships for the ideal capacitor

ictt)y=C
) (4.65)
ve(r) = Efic(r’) dt’

withic =i and vc = vg in Figure 4.29, we can express the capacitor current as

dvc ()

ic(t) =C
ic(t) di

d
=C —(Acoswt
ar Acosen) (4.66)
= —C(Awsin wt)
= wCA cos (wr + z)
= '+ 3
so that, in phasor form,
Vz(jw) = AZ0

. 4.67)
I(jw) = wCALZ
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4 Imaginary The relationship between the phasor voltage and current is shown in Figure 4.32. The
impedance of the ideal capacitor Z¢ (jw) is therefore defined as follows:

L v _ Vz(jw) 1 —n
s Ze(jo)= ———=—2L—
[\ [(jo) ooC 2 Impedance of 4.68)
"~ Real —j 1 a capacitor )
i T wC JjoC
Figure 4.32 Phasor

voltage and current

relationships for a . /2 . .
capacitor where we have used the fact that 1/j = e=/7/2 = —j. Thus, the impedance of a

capacitor is also a frequency-dependent complex quantity, with the impedance of the
capacitor varying as an inverse function of frequency; and so a capacitor acts as a
short circuit at high frequencies, whereas it behaves more as an open circuit at low
frequencies. Figure 4.33 depicts Z¢ (jw) in the complex plane, alongside Zg (jw)

and Z; (jw).
The impedance parameter defined in this section is extremely useful in solving
AC circuit analysis problems, because it will make it possible to take advantage of
most of the network theorems developed for DC circuits by replacing resistances with
complex-valued impedances. Examples 4.12 to 4.14 illustrate how branches contain-
% ing series and parallel elements may be reduced to a single equivalent impedance,

Im

® oL

z

\ 7 = jol much in the same way as resistive circuits were reduced to equivalent forms. It is
R

important to emphasize that although the impedance of simple circuit elements is
either purely real (for resistors) or purely imaginary (for capacitors and inductors),

T
2 the general definition of impedance for an arbitrary circuit must allow for the possi-
Ze bility of having both a real and an imaginary part, since practical circuits are made
| up of more or less complex interconnections of different circuit elements. In its most
“oC = 1—C general form, the impedance of a circuit element is defined as the sum of a real part
and an imaginary part

Z(jo)=R(jo)+ jX(jw) 4.69)

Figure 4.33 Impedances of
R, L, and C in the complex where R is called the AC resistance and X is called the reactance. The frequency
plane dependence of R and X has been indicated explicitly, since it is possible for a cir-

cuit to have a frequency-dependent resistance. Note that the reactances of equations
4.64 and 4.68 have units of ohms, and that inductive reactance is always positive,
while capacitive reactance is always negative. Examples 4.12 to 4.14 illustrate how
a complex impedance containing both real and imaginary parts arises in a circuit.
Impedance is another useful mathematical tool that is convenient in solving AC cir-
cuits, but has no real physical significance. Please note that the impedance Z(jw) is
not a phasor, but just a complex number.

|_04> EXAMPLE 4.12 Impedance of a Practical Capacitor

Problem

A practical capacitor can be modeled by an ideal capacitor in parallel with a resistor. The
parallel resistance represents leakage losses in the capacitor and is usually quite large. Find the
impedance of a practical capacitor at the radian frequency w = 377 rad/s (60 Hz). How will
the impedance change if the capacitor is used at a much higher frequency, say, 800 kHz?
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Solution
Known Quantities: Figure 4.34; C; = 0.001 uF =1 x 10° F; R, = 1 MQ. Q
Find: The equivalent impedance of the parallel circuit Z;.
Analysis: To determine the equivalent impedance, we combine the two impedances in parallel. R EE T4
1 Ri(1/jwCh) R
Z] = R] N = - == N
joC R +1/joC, 1+ joCR, o
Substituting numerical values, we find
106 106 o
Zi(w=377) = - = -
1+ 7377 x 10 x 102 1+ j0.377
=9.3571 x 10°£(—0.3605) Q
Z
The impedance of the capacitor alone at this frequency would be : |:]
1 6 b4
Ze(@=37T) = ———— =2.6525 x 105/ (——) Q
Jj377 x 10~° 2 o
You can easily see that the parallel impedance Z, is quite different from the impedance of the Figure 4.34
capacitor alone, Z¢;.
If the frequency is increased to 800 kHz, or 1600 x 10* rad/s—a radio frequency in the
AM range—we can recompute the impedance to be
5 106
Zi(w = 1600 x 10°) = -
1+ j1600x x 103 x 1072 x 10°
10° 198.94(—1.5706) Q2
T 1416000 T ‘
The impedance of the capacitor alone at this frequency would be
Ze(o = 16007 x 10%) ! 198.9 4( ”) Q
w= = = . _Z
Cl 716007 x 10° x 102 2
Now, the impedances Z; and Z; are virtually identical (note that 7 /2 = 1.5708 rad). Thus,
the effect of the parallel resistance is negligible at high frequencies.
Comments: The effect of the parallel resistance at the lower frequency (corresponding to
the well-known 60-Hz AC power frequency) is significant: The effective impedance of the
practical capacitor is substantially different from that of the ideal capacitor. On the other hand,
at much higher frequency, the parallel resistance has an impedance so much larger than that of
the capacitor that it effectively acts as an open circuit, and there is no difference between the
ideal and practical capacitor impedances. This example suggests that the behavior of a circuit
element depends very much on the frequency of the voltages and currents in the circuit.
EXAMPLE 4.13 Impedance of a Practical Inductor <|_04

Problem

A practical inductor can be modeled by an ideal inductor in series with a resistor. Figure 4.35
shows a toroidal (doughnut-shaped) inductor. The series resistance represents the resistance
of the coil wire and is usually small. Find the range of frequencies over which the impedance
of this practical inductor is largely inductive (i.e., due to the inductance in the circuit). We
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0.25 cm

D 0.5 cm

Cross section

Figure 4.35 A practical
inductor
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Figure 4.36
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shall consider the impedance to be inductive if the impedance of the inductor in the circuit of
Figure 4.36 is at least 10 times as large as that of the resistor.

Solution

Known Quantities: L = 0.098 H; lead length = /. = 2 x 10 cm; n = 250 turns; wire is
30-gauge. Resistance of 30-gauge wire = 0.344 Q/m.

Find: The range of frequencies over which the practical inductor acts nearly as an ideal
inductor.

Analysis: We first determine the equivalent resistance of the wire used in the practical inductor,
using the cross section as an indication of the wire length /,, in the coil:

1, =250(2 x 0.25 +2 x 0.5) =375 cm

| = total length =/, + 1. = 375 +20 =395 cm

The total resistance is therefore
R =0.344 Q/m x 0.395m =0.136

Thus, we wish to determine the range of radian frequencies, w, over which the magnitude of
joL is greater than 10 x 0.136 Q:

1.36 1.36
w> — = —— = 1.39rad/s
L 0.098

Alternatively, the range is f = w/27 > 0.22 Hz.

wlL > 1.36 or

Comments: Note how the resistance of the coil wire is relatively insignificant. This is true
because the inductor is rather large; wire resistance can become significant for very small
inductance values. At high frequencies, a capacitance should be added to the model because
of the effect of the insulator separating the coil wires.

RiZ1000Q

L 10mH

ZEQ

L

<>
50Q3R, C == 10yF
3

Figure 4.37

EXAMPLE 4.14 Impedance of a More Complex Circuit

Problem

Find the equivalent impedance of the circuit shown in Figure 4.37.

Solution
Known Quantities: « = 10* rad/s; Ry = 100 Q; L = 10 mH; R, =50 Q; C = 10 uE.
Find: The equivalent impedance of the series-parallel circuit.

Analysis: We determine first the parallel impedance Z;; of the R,-C circuit.

7 —R 1 _ Ry(1/jwC) _ Ry
1= joC ~ Ri+1/joC ~ 1+ joCR,
50 50

=1.92— j9.62

T14/10° x10x10°x50 1+ 5

=9.81/(—1.3734) @
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Next, we determine the equivalent impedance Z:
Zeg = R + joL 4+ Z; =100+ j10* x 1072 4 1.92 — j9.62
= 101.92 + j90.38 = 136.2.£0.723

Is this impedance inductive or capacitive?

Circuits

© The McGraw-Hill
Companies, 2007

187

Comments: At the frequency used in this example, the circuit has an inductive impedance,

since the reactance is positive (or, alternatively, the phase angle is positive).

CHECK YOUR UNDERSTANDING

Compute the equivalent impedance of the circuit of Example 4.14 for « = 1,000 and 100,000

rad/s.

Calculate the equivalent series capacitance of the parallel R,C circuit of Example 4.14 at the

frequency w = 10 rad/s.

A°0=0:z0= "X 666/ + 001 = (000°001)Z 01 — 0¥1 = (000°1) Z :s1omsuy

Capacitive Displacement Transducer

Earlier, we introduced the idea of a capacitive displacement transducer when we con-
sidered a parallel-plate capacitor composed of a fixed plate and a movable plate. The
capacitance of this variable capacitor was shown to be a nonlinear function of the posi-
tion of the movable plate x (see Figure 4.8). In this example, we show that under certain
conditions the impedance of the capacitor varies as a /inear function of displacement—
that is, the movable-plate capacitor can serve as a linear transducer.

Recall the expression derived earlier

_ 8.854x 107°A

X

C PF

where C is the capacitance in picofarads, A is the area of the plates in millimeters square,
and x is the (variable) distance in millimeters. If the capacitor is placed in an AC circuit,
its impedance will be determined by the expression

Z
¢ joC

so that
x

= jw8.854A

Thus, at a fixed frequency w, the impedance of the capacitor will vary linearly with
displacement. This property may be exploited in the bridge circuit of Figure 4.9, where
a differential pressure transducer was shown as being made of two movable-plate

(Continued)

MEASUREMENTS

g |
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capacitors, such that if the capacitance of one increased as a consequence of a pres-
sure differential across the transducer, the capacitance of the other had to decrease by a
corresponding amount (at least for small displacements). The circuit is shown again in
Figure 4.38, where two resistors have been connected in the bridge along with the variable
capacitors [denoted by C (x)]. The bridge is excited by a sinusoidal source.

Figure 4.38 Bridge circuit
for capacitive displacement
transducer

Using phasor notation, we can express the output voltage as follows:

Zc, (x) Rk >
Zey X)) +Ze, (x)  Ri+ Ry

Vout (]a)) =Vjg (.]a)) <

If the nominal capacitance of each movable-plate capacitor with the diaphragm in the
center position is given by

eA

C =
d

where d is the nominal (undisplaced) separation between the diaphragm and the fixed
surfaces of the capacitors (in millimeters), the capacitors will see a change in capacitance
given by

A A

and Che

Cap = =
L d+x

when a pressure differential exists across the transducer, so that the impedances of the
variable capacitors change according to the displacement
7 d—x d z d+x
= — an = —
C = 08 8544 e T w8.854A

and we obtain the following expression for the phasor output voltage

d+x
. . jw8.854A R
Voul(]a)):VS(.]a)) d—)‘(] d+X _R1—|'2R2

JoB854A T jwB854A

V() 1+.X R2
= w — - -
SV T2 TR+ R,

x
=Vs(jo)~
2d (Continued)
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(Concluded)

if we choose R = R,. Thus, the output voltage will vary as a scaled version of the input
voltage in proportion to the displacement. A typical v, (f) is displayed in Figure 4.39
for a 0.05-mm “triangular” diaphragm displacement, with d = 0.5 mm and Vg a 25-Hz
sinusoid with 1-V amplitude.

Displacement input

0.05
0.04

g 0.03

£

= 0.02
0.01

0O 01 02 03 04 05 06 07 08 09 1
Time

Bridge output voltage

Figure 4.39 Displacement input and bridge output voltage for
capacitive displacement transducer

Admittance

In Chapter 3, it was suggested that the solution of certain circuit analysis problems
was handled more easily in terms of conductances than resistances. This is true, for
example, when one is using node analysis, or in circuits with many parallel elements,
since conductances in parallel add as resistors in series do. In AC circuit analysis, an
analogous quantity may be defined—the reciprocal of complex impedance. Just as
the conductance G of a resistive element was defined as the inverse of the resistance,
the admittance of a branch is defined as follows:

Y =— S 4.70

7 4.70)
Note immediately that whenever Z is purely real, that is, when Z = R + jO0, the
admittance Y is identical to the conductance G. In general, however, Y is the complex
number

Y=G+jB @.71)

where G is called the AC conductance and B is called the susceptance; the latter
plays a role analogous to that of reactance in the definition of impedance. Clearly, G
and B are related to R and X. However, this relationship is not as simple as an inverse.
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Let Z = R + jX be an arbitrary impedance. Then the corresponding admittance is

1 1
=== - 4.72)
Z R+ X
To express Y in the form ¥ = G + jB, we multiply numerator and denominator by
R — jX:
y__ L R-JX _R-jX
" R4+jXR—jX R*+X2
tJ / + 4.73)
B R . X
- R2 4+ X2 ]R2+X2
and conclude that
B R
T R24 X2
* 4.74)
s X
- R2 1+ X2

Notice in particular that G is not the reciprocal of R in the general case!
Example 4.15 illustrates the determination of ¥ for some common circuits.

|_04> EXAMPLE 4.15 Admittance

Problem

Find the equivalent admittance of the two circuits shown in Figure 4.40.

Ry
Solution
Yop —>
L Known Quantities: o = 2w x 10°rad/s; Ry =50 Q; L =16 mH; R, = 100 2; C =3 uF.
Find: The equivalent admittance of the two circuits.
b
@ Analysis: Circuit (a): First, determine the equivalent impedance of the circuit:
a
Zay =R + joL
O—
“ Then compute the inverse of Z,, to obtain the admittance:
1 R, — joL
Yop —> Yop = : = 2
ab 3R, C R+ joL R} + (wL)?
T Substituting numerical values gives
[ Yo SR 1 1 -3 . -3
Yo = - 3 = - =3.968 x 107" — j7.976 x 107" S
(b) 50 4+ j27 x 103 x 0.016 50+ j100.5
Figure 4.40 Circuit (b): First, determine the equivalent impedance of the circuit:

1 R,

Zap =Ry | —=7—7"7—
joC 14+ joR,C

Then compute the inverse of Z,;, to obtain the admittance:

1+ joRC 1

Y, — 4+ joC =0.01+ ;0.019S
b R, R, +jow +J
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Comments: Note that the units of admittance are siemens (S), that is, the same as the units
of conductance.

CHECK YOUR UNDERSTANDING

Compute the equivalent admittance of the circuit of Example 4.14.

¢-01 X 1L8F%[ — ¢_01 X ¢6v'S = O34 :romsuy

4.5 AC CIRCUIT ANALYSIS METHODS

This section illustrates how the use of phasors and impedance facilitates the solution
of AC circuits by making it possible to use the same solution methods developed in
Chapter 3 for DC circuits. The AC circuit analysis problem of interest in this section
consists of determining the unknown voltage (or currents) in a circuit containing linear
passive circuit elements (R, L, C) and excited by a sinusoidal source. Figure 4.41
depicts one such circuit, represented in both conventional time-domain form and
phasor-impedance form.

The first step in the analysis of an AC circuit is to note the frequency of the
sinusoidal excitation. Next, all sources are converted to phasor form, and each circuit
element to impedance form. This is illustrated in the phasor circuit of Figure 4.41. At
this point, if the excitation frequency o is known numerically, it will be possible to
express each impedance in terms of a known amplitude and phase, and a numerical
answer to the problem will be found. It does often happen, however, that one is
interested in a more general circuit solution, valid for an arbitrary excitation frequency.
In this latter case, the solution becomes a function of w. Both cases are explored in
the examples.

With the problem formulated in phasor notation, the resulting solution is also in
phasor form and must be converted to time-domain form. In effect, the use of phasor
notation is but an intermediate step that greatly facilitates the computation of the final
answer. In summary, here is the procedure that will be followed to solve an AC circuit
analysis problem. Example 4.16 illustrates the various aspects of this method.

R L ,ﬁZR‘ ,ﬁZL
LO5 ——MWW—o0 FEN—O
L L |
# ix(1) * L(jw)
+ s ; T
6O) c== ’E vstjo) () [z [ ]z

i1(0) ir(t) 7 Ii(jo) L(jo)

A sample circuit The same circuit

for AC analysis in phasor form

Figure 4.41 An AC circuit
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LO5 > AC CIRCUIT ANALYSIS

1. Identify the sinusoidal source(s) and note the excitation frequency.

2. Convert the source(s) to phasor form.

3. Represent each circuit element by its impedance.

4. Solve the resulting phasor circuit, using appropriate network analysis
tools.

5. Convert the (phasor-form) answer to its time-domain equivalent, using
equation 4.50.

|_05> EXAMPLE 4.16 Phasor Analysis of AC Circuit

Problem
R, . Apply the phasor analysis method to the circuit of Figure 4.42 to determine the source current.
VAV‘V‘V
>
is(t) L
s ZR O Solution

Known Quantities: Figures 4.42,4.43, vg(t) = 10cos wt; w = 377 rad/s; Ry = 50 Q;
- R, =200 Q; C =100 uF.

Figure 4.42

Z1=R; I

= 10e/° = =
VS 10e ZQ R2 Z3 ij

Figure 4.43

Find: The source current ig(t).

Analysis: Define the voltage v at the top node, and use node analysis to determine v. Then
observe that

vs(1) —v(@)

is(t) = R

Next, we follow the steps of Focus on Methodology—AC Circuit Analysis.

Step 1: v5(¢) = 10cos wt V w = 377 rad/s (f =60 Hz)
Step 2: Vg (jw) = 1040V
Step 3: ZR] = R] ZR2 = R2 ZC = L
joC
The resulting phasor circuit is shown in Figure 4.43.
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Step 4: Next, we solve for the source current, using node analysis. First we find V:

Vi—V V¥
Zr,  ZrlZc
Vs ( 1 N 1 )_V 1 N 1
Zr,  \ZwllZc = Zx, ) Ry, -(1/jwC) R,

Ry + (1/joC)
jwC R 1 1 jwC Ry R R R
:V(Jw 2+ +—>:V|:(Jw 2R+ Ry) + 2]
1

R, R RiR;
V_ [(ijRZRI +R) +R2}1 Vs [ RiR, } Vs
R\R, R, (JoCRR, +R)) + R, | Ry
3 50 x 200 Vs
"L (j377 x 10~* x 50 x 200 + 50) + 200 | 50

=0.44214(—0.9852)Vs = 4.421/(—0.9852)
Then we compute Is:

_ Vg—V 1040 —4.421/(—0.9852)

I
ST T Za, 50

= 0.16812(0.4537)

Step 5: Finally, we convert the phasor answer to time-domain notation:
is(t) = 0.1681 cos(377t + 0.4537)

CHECK YOUR UNDERSTANDING

Repeat Example 4.16 by combining the parallel R,C circuit into a single impedance Z;; and
computing the series current.

SA0(QeE Se awes Iomsuy

EXAMPLE 4.17 AC Circuit Solution for Arbitrary Sinusoidal <|_05
Input

Problem

Determine the general solution of Example 4.16 for any sinusoidal source, A cos(wt? + ¢).

Solution
Known Quantities: R, =50 Q; R, =200 2, C = 100 uF.

Find: The phasor source current Is(jw).
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Analysis: Since the radian frequency is arbitrary, it will be impossible to determine a numerical
answer. The answer will be a function of w. The source in phasor form is represented by the
expression Vg(jw) = AZ¢. The impedances will be Zg, = 50 Q; Zg, = 200 Q; Z¢ =
—j10*/w . Note that the impedance of the capacitor is a function of w.

Taking a different approach from Example 4.16, we observe that the source current is
given by the expression

Vg

=
ZR] + ZR2||ZC

The parallel impedance Zg, || Z¢ is given by the expression

211z Zr, x Ze 200 x 104/jw 2 x 106
B e e ¥ Zc 200+ 10°/jo  10* + jw200

Thus, the total series impedance is

Ze + ZallZe = 50+ 2 x 10° 2.5 x 10° + jwl10*
fi T eRlleC = 10 + jw200  10* + jw200
and the phasor source current is
Vv 10* 4 jw200
Is S AL tjo

C Zp + Zrol1Zc 2.5 x 105+ jwl0*

Comments: The expression obtained in this example can be evaluated for an arbitrary sinu-
soidal excitation, by substituting numerical values for A, ¢, and w in the above expression.
The answer can then be computed as the product of two complex numbers. As an example,
you might wish to substitute the values used in Example 4.16 (A = 10V, ¢ = Orad, w = 377
rad/s) to verify that the same answer is obtained.

CHECK YOUR UNDERSTANDING

Compute the magnitude of the current Is(jw) of Example 4.17 if A = 10 and ¢ = O, for
o = 10, 102, 10%, 10*, and 10’ rad/s. Can you explain these results intuitively?

'V T0 = "Y/ISAl & [ST] “Aouenbaiy ySry Apuedyyns e ‘SN[, oI
110YS ® Se s30r J0j1oeded oY) JIWI] oY) Ul pue ‘01dZ 0) $e03 J0310eded ay) Jo aouepaduur
o ‘sesearour Kouenborj oY) SV YV 7°0 'V T'0 VY #6170 °V £80°0 V 1#0°0 = |ST| :1emsuy

By now it should be apparent that the laws of network analysis introduced
in Chapter 3 are also applicable to phasor voltages and currents. This fact suggests
that it may be possible to extend the node and mesh analysis methods developed
earlier to circuits containing phasor sources and impedances, although the resulting
simultaneous complex equations are difficult to solve without the aid of a computer,
even for relatively simple circuits. On the other hand, it is very useful to extend the
concept of equivalent circuits to the AC case, and to define complex Thévenin (or

©
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Norton) equivalent impedances. The fundamental difference between resistive and
AC equivalent circuits is that the AC Thévenin (or Norton) equivalent circuits will
be frequency-dependent and complex-valued. In general, then, one may think of the
resistive circuit analysis of Chapter 3 as a special case of AC analysis in which all
impedances are real.

AC Equivalent Circuits

In Chapter 3, we demonstrated that it was convenient to compute equivalent circuits,
especially in solving for load-related variables. Figure 4.44 depicts the two represen-
tations analogous to those developed in Chapter 3. Figure 4.44(a) shows an equivalent (a) Equivalent load
load, as viewed by the source, while Figure 4.44(b) shows an equivalent source circuit,
from the perspective of the load.

In the case of linear resistive circuits, the equivalent load circuit can always be
expressed by a single equivalent resistor, while the equivalent source circuit may take Source
the form of a Norton or a Thévenin equivalent. This section extends these concepts to
AC circuits and demonstrates that the notion of equivalent circuits applies to phasor
sources and impedances as well. The techniques described in this section are all anal- (b) Equivalent source
ogous to those used for resistive circuits, with resistances replaced by impedances,
and arbitrary sources replaced by phasor sources. The principal difference between
resistive and AC equivalent circuits will be that the latter are frequency-dependent.
Figure 4.45 summarizes the fundamental principles used in computing an AC equiv-
alent circuit. Note the definite analogy between impedance and resistance elements,
and between conductance and admittance elements.

Zr

Figure 4.44 AC equivalent
circuits

Impedances in series add: Admittances in parallel add:
Z, Z Z\+ 7y Y,
AT H To — o Fo o7l o
L .
Impedances in parallel behave like resistors in parallel:
I
- , - . . NLO5
7 1 . 1 Admittances in series behave like conductances in series:
Zy 7 1
1 1
e 1,1
Y, Yy Y| Y

Zz o Jo - o to

Figure 4.45 Rules for impedance and admittance reduction

The computation of an equivalent impedance is carried out in the same way as
that of equivalent resistance in the case of resistive circuits:

1. Short-circuit all voltage sources, and open-circuit all current sources.

2. Compute the equivalent impedance between load terminals, with the load
disconnected.

To compute the Thévenin or Norton equivalent form, we recognize that the Thévenin
equivalent voltage source is the open-circuit voltage at the load terminals and the
Norton equivalent current source is the short-circuit current (the current with the
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load replaced by a short circuit). Figure 4.46 illustrates these points by outlining the
steps in the computation of an equivalent circuit. The remainder of the section will
consist of examples aimed at clarifying some of the finer points in the calculation
of such equivalent circuits. Note how the initial circuit reduction proceeds exactly as
in the case of a resistive circuit; the details of the complex algebra required in the
calculations are explored in the examples.

Vs <§> |:ZZ| Voc=Vr

Circuit for the computation of the Thévenin
equivalent voltage

Z v
VAR $

Voc=Vr=

S & ittt © Sl

A phasor circuit
with load Z;,

g

¢Isc=IN

]
%N;]
Q
b
D
&
N
L2

L
Circuit for the computation of the Norton
Zy | Ob equivalent current
1
Circuit for the cpmputation of the equivalent Vs WA
impedance, Zr Isc=Iy==2 —
21,1,
Zapy=Zr=Z3+(Z1 | Zr) + Z4 Zy 7p 3+ 274

Figure 4.46 Reduction of AC circuit to equivalent form

Note to the Instructor: If so desired, the course could
now proceed directly with either Chapter 6 or Chapter 7
or both (in either sequence). Chapter 5 can follow.

LO5 EXAMPLE 4.18 Solution of AC Circuit by Node Analysis

Problem

The electrical characteristics of electric motors (which are described in greater detail in the last
two chapters of this book) can be approximately represented by means of a series RL circuit.
In this problem we analyze the currents drawn by two different motors connected to the same
AC voltage supply (Figure 4.47).
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vs(?)

Figure 4.47 Circuit for
Example 4.18

Solution

Known Quantities: Rg=05Q; R =2Q; R, =02Q; L, =0.1H; L, =20mH.
vg(t) = 155cos(377¢t) V.

Find: The motor load currents 7, (¢) and i, (¢).

Analysis: First, we calculate the impedances of the source and of each motor:

Zs=05Q
Z =24 j377Tx0.1 =2+ j37.7=377541.52Q
Z, =024 j377 x 0.02 =02+ j7.54 =7.54/1.54 @

The source voltage is Vg = 15520 V.
Next, we apply KCL at the top node, with the aim of solving for the node voltage V:

Vg -V v v

Zs Z—1+Zz

Vi V. V V (
—= +—4—=V
-1

Zs  Zs  Zi  Zn

v 1+1+1
“\zs  Zi Z,

=154.1£0.079 V

1+1+1
Zs Z I

Vs 1+ 1 N 1 vy
Zs  \0.5 24377 02+ j7.54) 05

Having computed the phasor node voltage V, we can now easily determine the phasor motor
currents I} and I,:

A\ 154.20.079
L= > =——-—==4.083£-1.439
A\ 154.20.079
L=—=—"—"——=2044/-1.465
Z, 024 j7.54
Finally, we can write the time-domain expressions for the currents:
i1(t) =4.083cos(377t — 1.439) A
ir(t) =20.44 cos(377t — 1.465) A
Figure 4.48 depicts the source voltage (scaled down by a factor of 10) and the two motor
currents.

Comments: Note the phase shift between the source voltage and the two motor currents.
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25 T T
----- Source voltage (divided by 10)
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Figure 4.48 Plot of source voltage and motor currents for Example 4.18

CHECK YOUR UNDERSTANDING

Determine the Norton equivalent current in Example 4.18, assuming that the load is the R, — L,
series circuit.

V or?TC 1omsuy

LO5 EXAMPLE 4.19 Thévenin Equivalent of AC Circuit

Problem

Compute the Thévenin equivalent of the circuit of Figure 4.49.

Solution

Known Quantities: Z; =5 Q; Z, = j20 Q. vs(¢t) = 110cos(377t) V.

Find: Thévenin equivalent circuit.

Vs=11020° 2,=5Q 2=j20Q Analysis: First compute the equivalent impedance seen by the (arbitrary) load Z;. As illus-
Figure 4.49 trated in Figure 4.46, we remove the load, short-circuit the voltage source, and compute the
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equivalent impedance seen by the load; this calculation is illustrated in Figure 4.50.

ZIXZZ_SXjZO

Zr = Z\||Z, = =
T 1112, 7+ 7 5420

=471+ j1.176 @

Next, we compute the open-circuit voltage, between terminals a and b:

z 20 20/7)2
2 T2 11020 = 7/

= s = —110£0 = 106.7£0.245 V
Z1+ 7, 54 j20 20.6£1.326

Vr

The complete Thévenin equivalent circuit is shown in Figure 4.51.

o=

4.71 +j1.176 Q

o Y

Figure 4.50 Figure 4.51

e
S

Comments: Note that the procedure followed for the computation of the equivalent circuit
is completely analogous to that used in the case of resistive circuits (Section 3.6), the only
difference being in the use of complex impedances in place of resistances. Thus, other than the
use of complex quantities, there is no difference between the analysis leading to DC and AC
equivalent circuits.

© The McGraw-Hill
Companies, 2007
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EXAMPLE 4.20 Thévenin Equivalent of AC Circuit

Problem

Determine the Thévenin equivalent circuit seen by the load in the circuit of Figure 4.52 when
the input sinusoidal voltage is (a) at a frequency of 10° Hz and (b) at a frequency of 10° Hz.

Solution

Known Quantities: The values of the resistances Rg = R; = 50 €, capacitance C = 0.1 uF,
inductance L = 10 mH.

Rg Zs

+ +
vi(r) Vs (jw) Zr[ | LGw)

|-

1

(a) (b)
Figure 4.52 (a) Circuit for Example 4.20; (b) same circuit ready for phasor analysis

< LO5
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Analysis: First, we convert the circuit to phasor form, as shown in Figure 4.52(b). Next, we
compute the Thévenin equivalent impedance with the load removed:

joL x 1/joC
joL +1/joC
joL oL

=R+ — — —R¢4+j—
ST oL x joC +1 ST/ T a2Le

Zr =Zs+ Z1|Zc = Rs +

We observe that the Thévenin equivalent voltage is equal to the source voltage, since once
the load impedance is removed, no current flows in the circuit and the voltage drop across the
impedances is zero. Thus,

Vr =V

Next, we evaluate the Thévenin equivalent at each of the two frequencies.
a. Let f = 103 Hz. Then o = 6.2832 x 10°. At this frequency,

Zr =Rs+j =50+ j65.414 = 82.3320.9182

oL
1—?’LC
b. Let f = 10° Hz. Then w = 6.2832 x 10°. At this frequency,

oL
Zr =R j———— =50+ j1.5916 = 50£(—0.0318
TRt IT T Le +J ( )
Comments: Note that at the higher frequency the equivalent impedance is very close to that
of the resistor Rg. This happens because at high frequency the capacitor behaves very much as
a short circuit, and the inductor as an open circuit. Thus, the two elements in parallel behave
very much as a short circuit.

CHECK YOUR UNDERSTANDING

Determine the value of the capacitor and inductor impedance at the two frequencies to confirm
the statement made in the “Comments” above.

BSI6S T — =278 ,01 X Te8T9[ =170l X u7 =@
W8 01 X SI6S T/ — =27 ‘5 2e8 Tl = 77 .01 X LT = @1y Jomsuy

EXAMPLE 4.21 Solution of AC Circuit by Mesh Analysis

Problem

Determine the currents i;(¢) and i, (¢) in the circuit of Figure 4.53, using node analysis.

Solution

Known Quantities: The values of the circuit elements are R; = 100 Q, R, =75 Q, C =
1 uF, L = 0.5 H. The value of the current source is vs(t) = 15 cos(1, 500¢) V.

Analysis: We follow the steps of the Focus on Methodology box “AC Circuit Analysis.”

o
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R, L
YAVAVAV

(a) )

Figure 4.53 (a) Circuit for Example 4.21; (b) same circuit ready for
phasor analysis

Step 1: vg(¢) = 15 cos(1,500¢) w = 1,500 rad/s

Step 2: Vs (jw) = 1540 1

Step 3: ZR1 =R ZR2 =R, Ze = ——
joC

The resulting phasor circuit is shown in Figure 4.53(b).
Step 4: We solve for the source current using mesh analysis. First, we write the mesh
equations:

ZL = ]a)L

Vs(jw) — Zg 11(jow) — Zc[1i (jo) — L(jw)] =0 mesh 1
Zelh(jo) —L(jo)l - ZiL(jo) + Zg,L(jw) =0 mesh 2

Next, we write the matrix form of the equations:

Zpr, + Zc —Zc Li(jo) _ Vs(jo)
—Zc Zp — Zg, L(jo) 0

and we use Cramer’s rule to solve for the two currents:

Vs(jo) —Zc
0 Zi — Zg, 7, —Z
L(jow) = = e > Vs(jo)
N S S (Zr, + Zc) (2L — Zg,) — Z¢
—Zc Zy — Zg,
Zg, +Zc Vs(jo)
L(jo) e = pe
2(Jjw) = = sy
Zg, + Zc —Zc (Zp, + Zc)(Zy — Zg,) — ZE
—Zc Zy — Zg,

Now we substitute the impedance values in the above expressions:
I(a))— ZL+ZR2 _ ja)L—Rz
Y (Zr, +Z)ZL — Zgy) = 25 (R +1/joC)(joL — Ry) — (1/jwC)?
B joC(joL — Ry)
"~ (joCRy + 1)(joL — Ry) —1/jwC
. Zc 1
IZ(]a)) = 7 = 8 8 B
(Zr, + Zo)(Z1 — Zry) — 22 (joCR, + D(joL — Ry) — 1/jwC

and use numerical values to obtain

I (jw) = 7.974 x 10~4£(1.5378)Vs(jo) = 0.012/(1.5378) A
L(jw) = 7.0528 x 10~4£(—1.7034)Vs(jw) = 0.0106.£(—1.7034) A
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Step 5: Finally, we express the resulting phasor currents in time-domain form:

i1(t) = 12cos(1,500¢ + 1.5378)  mA
ir(t) = 10.6cos(1,500f — 1.7034)  mA

Comments: Note that the derivation of the symbolic equations for a circuit in phasor-
impedance form using matrix techniques is no more involved than it would be for a resistive
circuit. The only difference surfaces in the final calculations, which require complex algebra
manipulations.

CHECK YOUR UNDERSTANDING

Use circuit reduction techniques (combining Z; and Zg, in series, then in parallel with Z¢,
and again in series with Z,) to calculate the source current, and show that it is equal to the
current i, (¢) computed above.

Conclusion

In this chapter we have introduced concepts and tools useful in the analysis of AC circuits.
The importance of AC circuit analysis cannot be overemphasized, for a number of reasons.
First, circuits made up of resistors, inductors, and capacitors constitute reasonable models for
more complex devices, such as transformers, electric motors, and electronic amplifiers. Second,
sinusoidal signals are ever-present in the analysis of many physical systems, not just circuits.
The skills developed in Chapter 4 will be called upon in the remainder of the book. In particular,
they form the basis of Chapters 5 and 6. You should have achieved the following objectives,
upon completion of this chapter.

1. Compute currents, voltages, and energy stored in capacitors and inductors. In addition
to elements that dissipate electric power, there exist electric energy storage elements, the
capacitor and the inductor.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Energy storage elements are important whenever the excitation voltages and currents in a
circuit are time-dependent. Average and rms values describe two important properties of
time-dependent signals.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Circuits excited by time-dependent sources and containing energy storage (dynamic)
circuit elements give rise to differential equations.

4. Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa, and represent circuits using impedances. For the special case of sinusoidal
sources, one can use phasor representation to convert sinusoidal voltages and currents
into complex phasors, and use the impedance concept to represent circuit elements.

5. Apply the circuit analysis methods of Chapter 3 to AC circuits in phasor form. Once a
circuit is represented in phasor-impedance form, all the solution methods practiced in
Chapter 3 apply.
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HOMEWORK PROBLEMS

Section 4.1 Energy Storage Elements

4.1 The current through a 0.5-H inductor is given by
ip = 2cos(377t + m /6). Write the expression for the
voltage across the inductor.

4.2 The voltage across a 100-uF capacitor takes the
following values. Calculate the expression for the
current through the capacitor in each case.

a. ve(t) =40cos(20t —/2) V
b. ve(t) =20sin 1007 V
c. ve(t) = —60sin(80t 4+ 7 /6) V
d. vc(t) =30cos(100t 4+ 7 /4) V
4.3 The current through a 250-mH inductor takes the

following values. Calculate the expression for the
voltage across the inductor in each case.

a. ip(t) =5sin25t A

b. iz (t) = —10cos 50t A

c. ir(t) =25cos(100t + 7 /3) A
d. ip(t) =20sin(10f — 7 /12) A

4.4 In the circuit shown in Figure P4.4, let

0 for —co<t <0
ity=4 t forO0 <t <10s
10 for10s <t < o0

Find the energy stored in the inductor for all time.

1Q

i(f) C) 2H

Figure P4.4

4.5 With reference to Problem 4.4, find the energy
delivered by the source for all time.

4.6 In the circuit shown in Figure P4.4 let

0 for —co<t <0
. for0 <t < 10s
i(t)y =
20—t for10 <t <20s
0 for20s <t < o0
Find

a. The energy stored in the inductor for all time

b. The energy delivered by the source for all time

4.7 In the circuit shown in Figure P4.7, let

0 for —oc0o <t <0
v(it)y=4{ t for0 <t < 10s
10 for10s <t < o0

Find the energy stored in the capacitor for all time.

V(D) —~0.1F

A
YW
N
o]

Figure P4.7

4.8 With reference to Problem 4.7, find the energy
delivered by the source for all time.

4.9 In the circuit shown in Figure P4.7 let

0 for —co<t <0
. for0 <t <10s
i(t) =
20 — ¢ for 10 <t <20s
0 for20s <t < o0
Find

a. The energy stored in the capacitor for all time
b. The energy delivered by the source for all time
4.10 Find the energy stored in each capacitor and

inductor, under steady-state conditions, in the circuit
shown in Figure P4.10.

1F
| L
| A
20 2H
WW 11k
=< 3F
6V<i> —<2F 240 250

Figure P4.10

4.11 Find the energy stored in each capacitor and
inductor, under steady-state conditions, in the circuit
shown in Figure P4.11.
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1L
1\
2F VPK I/]
uuu AVAVAVAV
1H 30 | T 2T ¢
| 2H > 1 ;
—<1IF — 12V 303 2V— Figure P4.15
<
6Q

Figure P4.11

4.12 The plot of time-dependent voltage is shown in
Figure P4.12. The waveform is piecewise continuous.
If this is the voltage across a capacitor and C = 80 uF,
determine the current through the capacitor. How can
current flow “through” a capacitor?

v(n) (V)
20

10

\ 5 10 15 t(ms)
-10

Figure P4.12

4.13 The plot of a time-dependent voltage is shown in
Figure P4.12. The waveform is piecewise continuous.
If this is the voltage across an inductor L = 35 mH,
determine the current through the inductor. Assume the
initial current is iy (0) = 0.

4.14 The voltage across an inductor plotted as a function
of time is shown in Figure P4.14. If L = 0.75 mH,
determine the current through the inductor at
t =15 us.

v@®) (V)

35

5 10 15 t(us)
~1.9

Figure P4.14

4.15 If the waveform shown in Figure P4.15 is the

voltage across a capacitor plotted as a function of time
with

vpg =20V T =40 us C =680 nF
determine and plot the waveform for the current
through the capacitor as a function of time.

4.16 If the current through a 16-uH inductor is zero at
t = 0 and the voltage across the inductor (shown in
Figure P4.16) is

0 t <0
v (f) =1 32 0<t<20us
1.2nV t > 20 us

determine the current through the inductor at
t =30 us.

v(t) (nV)

1.2

| |
20 40 t(us)

Figure P4.16

4.17 Determine and plot as a function of time the
current through a component if the voltage across it
has the waveform shown in Figure P4.17 and the
component is a

a. Resistor R =7 Q
b. Capacitor C = 0.5 uF
c. Inductor L = 7 mH

v(®) (V)

15 —
10 |-

=

W

10 t (ms)

Figure P4.17

4.18 If the plots shown in Figure P4.18 are the voltage
across and the current through an ideal capacitor,
determine the capacitance.
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w(t) (V)
10 |
\5 / \i5
\ f10 X(ms)
“10l
i<—>: 5us
i() (A) :
12] -
|— ? | I\S
) 10 f (ms)
12k ||

Figure P4.18

4.19 If the plots shown in Figure P4.19 are the voltage
across and the current through an ideal inductor,
determine the inductance.

v(®) (V)
2
1 -
| | |
5 10 15
t (ms)
i(t) (A)
3 |-
2 |-
1 |
| | |
5 10 15
t (ms)

Figure P4.19

4.20 The voltage across and the current through a
capacitor are shown in Figure P4.20. Determine the
value of the capacitance.

v(®) (V)
15+  p—
10 - i.(f) (mA)
51 1.5
CRT) t (ms) CRT) t (ms)

Figure P4.20

4.21 The voltage across and the current through a
capacitor are shown in Figure P4.21. Determine the
value of the capacitance.
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ve(v) i.(mA)
7 ’» 3
|
| 5 t(ms) S t(ms)

Figure P4.21

4.22 The voltage v(¢) shown in Figure P4.22 is applied
to a 10-mH inductor. Find the current through the
inductor. Assume iz, (0) = 0 A.

A
0
5V
| | .
0 1 2 3 4 5 1(s)
-5V

Figure P4.22

4.23 The current waveform shown in Figure P4.23 flows
through a 2-H inductor. Plot the inductor voltage vy, (¢).

i()(mA)

Figure P4.23

4.24 The voltage waveform shown in Figure P4.24
appears across a 100-mH inductor and a 500-uF
capacitor. Plot the capacitor and inductor currents,
ic(t) and iy (¢), assuming i, (0) = 0 A.
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A vel()
v(O(V)
By FO— o
ve(t) L oir
1 1 o T

- 0 05 1 L5 2

15 Figure P4.27

10 [~
u 4.28 Use the defining law for an inductor to find the

5 current iy (t) corresponding to the voltage shown in
- Figure P4.28. Sketch your result.

0 P I T NI I T NI

Figure P4.24 v,(1)=0.5-0.5¢"°"
() / v, (1)=0.5-0.50090

|~

4.25 In the circuit shown in Figure P4.25, let

0 for —oco <t <0 + V‘(')
i) = t forO0<t<1s vty 1H
) —¢-2 forls<t<2s . -
0 for2s <t < oo 0 0l 02 03 04 -
Find the energy stored in the inductor for all time. Figure P4.28
1Q Section 4.2 Time-Dependent Signals
AAAA
o 4.29 Find the average and rms value of x(t).
i) C) o H g x(t) =2cos(wt) +2.5
4.30 A controlled rectifier circuit is generating the
waveform of Figure P4.30 starting from a sinusoidal
Figure P4.25 voltage of 110 V rms. Find the average and rms
voltage.
4.26 In the circuit shown in Figure P4.26, let
g ior 0—<OO < i <0 Output waveform of controlled rectifier
o(t) = t or0<t<ls 150 —~
—2t—4) forl<t<2s / \
0 for2s <t < oo
- 100 /
Find the energy stored in the capacitor for all time. /
o 50
§ 0 L T 270 R
=F <
(1) C) 0.1F 20 3
D =50
5 -100
Figure P4.26
g -150 N\
0 1 2 3 4 5 6

4.27 Use the defining law for a capacitor to find the
current i¢ (¢) corresponding to the voltage shown in
Figure P4.27. Sketch your result. Figure P4.30

Radians
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4.31 With reference to Problem 4.30, find the angle 6
that corresponds to delivering exactly one-half of the

total available power in the waveform to a resistive
load.

4.32 Find the ratio between average and rms value of
the waveform of Figure P4.32.

v (V) )

t(ms)

-9

Figure P4.32

4.33 Given the current waveform shown in Figure P4.33,
find the power dissipated by a 1-2 resistor.

i1) (A)

10 sin%t

10 -

0 T 21 3n t(s)

Figure P4.33

4.34 Find the ratio between average and rms value of
the waveform of Figure P4.34.

v(0)

BRI | | |

~T '

T

Figure P4.34

4.35 Find the rms value of the waveform shown in
Figure P4.35.

4.36 Determine the rms (or effective) value of

v(f) = Vpe + vac = 50 + 70.7 cos(377t) V

4. AC Network Analysis
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i) \(A)
2L
AN ! | | /l
TN T IN T ST ‘
2 4 4 2 4
2k

Figure P4.35

4.37 Find the phasor form of the following functions:
a. v(t) = 155cos (377t —25°) V
b. v(t) = 5sin (1,000 — 40°) V
c. i(f) = 10 cos (10¢ + 63°) + 15 cos (10f — 42°) A
d. i(r) = 460 cos (5007t — 25°)

— 220 sin (5007t 4 15°) A
4.38 Convert the following complex numbers to polar
form:
a. 4+ j4
b. =34 j4
c. j+2—-j4-3
4.39 Convert the following to polar form and compute

the product. Compare the result with that obtained
using rectangular form.

a. (50 + j10) (4 + j8)
b. (j2—=2)(4+j5Q2+jT)

4.40 Complete the following exercises in complex
arithmetic.

a. Find the complex conjugate of (4 +j4), (2 —j8),
(=5 + j2).

b. Convert the following to polar form by multiplying
the numerator and denominator by the complex
conjugate of the denominator and then performing
the conversion to polar coordinates:

1+ 7 j4 1
44 j4° 2—j8 54 j2°

c. Repeat part b but this time convert to polar
coordinates before performing the division.

4.41 Convert the following expressions to
real-imaginary form: j/, e/”.

4.42 Given the two voltages v (¢) = 10 cos(wt + 30°)
and v, (1) = 20 cos(wt + 60°), find v(t) = vy (¢)+v2(t)
using
a. Trigonometric identities.

b. Phasors.
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Section 4.4: Phasor Solution of Circuits
with Sinusoidal Excitation

4.43 If the current through and the voltage across a
component in an electric circuit are
i(t) =17 cos(wt — w/12) mA
v(t) = 3.5cos(wt + 1.309) V
where w = 628.3 rad/s, determine

a. Whether the component is a resistor, capacitor, or
inductor.

b. The value of the component in ohms, farads, or
henrys.

4.44 Describe the sinusoidal waveform shown in
Figure P4.44, using time-dependent and phasor
notation.

v (1) (V)

N

Il Il
T f (rad)
2

- —170

Figure P4.44

4.45 Describe the sinusoidal waveform shown in
Figure P4.45, using time-dependent and phasor
notation.

i (f) (mA)
Sk

ot (rad)

Nlar

-8

L
.__________;./
|
ol
T

e —___ 3l

T=4ms
Figure P4.45

4.46 The current through and the voltage across an
electrical component are

i(t) =1,cos (a)t + %) v(t) =V, coswt

where

I, =3 mA V, =700 mV o = 6.283 rad /s

a. Is the component inductive or capacitive?

b. Plot the instantaneous power p(¢) as a function of
wt over the range 0 < wt < 2.

4. AC Network Analysis
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c. Determine the average power dissipated as heat in
the component.

d. Repeat parts (b) and (c) if the phase angle of the
current is changed to 0°.

4.47 Determine the equivalent impedance in the circuit
shown in Figure P4.47:

vy(£) = 7 cos (3,000: n %) \

R, =2.3kQ R, =1.1kQ
L =190 mH C =55nF
+ R, R,
Ox
K . _|_C

Figure P4.47

4.48 Determine the equivalent impedance in the circuit
shown in Figure P4.47:

vy(£) = 636 cos (3,000: + ;T—Z) \

R, =33kQ
L=190H

R, =22k
C = 6.8nF

4.49 In the circuit of Figure P4.49,

T
i.(t) = 1, cos (a)t + g)

I, =13 mA o = 1,000 rad/s

C =05uF
a. State, using phasor notation, the source current.
b. Determine the impedance of the capacitor.

c. Using phasor notation only and showing all work,
determine the voltage across the capacitor,
including its polarity.

oy c=

Figure P4.49

4.50 Determine i3(¢) in the circuit shown in
Figure P4.50 if

i1(t) = 141.4 cos(wt + 2.356) mA
i2(t) = 50 sin(wt — 0.927) mA
w =377 rad/s
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Ul

]
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Figure P4.50

4.51 Determine the current through Z; in the circuit of

Figure P4.51.

V51 = V52 = 170 cos(377t)
Z,=59/0.122 Q

Z, =230
Z3=17£0.192

v

dll

Figure P4.51

4.52 Determine the frequency so that the current /; and
the voltage V, in the circuit of of Figure P4.52 are in

phase.

Z, = 13,000 + jw3 Q
R=1209
L =19mH

C =220 pF

Figure P4.52

4.53 The coil resistor in series with L models the
internal losses of an inductor in the circuit of
Figure P4.53. Determine the current supplied by the

source if
vs(t) = V, cos(wt + 0)
V,=10V
R.=40Q

w = 6 Mrad/s
L =20uH

R, =50
C =125nF

© The McGraw-Hill
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L
2

Figure P4.53

4.54 Using phasor techniques, solve for the current in
the circuit shown in Figure P4.54.

3Q 3H

1/3FT

vy(f) =12 cos 3t V

Figure P4.54

4.55 Using phasor techniques, solve for the voltage v in
the circuit shown in Figure P4.55.

+
3He 1/3F Z<v(@)

i(f)=10 cos 2t A 303

A
\AAAZ

Figure P4.55

4.56 Solve for I in the circuit shown in Figure P4.56.

Figure P4.56

4.57 Solve for V; in the circuit shown in Figure P4.57.
Assume o = 2. 12Q 6H

+V, -
+

623V,

V=250V

Figure P4.57

4.58 With reference to Problem 4.55, find the value of w
for which the current through the resistor is maximum.
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4.59 Find the current through the resistor in the circuit
shown in Figure P4.59.

¢ ir(D)

<
S100Q
>

o)

100 uF =

Al

is(f) = 1 cos (200m)

Figure P4.59

4.60 Find v, (¢) for the circuit shown in Figure P4.60.

O
e
104% mA X, =1kQ
Vout
T Xc=10kQ
O

Figure P4.60

4.61 For the circuit shown in Figure P4.61, find the
impedance Z, given w = 4 rad/s.

1/4H
4 <
Z— IBF= 203
<

(e,
Figure P4.61

4.62 Find the sinusoidal steady-state outputs for each of
the circuits shown in Figure P4.62.

|_

10 uF
,[ Vout()
o

(a) ig(t)=10cos100mt A

Figure P4.62 (Continued)

4. AC Network Analysis
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+

ig(t) C‘) 0.1H

Vout ()

o]

(b) i) = 20sin10r A

+ -l- +
ve(f) 10 uF
’[ Vour ()
o

(c) vg(t) = 50 sin100t V

Figure P4.62

4.63 Determine the voltage across the inductor in the
circuit shown in Figure P4.63.

3mH V()

Vg (1) = 24 cos(1,0007) C_.)

40

AAAA
\AAAZ

Figure P4.63

4.64 Determine the current through the capacitor in the
circuit shown in Figure P4.64.

i i (1)

100 uF =< § 100 Q

is(f)=3 cos(1007f)

©)

Figure P4.64

4.65 For the circuit shown in the Figure P4.635, find the
frequency that causes the equivalent impedance to
appear purely resistive.
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eq
15Q 1 mH

o AV SIIR

1uF =<

O

Figure P4.65

4.66

a. Find the equivalent impedance Z; shown in
Figure P4.66(a), as seen by the source, if the
frequency is 377 rad/s.

b. If we wanted the source to see the load as
completely resistive, what value of capacitance
should we place between the terminals @ and b as
shown in Figure P4.66(b)? [Hint: Find an
expression for the equivalent impedance 7, and
then find C so that the phase angle of the
impedance is zero.]

c. What is the actual impedance that the source sees
with the capacitor included in the circuit?

Zy
a 10
O AAAA
WW
‘_>
13.26 mH
O
b
(a)
Zy
a 1Q
O AVA AA N
—

Vs Ct) = c.» 13.26 mH 3

(b)
Figure P4.66
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4.67 The capacitor model we have used so far has been
treated as an ideal circuit element. A more accurate
model for a capacitor is shown in Figure P4.67. The
ideal capacitor, C, has a large “leakage” resistance,
Rc, in parallel with it. Rc models the leakage current
through the capacitor. R; and R, represent the lead
wire resistances, and L, and L, represent the lead wire
inductances.

a. IfC =1uF, Rc =100MQ, R =R, =1 u2 and
Ly =L, =0.1 uH, find the equivalent impedance
seen at the terminals ¢ and b as a function of
frequency w.

b. Find the range of frequencies for which Z,; is
capacitive, i.e., X,, > 10|Rp.

[Hint: assume that R is is much greater than 1/wC so that
you can replace R¢ by an infinite resistance in part b.]

L,
C - %é Rc
;.
o—
b

Figure P4.67

Section 4.5: AC Circuit Analysis
Methods

4.68 Using phasor techniques, solve for v in the circuit
shown in Figure P4.68.
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9Q 3H 3H
+
36 cos 3t—m/3) V 3H

Figure P4.68

4.69 Using phasor techniques, solve for i in the circuit
shown in Figure P4.69.

6cos21A<> 1H§
1/2FT #"

Figure P4.69

4.70 Determine the Thévenin equivalent circuit as seen
by the load shown in Figure P4.70 if

a. vg(t) = 10cos(1,000¢)
b. vs(z) = 10cos(1,000,000¢)

L
Rg \a l b |
| NS ?
! !
vs() | 1 Ry Vout
i i
| | _
H ;
1 1 o
i i
Source ! Filter ! Load
Rg=R;=500Q
L =10mH
R=1kQ

Figure P4.70

4.71 Find the Thévenin equivalent of the circuit shown
in Figure P4.71 as seen by the load resistor.

0.1H
A1k +
Vin(f) = 12 cos 10r 100 uF =< RLZ vour (1)

Figure P4.71

4. AC Network Analysis
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4.72 Solve for iz (¢) in the circuit of Figure P4.72, using
phasor techniques, if vs(f) =2cos2t, Ry =4 Q,
R,=4Q,L=2H,andC = ; F.

R, C
*iL(t)

vs() L Ry

Figure P4.72

4.73 Using mesh current analysis, determine the currents
11(t) and i5(¢) in the circuit shown in Figure P4.73.

Ri1=75Q L=05H

vs(f) =15 cos 1,500¢

Figure P4.73

4.74 Using node voltage methods, determine the
voltages v;(¢) and v, (¢) in the circuit shown in
Figure P4.74.

@ G w0
\

is(f) = 40 cos 100 A

AAAA
A\

L
>Ry SR L

Ri1=40Q
R,=10Q
C'=500 pF
L=02H

Figure P4.74

4.75 The circuit shown in Figure P4.75 is a Wheatstone
bridge that will allow you to determine the reactance of
an inductor or a capacitor. The circuit is adjusted by
changing R, and R, until v, is zero.

a. Assuming that the circuit is balanced, that is, that
Vg = 0, determine X4 in terms of the circuit
elements.

b. If C3 =4.7 uF, L; = 0.098 H, R, = 100 €,
Ry, =1, vs(t) = 245in(2,000¢), and v,, = O,
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what is the reactance of the unknown circuit
element? Is it a capacitor or an inductor? What is
its value?

c. What frequency should be avoided by the source in
this circuit, and why?

Figure P4.75

4.76 Compute the Thévenin impedance seen by resistor
R> in Problem 4.72.

4.77 Compute the Thévenin voltage seen by the
inductance L in Problem 4.74.

4.78 Find the Thévenin equivalent circuit as seen from
terminals a-b for the circuit shown in Figure P4.77.

5£-30°V

Figure P4.78

4.79 Compute the Thévenin voltage seen by resistor R,
in Problem 4.72.

4.80 Find the Norton equivalent circuit seen by resistor
R, in Problem 4.72.

4.81 Write the two loop equations required to solve for
the loop currents in the circuit of Figure P4.81 in

a. Integral-differential form

b. Phasor form

Figure P4.81

4. AC Network Analysis
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4.82 Write the node equations required to solve for all
voltages and currents in the circuit of Figure P4.81.
Assume all impedances and the two source voltages
are known.

4.83 In the circuit shown in Figure P4.83,

vs1 = 450 cos wt \'%
vyo = 450 cos wt \'%

A solution of the circuit with the ground at node e as
shown gives

V, =450/0V  V, = 4404% \%
V, = 420/ —3.49V
Vo = 779.520.098 V
Vo = 230.6/1.875 V

Ve = 1539412V

If the ground is now moved from node e to node d,
determine V,, and V..

a A b
YYVYy
Z,
+ >
T <
Ow 73
<

N
o
AAAA
YVVY

.||_4AN

Yvyy

+
C) Vs2 Z,

d

AAAA

N

>
>
>
>

<
<
<
<

Figure P4.83

4.84 Determine V, in the circuit of Figure P4.84 if

v = 4 cos (1,000: n %) v
L=60mH C=125uF
R, =120Q

L]
i

Figure P4.84

= I——
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4.85 The mesh currents and source voltages in the
circuit shown in Figure P4.85 are

i1(t) = 3.127 cos(wt —0.825) A

ir(t) =3.914cos(wt — 1.78) A

i3(t) = 1.900cos(wt +0.655) A
vs1(t) = 130.0cos(wt +0.176)  V
vsa(t) = 130.0cos(wt — 0.436)  V

where w = 377.0 rad/s. Determine one of the
following: L, C,, R3, or L.

© The McGraw-Hill
Companies, 2007

Figure P4.85
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CHAWPTER

TRANSIENT ANALYSIS

he aim of Chapter 5 is to develop a systematic methodology for the solution of
first- and second-order circuits excited by switched DC sources. The chapter
presents a unified approach to determining the transient response of linear
RC, RL, and RLC circuits; and although the methods presented in the chapter
focus only on first- and second-order circuits, the approach to the transient solution
is quite general. Throughout the chapter, practical applications of first- and second-
order circuits are presented, and numerous analogies are introduced to emphasize
the general nature of the solution methods and their applicability to a wide range of
physical systems, including hydraulics, mechanical systems, and thermal systems.

215
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Chapter 5 Transient Analysis

:) Learning Objectives

1. Understand the meaning of transients. Section 1.

2. Write differential equations for circuits containing inductors and capacitors.
Section 2.

3.  Determine the DC steady-state solution of circuits containing inductors and capaci-
tors. Section 3.

4. Write the differential equation of first-order circuits in standard form, and deter-
mine the complete solution of first-order circuits excited by switched DC sources.
Section 4.

5. Write the differential equation of second-order circuits in standard form, and deter-
mine the complete solution of second-order circuits excited by switched DC sources.
Section 5.

6. Understand analogies between electric circuits and hydraulic, thermal, and mechan-
ical systems.

5.1 TRANSIENT ANALYSIS

The graphs of Figure 5.1 illustrate the result of the sudden appearance of a volt-
age across a hypothetical load [a DC voltage in Figure 5.1(a), an AC voltage in
Figure 5.1(b)]. In the figure, the source voltage is turned on at time t = 0.2 s. The
voltage waveforms of Figure 5.1 can be subdivided into three regions: a steady-state
region for 0 < r < 0.2 s; a transient region for 0.2 < ¢ < 2 s (approximately); and
a new steady-state region for ¢t > 2 s, where the voltage reaches a steady DC or AC
condition. The objective of transient analysis is to describe the behavior of a voltage
or a current during the transition between two distinct steady-state conditions.

/

0.6
° /
>04 /
0.2

0 02 04 06 08 10 12 14 16 18 20

t(s)
(a) Transient DC voltage

e AL
Tl
\
|

Volts
=}
o [
| >
[ E—
— [ |

|

2 14

<
-

L
s j=—

0 02 04 06 038 1.0
t(s)
(b) Transient sinusoidal voltage

Figure 5.1 Examples of transient response
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The material presented in the remainder of this chapter will provide the tools
necessary to describe the transient response of circuits containing resistors, inductors,
and capacitors. A general example of the type of circuit that is discussed in this section
is shown in Figure 5.2. The switch indicates that we turn the battery power on at time
t = 0. Transient behavior may be expected whenever a source of electrical energy
is switched on or off, whether it be AC or DC. A typical example of the transient
response to a switched DC voltage is what occurs when the ignition circuits in an
automobile are turned on, so that a 12-V battery is suddenly connected to a large
number of electric circuits. The degree of complexity in transient analysis depends
on the number of energy storage elements in the circuit; the analysis can become
quite involved for high-order circuits. In this chapter, we analyze only first- and
second-order circuits, that is, circuits containing one or two energy storage elements,
respectively. In electrical engineering practice, we typically resort to computer-aided
analysis for higher-order circuits.

A convenient starting point in approaching the transient response of electric
circuits is to consider the general model shown in Figure 5.3, where the circuits in the
box consist of a combination of resistors connected to a single energy storage element,
either an inductor or a capacitor. Regardless of how many resistors the circuit contains,
itis a first-order circuit. In general, the response of a first-order circuit to a switched
DC source will appear in one of the two forms shown in Figure 5.4, which represent,
in order, a decaying exponential and a rising exponential waveform. In the next
sections, we will systematically analyze these responses by recognizing that they are
exponential and can be computed very easily once we have the proper form of the
differential equation describing the circuit.

Decaying exponential waveform
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Figure 5.3 A general model
of the transient analysis problem

Rising exponential waveform
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Figure 5.4 Decaying and rising exponential responses

5.2 WRITING DIFFERENTIAL EQUATIONS FOR
CIRCUITS CONTAINING INDUCTORS AND
CAPACITORS

The major difference between the analysis of the resistive circuits studied in Chapters
2 and 3 and the circuits we explore in the remainder of this chapter is that now the
equations that result from applying Kirchhoff’s laws are differential equations, as
opposed to the algebraic equations obtained in solving resistive circuits. Consider,
for example, the circuit of Figure 5.5, which consists of the series connection of a
voltage source, a resistor, and a capacitor. Applying KVL around the loop, we may
obtain the following equation:

vs (1) —vg(t) —vc (@) =0 (5.1)

2.0

A circuit containing energy-storage
elements is described by a
differential equation. The
differential equation describing the
series RC circuit shown is

diC 1 . _dLg
@ TRCCT 4@
+ VR —
AAAA
Yyyvy .
R lc¢
o
o iR +
vs<f><:> CRve®

I

Figure 5.5 Circuit
containing energy storage
element
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CONNECTION

Thermal LO6

Capacitance

Just as an electrical capac-
itor can store energy and a
hydraulic capacitor can
store fluid (see Make the
Connection, “Fluid Capac-
itance,” in Chapter 4), the
thermal capacitance C;, of
an object is related to two
physical properties—mass
and specific heat:

C; = mc; m = mass [kg]

¢ = specific heat
[J/°C-kel
Physically, thermal capaci-
tance is related to the ability
of a mass to store heat, and
describes how much the
temperature of the mass will
rise for a given addition of
heat. If we add heat at the
rate g J/s for time At and the
resulting temperature rise is
AT, then we can define the
thermal capacitance to be
heat added
‘3 temperature rise
q At
T AT

If the temperature rises from
value Ty at time 7o to T} at
time t;, then we can write

1 n
T]—To:—/ (t)dt
Cily ?

or, in differential form,
dT (1)

C
"t

q(t)

© The McGraw-Hill
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Observing that iz = ic, we may combine equation 5.1 with the defining equation for
the capacitor (equation 4.6) to obtain

t

Us(f)—Ric(f)—éf ic dt' =0 (5.2)

—00

Equation 5.2 is an integral equation, which may be converted to the more familiar form
of a differential equation by differentiating both sides of the equation and recalling

that
d t
— ic(t)dt' | =ic(t 5.3
derch } ie (1) (5.3)
to obtain the differential equation
dic 1 1 dvg
I Sl 54
at TRCCTR ar 54

where the argument ¢ has been dropped for ease of notation.

Observe that in equation 5.4, the independent variable is the series current
flowing in the circuit, and that this is not the only equation that describes the series
RC circuit. If, instead of applying KVL, for example, we had applied KCL at the
node connecting the resistor to the capacitor, we would have obtained the following
relationship:

. vs —vc dvc
= — = — (j _ 5-5
IR R Ic dr (5.5)
or
dvc 1 1
- 5.6
dar T RC T RCY (56)

Note the similarity between equations 5.4 and 5.6. The left-hand side of both equations
is identical, except for the variable, while the right-hand side takes a slightly different
form. The solution of either equation is sufficient, however, to determine all voltages
and currents in the circuit. Example 5.1 illustrates the derivation of the differential
equation for another simple circuit containing an energy storage element.

EXAMPLE 5.1 Writing the Differential Equation of an RL Circuit

Problem

Derive the differential equation of the circuit shown in Figure 5.6.

+ VR —
A

YVVY .
Ry g
—

o) "
I

Figure 5.6

iRZL
4
L%VL sz

VVVY

< LO2
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Solution

Known Quantities: R, =10Q; R, =5Q; L =04H.
Find: The differential equation in i (¢).

Assumptions: None.

Analysis: Apply KCL at the top node (node analysis) to write the circuit equation. Note that
the top node voltage is the inductor voltage v, .

it —ip —ipg =0

Vg L dlL L dlL _
R, R, dt R, dt o
dig RiR, . Ry

1, = Vs
dt LR, + Ry) LR, +R,)

Substituting numerical values, we obtain the following differential equation:

dig .
—= +8.33i; = 0.833v;
dt

Comments: Derivingdifferential equations for dynamic circuits requires the same basic circuit
analysis skills that were developed in Chapter 3. The only difference is the introduction of
integral or derivative terms originating from the defining relations for capacitors and inductors.

CHECK YOUR UNDERSTANDING

Write the differential equation for each of the circuits shown below.

C
I 0 o o
+ icoy| oy ORI EON N
C) vs() R§§ VR(?) () ish == §§R v(1) C) is(0) EL §§R v(1)
i(f)
O O O
@ ® ©
1
W=+ 2L
» p ORI
(DS = (D + —— Dy (@) {()Sa = (1) + DY (v) somsuy

(Dap (»)ap

MAKE THE
CONNECTION

Thermal \-O6
System Dynamics

To describe the dynamics of
a thermal system, we write a
differential equation based
on energy balance. The dif-
ference between the heat
added to the mass by an
external source and the heat
leaving the same mass (by
convection or conduction)
must be equal to the heat
stored in the mass:

din — qout = {stored
An object is internally heat-
ed at the rate g¢iy, in ambient
temperature T = T,; the
thermal capacitance and
thermal resistance are C;
and R;. From energy

balance:
T@t)—T, dT (t)
in(t) — =C
qin (1) R, A
dT (1)
R.C, at + T =Rign@) + T,
= R,C, Ksi =R,

This first-order system is
identical in its form to an
electric RC circuit, as shown
below.

Gout

R,

Thermal system

qstored T Yout

4o
qinc AT

T,

Equivalent electrical
circuit
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We can generalize the results presented in the preceding pages by observing
that any circuit containing a single energy storage element can be described by a
differential equation of the form

dx(t)
dt

where x () represents the capacitor voltage in the circuit of Figure 5.5 and the inductor
current in the circuit of Figure 5.6, and where the constants ay, a;, and by consist of
combinations of circuit element parameters. Equation 5.7 is a first-order linear
ordinary differential equation with constant coefficients. The equation is said to
be of first order because the highest derivative present is of first order; it is said to be
ordinary because the derivative that appears in it is an ordinary derivative (in contrast
to a partial derivative;) and the coefficients of the differential equation are constant in
that they depend only on the values of resistors, capacitors, or inductors in the circuit,
and not, for example, on time, voltage, or current.

Equation 5.7 can be rewritten as

+ aox(t) = bo f (1) (5.7

a

a, dx(t b
I
ap dt aop
or (5.8)
dx(t) . .
T +x(@) = Ksf(t) First-order system equation

dt

where the constants T = a;/ap and Ks = bg/ao are termed the time constant and
the DC gain, respectively. We shall return to this form when we derive the complete
solution to this first-order differential equation.

Consider now a circuit that contains two energy storage elements, such as that
shown in Figure 5.7. Application of KVL results in the following equation:

. dit) 1 f L
—Ri(t) — L - — i)dt' +vst) =0 59
) T C—oc() +vs(?) (5.9)
Equation 5.9 is called an integrodifferential equation, because it contains both an
integral and a derivative. This equation can be converted to a differential equation by
differentiating both sides, to obtain

di(t) d*i@y 1, dvs(t)
a i +El(r) St
or, equivalently, by observing that the current flowing in the series circuit is related to
the capacitor voltage by i (¢) = C dvc/dt, and that equation 5.9 can be rewritten as

dvc (1) d*ve (1)
+LC e
Note that although different variables appear in the preceding differential equations,
both equations 5.10 and 5.11 can be rearranged to appear in the same general form,
as follows:

2. -
T 40 O 4 a0 = bt (5.12)
where the general variable x (¢) represents either the series current of the circuit of
Figure 5.7 or the capacitor voltage. By analogy with equation 5.8, we call equation 5.12

R

(5.10)

RC +vc(t) = vs(t) (5.11)

ar
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a second-order linear ordinary differential equation with constant coefficients.
Equation 5.12 can be rewritten as

a d*x(t)  a dx(t) bo
— — x(t)=—7/f(
do dr? ap dt +x() aof( )

or (5.13) < LO2

1 d®x(t)  2¢ dx(1) Second order
w2 dr? w, dt +x(0) = Ksf @) system equation

where the constants w, = /do/az, { = (a1/2)+/1/aoas, and K5 = bg/ag are termed
the natural frequency, the damping ratio, and the DC gain, respectively. We shall
return to this form when we derive the complete solution to this second-order differ-
ential equation.

As the number of energy storage elements in a circuit increases, one can there-
fore expect that higher-order differential equations will result. Computer aids are
often employed to solve differential equations of higher order; some of these soft-
ware packages are specifically targeted at the solution of the equations that result
from the analysis of electric circuits (e.g., Electronics Workbench™).

EXAMPLE 5.2 Writing the Differential Equation of an RLC Circuit <|_02
Problem
Derive the differential equation of the circuit shown in Figure 5.8. Rl ve(t) L
VAVAVAV

'—>

ir(t)
Solution vs(z)<f> —=C R,
Known Quantities: R, = 10kQ; R, =50Q; L =10mH; C = 0.1 uF.
Find: The differential equation in i (¢). 1
Assumptions: None. Figure 5.8 Second-order

circuit of Example 5.2
Analysis: Apply KCL at the top node (node analysis) to write the first circuit equation. Note i

that the top node voltage is the capacitor voltage vc.
vy — Ve dvc
R, dt
Now, we need a second equation to complete the description of the circuit, since the circuit
contains two energy storage elements (second-order circuit). We can obtain a second equation
in the capacitor voltage vc by applying KVL to the mesh on the right-hand side:
di

Uc—Ld—:—RziL =0
diy, .
UC:L—+R2lL
dt

Next, we can substitute the above expression for v¢ into the first equation, to obtain a second-
order differential equation, shown below.

Vg LdlL Rz. Cd LdlL—i—R =0
R, R, dt RllL dt dt 2L L=
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Rearranging the equation, we can obtain the standard form similar to that of equation 5.12:

d zi L di L .
RICL — 4+ (RiR:C + L) — + (R1 + Ry)iL = vs
dt dt
Comments: Note that we could have derived an analogous equation by using the capacitor
voltage as an independent variable; either energy storage variable is an acceptable choice. You
might wish to try obtaining a second-order equation in v¢ as an exercise. In this case, you would
want to substitute an expression for i, in the first equation into the second equation in v¢.

CHECK YOUR UNDERSTANDING

Derive a differential equation in the variable v (¢) for the circuit of Example 5.2.

o N 1y , ( ‘91) p ( '21) P
—+@sa—=@2%n(1+ = |+— o+ — |+ D7 1oMSUY
(Nsap 7 oY, W) (H2ap 1) (D2agp

5.3 DC STEADY-STATE SOLUTION OF
CIRCUITS CONTAINING INDUCTORS
AND CAPACITORS—INITIAL AND FINAL
CONDITIONS

This section deals with the DC steady-state solution of the differential equations pre-
sented in Section 5.2. In particular, we illustrate simple methods for deriving the initial
and final conditions of circuits that are connected to a switched DC source. These
conditions will be very helpful in obtaining the complete transient solution. Further,
we also show how to compute the initial conditions that are needed to solve the circuit
differential equation, using the principle of continuity of inductor voltage and current.

DC Steady-State Solution

The term DC steady state refers to circuits that have been connected to a DC (voltage
or current) source for a very long time, such that it is reasonable to assume that all
voltages and currents in the circuits have become constant. If all variables are constant,
the steady-state solution of the differential equation can be found very easily, since
all derivatives must be equal to zero. For example, consider the differential equation
derived in Example 5.1 (see Figure 5.6):

dir (t) RiRy . R>
i TIw R T LR+ Ro)
Rewriting this equation in the general form of equation 5.8, we obtain
L(Ry + Ry) dip(1)
RR, dt

vs(t) (5.14)

1
+iL () = FUS(r)
1

or (5.15)

dip (1)
T
dt

+ip (1) = Ksvs(t)
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where
L(R{+R 1
. (R +Ry) and Kg=—
R] R 2 R 1
With vg equal to a constant (DC) voltage, after a suitably long time the current in the
circuit is a constant, and the derivative term goes to zero:

LR+ Ry) dir(t)

1
+iL(@) = R—Us(f)
1

R{R> dt
and
) 1
ip = —uvg ast — oo (5.16)
Ry
or
iL = KSUS

Note that the steady-state solution is found very easily, and it is determined by the
constant K g, which we called the DC gain of the circuit. You can see that the general
form of the first-order differential equation (equation 5.8) is very useful in finding the
steady-state solution.

Let us attempt the same method for a second-order circuit, considering the
solution of Example 5.2 (see Figure 5.8):

d%i (¢ dip (t
RCL D 4 (R RaC 4 1) T Ry 4 Ra)in (0 = w50
or (5.17)
R,CL d%i (¢t RiR,C + L dip(t 1
1 L2() 1R2C + L()-I-iL(f): vs(6)
Ri+ R, dt R+ R, dt R+ R,
‘We can express this differential equation in the general form of equation 5.13, to find
that
1 d%i (t) 2¢ di (1)
— — i1 (1) =K t
0 ar T, +ip(t) svs(t)
(5.18)
1 RCL 20  RiR,C+L 1
@ Ri+R o, R +R *TRi+R
and that, one more time, the steady-state solution, when the derivatives are equal to
Zero, is
1 d%ip(t)  2¢ di(t)
— — i1 (1) =K t
P o di +ir(r) svs (1)
and (5.19)
ir = Kgvg ast — oo

A different way to arrive at the same result is to start from the defining equation
for the capacitor and inductor and see what happens as ¢t — oo:

dvc (1)
dt
ic(t) — 0 ast — oo steady-state capacitor current

ict)y=C defining equation for capacitor

(5.20)
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and

dip (t
i ; r( ) defining equation for inductor (5.21)

v (t) — 0 ast — oo steady-state inductor voltage

UL(f) =1L

Thus, capacitor currents and the inductor voltages become zero in the DC steady state.
From a circuit analysis standpoint, this means that we can very easily apply circuit
analysis methods from Chapters 2 and 3 to determine the steady-state solution of
any circuit containing capacitors and inductors if we observe that the circuit element
for which the current is always zero is the open circuit, and the circuit element for
which the voltage is always zero is the short circuit. Thus we can make the following
observation:

At DC steady state, all capacitors behave as open circuits and all inductors
behave as short circuits.

Prior to presenting some examples, we make one last important comment. The
DC steady-state condition is usually encountered in one of two cases: before a switch is
first activated, in which case we call the DC steady-state solution the initial condition,
and a long time after a switch has been activated, in which case we call the DC steady-
state solution the final condition. We now introduce the notation x (co) to denote the
value of the variable x(¢) as ¢t — oo (final condition) and the notation x (0) to denote
the value of the variable x (¢) at ¢ = 0, that is, just before the switch is activated (initial
condition). These ideas are illustrated in Examples 5.3 and 5.4.

LO3 >

EXAMPLE 5.3 Initial and Final Conditions

Problem

Determine the capacitor voltage in the circuit of Figure 5.9(a) a long time after the switch has
been closed.

(a) )

Figure 5.9 (a) Circuit for Example 5.3; (b) same circuit a long time
after the switch is closed

L/
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Solution

Known Quantities: The values of the circuit elements are R; = 100 Q; R, =75 Q;
Ry =250Q; C=1uF; V3 =12 V.

Analysis: After the switch has been closed for a long time, we treat the capacitor as an open
circuit, as shown in Figure 5.9(b). Now the problem is a simple DC circuit analysis problem.
With the capacitor as an open circuit, no current flows through resistor R, and therefore we
have a simple voltage divider. Let V; be the voltage across resistor V3; then

R; 25

V3(o0) = m B =

—0 (12) =857V

350

To determine the capacitor voltage, we observe that the voltage across each of the two parallel
branches must be the same, that is, V3(00) = v.(00) 4+ V2 (00) where V,(o0) is the steady-state
value of the voltage across resistor R,. But V,(00) is zero, since no current flows through the
resistor, and therefore

ve(00) = Vs(c0) = 8.57V

Comments: The voltage vc (00) is the final condition of the circuit of Figure 5.9(a).

CHECK YOUR UNDERSTANDING

Now suppose that the switch is opened again. What will be the capacitor voltage after a long

time? Why?

“€3 pue Ty y3noIy) d81eydsIp [[im 10j10eded YL A 0 = (00) 2 :1omsuy
EXAMPLE 5.4 Initial and Final Conditions <|_03
Problem

Determine the inductor current in the circuit of Figure 5.10(a) just before the switch is opened.

Ri r<oy R

(a) 0]

Figure 5.10 (a) Circuit for Example 5.4; (b) same circuit a long time before
the switch is opened
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Solution

Known Quantities: The values of the circuit elements are R; = 1 kQ; R, = 5 kQ;
R;=333kQ; L=0.1H; Vi=12V; V,=4V.

Analysis: Before opening, the switch has been closed for a long time. Thus, we have a steady-
state condition, and we treat the inductor as a short circuit, as shown in Figure 5.10(b). Now it
is a simple DC circuit analysis problem that is best approached using node analysis:

Vl_va Va+VZ_Va
R, R, R;

V, = 1+1+171 LLED B
“7\R, R, R; R, Ry

To determine the inductor current, we observe that

=0

vV, 879
L(0) = -2 = = 1.758 mA
i@ =% =500 m

Comments: The current i, (0) is the initial condition of the circuit of Figure 5.10(a).

CHECK YOUR UNDERSTANDING

Now suppose that the switch is opened. What will be the inductor current after a long time?

EH + ZH
Vi gy = = — = (0071 omsuy

Continuity of Inductor Currents and Capacitor
Voltages, and Initial Conditions

As has already been stated, the primary variables employed in the analysis of circuits
containing energy storage elements are capacitor voltages and inductor currents. This
choice stems from the fact that the energy storage process in capacitors and inductors is
closely related to these respective variables. The amount of charge stored in a capacitor
is directly related to the voltage present across the capacitor, while the energy stored
in an inductor is related to the current flowing through it. A fundamental property of
inductor currents and capacitor voltages makes it easy to identify the initial condition
and final value for the differential equation describing a circuit: Capacitor voltages
and inductor currents cannot change instantaneously. An instantaneous change in
either of these variables would require an infinite amount of power. Since power
equals energy per unit time, it follows that a truly instantaneous change in energy
(i.e., a finite change in energy in zero time) would require infinite power.

Another approach to illustrating the same principle is as follows. Consider the
defining equation for the capacitor

dvc (1)
dt
and assume that the capacitor voltage vc (¢) can change instantaneously, say, from 0

ict)=C
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to V volts, as shown in Figure 5.11. The value of dvc /dt att = 0 is simply the slope ~ ve®
of the voltage vc(¢) att = 0. Since the slope is infinite at that point, because of the
instantaneous transition, it would require an infinite amount of current for the voltage V'
across a capacitor to change instantaneously. But this is equivalent to requiring an
infinite amount of power, since power is the product of voltage and current. A similar 1=0 t
argument holds if we assume a “step” change in inductor current from, say, 0 to /
amperes: An infinite voltage would be required to cause an instantaneous change in
inductor current. This simple fact is extremely useful in determining the response of
a circuit. Its immediate consequence is that

Figure 5.11 Abrupt change
in capacitor voltage

The value of an inductor current or a capacitor voltage just prior to the closing
(or opening) of a switch is equal to the value just after the switch has been
closed (or opened). Formally,

ve (07) = ve(07) (5.22)
ir(07) =i (07) (5.23) @
where the notation 0" signifies “just after 1 = 0” and 0~ means “just before
t=0"
EXAMPLE 5.5 Continuity of Inductor Current LO3
Problem

Find the initial condition and final value of the inductor current in the circuit of Figure 5.12.

t=0
yi
- >
Solution I EL REE
Known Quantities: Source current /g; inductor and resistor values.

Find: Inductor current at t = 0" and as r — oo.

Figure 5.12
Schematics, Diagrams, Circuits, and Given Data: I3 = 10 mA.
Assumptions: The current source has been connected to the circuit for a very long time.
Analysis: Att = 07, since the current source has been connected to the circuit for a very long >
. <

time, the inductor acts as a short circuit, and i (07) = I. Since all the current flows through 0M gL O V()

. . . +
the inductor, the voltage across the resistor must be zero. At t = 0%, the switch opens and we ~—

can state that

iL(0%) =i (07) =1 0
because of the continuity of inductor current.
The circuit for # > 0 is shown in Figure 5.13, where the presence of the current i (01)
denotes the initial condition for the circuit. A qualitative sketch of the current as a function of ~ 10mA
time is also shown in Figure 5.13, indicating that the inductor current eventually becomes zero
ast — oo.
0

Comments: Note that the direction of the current in the circuit of Figure 5.13 is dictated by
the initial condition, since the inductor current cannot change instantaneously. Thus, the current  Figure 5.13
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Hydraulic

Tank @

The analogy between elec-
tric and hydraulic circuits
illustrated in earlier chapters
can be applied to the hy-
draulic tank shown in
Figure 5.14. The tank is
cylindrical with cross-
sectional area A, and the
liquid contained in the tank
exits the tank through a
valve, which is modeled by
a fluid resistance R. Initially,
the level, or head, of the
liquid is k. The principle of
conservation of mass can
be applied to the liquid in
the tank of Figure 5.14 to
determine the rate at which
the tank will empty. For
mass to be conserved, the
following equation must
apply:

din — qout = Ystored
In the above equation, the
variable g represents a vol-
umetric flow rate in cubic
meters per second. The flow
rate into the tank is zero in
this particular case, and the
flow rate out is given by the
pressure difference across
the valve, divided by the
resistance:
Ap _ psh
R~ R
The expression Ap = pgh is
obtained from basic fluid
mechanics: pgh is the static
pressure at the bottom of
the tank, where p is the
density of the liquid, g is the
acceleration of gravity, and
h is the (changing) liquid
level.

Gout =

(Continued)
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will flow counterclockwise, and the voltage across the resistor will therefore have the polarity
shown in the figure.

CHECK YOUR UNDERSTANDING

The switch in the circuit of Figure 5.10 (Example 5.4) has been open for a long time, and it is
closed again at t = ty. Find the initial condition iy (#;").

v gy = (_0) 71 = (,0) 71 :1omsuy

5.4 TRANSIENT RESPONSE OF FIRST-ORDER
CIRCUITS

First-order systems occur very frequently in nature: Any system that has the ability
to store energy in one form (potential or kinetic, but not both) and to dissipate this
stored energy is a first order system. In an electric circuit, we recognize that any
circuit containing a single energy storage element (an inductor or a capacitor) and a
combination of voltage or current sources and resistors is a first-order circuit. We also
encounter first-order systems in other domains. For example, a mechanical system
characterized by mass and damping (e.g., sliding or viscous friction) but that does not
display any elasticity or compliance is a first-order system. A fluid system display-
ing flow resistance and fluid mass storage (fluid capacitance) is also first-order; an
example of a first-order hydraulic system is a liquid-filled tank with a valve (variable
orifice). Thermal systems can also often be modeled as having first-order behavior:
The ability to store and to dissipate heat leads to first-order differential equations.
The heating and cooling of many physical objects can often be approximated in this
fashion. The aim of this section is to help you develop a sound methodology for
the solution of first-order circuits, and to help you make the connection with other
domains and disciplines, so that someday you may apply these same ideas to other
engineering systems.

Elements of the Transient Response

As explained in Section 5.1, the transient response of a circuit consists of three parts:
(1) the steady-state response prior to the transient (in this chapter, we shall only
consider transients caused by the switching on or off of a DC excitation); (2) the
transient response, during which the circuit adjusts to the new excitation; and (3)
the steady-state response following the end of the transient. The steps involved in
computing the complete transient response of a first-order circuit excited by a switched
DC source are outlined in the next Focus on Methodology box. You will observe that
we have already explored each of the steps listed below, and that this methodology is
very straightforward, provided that you correctly identify the proper segments of the
response (before, during, and after the transient).
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FIRST-ORDER TRANSIENT RESPONSE

1. Solve for the steady-state response of the circuit before the switch changes
state (r = 07) and after the transient has died out (+ — co). We shall
generally refer to these responses as x(0~) and x (co).

2. Identify the initial condition for the circuit x (07), using continuity of
capacitor voltages and inductor currents [ve = v (07),
ir (0T) =i, (07)], as illustrated in Section 5.3.

3. Write the differential equation of the circuit for ¢ = 0, that is,
immediately after the switch has changed position. The variable x (¢) in
the differential equation will be either a capacitor voltage ve () or an
inductor current iy (¢). It is helpful at this time to reduce the circuit to
Thévenin or Norton equivalent form, with the energy storage element
(capacitor or inductor) treated as the load for the Thévenin (Norton)
equivalent circuit. Reduce this equation to standard form (equation 5.8).

4. Solve for the time constant of the circuit: t = Ry C for capacitive circuits,
v = L /Ry for inductive circuits.

5. Write the complete solution for the circuit in the form

x(t) = x(00) + [x(0) — x(c0)]e "/

General Solution of First-Order Circuits

The methodology outlined in the preceding box is illustrated below for the general
form of the first-order system equation (equation 5.8, repeated below for convenience),

a; dx(t) N @
CTQ T +«\(r)—aof(r)
or (5.24)
dx (s
. # +x() = Ksf (1)

where the constants T = a;/ap and Ks = bg/ay are termed the time constant and the
DC gain, respectively. Consider the special case where f(¢) is a DC forcing function,
switched on at time ¢ = 0. Let the initial condition of the system be x (t = 0) = x(0).
Then we seek to solve the differential equation

T m +x(t) = KsgF

dt

As you may recall from an earlier course in differential equations, this solution consists
of two parts: the natural response (or homogeneous solution), with the forcing
function set equal to zero, and the forced response (or particular solution), in
which we consider the response to the forcing function. The complete response then

t>0 (5.25)

© The McGraw-Hill
Companies, 2007
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MAKE THE
CONNECTION
(Concluded)

The flow rate stored is
related to the rate of change
of the fluid volume contain-
ed in the tank (the tank
stores potential energy in
the mass of the fluid):

dh
qstored = A—

dt
Thus, we can describe the
emptying of the tank by
means of the first-order
linear ordinary differential
equation

0 — Gout = Gstored

pgh dh
_7:A7
R dt
RA dh
— —+h=0
pg dt
dh
= T—+h=0
dt
RA
T=—
124

We know from the content of
the present section that the
solution of the first-order
equation with zero input and
initial condition kg is

h(t) = hoe /"
Thus, the tank will empty
exponentially, with time
constant determined by the
fluid properties, that is, by
the resistance of the valve
and by the area of the tank.

A = area
h
f L
— v @

Figure 5.14 Analogy
between electrical and fluid
capacitance
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consists of the sum of the natural and forced responses. Once the form of the complete
response is known, the initial condition can be applied to obtain the final solution.

Natural Response

The natural response is found by setting the excitation equal to zero. Thus, we solve
the equation

dxy(t
. ’Cc’lvr(r) Fxn() =0
or (5.26)
dxy(t) _ xn()
dr T

Where we use the notation xy (¢) to denote the natural response. The solution of this
equation is known to be of exponential form:

t/t

xy(t) = ae™ Natural response (5.27)

The constant « in equation 5.27 depends on the initial condition, and can only be
evaluated once the complete response has been determined. If the system does not
have an external forcing function, then the natural response is equal to the complete
response, and the constant « is equal to the initial condition ¢ = x(0). The Make the
Connection sidebar “Hydraulic Tank” illustrates this case intuitively by considering
a fluid tank emptying through an orifice. You can see that in the case of the tank, once
the valve (with flow resistance R) is open, the liquid drains at an exponential rate,
starting from the initial liquid level 4y, and with a time constant T determined by the
physical properties of the system. You should confirm the fact that if the resistance
of the valve is decreased (i.e., liquid can drain out more easily), the time constant
will become smaller, indicating that the tank will empty more quickly. The concept
of time constant is further explored in Example 5.6.

LO4 >

EXAMPLE 5.6 First-Order Systems and Time Constants

Problem

Create a table illustrating the exponential decay of a voltage or current in a first-order circuit
versus the number of time constants.

Solution

Known Quantities: Exponential decay equation.

Find: Amplitude of voltage or current x(¢) at t = 0, 7, 27, 37, 47, 5t.
Assumptions: The initial condition at r = 0 is x(0) = X.

Analysis: We know that the exponential decay of x (¢) is governed by the equation
x(t) = Xoe '*
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Thus, we can create the following table for the ratio x(t)/ Xy = e/, n = 0,1,2,..., at
each value of ¢:
x(t)
—_— n
Xo 1
1 0 0.8
03679 1 \
0.1353 2 200
0.0498 3 =04
0.0183 4
0.0067 5 02 N—_
0
0 1 2 3 4 5
Figure 5.15 depicts the five points on the exponential decay curve. Time constants

Figure 5.15 First-order
exponential decay and time
constants

Comments: Note that after three time constants, x has decayed to approximately 5 percent
of the initial value, and after five time constants to less than 1 percent.

CHECK YOUR UNDERSTANDING

Find the time #59, when x(¢) has decayed to exactly one-half of the initial value X,.

2€69°0 = %05 romsuy

Forced Response

For the case of interest to us in this chapter, the forced response of the system is the
solution to the equation
dxp (1)
dt
in which the forcing function F is equal to a constant for + = 0. For this special
case, the solution can be found very easily, since the derivative term becomes zero in
response to a constant excitation; thus, the forced response is found as follows:

T +xp()=KsF  t>0 (5.28)

xp(t) = KgF t>0 Forced response (5.29) < LO4

Note that this is exactly the DC steady-state solution described in Section 5.4! We
already knew how to find the forced response of any RLC circuit when the excitation
is a switched DC source. Further, we recognize that the two solutions are identical by
writing

xp(t) = x(c0) = KgF t>0 (5.29)

Complete Response

The complete response can now be calculated as the sum of the two responses:
x(t) =xn(@) +xp() =ae/T+ KsF ="+ x(00) t>0 (5.30)
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To solve for the unknown constant o, we apply the initial condition x (t = 0) = x(0):
x(t =0)=x(0) = b
x( ) = x(0) = a + x(c0) 53D
o = x(0) — x(c0)
MAKE THE
CONNECTION so that we can finally write the complete response:
FlrSt'Order X(f) — [X(O) o X(OO)] e*l/r + X(OO) ¢ Z O Complete (5.32) LO4
Thermal System response <:

An automotive transmission
generates heat, when en-

gaged, at the rate gin = Note that this equation is in the same form as that given in the Focus on Methodology

2,000 J/s. The thermal ca- box. Once you have understood this brief derivation, it will be very easy to use
pacitance of the transmis- the simple shortcut of writing the solution to a first-order circuit by going through
sionis C; =me=12KkI/°C. . the simple steps of determining the initial and final conditions and the time constant

The effe of the circuit. This methodology is illustrated in the remainder of this section by a
resistance through which

heat is dissipated is R, = number of examples.
0.2°C/W.

1. What is the steady-state

temperature the trans-

temperature is 5°C?

mission will reach when
the iR RSN EXAMPLE 5.7 Complete Solution of First-Order Circuit < LO4

With reference to the Make Problem

the Connection sidebar on
thermal capacitance, we
write the differential
equation based on energy

Determine an expression for the capacitor voltage in the circuit of Figure 5.17.

balance: Solution
R:C; s +T = Rigin Known Quantities: Initial capacitor voltage; battery voltage, resistor and capacitor values.
At steady state, the rate of Find: Capacitor voltage as a function of time v¢ (¢) for all ¢.
change of temperature is
zero, hence, T (00) = R;qin- Schematics, Diagrams, Circuits, and Given Data: vc(t =07)=5V; R =1kQ;
Using the numbers given, C =470 uF; Vg = 12 V. Figures 5.17 and 5.18.

T (00) = 0.04 x 2,000 = 80°C.
Assumptions: None.
(Continued)
Analysis:

Step 1: Steady-state response. We first observe that the capacitor had previously been
charged to an initial voltage of 5 V. Thus,

ve() =5V t <0 and ve(07)=5V

When the switch has been closed for a long time, the capacitor current becomes zero (see
equation 5.20); alternatively, we can replace the capacitor by an open circuit. In either case,
+ the fact that the current in a simple series circuit must become zero after a suitably long time
— lm ve( == C tells us that

W le=sv ve(o0) = Vp = 12V

Step 2: Initial condition. We can determine the initial condition for the variable vc (¢) by
Figure 5.17 virtue of the continuity of capacitor voltage (equation 5.22):

ve(OF) = ve(07) =5V
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Complete, transient, and steady-state response of RC circuit

15
10
-~ — ()
5 — ver@® ||
g ===+ vess(f)
G
>
0 —
—
//
_5 //
-10
0 0204 06 08 1 12 14 1.6 1.8 2
Time(s)
(a)

Complete, transient, and steady-state response of RC circuit

15
10 // =
b —_ vc(t)
5 e — ven()
a ¢ === ver(h)
° "' \\
> K ~——
0
-5
-10
0 02 04 06 08 1 12 14 16 18 2
Time(s)
(b)

Figure 5.18 (a) Complete, transient, and steady-
state responses of the circuit of Figure 5.17;

(b) complete, natural, and forced responses of the circuit
of Figure 5.17.

Step 3: Writing the differential equation. At r = 0 the switch closes, and the circuit is
described by the following differential equation, obtained by application of KVL:

. dvc(t)
Vo = Ric(t) = ve(t) = Vg = RC 02 —0c(0) =0 10
dvc (t
RC v;t()+vc(t):\/3 r>0

Step 4: Time constant. In the above equation we recognize the following variables, with
reference to equation 5.22:

T =RC Ks=1 f@)y=Vg
Step 5: Complete solution. From the Focus on Methodology box, we know that the solution
is of the form

x(1) = x(00) + [x(0) — x(c0)]e ™"

x=Vc t>0

© The McGraw-Hill
Companies, 2007
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MAKE THE
CONNECTION

(Concluded)

2. How long will it take the
transmission to reach
90 percent of the final
temperature?

The general form of the
solution is

T (1) =T (0) — T (00)]e™"/T
+ T (c0)
= T(0) + T (c0)
x (1 —e™H/7)
=5480(1 —e'/7)

thus, the transmission tem-
perature starts out at 5°C,
and increases to its final
value of 85°C, as shown in
the plot of Figure 5.16.
Given the final value of
85°C, we calculate 90 per-
cent of the final temperature
to be 76.5°C. To determine
the time required to
reach this temperature, we
solve the following equation
for the argument #:

T (t909%) = 76.5

=54 80(1 — e~"90%/7)
71.5
0 =
0.10625 = ¢~"0%/7 =

1 — ¢ 190%/T

toog, = 2.24t = 1,076 s

= 17.9 min

© Step response of transmission

8 80 oo
2.0 7 0
< == Transmission
£40 temperature
s 20 — Final value
g ==90% value

g 00 200 600 1000 1400 1800

Time(s)

Figure 5.16 Temperature
response of automotive
transmission
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Substituting the appropriate variables, we can write

ve (1) = ve(00) + [ve (0) — ve (00)]e™/RE t>=0
ve (1) =12+ (5 — 12)e7/% = vegs (1) + ver (1)

with
vess (1) =12V Steady-state response

ver () = (5 — 12)e™ /047 v Transient response

Alternatively, we can combine the different terms of the response in the following form:
ve(t) =57/ +12(1 — ey = vy (1) + vep (1)

with

vey (t) = Se™ 04TV Natural response
vep(t) = 12(1 — e '047) V Forced response

You can see that we can divide the response into two parts either in the form of steady-state
and transient response, or in the form of natural and forced response. The former is the one
more commonly encountered in circuit analysis (and which is used dominantly in this book);
the latter is the description usually found in mathematical analyses of differential equations.
The complete response described by the above equations is shown graphically in Figure 5.18;
part (a) depicts the steady-state and transient components, while part (b) shows the natural
and forced responses. Of course, the complete response is the same in both cases.

Comments: Note how in Figure 5.18(a) the steady-state response vcss(t) is simply equal to
the battery voltage, while the transient response vy (¢) rises from —7 to O V exponentially. In
Figure 5.18(b), on the other hand, we can see that the energy initially stored in the capacitor
decays to zero via its natural response vcy (t), while the external forcing function causes the
capacitor voltage to rise exponentially to 12 V, as shown in the forced response vcr(¢). The
example just completed, though based on a very simple circuit, illustrates all the steps required
to complete the solution of a first-order circuit.

CHECK YOUR UNDERSTANDING

‘What happens if the initial condition (capacitor voltage for ¢ < 0) is zero?

(posi—? — 1TT = (D) 42a = (1)9a
.UO[]H[OS '[;)QOJOJ 9[{1 (o)} [Enbe S[ UO[]H[OS 919[dU.IOO QI{L IJSMSUV

Energy Storage in Capacitors and Inductors

It is appropriate at this time to recall that capacitors and inductors are energy storage
elements. Consider, first, a capacitor, which accumulates charge according to the
relationship Q = CV. The charge accumulated in the capacitor leads to the storage

L~/
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of energy according to the following equation:
L., . .
We = EC v (1) Energy stored in a capacitor (5.33)
. . . . N =0 -
To understand the role of stored energy, consider, as an illustration, the simple circuit Swtitch Switch
of Figure 5.19, where a capacitor is shown to have been connected to a battery Vi fora L 1
. . . _ VB Ve .~ C R

long time. The capacitor voltage is therefore equal to the battery voltage: vc (1) = Vp. T i
The charge stored in the capacitor (and the corresponding energy) can be directly
determined by using equation 5.33. Suppose, next, that at + = 0 the capacitor is

disconnected from the battery and connected to a resistor, as shown by the action
of the switches in Figure 5.19. The resulting circuit would be governed by the RC

Exponential decay of capacitor current

1

differential equation described earlier, subject to the initial conditionvc (f = 0) = Vg. <« e \\
Thus, according to the results of Section 5.4, the capacitor voltage would decay fg 8»2
exponentially according to the following equation: 805 \

5 04—\

ve (t) = Vge /8¢ (534) 305N

S 0.1 AN

Physically, this exponential decay signifies that the energy stored in the capacitor at %0051 152253354455
Time(s)

t = 0 is dissipated by the resistor at a rate determined by the time constant of the
circuit T = RC. Intuitively, the existence of a closed-circuit path allows for the low  Figure 5.19 Decay through a
of a current, thus draining the capacitor of its charge. All the energy initially stored  resistor of energy stored in a
in the capacitor is eventually dissipated by the resistor. capacitor

A very analogous reasoning process explains the behavior of an inductor. Recall
that an inductor stores energy according to the expression

1
Wy = ELif (t)  Energy stored in an inductor (5.35)
1=0

Switch

VCEL@ R

Exponential decay of inductor current

Thus, in an inductor, energy storage is associated with the flow of a current (note the
dual relationship between i, and v¢). Consider the circuit of Figure 5.20, which is
similar to that of Figure 5.19 except that the battery has been replaced with a current
source and the capacitor with an inductor. For t < 0, the source current /g flows
through the inductor, and energy is thus stored; at t = 0, the inductor current is equal
to Ip. At this point, the current source is disconnected by means of the left-hand

1
switch, and a resistor is simultaneously connected to the inductor, to form a closed < 8.2 \
circuit.! The inductor current will now continue to flow through the resistor, which 207 \
dissipates the energy stored in the inductor. By the reasoning in the preceding discus- % 8-‘;
sion, the inductor current will decay exponentially: 5 8.431 \\

Q e
iL(t) = Ige"R/L (5.36) 302 N
%0 051152253354455
Time(s)

INote that in theory an ideal current source cannot be connected in series with a switch. For the purpose Figure 5.20 Decay through a
of this hypothetical illustration, imagine that upon opening the right-hand side switch, the current source  resistor of energy stored in an
is instantaneously connected to another load, not shown. inductor
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That is, the inductor current will decay exponentially from its initial condition, with
a time constant T = L/R. Example 5.8 further illustrates the significance of the time
constant in a first-order circuit.

LO4 >

t=0
(e

()L

Figure 5.21 Equivalent
circuit of camera flash charging
circuit

+

VC

EXAMPLE 5.8 Charging a Camera Flash—Time Constants

Problem

A capacitor is used to store energy in a camera flash light. The camera operates on a 6-V
battery. Determine the time required for the energy stored to reach 90 percent of the maximum.
Compute this time in seconds and as a multiple of the time constant. The equivalent circuit is
shown in Figure 5.21.

Solution

Known Quantities: Battery voltage; capacitor and resistor values.

Find: Time required to reach 90 percent of the total energy storage.

Schematics, Diagrams, Circuits, and Given Data: Vy = 6 V; C = 1,000 uF; R = 1 k<.

Assumptions: Charging starts at t+ = 0, when the flash switch is turned on. The capacitor is
completely discharged at the start.
Analysis: First, we compute the total energy that can be stored in the capacitor:
Eo = 3C02 = 1CVZ =18 x 1072
Thus, 90 percent of the total energy will be reached when Ey = 0.9 x 18 x 1073 = 16.2 x

1073 J. This corresponds to a voltage calculated from

1CvE =162 %1073

2 x16.2 x 1073
Ve = —c = 5.692V

Next, we determine the time constant of the circuit: t = RC = 1073 x 10° = 1 s; and we
observe that the capacitor will charge exponentially according to the expression

ve=6(1—-e")=6(1—e")
Note that the expression for v¢ (¢) is equal to the forced response, since the natural response is

equal to zero (see Example 5.7) when the initial condition in v¢ (0) = 0. To compute the time
required to reach 90 percent of the energy, we must therefore solve for ¢ in the equation

Ve-90% = 5.692 =6(1 —e™")
0949 =1—e¢*
0.051 = ¢
=—In0.051=2.97s
The result corresponds to a charging time of approximately 3 time constants.
Comments: This example demonstrates the physical connection between the time constant
of a first-order circuit and a practical device. If you wish to practice some of the calculations

related to time constants, you might calculate the number of time constants required to reach
95 and 99 percent of the total energy stored in a capacitor.
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CHECK YOUR UNDERSTANDING

If we wished to double the amount of energy stored in the capacitor, how would the charging
time change?

*1 Surjqnop snyj ‘oSIe] sk 20IM]) 2q P[NOM ) SE ‘Q[qNOp OSe PINoMm I :TOMSUY

EXAMPLE 5.9 Starting Transient of DC Motor <|_04

Problem

An approximate circuit representation of a DC motor consists of a series RL circuit, shown in
Figure 5.22. Apply the first-order circuit solution methodology just described to this approxi-
mate DC motor equivalent circuit to determine the transient current.

Solution
Known Quantities: Initial motor current; battery voltage; resistor and inductor values.
Find: Inductor current as a function of time i L (¢) for all ¢.

Schematics, Diagrams, Circuits, and Given Data: R =4 Q; L =0.1H; V3 =50V.

Figure 5.22. =0
Assumptions: None.
N R
Analysis: Vg — +
- L VL

Step 1: Steady-state response. The inductor current prior to the closing of the switch must
be zero; thus,

i

Figure 5.22 Circuit for

ir(t)=0A t<0 and ir(07)=0A Example 5.9

When the switch has been closed for a long time, the inductor current becomes a constant and
can be calculated by replacing the inductor with a short circuit:

Vg 50

(o) = = = 7 =125A

Step 2: Initial condition. We can determine the initial condition for the variable i, (¢) by
virtue of the continuity of inductor current (equation 5.23):

iL(07) =i (07) =0

Step 3: Writing the differential equation. At # = 0 the switch closes, and the circuit is
described by the following differential equation, obtained by application of KVL:

dig(t)
dr

dig(t) . 1
1) ==V, t>0
o7 + (0 RV >

Vs —Ri (t) — L 0 >0

L
R
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Step 4: Time constant. In the equations listed in step 3, we recognize the following
variables, with reference to equation 5.8:

XIiL T=— KSI— f(t)IVB t>0

Step 5: Complete solution. From the Focus on Methodology box, we know that the solution
is of the form

x(t) = x(00) + [x(0) — x(c0)le ™"

Substituting the appropriate variables, we can write

ip(t) =ir(00) + [iL(0) —iL(c0)le ™/t >0
=12.54 (0 — 12.5)e7 /0% = j; ¢5(t) + ir7 (£)
with
irss(t) =125 A Steady-state response
i (1) = (—12.5)e7 /0035 A Transient response

Alternatively, we can combine the different terms of the response in the following form:
ip(®) =04 12.5(1 — ™00y = i, v () + i (2) t>0
with

iin@)=0A Natural response
ipp(t) =12.5(1 — e71/00%3) A Forced response

The complete response described by the above equations is shown graphically in Figure 5.23.

Comments: Note that in practice it is not a good idea to place a switch in series with an
inductor. As the switch opens, the inductor current is forced to change instantaneously, with

Complete, transient, and steady-state response of RL circuit Complete, transient, and steady-state response of RL circuit
15 15
10 10
/ —ir(0) / — i (D), iLp (1)
5 / —_ l:LT(t) | 5 / | | =— in(®) |
/ === lpss(D)
g g
153 153
£ o PE——— E°
< LT <
-5 // -5
-10 // -10
-15 —15
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time(s) Time(s)
@) (b)

Figure 5.23 Transient response of electric motor: (a) steady-state and transient responses; (b) natural and
forced responses
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the result that di; /dt, and therefore vy (¢), approaches infinity. The large voltage transient
resulting from this inductive kick can damage circuit components. A practical solution to this
problem, the freewheeling diode, is presented in Section 12.5.

In the preceding examples we have seen how to systematically determine the
solution of first-order circuits. The solution methodology was applied to two simple
cases, but it applies in general to any first-order circuit, providing that one is careful
to identify a Thévenin (or Norton) equivalent circuit, determined with respect to the
energy storage element (i.e., treating the energy storage element as the load). Thus the
equivalent circuit methodology for resistive circuits presented in Chapter 3 applies to
transient circuits as well. Figure 5.24 depicts the general appearance of a first-order
circuit once the resistive part of the circuit has been reduced to Thévenin equivalent
form.

An important comment must be made before we demonstrate the equivalent .
circuit approach to more complex circuit topologies. Since the circuits that are the
subject of the present discussion usually contain a switch, one must be careful to

determine the equivalent circuits before and after the switch changes position. In v, C) ﬁgf;iz
other words, it is possible that the equivalent circuit seen by the load before activating T element

I
I
I
I
I
I
I
|
the switch is different from the circuit seen after the switch changes position. i
To illustrate the procedure, consider the RC circuit of Figure 5.25. The objective o
is to determine the capacitor voltage for all time. The switch closesats = 0.For ¢ < 0, !
we recognize that the capacitor has been connected to the battery V, through resistor gure 5.24 Equivalent-
R. This circuit is already in Thévenin equivalent form, and we know that the capacitor  circuit representation of
must have charged to the battery voltage V,, provided that the switch has been closed  first-order circuits
for a sufficient time (we shall assume so). Thus,

ve(t) =V, <0
Ve(07) =Ve(0h) =V,

(5.37)

After the switch closes, the circuit on the left-hand side of Figure 5.25 must be
accounted for. Figure 5.26 depicts the new arrangement, in which we have moved the
capacitor to the far right-hand side, in preparation for the evaluation of the equivalent
circuit. Using the Thévenin-to-Norton source transformation technique (introduced
in Chapter 3), we next obtain the circuit at the top of Figure 5.27, which can be easily
reduced by adding the two current sources and computing the equivalent parallel
resistance of Ry, R, and Rj3. The last step illustrated in the figure is the conversion

Ry
AAAA
YVyvy

<,
£=
(o] (

vV, = R; =,

AAAA
YVVy
<
S
A
A
a

Figure 5.25 A more involved RC circuit
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Figure 5.27 Reduction of
the circuit of Figure 5.26 to
Thévenin equivalent form
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Figure 5.28 The circuit of
Figure 5.25 in equivalent form
fort >0
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+

Ry R>

<
a
\

VvV, — =V,

e o S

Figure 5.26 The circuit of Figure
522fort >0

to Thévenin form. Figure 5.28 depicts the final appearance of the equivalent circuit
fort > 0.

‘When the switch has been closed for a long time, the capacitor sees the Thévenin
equivalent circuit computed in Figures 5.27 and 5.28. Thus, when the capacitor is re-
placed with an open circuit, vc(co) = Vr. Further, we can determine the initial
condition for the variable v¢ (¢) by virtue of the continuity of capacitor voltage (equa-
tion 5.22): v (07) = v (07) = V,. At t = 0 the switch closes, and the circuit is
described by the following differential equation, obtained by application of KVL for
the circuit of Figure 5.28:

dvc(t
Vr — Rric(t) —vc(t) =Vr — RrC ve(®)

—vc()=0 t>0

dvc (1)

RsC
™

+uvc(t) =Vr t>0

with

Rt = Ri||R2[|R;

Ve = Ry (L4 22

T = KT R R,

In the above equation we recognize, with reference to equation 5.22, the following
variables and parameters: x = vc; T = RrC; Ks = 1; f(t) = Vy fort > 0. And
we can write the complete solution

ve (1) = ve(00) 4 [ve (0) — ve(o0)]e™™  1>0

ve(t) = Vr + (Vo — Vp)e /Rr€

The use of Thévenin equivalent circuits to obtain transient responses is emphasized
in the next few examples.

LO4 >

EXAMPLE 5.10 Use of Thévenin Equivalent Circuits in Solving
First-Order Transients

Problem

The circuit of Figure 5.29 includes a switch that can be used to connect and disconnect a
battery. The switch has been open for a very long time. At ¢+ = 0 the switch closes, and then at
t = 50 ms the switch opens again. Determine the capacitor voltage as a function of time.



@ ‘ Rizzoni: Principles and I. Circuits 5. Transient Analysis © The McGraw-Hill
Applications of Electrical Companies, 2007
Engineering, Fifth Edition

Part I Circuits 241
Ry R3
Solution O—WW AWV
¥
Known Quantities: Battery voltage; resistor and capacitor values.
=1=15V 3R, Cvc®
p-

Find: Capacitor voltage as a function of time v¢ (¢) for all ¢.

Schematics, Diagrams, Circuits, and Given Data: R, = R, = 1,000 2, R; = 500 2, and -
C =25 uF. Figure 5.29.

Figure 5.29 Circuit for

Assumptions: None. Example 5.10

Analysis:

Part 1— 0<t<50ms

Step 1: Steady-state response. We first observe that any charge stored in the capacitor has
had a discharge path through resistors R3 and R,. Thus, the capacitor must be completely
discharged. Hence,

v =0V <0 and vc(0)=0V

To determine the steady-state response, we look at the circuit a long time after the switch has
been closed. At steady state, the capacitor behaves as an open circuit, and we can calculate
the equivalent open circuit (Thévenin) voltage and equivalent resistance to be

R,
R, + R,
=75V

Rr = R3 + R||R, =1k

vc(00) = Vp

Step 2: Initial condition. We can determine the initial condition for the variable vc () by
virtue of the continuity of capacitor voltage (equation 5.22):

ve(@") = v ) =0V

Step 3: Writing the differential equation. To write the differential equation, we use the
Thévenin equivalent circuit for # > 0, with Vr = v.(00) and we write the resulting
differential equation

. dvc (1)
VT—RTlc(t)—Uc(t)ZVT—RTC a1 —Uc(I)ZO 0<t<50ms
dvc (1)
RsC +vc() =Vr 0<t<50ms

dt

Step 4: Time constant. In the above equation we recognize, with reference to equation 5.22,
the following variables and parameters:

X = vc; T=RrC =0.025s; Ks=1;
f@)y=Vr =175V 0<t<50ms
Step 5: Complete solution. The complete solution is

ve (t) = ve (00) + [ve (0) — ve (00)]e ™™ 0<t<50ms

ve(t) = Vi + (0 = Vp)e /RiC = 7.5(1 — 0025V 0 <t <50ms
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Part 2— t > 50 ms

As mentioned in the problem statement, at # = 50 ms the switch opens again, and the capacitor
now discharges through the series combination of resistors R; and R;. Since there is no external
forcing function once the switch is opened, this problem only involves determining the natural
response of the circuit. Recall that the natural response is of the form xy(¢) = ae /7 (see
equation 5.27). We note two important facts:

1. The constant ¢ is the initial condition at the time when the switch is opened, since that
represents the actual value of the voltage across the capacitor from which the exponential
decay will begin.

2. The time constant of the decay is now the time constant of the circuit with the switch
open, that is, T = (R, + R3)C = 0.0375s.
To determine o, we must calculate the value of the capacitor voltage at the time when the
switch is opened:
o =ve(t =50ms) = 7.5(1 — e 00/005) — 6485V
Thus, we can write the capacitor voltage response for # > 50 ms as follows:

ve (t) — 6.48567070‘05)/0‘0375

The composite response is plotted below.

Transient response with double switching

11/

Volts
w E=
/

INEEN
gy

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time(s)

Comments: Note that the two parts of the response are based on two different time constants,
and that the rising portion of the response changes faster (shorter time constant) than the
decaying part.

CHECK YOUR UNDERSTANDING

What will the intial condition for the exponential decay be if the switch opens at # = 100 ms?

A €9€°L HIomsuy
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EXAMPLE 5.11 Turn-Off Transient of DC Motor <|_04

Problem

Determine the motor voltage for all time in the simplified electric motor circuit model shown

in Figure 5.30. The motor is represented by the series RL circuit in the shaded box. A1=0
Ry . < "
1 = le: R
Solution Ve = Rz | Vm
HEE
Known Quantities: Battery voltage, resistor, and inductor values. f

Find: The voltage across the motor as a function of time. Figure 5.30

Schematics, Diagrams, Circuits, and Given Data: Rp = 2 Q; R¢ = 20 Q; R,, = 0.8 Q;
L =3H;Vp=100V.

Assumptions: The switch has been closed for a long time.

Analysis: With the switch closed for a long time, the inductor in the circuit of Figure 5.30
behaves as a short circuit. The current through the motor can then be calculated by the current

divider rule in the modified circuit of Figure 5.31, where the inductor has been replaced with : +
a short circuit and the Thévenin circuit on the left has been replaced by its Norton equivalent: i i 3 r
Ve REIRE| (T
Q) = L/ R Ve Ry () ’ T = ¢ Vo
1/Rg +1/R; +1/R,, Rp :
1/0.8 100 ] -
= — =3472A

This current is the initial condition for the inductor current: i; (0) = 34.72 A. Since the motor
inductance is effectively a short circuit, the motor voltage for r < 0 is equal to

Un(t) = inRn =278V £t <0

When the switch opens and the motor voltage supply is turned off, the motor sees only the
shunt (parallel) resistance Ry, as depicted in Figure 5.32. Remember now that the inductor

. . . . +

current cannot change instantaneously; thus, the motor (inductor) current i,, must continue =

to flow in the same direction. Since all that is left is a series RL circuit, with resistance RS ’”’%i R
sZ L

R = Rs + R,, = 20.8 €, the inductor current will decay exponentially with time constant
t=L/R =0.1442s:

iL(t) = in(@) =i (0)e™/" = 34770142 150

N0
=
3
=
3

S| -
Figure 5.32

The motor voltage is then computed by adding the voltage drop across the motor resistance
and inductance:

. di (1)
m(t) = Ryip (¢ L ——
U (1) i+ L—

34.7

=0.8 x 34770142 4 3~
0.1442

>efz/oA144z >0

= —694.1¢1/0-1442 t>0

The motor voltage is plotted in Figure 5.33.

Comments: Notice how the motor voltage rapidly changes from the steady-state value of
27.8 V for t < O to a large negative value due to the turn-off transient. This inductive kick
is typical of RL circuits, and results from the fact that although the inductor current cannot
change instantaneously, the inductor voltage can and does, as it is proportional to the derivative
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Motor voltage (V)

1 -0.5 0 0.5 1 1.5 2
Time(s)

Figure 5.33 Motor voltage transient response

of i; . This example is based on a simplified representation of an electric motor, but illustrates
effectively the need for special starting and stopping circuits in electric motors. Some of these
ideas are explored in Chapter 12, Power Electronics; Chapter 17, Introduction to Electric
Machines; and Chapter 18, Special-Purpose Electric Machines.

Coaxial Cable Pulse Response f| 03 FIND IT

Problem:

A problem of great practical importance is the transmission of pulses
along cables. Short voltage pulses are used to represent the two-level binary
signals that are characteristic of digital computers; it is often necessary to transmit such
voltage pulses over long distances through coaxial cables, which are characterized by
a finite resistance per unit length and by a certain capacitance per unit length, usually
expressed in picofarads per meter. A simplified model of a long coaxial cable is shown
in Figure 5.34. If a 10-m cable has a capacitance of 1,000 pF/m and a series resistance of
0.2 ©/m, what will the output of the pulse look like after traveling the length of the cable?

ON THE WEB

5V
JRY.
{= . ; + “On” time
Vs f ) JT— Inner R VL
Outer shield conductor
1 (grounded) L t=0 t=1uyus
Pulse
t=0
Ry
O AW
N +
—— <>
sy = c RLZ VL
-|_ |

Circuit model for a section
of coaxial cable

Figure 5.34 Pulse transmission in a coaxial cable

(Continued)
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Solution:
Known Quantities— Cable length, resistance, and capacitance; voltage pulse amplitude
and time duration.
Find —The cable voltage as a function of time.
Schematics, Diagrams, Circuits, and Given Data—r; = 0.2 Q/m; R, = 150 €;
¢ = 1,000 pF/m; / = 10 m; pulse duration = 1 us.
Assumptions— The short voltage pulse is applied to the cable at t = 0. Assume zero
initial conditions.
Analysis—The voltage pulse can be modeled by a 5-V battery connected to a switch;
the switch will then close at t+ = 0 and open again at # = 1 us. The solution strategy
will therefore proceed as follows. First, we determine the initial condition; next, we solve
the transient problem for ¢ > 0O; finally, we compute the value of the capacitor voltage at
t = 1 us—that is, when the switch opens again—and solve a different transient problem.
Intuitively, we know the equivalent capacitor will charge for 1 us, and the voltage will
reach a certain value. This value will be the initial condition for the capacitor voltage when
the switch is opened; the capacitor voltage will then decay to zero, since the voltage source
has been disconnected. Note that the circuit will be characterized by two different time
constants during the two transient stages of the problem. The initial condition for this
problem is zero, assuming that the switch has been open for a long time.

The differential equation for O < ¢ < 1 us is obtained by computing the Thévenin
equivalent circuit relative to the capacitor when the switch is closed:

Ry

=mV3 RT:R1||RL TIRTC 0<f<1/LS

Vr
As we have already seen, the differential equation is given by the expression
d Uc
RTC7+Uc=VT 0<t<1us

and the solution is of the form
ve(t) = =Vee RTC LV = Vi1 —eRYY 0 <t <1ps

‘We can assign numerical values to the solution by calculating the effective resistance and
capacitance of the cable:

Ri=rxl=02x10=2Q
C =c x1=1,000 x 10 = 10,000 pF

150
Ry =2|150=197Q  Vr= Vs =493V

Ton = R7C =19.74 x 10~ s
so that
ve(t) = 4.93(1 — e /197107y 0 ¢ < 1 ps

At the time when the switch opens again, ¢+ = 1 us, the capacitor voltage can be found to
beve(r =1 us) =493 V.

When the switch opens again, the capacitor will discharge through the load resistor
R ; this discharge is described by the natural response of the circuit consisting of C and R,

(Continued)
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(Concluded)

and is governed by the following values: vc (t = 1 us) =493V, 1,g = R,C = 1.5 us.
We can directly write the natural solution as follows:

—6
ve(t) = ve(t =1 x 1078) x e ¢ 1107 /worr

—6 —6
=493 x e*(t*lxlo )/1.5x10 t > 1 s

Figure 5.35 shows a plot of the solution for # > 0, along with the voltage pulse.

6
5
4 N
53 \
> \
2 \\
1 ~—~—
0
0 0.2 0.4 0.6 0.8 1

Time (10 s)

Figure 5.35 Coaxial cable pulse response

Comments—Note that the voltage response shown in Figure 5.35 rapidly reaches the
desired value, near 5 V, thanks to the very short charging time constant z,,. On the other
hand, the discharging time constant t.s is significantly slower. As the length of the cable
is increased, however, 7., will increase, to the point that the voltage pulse may not rise
sufficiently close to the desired 5-V value in the desired time. While the numbers used in
this example are somewhat unrealistic, you should remember that cable length limitations
may exist in some applications because of the cable’s intrinsic capacitance and resistance.
In general, long cables such as electric transmission lines and very high-freqency circuits
cannot be analyzed by way of the lumped-parameter methods presented here, and require
distributed circuit analysis techniques.

EXAMPLE 5.12 Transient Response of Supercapacitors

Problem

An industrial, uninterruptible power supply (UPS) is intended to provide continuous power
during unexpected power outages. Ultracapacitors can store a significant amount of energy
and release it during transient power outages to ensure delicate or critical electrical/electronic
systems. Assume that we wish to design a UPS that is required to make up for a temporary
power glitch in a permanent power supply for 5 s. The system that is supported by this UPS
operates at a nominal voltage of 50 V and has a maximum nominal voltage of 60 V, but can
function with a supply voltage as low as 25 V. Design a UPS by determining the suitable number
of series and parallel elements required.
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Solution

Known Quantities: Maximum, nominal, and minimum voltage; power rating and time re-
quirements; Ultracapacitor data (see Example 4.1).

Find: Number of series and parallel ultracapacitor cells needed to satisfy the specifications.

Schematics, Diagrams, Circuits, and Given Data: Figure 5.36. Capacitance of one cell:
C1 = 100 F; resistance of one cell: R..; = 15 mS2; nominal cell voltage V. = 2.5 V. (See
Example 4.1.)

h ¢ * hd * 4+
b
C T~ C < C ~ +
Rcell
3 o Veell
R R R T _
cccccccc ‘
C C C )
T T T Vetack (b) A single cell
s s :
. —————

iloadi
R

Ceq + Rload §
Ve
? ? ?
R R R (c_) Stack—lf)ad_
equivalent circuit
C~ C T~ C~

(a) An ultracapacitor stack

Figure 5.36

Assumptions: The load can be modeled as a 0.5-Q resistance.

Analysis: The total capacitance of the “stack” required to satisfy the specifications is obtained
by combining capacitors in series and parallel, as illustrated in Figure 5.36(a). Figure 5.36(b)
depicts the electric circuit model of a single cell. First we define some of the important variables
that are to be used in the problem.

The allowable voltage drop in the supply is AV = 25V, since the load can operate with
a supply as low as 25 V and nominally operates at 50 V.

The time interval over which the voltage will drop (but not below the allowable minimum
of 25V)is5s.
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The equivalent resistance of the stack consists of » parallel strings of m resistors each;
thus

Req = MRcell| |chell|| s ||chell n times
m
Req == Rcell
n
The equivalent capacitance of the stack can similarly be calculated by recalling that capacitors
in series combine as do resistors in parallel (and vice versa):

n
Ceq = _Ccell
m

Finally, given the equivalent resistance and capacitance of the stack, we can calculate the time
constant to be

m n
T= Reqceq = ;Rcell;Ccell = Rcellccell =15s

The total number of series capacitors can be calculated from the maximum required voltage:

Vmax 60 .
= — = 24 series cells
Veell 2.5

m =

We shall initially assume that » = 1 and see whether the solution is acceptable. Having
established the basic parameters, we now apply KCL to the equivalent circuit of Figure 5.36(c)
to obtain an expression for the stack voltage. Recall that we wish to ensure that the stack voltage
remains greater than the minimum allowable voltage (25 V) for at least 5 s:

dv.(t) v (1)

C. =
4 dt Req + Rload

The initial condition for this circuit assumes that the stack is fully charged to V.., that is,
ve(07) = ve(0T) = 60 V. Since there is no external excitation, the solution to this first-order
circuit consists of the natural response, with v.(co0) = 0

ve () = [ve(0) — ve(00)]e™ /" +uc(00) 120
ve (1) = ve(0)e™/7 = v (0) e~/ (ReatRioa)Ceq

— 60e—!/{lm/m)Reen+Rioaal (2/m)Ceeir} t>0

Since we are actually interested in the load voltage, we can use a voltage divider to relate
the supercapacitor voltage to the load voltage:

Rload Rload
T V()= —
Req + Rload (m/n)Rcell + Rload
— 0.5 e~/ 1Ln/mReen+Rioad 102/m)Ceent}

(m/n)(0.015) + 0.5

ve (1)

Vioad (t ) =

This relationship can be used to calculate the appropriate number of parallel strings »
such that the load voltage is above 25 V (the minimum allowable load voltage) at # = 5 s. The
solution could be obtained analytically, by substituting the known values m = 24, Rjo,a = 0.5,
Cet = 100 F, Reey = 15 mQ, t =5 s, and vj,,9(f = 5) = 25 V and by solving for the only
unknown, n. We leave this as an exercise. Figure 5.37 plots the transient response of the stack
load system for n = 1 to 5. You can see that for n = 3 the requirement that v,,g = 25V for at
least 5 s is satisfied.

L
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CHECK YOUR UNDERSTANDING

Derive the result obtained in Example 5.12 analytically, by solving the transient response for
the unknown value 7.

€ = U :JoMSUY

5.5 TRANSIENT RESPONSE OF
SECOND-ORDER CIRCUITS

systems is often all that is needed to describe the response of a physical system
to external excitation. In this section, we discuss the solution of the second-order
differential equations that characterize RLC circuits.

In many practical applications, understanding the behavior of first- and second-order C) vi(t) i

Deriving the Differential Equations for Second-Order
Circuits

A simple way of introducing second-order circuits consists of replacing the box
labeled “Circuit containing RL/RC combinations” in Figure 5.3 with a combination
of two energy storage elements, as shown in Figure 5.38. Note that two different cases
are considered, depending on whether the energy storage elements are connected in
series or in parallel.

Consider the parallel case first, which has beenredrawn in Figure 5.39 for clarity.
Practice and experience will eventually suggest the best method for writing the circuit
equations. At this point, the most sensible procedure consists of applying the basic
circuit laws to the circuit of Figure 5.39. Start with KVL around the left-hand loop:

vr (1) — Rpig(t) —ve () =0 (5.38)

@EL

Series case

(b)

Figure 5.38 Second-order

circuits
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Then apply KCL to the top node, to obtain

is(t) —ic@) —iL(t) =0 (5.39)
Further, KVL applied to the right-hand loop yields
ve () = v (1) (5.40)

It should be apparent that we have all the equations we need (in fact, more). Using
the defining relationships for capacitor and inductor, we can express equation 5.39 as

vy (t) —ve(t) duc(r)

-C i (1) =0 5.41
R T ir(t) (5.41)
and equation 5.40 becomes
dip (t
ve(t) = L ’;—r() (5.42)

Substituting equation 5.42 in equation 5.41, we can obtain a differential circuit equa-
tion in terms of the variable iy (¢):
L di; (1) . dziL(f)

1
—uvur(t) — — LC (¢ 5.43
R; vr (1) Re di g TiL® (5.43)

or
d’ip(t) L di(t)
dr? Ry di
The solution to this differential equation (which depends, as in the case of
first-order circuits, on the initial conditions and on the forcing function) completely

determines the behavior of the circuit. By now, two questions should have appeared
in your mind:

1
LC +ir(t) = —vr 5.44)
Ry

1. Why is the differential equation expressed in terms of iz (#)? [Why not ve ()?]
2.  Why did we not use equation 5.38 in deriving equation 5.447?

In response to the first question, it is instructive to note that, knowing iy (¢), we can
certainly derive any one of the voltages and currents in the circuit. For example,

ve () = v (1) =L di;r(r) (5.45)
S ey A
ic(t)=C == =LC—5 (5.46)

To answer the second question, note that equation 5.44 is not the only form the
differential circuit equation can take. By using equation 5.38 in conjunction with
equation 5.39, one could obtain the following equation:

vr(t) = Rrlic () +ir ()] + ve () (5.47)

Upon differentiating both sides of the equation and appropriately substituting from
equation 5.41, the following second-order differential equation in vc would be
obtained:

dzvc(f) i dvuc (1) L dvp(t)

£ = —
dt? Rr dt +oe® Rr dt

Note that the left-hand side of the equation is identical to equation 5.44, except that
ve has been substituted for i;. The right-hand side, however, differs substantially

LC

(5.48)

@
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from equation 5.44, because the forcing function is the derivative of the equivalent Rr L
voltage.

Since all the desired circuit variables may be obtained either as a function of
iz or as a function of v¢, the choice of the preferred differential equation depends C_) vr C 5
on the specific circuit application, and we conclude that there is no unique method
to arrive at the final equation. As a case in point, consider the two circuits depicted

Vout

71
=
=}
=3
A
YVVy

in Figure 5.40. If the objective of the analysis were to determine the output voltage (a)

Vout, then for the circuit in Figure 5.40(a), one would choose to write the differential ® L

equation in vc, since ve = voyu. In the case of Figure 5.40(b), however, the inductor VAVZ;AV

current would be a better choice, since vou = Rriout. fout (O +
- - - ) C ~ Roy Vou

Solution of Second Order Circuits (-> ! ' '

Second-order systems also occur very frequently in nature, and are characterized by -

the ability of a system to store energy in one of two forms—potential or kinetic— (b)
and to dissipate this stored energy; second-order systems always contain two energy
storage elements. Electric circuits containing two capacitors, two inductors, or one
capacitor and one inductor are usually second-order systems (unless we can combine
the two capacitors or inductors into a single element by virtue of a series or parallel
combination, in which case the system is of first order). Earlier in this chapter we saw
that second-order differential equations can be written in the form of equations 5.12
and 5.13, repeated here for convenience.

d?x (¢ dx(t
az d‘ri” + a ;(rr) + aox(t) = bo f (1)

or (5.49) <L05

1 dx(r) | 2¢dx@t)
; ar C(T” di +x() =Ksf(t)

n

In equation 5.48, the constants w, = /ao/da, ¢ = (a1/2)/1/aoaz, and K5 = bo/ay
are termed the natural frequency, the damping ratio, and the DC gain (or static
sensitivity), respectively. Just as we were able to attach a very precise meaning to
the constants T and K in the case of first-order circuits, the choice of constants w,,
¢, and K is not arbitrary, but represents some very important characteristics of the
response of second-order systems, and of second-order circuits in particular. As an
illustration, let Ky = 1, w, = 1, and ¢ = 0.2 in the differential equation 5.48, and
let f(t) correspond to a switched input that turns on from zero to unit amplitude? at
t = 0. The response is plotted in Figure 5.41.

We immediately note three important characteristics of the response of
Figure 5.41:

Figure 5.40 Two
second-order circuits

1. The response asymptotically tends to a final value of 1.
2. The response oscillates with a period approximately equal to 6 s.
3. The oscillations decay (and eventually disappear) as time progresses.

Each of these three observations can be explained by one of the three parameters
defined in equation 5.49:

2This input is more formally called a unit step, and the response deriving from it is called the unit step
response.
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Response of second-order system to switched unit input

Lo\
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Time(s)

Figure 5.41 Response of switched second-order
system with Kg =1, w, =1, and ¢ = 0.1

1. The final value of 1 is predicted by the DC gain K = 1, which tells us that in
the steady state (when all the derivative terms are zero) x(t) = f(¢).

2. The period of oscillation of the response is related to the natural frequency:

w, = 1 leads to the calculation T = 27 /w, = 27 ~ 6.28 s. Thus, the natural
frequency parameter describes the natural frequency of oscillation of the
system.

3. Finally, the reduction in amplitude of the oscillations is governed by the
damping ratio ¢. It is not as easy to visualize the effect of the damping ratio
from a single plot, so we have included the plot of Figure 5.42, illustrating how
the same system is affected by changes in the damping ratio. You can see that as
¢ increases, the amplitude of the initial oscillation becomes increasingly smaller
until, when ¢ = 1, the response no longer overshoots the final value of 1 and
has a response that looks, qualitatively, like that of a first-order system.

In the remainder of this chapter we will study solution methods to determine
the response of second-order circuits.

o

— Zeta=04
-=--. Zeta=0.6
....... Zeta=0.8
—-= Zeta=1.0
== Zeta=1.5
— Zeta = 2.0
°°°°° Zeta=3.0
- = Zetalz 4.0

5 10 15 20 25 30 35 40
Time(s)

- T — Zeta=02

o
o

Normalized amplitude
o
oo

Figure 5.42 Response of switched second-order
system with K¢ = 1, w, = 1, and ¢ ranging from
0.2 to 4
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Elements of the Transient Response

The steps involved in computing the complete transient response of a second-order
circuit excited by a switched DC source are, in essence, the same as the steps we took
in solving a first-order circuit: First we determine the initial and final conditions, using
exactly the same techniques used for first-order circuits (see Section 5.4); then we
compute the transient response. The computation of the transient response of a second-
order circuit, however, cannot be simplified quite as much as was done for first-order
circuits. With a little patience you will find that although it takes a little longer to go
through the computations, the methods are the same as those used in Section 5.5.

The solution of a second-order differential equation also requires that we con-
sider the natural response (or homogeneous solution), with the forcing function set
equal to zero, and the forced response (or particular solution), in which we consider
the response to the forcing function. The complete response then consists of the sum
of the natural and forced responses. Once the form of the complete response is known,
the initial condition can be applied to obtain the final solution.

Natural Response of a Second-Order System

The natural response is found by setting the excitation equal to zero. Thus, we solve
the equation

Ldsz(r) +2_§dXN(f)

w?  dt? w, dt

+xn() =0 (5.50)

where we use the notation x () to denote the natural response. Just as in the case of
first-order systems, the solution of this equation is known to be of exponential form:

xn(t) = ae” Natural response (5.51)
Substituting this expression into equation 5.50, we obtain the algebraic equation
1 2
—252(xe‘" + —CsocesZ +ae =0 (5.52)
n Wn
Equation 5.52 can be equal to zero only if
2 2
7—#—{54—1:0 (5.53)
a)ll

n
This polynomial in the variable s is called the characteristic polynomial of the
differential equation, and it gives rise to two characteristic roots s, and s,. Thus, the
function xy (r) = ae*’ is a solution of the homogeneous differential equation only
when s = s; and s = s,. The natural response of the system is a linear combination
of the response associated with each characteristic root, that is,

(5.54)

Now, one can solve for the two characteristic roots simply by finding the roots of
equation 5.53:

1 7
S1,2 = _Cwn =+ 5 (ZCC‘)N)Z - 46‘)/% = _Ca)n :I:C‘)n CZ —1

It is immediately apparent that three possible cases exist for the roots of the natural so-
Iution of a second-order differential equation, as shown in this Focus on Methodology
box.

Xy (1) = e’ + ape™’

(5.55)

© The McGraw-Hill
Companies, 2007
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If we analyze the mechan-
ical system shown in
Figure 5.43(a) using
Newton’s Second Law,
ma =Y F, we obtain the
equation
d%x (1)
dr?
dx(t)
dt
Comparing this equation
with equation 5.49, we can
rewrite the same equation in
the standard form of a
second-order system:
m d?x(t) b dx(t)
k dr? k dt

1
A0S L

The series electrical circuit
of Figure 5.43(b) can be
obtained by KVL:

m

=F@)—b — kx(t)

Ri L4 o
vy — —ve—L—=
s L C i
dve

o dve
lr, ic d[

d d
Lc L% 4 rc &<

dt? dt

+ vc = vs

(a)

Figure 5.43 Analogy
between electrical and
mechanical systems

(Continued)
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ROOTS OF SECOND-ORDER SYSTEMS <L05
MAKE THE Case 1: Real and distinct roots. This case occurs when ¢ > 1, since the
CONNECTION term under the square root sign is positive in this case, and the roots
are 51, = —{w, + w,+/¢* — 1. This leads to an overdamped
response.
(Concluded)

If we now compare both
second-order differential
equations to the standard
form of equation 5.49, we
can make the following
observations:

1 d%(t)  2¢ dx(r)
w2 di? w, dt
+x(t) = Kgf(t)
k
wp =, —
m
_bo, b1
%2 =2V im
Mechanical
_ 1
“"=yLc
(o R |/C
¢=RC— = —,/—
2 2V L
Electrical

Comparing the expressions
for the natural frequency
and damping ratio in the two
differential equations, we
arrive at the following

analogies:

Mechanical Electrical
system system
Damping

coefficient b Resistance R

Mass m Inductance L

Compliance 1/k  Capacitance C

Case 2: Real and repeated roots. This case holds when ¢ = 1, since the
term under the square root is zero in this case, and
S12 = —{w, = —w,. This leads to a critically damped response.

Case 3: Complex conjugate roots. This case holds when ¢ < 1, since the
term under the square root is negative in this case, and
S12 = —{w, £ jw,/1 — ¢2. This leads to an underdamped

response.

As we shall see in the remainder of this section, identifying the roots of the
second-order differential equation is the key to writing the natural solution. Example
5.13 applies these concepts to an electric circuit.

EXAMPLE 5.13 Natural Response of Second-Order Circuit

< LO5

Problem

Find the natural response of the circuit shown in Figure 5.44.

Ve

\AAAJ
R,
+ <o .
Vs RT C=% ’Li L
L
Figure 5.44

Solution
Known Quantities: Circuit elements.

Find: The natural response of the differential equation in i, (#) describing the circuit of
Figure 5.44.

Schematics, Diagrams, Circuits, and Given Data: R, = 8§ kQ; R, = 8 kQ; C = 10 uF;
L =1H.
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Assumptions: None

Analysis: To compute the natural response of the circuit, we set the source equal to zero (short
circuit) and observe that the two resistors are in parallel, and can be replaced by a single resistor
R = R,||R>. We apply KCL to the resulting parallel RLC circuit, observing that the capacitor
voltage is the top node voltage in the circuit:

Ve d Ve

C—+i,=0
R+ dt ti

Next, we observe that

L dig
ve =v; =L —
C L At

and we substitute the above expression for vc into the first equation to obtain

&, L dig

LC —
dr? R dt

This equation is in the form of equation 5.50, with Kg = 1, a),zl =1/LC, and 2¢ /w, = L/R.
We can therefore compute the roots of the differential equation from the expression

s12 = —Cw, =+ %\/ (Zzwn)z - 46‘),2, = —{w, £,y ;2 -1

It is always instructive to calculate the values of the three parameters first. We can see by
inspection that Ks = 1; w, = 1/+/LC = 1/4/10~5 = 316.2 rad/s; and ¢ = Lw, /2R = 0.04.
Since ¢ < 1, the response is underdamped, and the roots will be of the form s, , = —¢{w, +
Jwn+/1 — £2. Substituting numerical values, we have s; , = —12.5+ j316.2, and we can write
the natural response of the circuit as

— i —r2 — —7 —r2
() = ayelEntion1=2) o o (conjon/1=E):
= e T12SHBIOD | ) (-125-3162)
The constants «; and o, can be determined only once the forced response and the initial
conditions have been determined. We shall see more complete examples very shortly.

Comments: Note that once the second-order differential equation is expressed in general
form (equation 5.50) and the values of the three parameters are identified, the task of writing
the natural solution with the aid of the Focus on Methodology box, Roots of Second-Order
Systems,” is actually very simple.

CHECK YOUR UNDERSTANDING

For what value of R will the circuit response become critically damped?

G 18] = Y -Iemsuy

Let us now more formally review each of the three cases of the natural solution
of a second-order system.
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1. OVERDAMPED SOLUTION

Real and distinct roots. This case occurs when ¢ > 1, since the term under the
square root sign is positive, and the roots are 51, = —{w, & w,+/¢? — 1. In the case
of an overdamped system, the general form of the solution is

_ [e2_ e S
XN(r) — ale:]t +a2e§2t — ale( Cwptwua/C 1>t +C{2e( Swn—wnA/f 1)’
— —t/ —t/7
LO5 = et (5.56)
1 1
Ty = T =

Cwn"i‘wn\/cz_ 1 Cwn — Wpv/ Cz —1

The appearance is that of the sum of two first-order systems, as shown in Figure 5.45.

Natural response of overdamped second-order circuit Natural response of critically damped second-order circuit

2 I I I I I I I 1 I I T T T T
1.8 Natural response || 0.9 o Natural response
’ \ o Response due to first root e \ o Response due to first term
1.6 \ = Response due to second root | 0.8 \\ = Response due to second term
1.4 0.7 = N
\ SENAN
< 1.2 < 0.6 - N
fg 1 9N fg 05 o AN
0, o
= O =3
0.8 0.4 o
O [ o e,
0.6 . \QM 0.3 - x 5 Xy o N
0.4 | e 02 | RN
1 Posese * o o
0.2 K 0.1 1 >°°AU°(’°°OOOC IR
0 x""xxx 0 1000000 TXx
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Time(s) Time(s)

Figure 5.45 Natural response of underdamped
second-order system foray =ax =1; £ =1.5; w, =1

Figure 5.46 Natural response of a critically damped
second-order system foray =y =1; ¢ =1, w, =1

2. CRITICALLY DAMPED SOLUTION

Real and repeated roots. This case holds when { = 1, since the term under the
square root sign is zero, and s, » = —{w, = —w,. This leads to a critically damped
response. In the case of a critically damped system, the general form of the solution is

Xy () = o @ + ayte? = aje ! 4+ apte™ ! = aje”!T + ante!/T
| (5.57)

Note that the second term is multiplied by ¢; thus a critically damped system consists
of the sum of a first-order exponential term plus a similar term multiplied by ¢. The
appearance is that of the sum of two first-order systems, as shown in Figure 5.46.

3. UNDERDAMPED SOLUTION

Complex conjugate roots. This case holds when ¢ < 1, since the term under the
square root sign is negative, and s;, = —lw, + jw,+/1 — ¢?. This leads to an
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underdamped response. The general form of the response is
(—contion/1=-63)r aze(fcw,,fjw,,«/lfcz)r (5.58)

To better understand this solution, and the significance of the complex exponential,
let us assume that «; = o, = «. Then we can further manipulate equation 5.58 to
obtain

Xy (f) _ oce*(‘””’ (e(jw,m/ l—(2>r + e(fjw,m/ 1(3)r>
(5.59) <L05
= 2ae " cos (w,ﬂ/l — ;2) t

The last step in equation 5.59 made use of Euler’s equation (equation 4.44), and clearly
illustrates the appearance of the underdamped response of a second-order system: The
response oscillates at a frequency wy, called the damped natural frequency, where
wg = wp/ 1 — 2. This frequency asymptotically approaches the natural frequency
as ¢ tends to zero. The oscillation is damped by the exponential decay term 2cce™5“".
The time constant for the exponential decay is T = 1/{w,, so you can see that as ¢
becomes larger (more damping), T becomes smaller and the oscillations decay more
quickly. The two factors that make up the response are plotted in Figure 5.47, along
with their product, which is the natural response.

xn(t) = aje

Natural response of underdamped second-order circuit
I I I
— Natural response
1.5 o Exponential decay factor | |

x x  Cosinusoidal factor

lxx\ % 5 5 25
05 4 Mx < L o
I A S R
i o e o SE—
5 VNS T
05 — 1 x
R Vj 1R TET
-1.5

0 5 10 15 20 25

Time(s)

Figure 5.47 Natural response of an underdamped
second-order system fora; = a2 =1; { =0.2; w, =1

Forced Response

For the case of interest to us in this chapter, that is, switched DC sources, the forced
response of the system is the solution to the equation
1 d?>x(t) 2¢ dx(t)
w2 dr? w, dt
in which the forcing function f () is equal to a constant F for ¢+ > 0. For this special

case, the solution can be found very easily, since the derivative term becomes zero in
response to a constant excitation; thus, the forced response is found as follows:

xp(t) = KsF t>0 Forced response (5.61) < LO5

+x()=Ksf(t) (5.60)
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Note that this is again exactly the DC steady-state solution described in Section
5.4! We already know how to find the forced response of any RLC circuit when the
excitation is a switched DC source. Further, we recognize that the two solutions are
identical by writing

Xp(t) =x(00) = KgF t>0 (5.62)

Complete Response

The complete response can now be calculated as the sum of the two responses,
and it depends on which of the three cases—overdamped, critically damped, or
underdamped—applies to the specific differential equation.

Overdamped case (¢ > 1):
(*50):,7”1)”«/(2*1)’

x() =xn@) +xp() =age (5.63)
+ a2e<7{w” 70)”“/(2_70' + x(00) t>0
Critically damped case ({ = 1):
x() =xn@) +xp@) = 16" +oayte T 4 x(00) >0 (5.64)
Underdamped case (¢ < 1):

X() = xw (1) + x5 (1) = ay el Fortion/1=8)

| (5.65)
(—{0),,*/(‘%\/?)[ —+ X(OO) r= 0

+ ape

In each of these cases, to solve for the unknown constants «; and o, we apply the
initial conditions. Since the differential equation is of the second order, two initial
conditions will be required: x(r = 0) = x(0) and dx (¢t = 0)/dt = x(0). The details
of the procedure vary slightly in each of the three cases, so it is best to present each
case by way of a complete example. The complete procedure is summarized in the
Focus on Methodology box below.

SECOND-ORDER TRANSIENT RESPONSE

1. Solve for the steady-state response of the circuit before the switch changes
state (r = 07) and after the transient has died out (+ — oco). We shall
generally refer to these responses as x(0~) and x (co).

2. Identify the initial conditions for the circuit x(0"), and x(01), using the
continuity of capacitor voltages and inductor currents
[vc(0T) = ve(07), iz (01) = i + L(07)] and circuits analysis. This will
be illustrated by examples.

(Continued)

Q
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3. Write the differential equation of the circuit for # = 0, that is,
immediately after the switch has changed position. The variable x (¢) in
the differential equation will be either a capacitor voltage ve () or an
inductor current iy, (¢). Reduce this equation to standard form (equation
5.9, or 5.49).

4. Solve for the parameters of the second-order circuit, w, and ¢.

5. Write the complete solution for the circuit in one of the three forms given
below as appropriate:

Overdamped case (¢ > 1):

x(#) = xn (1) +xp(t) = ale(_f“’”‘”nx/fz——l)t

+ aze(‘f“’"“""*/ N x(00) >0

Critically damped case (¢ = 1):
X(0) = xn (1) + Xp(£) = a1e”* ™" +apre ™+ x(00) 1= 0

Underdamped case (¢ < 1):

£(8) = 20 (0) + % (0) = e EOrHeny/1E)
(soion/i=2) | 1 (o0)

+ aze t>0

6. Apply the initial conditions to solve for the constants ¢«; and o;.

EXAMPLE 5.14 Complete response of overdamped
second-order circuit

Problem

Determine the complete response of the circuit shown in Figure 5.50 by solving the differential
equation for the current iy, (¢).

t=
+ve®) — R

o— —wWW—

c ‘(-
"

000/
=

Vs i(t) vr(f)

R=5000Q L=1H C=1yF
Vs=25V

Figure 5.50

© The McGraw-Hill
Companies, 2007
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MAKE THE
CONNECTION

Automotive <L06

Suspension

The mechanical system
model described in an
earlier Make the Connec-
tion sidebar can serve as
an approximate represen-
tation of an automotive sus-
pension system. The mass
m represents the vehicle
mass, the spring represents
the suspension strut (or
coils), and the damper mod-
els the shock absorbers.
The differential equation of
this second-order system is
given below.

Lo dszody(t) é dxbody(t)
k  dr? k dt

~+ Xbody )
b dxroad (1)

1
= ;xmad(t) + E ar

m=1,500 kg
k=20,000 N/m

bpew = 15,000 N-s/m
boig = 5,000 N-s/m

Figure 5.48 Automotive
suspension system

(Continued)



Rizzoni: Principles and I. Circuits 5. Transient Analysis © The McGraw-Hill
Applications of Electrical Companies, 2007
Engineering, Fifth Edition
260 Chapter 5 Transient Analysis
Solution

MAKE THE
CONNECTION

(Concluded)

The input to the suspen-
sion system is the road sur-
face profile, which gene-
rates both displacement
and velocity inputs xreag @nd
Xroad- ONe Objective of the
suspension is to isolate the
body of the car (i.e., the
passengers) from any vibra-
tion caused by unevenness
in the road surface. Automo-
tive suspension systems are
also very important in guar-
anteeing vehicle stability
and in providing acceptable
handling. In this illustration
we simply consider the re-
sponse of the vehicle to a
sharp step of amplitude 10
cm (see Figure 5.49) for two
cases, corresponding to
new and worn-out shock ab-
sorbers, respectively. Which
ride would you prefer?

g 0.14 P

g 012 T

g 01 ’

E 0.08 1 [— New shocks,

%‘ 0.06 i zeta = 1.37

':‘ 0.04 |- - Worn-out shocks,

B 0.02 zeta = 0.46

M 0 =L

0 051 15 2 253

Time(s)

Figure 5.49 “Step”
response of automotive
suspension

Known Quantities: Circuit elements.

Find: The complete response of the differential equation in i (#) describing the circuit of
Figure 5.50.

Schematics, Diagrams, Circuits, and Given Data: Vs =25V, R =5kQ; C = 1 uF;
L =1H.

Assumptions: The capacitor has been charged (through a separate circuit, not shown) prior
to the switch closing, such that vc(0) =5 V.

Analysis:

Step 1: Steady-state response. Before the switch closes, the current in the circuit must

be zero. We are therefore sure that the inductor current is initially zero: i1 (07) = 0. We
cannot know, in general, what the state of charge of the capacitor is. The problem statement
tells us that vc (07) = 5 V. This fact will be useful later, when we determine the initial
conditions.

After the switch has been closed for a long time and all the transients have died, the
capacitor becomes an open circuit, and the inductor behaves as a short circuit. Since the open
circuit prevents any current flow, the voltage across the resistor will be zero. Similarly, the
inductor voltage is zero, and therefore the source voltage will appear across the capacitor.
Hence, i; (00) = 0 and vc (00) = 25 V.

Step 2: Initial conditions. Recall that for a second-order circuit, we need to determine two
initial conditions; and recall that, from continuity of inductor voltage and capacitor currents,
we know that iy (07) = i;(07) = 0and vc(07) = vc (07) = 5 V. Since the differential
equation is in the variable i, the two initial conditions we need to determine are i; (0)

and di; (0%)/dt. These can actually be found rather easily by applying KVL at

t=0%:

Vs —vc(07) — Ri (0%) — v, (07) =0

di (0
Vs — ve(0F) — Rip (07) — L % —0
dil(0Y) V. o+
dic@) Vs ve@) _ o5 5_s0v
dt L L

Step 3: Differential equation. The differential equation for the series circuit can be obtained
by KVL:

dif(t)

0
dt

Vs —ve — RlL([) — L

After substituting

1 t
ve(t) = = i (t") dt’
c () C [wlL( )
we have the equation

t

dip(t
LC ’L()+RCiL(z)+/ i (') di =CV;

dt oo

L)
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which can be differentiated on both sides to obtain

& di av.
L) | ge ’Lt(t) +in=cS5 =0

LC
dr? d dt

Note that the right-hand side (forcing function) of this differential equation is exactly zero.

Step 4: Solve for w, and ¢. If we now compare the second-order differential equations to the
standard form of equation 5.50, we can make the following observations:

/1
w, =,/ — = 1,000 rad/s
LC
Wy, R /C
2 2V L

Thus, the second-order circuit is overdamped.

Step 5: Write the complete solution. Knowing that the circuit is overdamped, we write the
complete solution for this case:

£(0) = 30 (0) + xp (1) = el Eorren VL)
+ eV 00y 120
and since xp = x(c0) = 0, the complete solution is identical to the homogeneous solution:

ip(t) =irn(t) = Olle(imnwn v ﬁil)t + Olze(igwrw" v ﬁil)t t>0

Step 6: Solve for the constants «; and «,. Finally, we solve for the initial conditions to
evaluate the constants «; and «,. The first initial condition yields

iL(0+) = otleo +otze0
o] = —0

The second initial condition is evaluated as follows:

@ = (—é'a)n + wn\/ﬁj) otle(fg“’"“’"«/{z_*l)t
t
+ (~¢00 = o/E=T) el on 7T
i 0+
w - <_;wn - a)n\/;z—_l) e’ + <_;wn - a)n\/é'z—_l) aze’

dt

Substituting oy = —a;, we get

dip (0t

% = <_;wn + Wy +/ ;2 - 1) ap — <_;wn — Wpy/ ;Z - 1)0[1
=2 (a),,w/;z — 1)(11 =20

20
2 (e \/;2——1)

a = —a; = —4.36 x 1073

o = =436x 1073

We can finally write the complete solution:
ip(t) =4.36 x 10737287 _ 436 x 107347 >0

A plot of the complete solution and of its components is given in Figure 5.51.

© The McGraw-Hill
Companies, 2007
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Complete response of
5 x 107 overdamped second-order circuit
4 Tooug
3/ bog“%nn
2 / 79000800,
<] —
E 0z
5 -
O -1
-2 Complete response Il
3 o Natural response due to first root ||
* Natural response due to second root
—4 — = Forced response I
-5 I \ I T T
0 1 2 3 4 5 6
Time(s) x 1073
Figure 5.51 Complete response of overdamped
second order circuit
CHECK YOUR UNDERSTANDING
Obtain the differential eqation of the circuit of Figure 5.50 with v¢ as the independent variable.
1 1
Sq = oa + i 0+ = P D7 :Iomsuy
on 4 on z 4
LO5 EXAMPLE 5.15 Complete Response of Critically Damped
Second-Order Circuit
Problem
w5 t=0 Determine the complete response of the circuit shown in Figure 5.52 by solving the differential
??) equation for the voltage v(¢).
+

\AAAZ
D

C >
Ve = RZ Lg Rs3
<

D

Figure 5.52 Circuit for
Example 5.15

Solution
Known Quantities: Circuit elements.

Find: The complete response of the differential equation in i (#) describing the circuit of
Figure 5.52.

Schematics, Diagrams, Circuits, and Given Data: I3 =5 A; R = 500 Q; C =2 uF;
L =2H.

Assumptions: None.
Analysis:

Step 1: Steady-state response. With the switch open for a long time, any energy stored in
the capacitor and inductor has had time to be dissipated by the resistor; thus, the currents and
voltages in the circuit are zero: iy (07) =0, v (07) = v(07) =0.
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After the switch has been closed for a long time and all the transients have died, the
capacitor becomes an open circuit, and the inductor behaves as a short circuit. With the
inductor behaving as a short circuit, all the source current will flow through the inductor, and
ir(00) = Is =5 A. On the other hand, the current through the resistor is zero, and therefore
ve(00) = v(oco) =0 V.

Step 2: Initial conditions. Recall that for a second-order circuit we need to determine two
initial conditions; and recall that, from continuity of inductor voltage and capacitor currents,
we know that i; (07) = i; (07) = 0 A and v (07) = v (07) = 0 V. Since the differential
equation is in the variable v, the two initial conditions we need to determine are vc (01) and
dvc (07)/dt. These can actually be found rather easily by applying KCL at 7 = 07

we0) ey _ e L due©)

]_
§ Ry R dt

0

Since ve (01) = 0 and i, (07) = 0, we can easily determine dvc (01) /dt:

dvc (0T 1 5 Vv
dvc@) _Is . _ 5 55 400 Y
dt C 2 x 10-° s

Step 3: Differential equation. The differential equation for the series circuit can be obtained
by KCL:

Is — U;(t) Uc(t) _c dvc(t) _

—i () — 0 t>0
ip(t) R o7 >

Knowing that

diy (1)

ve(®) =v.(t) =L —

we can obtain a relationship

1 t
i (t) = — ve (t') dt’
w0 =7 [ )
resulting in the integrodifferential equation

t 1 [ t dve(t
IS_UC()__/ vty dr - YD _pdve® o
RS L —00 R dt

which can be differentiated on both sides to obtain

d?vc (¢ L(Rs+ R) dvc(t dl
Uc()+ (Rs +R) UC()+Uc(l‘)=L—S 150

LC
dr? RsR dt dt

Note that the right-hand side (forcing function) of this differential equation is exactly zero.

Step 4: Solve for w, and ¢. If we now compare the second-order differential equations to the
standard form of equation 5.50, we can make the following observations:

/1
w, =,/ — = 500rad/s
LC

L w, 1 /L

TRy 2 2R4VC
_ RRs
4T R4+ Rg

¢

Thus, the second-order circuit is critically damped.
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Step 5: Write the complete solution. Knowing that the circuit is critically damped (¢ = 1),

we write the complete solution for this cas

C:

x(#) = xy () + xp(t) = aje " +apte 4 4 x(00)

© The McGraw-Hill
Companies, 2007

t>0

and, since vcp = v (00) = 0, the complete solution is identical to the homogeneous

solution:

ve(t) = Ven (1) = ae™*" 4 apre t >

0

Step 6: Solve for the constants a; and «;. Finally, we solve for the initial conditions to
evaluate the constants «; and ;. The first initial condition yields

Uc(0+) =O[1€0+O[2'0'€0 =0

01120

The second initial condition is evaluated as follows:

duc (t)
dt
dvc (0
% = (—tware’ +aze’ =
a; = 2.5 x 10°

We can finally write the complete solution

ve(t) = 2.5 x 105730 t>0

o)

= (—Cw)are " 4+ (—Lwy)onte ™" + ape

A plot of the complete solution and of its components is given in Figure 5.53.

Complete response of
x 103 critically damped second-order circuit
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Figure 5.53 Complete response of overdamped

second-order circuit

CHECK YOUR UNDERSTANDING

Obtain the differential equation of the circuit of Figure 5.52 with i, as the independent variable.

0</?

S| =7+

() 1p

"y
1

24
(ORI

D7 ToMSUyY

L/
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EXAMPLE 5.16 Complete Response of Underdamped LO5
Second-Order Circuit
Problem
Determine the complete response of the circuit shown in Figure 5.54 by solving the differential t=

equation for the current iy (¢).

Solution

Q Vload
ir(t)

Find: The complete response of the differential equation in i, (f) describing the circuit of Figure 5.54 Circuit for
Figure 5.54. Example 5.16

Known Quantities: Circuit elements.

Schematics, Diagrams, Circuits, and Given Data: Vs = 12 V; R =200 Q; C = 10 uF;
L =0.5H.

Assumptions: The capacitor had been previously charged (through a separate circuit, not
shown), such that vc (07) = vc (0F) =2 V.

Analysis:

Step 1: Steady-state response. Since the inductor current is zero when the switch is open,
i1,(07) = 0; on the other hand, we have assumed that v-(07) = v(07) = 2 V. After the
switch has been closed for a long time and all the transients have died, the capacitor becomes
an open circuit, and the inductor behaves as a short circuit. With the capacitor behaving as an
open circuit, all the source voltage will appear across the capacitor, and, of course, the
inductor current is zero: i (c0) = 0 A, ve(oc0) = Vg = 12 V.

Step 2: Initial conditions. Recall that for a second-order circuit we need to determine two
initial conditions; and recall that, from continuity of inductor voltage and capacitor currents,
we know that i; (07) = i; (07) = 0 A and v (07) = ve (07) = 2 V. Since the differential
equation is in the variable iy, the two initial conditions we need to determine are i;(0") and
diy (0M)/dt. The second initial condition can be found by applying KVL at ¢ = 0*:

Vs —vc(0F) — Rip (07) — v, (07) =0

dip (0F
Vs — ve(0%) — Rip (0%) — L ’Ld(t ) _o
dip (0t 1% 0t 12 2
(07 _ Vs el )=———=20A/S
dt L L 05 05
Step 3: Differential equation. The differential equation for the series circuit is obtained by
KCL:
di (1) .
Vs —L P —vc(t) —Rip(t)=0 t>0
Knowing that
. dvc(t)
H=C
i (f) i

we can obtain the relationship

1 t
ve (1) = E/ ip(t)dr

o0
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resulting in the integrodifferential equation

digty 1 " . .
Vg —L B tYdt' — Ri;(t) =0 t>0
s-Lh C/mu() i (1) >

which can be differentiated on both sides to obtain

dziL(t) dip (1) dVs
RC i (t) =C — t>0
dt? + dt i) dt -
Note that the right-hand side (forcing function) of this differential equation is exactly zero,
since Vy is a constant.

LC

Step 4: Solve for w, and ¢. If we now compare the second-order differential equations to the
standard form of equation 5.50, we can make the following observations:

[ 1
w, =,/ — =447 rad/s
LC

w, R /C
{=RC— =—,/—=0447
2 2V L

Thus, the second-order circuit is underdamped.

Step 5: Write the complete solution. Knowing that the circuit is underdamped (¢ < 1), we
write the complete solution for this case as

x(1) = 3y (6) + xp (1) = ay e Frieny1=E)
+ aze(*;“wn*jmm/lf{z t+x(oo) t>0

and since xp = i p = iy (00) = 0, the complete solution is identical to the homogeneous
solution:

. . —zon-+jon/1-02 —gon—jonr/1-02
iL(t) =iLn () =0l1€( fonyo {)t+012€( b= {)t t>0

Step 6: Solve for the constants a; and «;. Finally, we solve for the initial conditions to
evaluate the constants «; and o,. The first initial condition yields

iL(0+) = otleo +O[2€0 =0

o] = —0
The second initial condition is evaluated as follows:
B0 _ (g + jor T8 )
t
+ (—ton = jon/T=27) aeleonion/1=%)
dlL(0+) . 0 . 0
—_— = (—g'a),, + jwu/1 — ;2) ae’ + (—g'a)n — jou/1 — ;2) e

dt
Substituting o; = —a, we get
di (0%
% = (—ton+ jon/T=0) a1 = (—¢en — jond/T= ) a1 =20V

2 (jwnm) ar =20

10 10
o] = =—j = —;0.025
1 ja)n\/l_;z ja)n\/l_z2 /

o) = —0] = j0025
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We can finally write the complete solution:

i (1)

_j0.0256(7200+j400)t + j0.0256(7200—j400)t t Z 0
0.025¢7200f (— j@j400r 4 i p=j400ty — (,025¢720% x 2 sin 400t
= 0.05¢72% sin 400¢ t>0

In the above equation, we have used Euler’s identity to obtain the final expression. A plot of
the complete solution and of its components is given in Figure 5.55.

Complete response of underdamped second-order circuit

% Complete response
° o Exponential decay factor
0.0375 |~ = Cosinusoidal factor

% — — Forced response
.
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Time(s)

Figure 5.55 Complete response of underdamped
second-order circuit

CHECK YOUR UNDERSTANDING

If the inductance is reduced to one-half of its original value (from 0.5 to 0.25 H), for what
range of values of R will the circuit be underdamped?

BOIE > ¥ oMUY

EXAMPLE 5.17 Transient Response of Automotive Ignition
Circuit LO5

Problem
The circuit shown in Figure 5.56 is a simplified but realistic representation of an automotive FIND IT

ignition system. The circuit includes an automotive battery, a transformer’ (ignition coil),
a capacitor (known as condenser in old-fashioned automotive parlance), and a switch. The

ON THE WEB

3Transformers are discussed more formally in Chapters 7 and 17; the operation of the transformer in an
ignition coil will be explained ad hoc in this example.
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switch is usually an electronic switch (e.g., a transistor—see Chapter 10) and can be treated
as an ideal switch. The circuit on the left represents the ignition circuit immediately after the
electronic switch has closed, following a spark discharge. Thus, one can assume that no energy
is stored in the inductor prior to the switch closing, say at ¢+ = 0. Furthermore, no energy is
stored in the capacitor, as the short circuit (closed switch) across it would have dissipated any
charge in the capacitor. The primary winding of the ignition coil (left-hand side inductor) is
then given a suitable length of time to build up stored energy, and then the switch opens, say at
t = At,leading to a rapid voltage buildup across the secondary winding of the coil (right-hand
side inductor). The voltage rises to a very high value because of two effects: the inductive
voltage kick described in Example 5.11 and the voltage multiplying effect of the transformer.
The result is a very short high-voltage transient (reaching thousands of volts), which causes a
spark to be generated across the spark plug.

N,
—= =100
Ny
Ny N Ny
+ +
Vi = Vg —
T T 1
- Spark - ‘ § Spark
CT [~ I plug C’Lf I plug
Switeh Switeh
closed closed
Figure 5.56
Solution

Known Quantities: Battery voltage, resistor, capacitor, inductor values.
Find: The ignition coil current i () and the open-circuit voltage across the spark plug voc(?).

Schematics, Diagrams, Circuits, and Given Data: Vg =12V, R, =2 Q; C = 10 uF;
L,=5mH.

Assumptions: The switch has been open for a long time, and it closes at + = 0. The switch
opens again at t = At.

Analysis: Assume that initially no energy is stored in either the inductor or the capacitor,
and that the switch is closed, as shown in Figure 5.57(a). When the switch is closed, a first-
order circuit is formed by the primary coil inductance and capacitance. The solution of this
circuit will now give us the initial condition that will be in effect when the switch is ready
to open again. This circuit is identical to that analyzed in Example 5.9, and we can directly
borrow the solution obtained from thatexample, after suitably replacing the final value and time
constant:

i (t) =ip(00) + [i(0) —ip(c0)]e /" >0
i (t) = 6(1 — ¢~1/25x107%y 120
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Sw_itch Sw_itch

closesat =0 opens at t = At
Figure 5.57 (a) Figure 5.57 (b)
First-order transient Second-order transient
circuit circuit, following opening
of switch

with
. Vp .
irss(o00) = ® = 6 A Final value
p
L
r=—-2=25x%x10"%s Time constant
R,

Let the switch remain closed until + = A¢r = 12.5 ms = 5t. At time At, the value of the
inductor current will be

it =A1)=6(1—-e) =596A

that is, the current reaches 99 percent of its final value in five time constants.

Now, when the switch opens at ¢+ = At, we are faced with a series RLC circuit similar to
that of Example 5.16, except for the fact that the initial condition that is nonzero is the inductor
current (in Example 5.16 you will recall that the capacitor had a nonzero initial condition). We
can therefore borrow the solution to Example 5.16, with some slight modifications because of
the difference in initial conditions, as shown below. Please note that even though the second-
order circuit transient starts at # = 12.5 ms, we have “reset” the time to # = 0 for simplicity
in writing the solution. You should be aware that the solution below actually starts at 7 = 12.5
ms.

Step 1: Steady-state response. At = At,i . (07) =6 A; vc(07) = v(07) = 0 V. After the
switch has been closed for a long time and all the transients have died, the capacitor becomes
an open circuit, and the inductor behaves as a short circuit. With the capacitor behaving as an
open circuit, all the source voltage will appear across the capacitor, and, of course, the
inductor current is zero: i (00) = 0 A, ve(oc0) = Vg = 12 V.

Step 2: Initial conditions. Since the differential equation is in the variable i, , the two initial
conditions we need to determine are iz (0") and di; (0%)/dt. Now i (07) = i (0%) =
5.96 A. The second initial condition can be found by applying KVL at ¢t = 0%

diy (0*
Vi e 0%~ Rir0) — L TN
dip(0") Vg vc(07) . 12
v vweOD o= 2 0_2x59
d L L O =35 70- x 3.9

=2,388 A/s
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Note the very large value of the time derivative of the inductor current!

Step 3: Differential equation. The differential equation for the series circuit can be obtained
by KCL:

d2i; (1) diy () dVs
R,C i1ty =C — =0 t>0
8 dt +in® dt -

L,C 2

Step 4: Solve for w, and ¢.

1
w, = =4,472rad/s
L,C
w, R, |C
{=R,C—=—|— =0.0447
2 2\L,

Thus, the ignition circuit is underdamped.

Step 5: Write the complete solution.

ip(t) =irn(t) = Olle(imnﬂw" v 17{2)t +012€(7{mn7jw" 17{2)t t>0

Step 6: Solve for the constants a; and «». Finally, we solve for the initial conditions to
evaluate the constants «; and ;. The first initial condition yields

iL(0+) = a1e0 +O[2€0 =596 A
o) = 5.96 — (6%

The second initial condition is evaluated as follows:

M = (—g'a),, + jouv 1 — é’z) are’ + (-é’wn —jony1— 52) e’

dt

Substituting oy = 5.96 — «p, we get

dip (0"
MZ(-an-i-jwn /1_&-2)011

dt

n (—;wn — /1= ;2) (5.96 — a;) = 2,388 V

2 (jwnm) a1 +5.96 (—;wn - ja)nm) —=2,388 V

2,388 — 5.96 (—;w,, — /1= ;2)
2jon/T =22

a; =596 —a; =298+ j0.4

a = =298 — j0.4

and we can finally write the complete solution, as

iL(t) = (2.98 — j0.4)e(*“’"””“/ =)

4 (2.98 + joayelTomio/ =)o
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i1 (1) = 2.98¢¢ent (e(jmn 1= g(=jon 1—;2»)
= 2.98¢2001 (p /4463 4 o—j44631) _ 596200 5in(—4,463¢)

A plot of the inductor current for —10 = ¢t = 50 ms is shown in Figure 5.58. Notice the initial
first-order transient at + = O followed by a second-order transient at = 12.5 ms.

Primary current transient for ignition circuit
6
e
2 /

Current, A

-2 |

4

-6
-0.01 0 0.01 0.02 0.03 0.04 0.05
Time(s)

Figure 5.58 Transient current response of ignition
current

To compute the primary voltage, we simply differentiate the inductor current and
multiply by L; to determine the secondary voltage, which is that applied to the spark plug, we
simply remark that a 1:100 transformer increases the voltage by a factor of 100, so that the
secondary voltage is 100 times larger than the primary voltage.* Thus, the expression for the
secondary voltage is

di d
Vspark piug = 100 x L % = 0.5 2 [5.96¢7 sin(—4.4631)]

= 0.5 x 5.96[—200 x e~ 2% gin(—4,463t) — 4,463
x e72% cos(4,4631)]
= 596¢ 2% sin(4,463¢) — 13,3002 cos(4,463t)
where we have “reset” time to t = 0 for simplicity. We are actually interested in the value of

this voltage at ¢+ = 0, since this is what will generate the spark; evaluating the above
expression at t = 0, we obtain

vspark plug(t == 0) = _13,300 \Y%
One can clearly see that the result of the switching is a very large (negative) voltage

spike, capable of generating a spark across the plug gap. A plot of the inductor voltage
starting at the time when the switch is opened is shown in Figure 5.59, showing that

4The secondary current, on the other hand, will decrease by a factor of 100, so that power is
conserved—see Section 7.3.
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approximately 0.3 ms after the switching transient, the secondary voltage reaches
approximately —12,500 V! This value is rather typical of the voltages required to generate a
spark across an automotive plug.

x 104 Secondary voltage transient for ignition circuit

0.5 7
>
5 o l\{\/\/\/\r\n,\.\,
= l V \VAVILZA
>4).5

0 0.004 0.008 0.012 0.016 0.02
Time(s)

Figure 5.59 Secondary ignition voltage response

Conclusion

Chapter 5 has focused on the solution of first- and second-order differential equations for the
case of DC switched transients, and it has presented a number of analogies between electric
circuits and other physical systems, such as thermal, hydraulic, and mechanical.

‘While many other forms of excitation exist, turning a DC supply on and off is a very com-
mon occurrence in electrical, electronic, and electromechanical systems. Further, the methods
discussed in this chapter can be readily extended to the solution of more general problems.

Upon completing this chapter, you should have mastered the following learning
objectives:

1. Write differential equations for circuits containing inductors and capacitors. You have
seen that writing the differential equations of dynamic circuits involves two concepts:
applying Kirchhoff’s laws and using the constitutive differential or integral relationships
for inductors and capacitors. Often, it is convenient to isolate the purely resistive part of a
circuit and reduce it to an equivalent circuit.

2. Determine the DC steady-state solution of circuits containing inductors and capacitors.
You have learned that the DC steady-state solution of any differential equation can be
easily obtained by setting the derivative terms equal to zero. An alternate method for
computing the DC steady-state solution is to recognize that under DC steady-state
conditions, inductors behave as short circuits and capacitors as open circuits.

3. Write the differential equation of first-order circuits in standard form, and determine the
complete solution of first-order circuits excited by switched DC sources. First-order
systems are most commonly described by way of two constants: the DC gain and the
time constant. You have learned how to recognize these constants, how to compute the
initial and final conditions, and how to write the complete solution of all first-order
circuits almost by inspection.



@ ‘ Rizzoni: Principles and I. Circuits 5. Transient Analysis © The McGraw-Hill
Applications of Electrical Companies, 2007
Engineering, Fifth Edition

Part I Circuits 273

4.  Write the differential equation of second-order circuits in standard form, and determine
the complete solution of second-order circuits excited by switched DC sources.
Second-order circuits are described by three constants: the DC gain, the natural
frequency, and the damping ratio. While the method for obtaining the complete solution
for a second-order circuit is logically the same as that used for a first-order circuit, some
of the details are a little more involved in the second-order case.

5. Understand analogies between electric circuits and hydraulic, thermal, and mechanical
systems. Many physical systems in nature exhibit the same first- and second-order
characteristics as the electric circuits you have studied in this chapter. We have taken a
look at some thermal, hydraulic, and mechanical analogies.

HOMEWORK PROBLEMS

Section 5.2: Writing Differential 5.13 Determine the initial and final conditions for the
Equations for Circuits circuit of Figure P5.27.
Containing Inductors and 5.14 Determine the initial and final conditions for the
Capacitors circuit of Figure P5.29.

5.15 Determine the initial and final conditions for the

5.1 Write the differential equation for # > 0 for the circuit of Figure P5.32.

circuit of Figure P5.21.
5.16 Determine the initial and final conditions for the

5.2 Write the differential equation for t > 0 for the circuit of Figure P5.34.

circuit of Figure P5.23.
5.17 Determine the initial and final conditions for the

5.3 Write the differential equation for ¢ > 0 for the circuit of Figure P5.41.

circuit of Figure P5.27.
5.18 Determine the initial and final conditions for the

circuit of Figure P5.47. Assume Vg =9V,
R, =10k, and R, = 20 k.

5.19 Determine the initial and final conditions for the
circuit of Figure P5.49.

5.4 Write the differential equation for # > 0 for the
circuit of Figure P5.29.

5.5 Write the differential equation for # > 0 for the
circuit of Figure P5.32.

5.6 Write the differential equation for ¢ > 0 for the

circuit of Figure P5.34. 5.20 Determine the initial and final conditions for the

circuit of Figure P5.52.
5.7 Write the differential equation for # > 0 for the

circuit of Figure P5.41. Section 5.4: Transient Response of
5.8 Write the differential equation for ¢ > 0 for the First-Order Circuits

ircuit of Fi P5.47. A Vs =9V,
et of Higure ssume Vs =9V, 5.21 Just before the switch is opened at = 0, the

R, =10k, and R, =20k<Q.
! i ,.an z. ) current through the inductor is 1.70 mA in the
5.9 Write the differential equation for t > 0 for the direction shown in Figure P5.21. Did steady-state

circuit of Figure P5.49. conditions exist just before the switch was opened?
5.10 Write the differential equation for ¢ > 0 for the L —0.9mH Ve 12V
circuit of Figure P5.52. ) 5
R, =6k R, = 6k

. R; =3kQ
Section 5.3: DC Steady-State

Solution of Circuits Containing
Inductors and Capacitors— =0 R,
Initial and Final Conditions ’4

5.11 Determine the initial and final conditions for the Ve SR L R3S Vis
circuit of Figure P5.21. - -

5.12 Determine the initial and final conditions for the -
circuit of Figure P5.23. Figure P5.21
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5.22 Att < 0, the circuit shown in Figure P5.22 is at
steady state. The switch is changed as shown at ¢ = 0.

VSl =35V Vsz =130V
C=11uF R =17k
R, =Tk R; =23kQ

Determine at # = 07 the initial current through R; just
after the switch is changed.

Figure P5.22

5.23 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.23. Assume steady-state conditions for r < 0.

C =05uF

R, =1.8kQ

Vi=12V
R, = 0.68 k2

Figure P5.23

5.24 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.23. Assume steady-state conditions for r < 0.

C =150 uF

R, =22kQ

Vi=12V
Ry =400 mQ

5.25 Just before the switch is opened at t = 0 in Figure
P5.21, the current through the inductor is 1.70 mA in
the direction shown. Determine the voltage across R3
just after the switch is opened.

L =09mH
R, =6kQ

Ve =12V
R =6kQ
R; =3kQ

5. Transient Analysis

© The McGraw-Hill
Companies, 2007

5.26 Determine the voltage across the inductor just
before and just after the switch is changed in Figure
P5.26. Assume steady-state conditions exist for r < 0.

R, =07¢Q

L =100 mH

Ve=12V
R, =22kQ

Figure P5.26

5.27 Steady-state conditions exist in the circuit shown in
Figure P5.27 at t < 0. The switch is closed at t = 0.

Vi=12V R, = 0.68 k<
R, =22kQ  R;=18kQ
C = 0.47 uF

Determine the current through the capacitor at t = 0%,
just after the switch is closed.

Figure P5.27

5.28 Att > 0, the circuit shown in Figure P5.22 is at
steady state. The switch is changed as shown at ¢ = 0.

Vg =35V Vg =130V
C=11uF R =17kQ
R,=7kQ  R;=23kQ

Determine the time constant of the circuit for ¢ > 0.

5.29 Att < 0, the circuit shown in Figure P5.29 is at
steady state. The switch is changed as shown at ¢ = 0.

Va1 =13V Voo =13V
L =170 mH R =27Q
R, =43kQ R; =29kQ

Determine the time constant of the circuit for # > 0.
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o changed at + = 0 as shown.
t=0
R, R; Vo1 =17V Vaao=11V
N L R, =14kQ R, =13kQ
‘_/s1 = R; = 14kQ C =70nF
R
: Determine
= +
Vs2 a. v(t)fort >0
= b. The time required, after the switch is operated, for
Figure P5.29 V (¢) to change by 98 percent of its total change in

voltage

5.30 Steady-state conditions exist in the circuit shown in
Figure P5.27 for ¢+ < 0. The switch is closed at r = O.

Vi=12V C =0.47 uF
R, =680 @ R, =22kQ
R; =1.8kQ

Determine the time constant of the circuit for # > 0.

5.31 Just before the switch is opened at # = 0 in Figure
P5.21, the current through the inductor is 1.70 mA in
the direction shown.

Figure P5.34

Vs =12V L =09mH 5.35 The circuit of Figure P5.35 is a simple model of an
R, =6kQ R, =6kQ automotive ignition system. The switch models the
Ry = 3kQ “points” that switch electric power to the cylinder
when the fuel-air mixture is compressed. And R is the
Determine the time constant of the circuit for ¢ > 0. resistance between the electrodes (i.e., the “gap”) of
5.32 Determine vc (¢) for t > 0. The voltage across the the spark plug.
capacitor in Figure P5.32 just before the switch is Ve =12V Rc =0.37 Q
changed is given below. R =17k
ve(07) = -7V [, =17mA € =055 uF Determine the value of L and R; so that the voltage
R, =7kQ R, =33kQ across the spark plug gap just after the switch is

changed is 23 kV and so that this voltage will change
exponentially with a time constant 7 = 13 ms.

t=0
(e,
Rg

+

+ Ry R§VR

v Z

_G L

Figure P5.32

Figure P5.35
5.833 Determine ig, (¢) for # > 0 in Figure P5.29.

Ve =23V Ve, =20V 5.836 The inductor L in the circuit shown in Figure P5.36
I —23mH R =079 is the coil of a relay. When the current through the coil

is equal to or greater than +2 mA, the relay functions.
R, =13Q R; = 330 k<2 Assume steady-state conditions at ¢t < 0. If

5.34 Assume DC steady-state conditions exist in the Vs =12V
circuit shown in Figure P5.34 for ¢+ < 0. The switch is L =10.9 mH R, =3.1kQ
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determine R, so that the relay functions atr = 2.3 s.

Figure P5.36

5.37 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.37. Assume steady-state conditions for r < 0.

Vi=12V C =150 uF
R =400 mQ R, =22kQ
t=0
R,

Figure P5.37

5.38 Determine the voltage across the inductor just
before and just after the switch is changed in Figure
P5.38. Assume steady-state conditions exist for # < O.

Vs =12V Rs =0.24 Q
R, =33kQ L =100 mH
t=0
R
L
+
v R

Figure P5.38

5.39 Steady-state conditions exist in the circuit shown in
Figure P5.27 for ¢ < 0. The switch is closed at r = 0.

Vi=12V C = 150 uF
R, =4MQ R, =80MQ
R; = 6 MQ

Determine the time constant of the circuit for r > 0.

5. Transient Analysis
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5.40 Just before the switch is opened at ¢ = 0 in Figure
P5.21, the current through the inductor is 1.70 mA in
the direction shown.

Ve=12V L =100 mH
R, =400 @ R, =400 @
R; =600 @

Determine the time constant of the circuit for # > 0.

5.41 For the circuit shown in Figure P5.41, assume that
switch S; is always open and that switch .S, closes at
t=0.

a. Find the capacitor voltage vc(r) atr = 0T,
b. Find the time constant T for r > 0.

c. Find an expression for v¢ (¢), and sketch the
function.

d. Find vc (¢) for each of the following values of ¢:

0, t,27, 57, 107.
R
S 2 S
1 10 2
C+ MW ?{C
Ry
5Q
ey = €L = K 2

\AAA;
=
s
AAA
\AAA;
~
>

[~ 4F T 4F 3QZ%

Figure P5.41

5.42 For the circuit shown in Figure P5.41, assume that
switch S; has been open for a long time and closes at
t = 0. Conversely, switch S, has been closed and
opens att = 0.

a. Find the capacitor voltage vc(r) atr = 0T,
b. Find the time constant T for r > 0.

c. Find an expression for v¢(¢), and sketch the
function.

d. Find vc (¢) for each of the following values of ¢:
0, 7,27, 57, 107.

5.43 For the circuit of Figure P5.41, assume that switch
S, is always open, and that switch S; has been closed
for a long time and opens att = 0. At¢t = ¢, = 37,
switch S; closes again.

a. Find the capacitor voltage vc(¢) att = 0.

b. Find an expression for v (¢) for ¢+ > 0, and sketch
the function.

5.44 Assume that S| and S, close at ¢t = 0 in Figure
P5.41.



@ ‘ Rizzoni: Principles and

I. Circuits
Applications of Electrical
Engineering, Fifth Edition

a. Find the capacitor voltage vc(¢) att = 0.
b. Find the time constant T for r > 0.

c. Find an expression for v (¢), and sketch the
function.

d. Find v¢(¢) for each of the following values of ¢:
0, 7,271,571, 107.
5.45 In the circuit of Figure P5.41, S| opens att = 0
and S, opens at t = 48 s.
a. Find vc(r = 0™).
b. Findt for0 <r <48s.
c. Find an expression for v (¢) valid for 0 < r <48 s.
d. Find 7 for ¢t > 48 s.
e. Find an expression for v¢ (¢) valid for ¢ > 48 s.
f. Plot vc(¢) for all time.
5.46 For the circuit shown in Figure P5.41, assume that

switch S, opens at + = 96 s and switch S, opens at
t=0.

a. Find the capacitor voltage at r = 0.
b. Find the time constant for 0 < ¢ < 96 s.

c. Find an expression for vc(#) when 0 <t <965,
and compute ve (f = 96).

d. Find the time constant for ¢t > 96 s.
e. Find an expression for v¢ (¢) when t > 96 s.
f. Plot vc (¢) for all time.
5.47 For the circuit of Figure P5.47, determine the value
of resistors R; and R;, knowing that the time constant

before the switch opens is 1.5 ms, and it is 10 ms after
the switch opens. Given: Rs = 15k, R; =30k,

and C =1 uF.
Rg
<> o <&
VS RI:E ,l\c Rz:z R3:E

Figure P5.47

5.48 For the circuit of Figure P5.47, assume Vg =
100V, Rs =4k, Ry =2k, R, = R; =6k,
C =1 uF, and the circuit is in a steady-state condition
before the switch opens. Find the value of vc 2.666 ms
after the switch opens.

5.49 In the circuit of Figure P5.49, the switch changes
position at ¢+ = 0. At what time will the current through
the inductor be 5 A? Plot iy (¢).

5. Transient Analysis
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1,000

10 Q
t=0

+ 503
100 VC_B 3

Figure P5.49

5.50 Consider the circuit of Figure P5.49, and assume
that the mechanical switching action requires 5 ms.
Further assume that during this time, neither switch
position has electrical contact. Find

a. ip(t) forO <t <5S5ms

b. The maximum voltage between the contacts during
the 5-ms duration of the switching

Hint: This problem requires solving both a turn-off and a
turn-on transient problem.

5.51 The circuit of Figure P5.51 includes a model of
a voltage-controlled switch. When the voltage across
the capacitors reaches the value vj,, the switch is
closed. When the capacitor voltage reaches the
value vy, the switch opens. If vj, = 1 V and the
period of the capacitor voltage waveform is 200 ms,
find v§,.

Voltage
controlled
switch

o

10V ~ 15uF 10Q

s

Figure P5.51

5.52 Att =0, the switch in the circuit of Figure P5.52
closes. Assume that i; (0) = 0 A. For ¢t > 0, find

a. ir(t)
b. v, ()

5.53 For the circuit of Figure P5.52, assume that the
circuit is at steady state for # < 0. Find the voltage
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across the 10-k<2 resistor in parallel with the switch for
t>0.

sa(]

Li=1H [,=5H

Figure P5.52

5.54 We use an analogy between electrical circuits and
thermal conduction to analyze the behavior of a pot
heating on an electric stove. We can model the heating
element as shown in the circuit of Figure P5.54. Find
the “heat capacity” of the burner, Cg, if the burner
reaches 90 percent of the desired temperature in
10 seconds.

Cs= heat capacity of burner

R, = heat loss of burner
=15Q

Figure P5.54

5.55 With a pot placed on the burner of Problem 5.54,
we can model the resulting thermal system with the
circuit shown in Figure P5.55. The thermal loss
between the burner and the pot is modeled by the
series resistance Ry. The pot is modeled by a heat
storage (thermal capacitance) element Cp, and a loss
(thermal resistance) element, Rp.

a. Find the final temperature of the water in the pot—
that is, find v(¢) ast — oco—if: Ig =75 A; Cp =
80 F; R; = 0.8Q2; Rp = 2.5, and the burner is
the same as in Problem 5.54.

b. How long will it take for the water to reach
80 percent of its final temperature?

[Hint: Neglect Cg since Cs < Cp.]

5. Transient Analysis
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o

B3
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0
—) —
5’
WW
o
—
S+

Figure P5.55

5.56 The circuit of Figure P5.56 is used as a variable
delay in a burglar alarm. The alarm is a siren with
internal resistance of 1 k2. The alarm will not sound
until the current i, exceeds 100 nA. Find the range of
the variable resistor, R, for which the delay is between
1 and 2 s. Assume the capacitor is initially uncharged.
This problem will require a graphical or numerical
solution.

10V 1kQ!

Figure P5.56

5.57 Find the voltage across C| in the circuit of Figure
P5.57 fort > 0. Let C; = S5uF; C; = 10uF. Assume
the capacitors are initially uncharged.

1=0 o L
1 1~
10VC£) L
2 T~
1L

Figure P5.57

5.58 The switch in the circuit of Figure P5.58 opens at
t = 0. It closes at t = 10 seconds.

a. What is the time constant for 9 < ¢ < 10 s?

b. What is the time constant for r > 10 s?

Q
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1 1 pF =%
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VW

1Q

AAAA
AAAAS
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Figure P5.58

5.59

The circuit of Figure P5.59 models the charging

circuit of an electronic flash for a camera. As you
know, after the flash is used, it takes some time for it to
recharge.

a.

If the light that indicates that the flash is ready turns
on when Ve =0.99 x 7.5V, how long will you
have to wait before taking another picture?

If the shutter button stays closed for 1/30 s, how
much energy is delivered to the flash bulb,
represented by R,? Assume that the capacitor has
completely charged.

If you do not wait till the flash is fully charged and
you take a second picture 3 s after the flash is first
turned on, how much energy is delivered to R,?

On/off Shutter
R, switch button

s I et rad

75 V= C =< Vo R, 2 Flash

T -

C=1,500 uF, R, = 1,000, R,=1Q

Figure P5.59

© The McGraw-Hill
Companies, 2007

Circuits

279

5.60 The ideal current source in the circuit of Figure
P5.60 switches between various current levels, as
shown in the graph. Determine and sketch the voltage
across the inductor, vy, (¢) for ¢ between 0 and 2 s.
You may assume that the current source has been at
zero for a very long time before t = 0.

ig()(mA)

S N B~ O

is(1)

R=500Q, L=50H

-2

0.5

Figure P5.60

1.5 t(s)

Section 5.5: Transient Response of

Second-Order Circuits

5.61 In the circuit shown in Figure P5.61:

Ve =15V
Rs = 130 ©
R =1.1kQ
L =17mH

Ve, =9V
Rsy = 290 ©
R, = 700 ©
C =0.35 uF

Assume that DC steady-state conditions exist for

t < 0. Determine the voltage across the capacitor and
the current through the inductor and Ry, as ¢
approaches infinity.

Figure P5.61
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5.62 In the circuit shown in Figure P5.61

Vo =12V Vey = 12V
Rsi =50 Rsy =50 Q
R =22kQ R, =600
L=78mH C =68uF

Assume that DC steady-state conditions exist at t < 0.
Determine the voltage across the capacitor and the
current through the inductor as ¢ approaches infinity.
Remember to specify the polarity of the voltage and
the direction of the current that you assume for your
solution.

5.63 If the switch in the circuit shown in Figure P5.63 is
closed at# = 0 and

Vs =170V Rs =7k
R, =23kQ R, =7kQ
L =30 mH C = 130 uF

determine, after the circuit has returned to a steady
state, the current through the inductor and the voltage
across the capacitor and R;.

Figure P5.63

5.64 If the switch in the circuit shown in Figure P5.64 is
closed at = 0 and

Vi=12V C = 130 uF
R, =23kQ R, =7kQ
L =30 mH

determine the current through the inductor and the
voltage across the capacitor and across R, after the
circuit has returned to a steady state.

A

Figure P5.64

5.65 If the switch in the circuit shown in Figure P5.65 is
closed at t = 0 and

Vs=12V C =0.5uF
R, =31kQ R, =22kQ
L =09mH

5. Transient Analysis
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determine the current through the inductor and the
voltage across the capacitor after the circuit has
returned to a steady state.

=0 AAA
YYVYY

L R

Py

a

A}

A

=

8]
AAAA
WW

Figure P5.65

5.66 Att <0, the circuit shown in Figure P5.66 is at
steady state, and the voltage across the capacitor is
+7 V. The switch is changed as shown at ¢t = 0, and

Vs =12V C = 3,300 uF
R =9.1kQ R, =43kQ
Ry =43kQ L =16mH

Determine the initial voltage across R, just after the
switch is changed.

\AAAZ

R3

Figure P5.66

5.67 In the circuit shown in Figure P5.67, assume that
DC steady-state conditions exist for # < 0. Determine
at t = 0T, just after the switch is opened, the current
through and voltage across the inductor and the
capacitor and the current through Rg,.

Vai=15V Vep =9V
Rg1 =130 Q Rs, =290 @
R, =1.1kQ R, =700 Q
L =17mH C =0.35uF
t=0
Rs1 CJ‘ Rs>
Lg RE
+ TR +
Ysl Ysz

Figure P5.67

Q
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5.68 In the circuit shown in Figure P5.67,

Vs1 =12V Vgo =12V
Ry =502 Ry =50Q
R =22KQ R, =600%
L =7.8 mH C =68 uF

Assume that DC steady-state conditions exist for

t < 0. Determine the voltage across the capacitor and
the current through the inductor as ¢ approaches
infinity. Remember to specify the polarity of the
voltage and the direction of the current that you
assume for your solution.

5.69 Assume the switch in the circuit of Figure P5.69
has been closed for a very long time. It is suddenly
opened at # = 0 and then reclosed at t = 5 s. Determine
an expression for the inductor current for r > 0.

SH

AA
\AAJ
S}
e}

6V

Figure P5.69

5.70 For the circuit of Figure P5.70, determine if it is
underdamped or overdamped. Find also the capacitor
value that results in critical damping.

400 Q 10 mH

0.01 pF T

5.71 Assume the circuit of Figure P5.70 initially stores
no energy. The switch is closed at # — 0. Find

10V

Figure P5.70

a. Capacitor voltage as ¢ approaches infinity
b. Capacitor voltage after 20 us

¢. Maximum capacitor voltage

5.72 Assume the circuit of Figure P5.72 initially stores
no energy. Switch S is open, and S, is closed. Switch
Sy is closed at t = 0, and switch S, is opened at
t = 5. Determine an expression for the capacitor
voltage for ¢ > 0.

© The McGraw-Hill
Companies, 2007
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4F
| L
I\
t=0
3Q
o AW
M
<>
6V :E 2Q 5H
J t=5s
S

Figure P5.72

5.73 Assume that the circuit shown in Figure P5.73 is
underdamped and that the circuit initially has no
energy stored. It has been observed that after the
switch is closed at ¢ = 0, the capacitor voltage reaches
an initial peak value of 70 V when ¢t = 57 /3 us and a
second peak value of 53.2 V when t = 57 us, and it
eventually approaches a steady-state value of 50 V. If
C = 1.6 nF, what are the values of R and L?

t=0

T

5.74 Given the information provided in Problem 5.73,
explain how to modify the circuit so that the first peak
occurs at St us. Assume that C = 1.6 uF.

5.75 Findi fort > 0 in the circuit of Figure P5.75 if
i(0)=0Aandv(0) =10 V.

Figure P5.73

2H

=
103 4Q

12F =RV

Figure P5.75
5.76 Find the maximum value of v(¢) for r > 0 in the

circuit of Figure P5.76 if the circuit is in steady state at
t=0".

12V

Figure P5.76
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5.77 Fort > 0, determine for what value of r i =2.5 A
in the circuit of Figure P5.77 if the circuit is in steady
stateatt = 0.

2Q 1H 1H

40V

AMA
\Ad
N
e}
(98]
e}

Figure P5.77

B.78 Fort > 0, determine for what value of t i =
6 A in the circuit of Figure P5.78 if the circuit is in
steady state at# = 0.

3Q

Figure P5.78

B5.79 Fort > 0, determine for what value of t v =7.5V
in the circuit of Figure P5.79 if the circuit is in steady
state atr = 0~.

5. Transient Analysis
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s
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< >
20A 303 I6FIR IF<v 320

Figure P5.79

5.80 The circuit of Figure P5.80 is in steady state at
t = 0. Assume L = 3 H; find the maximum value of
v and the maximum voltage between the contacts of

the switch.
2Q 3Q
t=0 +
10V 1/12F /=~ v L

Figure P5.80

5.81 Find v for t > 0 in the circuit of Figure P5.81 if the
circuit is in steady state at# = 0.

2Q =0 3Q
+ v -
12V 0.8H 4V

1/4F
T

Figure P5.81
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CHAWPTER

FREQUENCY RESPONSE
AND SYSTEM CONCEPTS

hapter 4 introduced the notions of energy storage elements and dynamic circuit

equations and developed appropriate tools (complex algebra and phasors) for

the solution of AC circuits. In Chapter 5, we explored the solution of first- and

second-order circuits subject to switching transients. The aim of this present
chapter is to exploit AC circuit analysis methods to study the frequency response of
electric circuits.

It is common, in engineering problems, to encounter phenomena that are
frequency-dependent. For example, structures vibrate at a characteristic frequency
when excited by wind forces (some high-rise buildings experience perceptible os-
cillation!). The propeller on a ship excites the shaft at a vibration frequency related
to the engine’s speed of rotation and to the number of blades on the propeller. An
internal combustion engine is excited periodically by the combustion events in the
individual cylinder, at a frequency determined by the firing of the cylinders. Wind
blowing across a pipe excites a resonant vibration that is perceived as sound (wind
instruments operate on this principle). Electric circuits are no different from other
dynamic systems in this respect, and a large body of knowledge has been developed
for understanding the frequency response of electric circuits, mostly based on the
ideas behind phasors and impedance. These ideas, and the concept of filtering, will
be explored in this chapter.

283
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The ideas developed in this chapter will also be applied, by analogy, to the anal-
ysis of other physical systems (e.g., mechanical systems), to illustrate the generality
of the concepts.

:) Learning Objectives

1. Understand the physical significance of frequency domain analysis, and compute the
frequency response of circuits using AC circuit analysis tools. Section 6.1.

2. Compute the Fourier spectrum of periodic signals by using the Fourier series repre-
sentation, and use this representation in connection with frequency response ideas
to compute the response of circuits to periodic inputs. Section 6.2.

3. Analyze simple first- and second-order electrical filters, and determine their fre-
quency response and filtering properties. Section 6.3.

4. Compute the frequency response of a circuit and its graphical representation in the
form of a Bode plot. Section 6.4.

6.1 SINUSOIDAL FREQUENCY RESPONSE

The sinusoidal frequency response (or, simply, frequency response) of a circuit pro-
vides ameasure of how the circuit responds to sinusoidal inputs of arbitrary frequency.
In other words, given the input signal amplitude, phase, and frequency, knowledge
of the frequency response of a circuit permits the computation of the output signal.
Section 6.2, “Fourier Analysis,” provides further explanation of the importance of
sinusoidal signals. Suppose, for example, that you wanted to determine how the load
voltage or current varied in response to different excitation signal frequencies in the
circuit of Figure 6.1. An analogy could be made, for example, with how a speaker
(the load) responds to the audio signal generated by a CD player (the source) when
an amplifier (the circuit) is placed between the two.! In the circuit of Figure 6.1,
the signal source circuitry is represented by its Thévenin equivalent. Recall that the
impedance Zg presented by the source to the remainder of the circuit is a function
of the frequency of the source signal (Section 4.4). For the purpose of illustration,
the amplifier circuit is represented by the idealized connection of two impedances Z;
and Z,, and the load is represented by an additional impedance Z;. What, then, is
the frequency response of this circuit? The following is a fairly general definition:

LO1 The frequency response of a circuit is a measure of the variation of a load-related
voltage or current as a function of the frequency of the excitation signal.

!n reality, the circuitry in a high-fidelity stereo system is far more complex than the circuits discussed in
this chapter and in the homework problems. However, from the standpoint of intuition and everyday
experience, the audio analogy provides a useful example; it allows you to build a quick feeling for the
idea of frequency response. Practically everyone has an intuitive idea of bass, midrange, and treble as
coarsely defined frequency regions in the audio spectrum. The material presented in the next few
sections should give you a more rigorous understanding of these concepts.
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CD Player || Amplifier |- Speakers : :

1 1 -
(Source) (Circuit) (Load) ¢ ¢

A physical system A circuit model

Figure 6.1 A circuit model

According to this definition, frequency response could be defined in a variety of ways.
For example, we might be interested in determining how the load voltage varies as
a function of the source voltage. Then analysis of the circuit of Figure 6.1 might
proceed as follows.

To express the frequency response of a circuit in terms of variation in output
voltage as a function of source voltage, we use the general formula

_ Vi(jo)
Vs(jow)

Hy (jo) (6.1)
One method that allows for representation of the load voltage as a function of the
source voltage (this is, in effect, what the frequency response of a circuit implies) is
to describe the source and attached circuit by means of the Thévenin equivalent circuit.
(This is not the only useful technique; the node voltage or mesh current equations for
the circuit could also be employed.) Figure 6.2 depicts the original circuit of Figure 6.1
with the load removed, ready for the computation of the Thévenin equivalent.

Vs Zr=Zs+Z) 1 Zy

Figure 6.2 Thévenin equivalent source circuit

Next, an expression for the load voltage V; may be found by connecting the
load to the Thévenin equivalent source circuit and by computing the result of a simple
voltage divider, as illustrated in Figure 6.3 and by the following equation:

Zy
VL - 7\77'
Zy+Zr
4 Z
= - : 2 Vs (6.2)
Zr+Zs+2Z)2/Zs+Z1+2Zy) Zs+Zi+ 2, Figure 6.3 Complete
VAYS) equivalent circuit

A%
ZL(Zs+Z1+Z)+ Zs + 202,
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Thus, the frequency response of the circuit, as defined in equation 6.1, is given by the
expression
\I . ZrZs
— (jo) = Hy (jo) = (6.3)
Vs Zi(Zs+Z1+Z2) +(Zs + Z1)Z,
The expression for Hy (jw) is therefore known if the impedances of the circuit
elements are known. Note that Hy (jw) is a complex quantity (dimensionless, because
it is the ratio of two voltages) and that it therefore follows that

LO1 > V (jw) is a phase-shifted and amplitude-scaled version of Vg (jw).

If the phasor source voltage and the frequency response of the circuit are known, the
phasor load voltage can be computed as follows:

V. (jw) = Hy (jo) - Vs(jo) (6.4)
Vie!” = |Hyle!" . Vsel® (6.5)
or
Vyel? = |Hy |Vgel (“Hites) (6.6)
where
Vi =|Hv|- Vs
and (6.7)
¢ = ZH, + ¢s

Thus, the effect of inserting a linear circuit between a source and a load is best
understood by considering that, at any given frequency w, the load voltage is a sinusoid
at the same frequency as the source voltage, with amplitude given by V;, = |Hy |-V
and phase equal to ¢, = £LH, + ¢s, where |Hy | is the magnitude of the frequency
response and £ H, is its phase angle. Both |Hy | and £H, are functions of frequency.

LO1 EXAMPLE 6.1 Computing the Frequency Response of a Circuit
by Using Equivalent Circuit Ideas

Problem
R, Compute the frequency response Hy (jw) for the circuit of Figure 6.4.
! +
Vs T i RL‘_/L Solution
: Known Quantities: R, = 1k; C =10 uF; R;, = 10 k.
Figure 6.4

Find: The frequency response Hy (jw) = VL (jw)/Vs(jw).
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Assumptions: None.

Analysis: To solve this problem, we use an equivalent circuit approach. Recognizing that R,
is the load resistance, we determine the equivalent circuit representation of the circuit to the
left of the load, using the techniques perfected in Chapters 3 and 4. The Thévenin equivalent
circuit is shown in Figure 6.5. Using the voltage divider rule and the equivalent circuit shown
in the figure, we obtain the following expressions:

Zy
V=2t v,
Zr+7Z;
Z Z,
= Vg
VAVAYIVAR WAV WV ANAR WA
= Hy Vs
and
\J . Z1Z,
< (o) = Hy (jo) =
Vs Zi(Zy + Z2) + 2,12,
The impedances of the circuit elements are Z; = 10° @, Z, = 1/(jo x 107%) Q, and

Z; = 10* Q. The resulting frequency response can be calculated to be

104
i -5 100
Hy (jeo) = jo x 10 — .
0 (10 + G 110 + joo
jox 105 ) T jo x 10
100 100

w
/ —arctan (—)

1102+a)zejarctan(l—‘i’0) - /1102+w2 110

Comments: The use of equivalent circuit ideas is often helpful in deriving frequency response
functions, because it naturally forces us to identify source and load quantities. However, it is
certainly not the only method of solution. For example, node analysis would have yielded the
same results just as easily, by recognizing that the top node voltage is equal to the load voltage
and by solving directly for V, as a function of Vg, without going through the intermediate step
of computing the Thévenin equivalent source circuit.

© The McGraw-Hill

Companies, 2007

Vr=Vg

Figure 6.5

L
Z1+7Z,

287

CHECK YOUR UNDERSTANDING

Compute the magnitude and phase of the frequency response function at the frequencies
w = 10,100, and 1,000 rad/s.

LTTL'€8— PUR *LELTTH—
‘Yr61°6— = (sea15ep) aseyd 6600 PUE ‘LTL9°0 FS06'0 = SPMIUSEIA :SIomsuy
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The importance and usefulness of the frequency response concept lie in its
ability to summarize the response of a circuit in a single function of frequency H (jw),
which can predict the load voltage or current at any frequency, given the input. Note
that the frequency response of a circuit can be defined in four different ways:

Vi) L LGw)
HyGo) = G HiGo) = 1o
(6.8)
Vi (j I, (j
Hy (jo) = —ISL((].];")) Hy (jo) = ((’]‘;))

If Hy (jow) and H; (jw) are known, one can directly derive the other two expressions:

V;(j I, (7
Hy (o) = ISL((J?;")) - Zu(jor}: 8;"; = Z1(jo) Hy (jo) 69)

© Vs(jo)  Ze(jo) Vs(jo) — Zi(jo)

The remainder of the chapter builds on equations (6.8) to give you all the tools
needed to make use of the concept of frequency response.

Dsiozr,

Ry

Figure 6.6

LO1>

iIL(j‘D)
+
Vi(jo)

EXAMPLE 6.2 Computing the Frequency Response of a Circuit

Problem

Compute the frequency response Hz (jw) for the circuit of Figure 6.6.

Solution

Known Quantities: R, = 1kQ; L =2mH; R, =4kQ.
Find: The frequency response Hz (jw) = V (jw)/Is(jw).
Assumptions: None.

Analysis: To determine expressions for the load voltage, we recognize that the load current

can be obtained simply by using a current divider between the two branches connected to the

current source, and that the load voltage is simply the product of the load current and R, .
Using the current divider rule, we obtain the following expression for I :

L VRt joL)
ETU/R + ol + /R
1

I
1+ R./R, + joL/R; °
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and

I1R;
Is

A\ .
I—(jw) = Hz(jw) =
s

14 R./R + joL/R,

Substituting numerical values, we obtain

4% 10
1+44 2 x107%w)/10°

Hz(jw) =

0.8 x 103
1+ /0.4 x 1050

Comments: You should verify that the units of the expression for Hz (jw) are indeed ohms,
as they should be from the definition of H.

CHECK YOUR UNDERSTANDING

Compute the magnitude and phase of the frequency response function at the frequencies w = 1,
10, and 100 rad/s.

6L9S'88— PUE ‘896G L—
“$108'T¢— = (s990130p) aseyd $0500°0 PUE ‘S870°0 ‘LSST°0 = SPNIUSEN HIomsuy

6.2 FOURIER ANALYSIS

The aim of this section is to introduce the concept of frequency domain analysis of
signals, and more specifically the Fourier series. In the next few pages we explain
how itis possible to represent periodic signals by means of the superposition of various
sinusoidal signals of different amplitude, phase, and frequency. Let the signal x (#)be
periodic with period 7, that is,

x(t)
x(t)=x(t+T)=x(t+nT) n=1,2,3,...; T = period (6.11)

An example of a periodic signal is shown in Figure 6.7.

The signal x(¢) can be expressed as an infinite summation of sinusoidal com- T 2T 3T ¢
ponents, known as a Fourier series, using either of the following two representa-  Figure 6.7 A periodic
tions. signal
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b, = c,sin 6,

-
L

a, = ¢, cos0,
Figure 6.8 Relationship

between {a,, b,} and {c,, 6, }
forms

x(t)

(a) Even function, x(—f) = x(¢)

x(t)

(b) Odd function, x(—t) = —x(¢)

Figure 6.9 Definition of
even and odd functions
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Fourier Series

1. Sine-cosine (quadrature) representation

i 2 i 2
x(t) =ag + Z a, cos <n7r> + Z b, sin <n7r> (6.12)

n=1 n=1

2. Magnitude and phase form

x(t) =c —i—ic sin(nz—nr—i—@) (6.13)
AL) = Lo n T n g

n=1

xX(t)=co+ Y _ cycos (nZ;r — %) (6.14)

n=1

In each of these expressions, the period T is related to the fundamental fre-
quency of the signal w, by

2
wy =27 fy = T rad/s (6.15)

It is straightforward to show that equation 6.13 is equivalent to equation 6.12, by
expanding equation 6.13 by using trigonometric identities:

2 2 @ .
Vai;+bi=c, and = cot(6,) (6.16)
a

n

Similarly, one can show that equation 6.14 is equivalent to equation 6.12 if

bﬂ
yaitbi=cand = =tan(y) (6.17)

n

Figure 6.8 is a graphical representation of the equivalence of the {a,, b, } and {c,, 6,}
forms of the Fourier series. Equations 6.7 and 6.8 permit easy conversion between the
two forms of the Fourier series. In each of the above representations, wy = 27w fy =
27/ T is called the fundamental frequency (in units of radians per second), and the
frequencies 2wq, 3wy, 4wy, etc., are called its harmonics.

Each of the two forms of the Fourier series, equations 6.12 and 6.13 (or 6.14),
has its distinct advantages. The sine-cosine representation uses odd and even functions
of the independent variable. An odd function of time is one that satisfies the following
relationship

f(=t)=—f( (6.18)

Sine functions satisfy such a relationship and are odd. An even function of time is
one that satisfies

f=n=f® (6.19)

Cosine functions are even, as is the constant value ao. Figure 6.9 shows examples of
even and odd functions.

The advantage of the representation in equation 6.12 is that if x(¢) is known
to be odd (even), it can be represented as the sum of only odd (even) functions [i.e.,

L~/
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using only the sine (cosine) terms], thus resulting in easier evaluation of the Fourier
series coefficients.

The magnitude and phase forms, equations 6.13 and 6.14, separate out the
magnitude information ¢, from the phase information 6, or ¥,. Thus, they may
be combined more readily with the magnitude and phase frequency responses of
linear systems to periodic inputs, a procedure described in the following section.
The magnitude and phase forms also allow a graphical representation of the Fourier
series in the form of a discrete frequency spectrum, as shown in Figure 6.10. This
plot depicts the magnitude and phase of the sinusoidal component at each of the
frequencies (fundamental and its harmonics) that are contained in the signal x(¢).

Computation of Fourier Series Coefficients

The computation of the {a,, b, } or {c,, 6,} coefficients for the periodic function x (¢)
is based on the following formulas:

1 T 1 T/2
agp = T f x(t)ydt = T / x(t) dt = average value of x (¢) (6.20)
0 —

T/2
2 (T 2 2 (T2 21
a, = — x()cos|n—rt | dt = — x(t)cos|n—t | dt (6.21)
T Jo T T J_rp T
2 fT (1) sin 2
= — X (7 y
T Jo

T 2 (T2 . 27
—t dr:—f x(@)sin (n—t | dt (6.22)
T T J_rp T

s
|

(v
(v

In the above equations, the limits of the integrals have been written in two dif-
ferent forms, to illustrate that it does not matter where the integration starts, provided
that it is carried out over one entire period. The ¢, and 6, (or v,,) values can be derived
from the a,, and b, coefficients by using equations 6.16 and 6.17.

To illustrate the significance of the Fourier series decomposition, we consider
the square wave of Figure 6.11(a). The function depicted in the figure is an odd
function, and thus we only need to compute the odd (sine) coefficients. A homework
problem asks you to compute the Fourier coefficients for this square wave. The result
of this calculation is shown in Figure 6.11(b), where the first six nonzero Fourier series
terms are plotted. Note that the first term corresponds to ag, that is, the average value
of the function, and is a constant. The other five terms are the first five components
of the Fourier series that have nonzero coefficients; note that they all correspond to 7
odd (1, 3, 5,7, and 9). Note also that the coefficients for n = 1, 5, and 9 are positive,
and those for n = 3 and 7 are negative (you can see this by looking at the peaks of the
cosine waveforms). This alternation of positive and negative cosines is required so
that each term can add or subtract from the previous terms as needed to “flatten” the
waveform into a square wave. Figure 6.11(c) compares the original square wave with
the Fourier series approximation. It should be evident that 10 terms are not sufficient
to reproduce the sharp edges of the square wave, but it should also be clear that as we
add more Fourier terms, the resulting approximation will be closer and closer to the
square wave signal.

© The McGraw-Hill
Companies, 2007

[H(jo)l
Magnitude spectrum

[ 1

0wy 200 3wy 409 ®

ZH(jo)
Phase spectrum

cL 1y

0wy 200 309 409 ®

Figure 6.10 Discrete
frequency spectrum
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x(®
A
-T/4 0 /4 T t
(a)
First six Fourier series components of square wave Comparison of square wave and Fourier series approximation
0.8 1.2
— 1=
0.6 —n=1Y
ceen=3l 1.0
o4l 1 1 I /A 1  IN_| .. n=5H
—n=7 0.8
o 02 < G ——n=9H °
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2 0 ML N NN\, [y £
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£ SR SRS K E 04
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~0.6 A N 0
—0.8 -0.2
0 01 02 03 04 05 06 07 0.8 09 1.0 0 01 02 03 04 05 06 07 0.8 09 1.0
Time(s) Time(s)
(b) ()

Figure 6.11 Square wave and its representation by a Fourier series. (a) Square wave (even function); (b) first three
terms; (c) sum of first three terms

LO2 EXAMPLE 6.3 Computation of Fourier Series Coefficients

Problem

Compute the complete Fourier spectrum of the sawrooth function shown in Figure 6.12; that
is, find a general expression for the coefficients a, and b, as a function of », and then compute
the spectrum of x(¢), that is, the coefficients ¢, and 6,.. Plot the spectrum of the signal.

NN -
NAA N

Known Quantities: Amplitude and period of sawtooth waveform.

(=]

(a) Find: Fourier series coefficients a, and b,,.
Figure 6.12 (a) Periodic Schematics, Diagrams, Circuits, and Given Data: The function is periodic, with period
(sawtooth) function T = 1s, peak amplitude A = 1.

Assumptions: None.

Analysis: The function in Figure 6.11 is an odd function (convince yourself of this fact). Thus,
we only need compute the b, coefficients. First, we find an expression for x(¢) as an explicit
function of ¢:

2t
x(t):A<1—7> 0<t<T
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035 Magnitude and phase spectra of sawtooth waveform
0.30 o
o 0.25
°
£ 020
£ 015 .
< 010 Comparison of sawtooth wave and
: ¢ Fourier series approximation
0.05 $ 15
06 I I | P9
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8 0.5 "‘é 0
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<
2
= -05 ~1.0
o
-1.0 -1.5
0 1 2 3 4 5 6 7 8 9 10 0 0.1 02 0.3 04 05 0.6 0.7 08 09 1.0
Harmonic frequency (n = 1 is the fundamental) Time(s)
(b) (©)

Figure 6.12 (b) spectrum of sawtooth waveform; (c) approximation of sawtooth waveform for N = 5

Then we evaluate the integral in equation 6.22:
2 (T 2t\ . 2
b, = — All— —|sin|(n—t)dt
T Jo T T
2 T 2 24 (T 21\ . 2
= — Asin|n—t ) dt + — —— )sin | n—1t ) dt
T Jo T T Jo T T
24 T 27 \17 44 /T s
=—|———cos|n—t - — t-sin|{n—t ) dt
T 2nm T 0 T2 Jo T
4A 1 . 27 t 2
=0——|———sin|n—t | — ———cos|n—
T2 | n22m/T)? T nQr/T) T

4A T? 2A
=——|——cos@nm)| = — n=1,2,3,...
ni T

T

0

To compute the spectrum of the signal, we apply equation 6.16:

¢, =,/a+b2=|b,|

b b
6, = cot™! 22 = cot™!

i)
an 0

The individual components of the spectrum of x (¢) are shown in Figure 6.11(b).

Comments: A computer program can be used to visualize the result of a Fourier series
approximation when only the first N frequency components are included in the summation.
Figure 6.12(c) depicts the results of this approximation.
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CHECK YOUR UNDERSTANDING

How would the spectrum plot of Figure 6.12(b) change if the period of the waveform changed
from 1to 0.1 s?

‘paSueyoun oq pinom adeys [erouss ay)
0T JO 1030€] B AQ 9SBAIOUT PINoMm (soTuounrey [[e pue) Lousnbalj ejudwepuny oy, :IoMSUY

A

o

ol =

T T+t

(1.
2T t

Figure 6.13 (a) Pulse train

Amplitude

Phase angle, deg

0.4

0.3

0.2

0.1

EXAMPLE 6.4 Computation of Fourier Series Coefficients

Problem

Compute the complete Fourier series expansion of the pulse waveform shown in Figure 6.13(a)
for /T = 0.2. Plot the spectrum of the signal.

Solution
Known Quantities: Amplitude and period of pulse train waveform.
Find: Fourier series coefficients a, and b, ; Fourier spectrum.

Schematics, Diagrams, Circuits, and Given Data: The function is periodic, with period
T =1 s, peak amplitude A = 1.

Assumptions: None.

Magnitude and phase spectra of pulse train

Comparison of pulse train wave and
Fourier series approximation
T LT s 2
o
0 2 3 4 5 6 7 8 9 10 1.0 / \
0.8
7 2 ool
Ele
=
g 04
- \ /
RN /
0
Q Q -0.2
0 2 3 4 5 6 7 8 9 10 0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
Harmonic frequency (n = 1 is the fundamental) Time(s)
(b) ()

Figure 6.13 (b) signal spectrum; (c) approximation obtained using 11 Fourier coefficients
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Analysis: The function in Figure 6.13 is neither odd, nor even. Thus, we need to compute both
the a,, and the b, coefficients. First, we find an expression for x(¢) as an explicit function of ¢:

A O0<t<rt
x(@) =
0 t<t<T

Then we evaluate the integrals of equations 6.20 through 6.22:

1 (753 A
aoz—/ Adt = —

2 (7 27 2 173 27 r 27
= Acos|\n—t |dt—= = Acos|n—t |dt + Ocos \ n—t | dt
T Jo T T o T T/5 T
2 AT . [2nm \|T°
== —sin| —¢
T 2nm T 0
2 AT [ . (2nm A | (2nm
=———|sin| — ) —-0|=—sin| —
T 2nw 5 nw 5
2 (15 (2w 2 AT 2nw
b, = — Asin|n—t)dt = = — | —cos| —t¢
T Jo T T 2nm T 0
2 AT 2nmw +cos(0) | = A 1 2nm
= T e cos { — cos = cos { —5
To compute the spectrum of the signal, we apply equation 6.16:
A . (2nm\] [ A 20\’
Jaz+bl= | —sin| — +1—|[1l—cos| —
nw 5 nmw 5

6, = cot™! (b_"> — cot-! {(A/"ﬂ)[l —.COS(Znﬂ/S)]} —o
n (A/nm) sinnm/5)

dn

T/5

Cp

The frequency spectrum of x(¢) (magnitude and phase) is shown in Figure 6.13(b). Table 6.1
lists the first seven coefficients in both forms.

Table 6.1 Fourier coefficients of pulse train

n a, b, Cn 0, (deg)
0 0.2 0 0.2 0
1 0.3027 0.2199 0.3742 54
2 0.0935 0.2879 0.3027 18
3 —0.0624 0.1919 0.2018 —18
4 —0.0757 0.0550 0.0935 —54
5 0 0 0 0
6 0.0505 0.0367 0.0624 54
7 0.0267 0.0823 0.0865 18
8 —0.0234 0.0720 0.0757 —18
9 —0.0336 0.0244 0.0416 —54

10 0 0 0 0

Comments: A computer program can be used to visualize the result of a Fourier series
approximation when only the first /0 frequency components are included in the summation.
Figure 6.13(c) depicts the results of this approximation.

© The McGraw-Hill
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CHECK YOUR UNDERSTANDING

Determine which coefficients are zero when the duty cycle of the pulse train is /T = 0.25.

8 ‘v = U Iomsuy

EXAMPLE 6.5 Computation of Fourier Series Coefficients

Problem

Compute all the coefficients of the Fourier series expansion for the signal x (#) = 1.5 cos(100¢).

Solution
Known Quantities: Expression of signal waveform.
Find: Fourier series coefficients a,, and b,,.

Schematics, Diagrams, Circuits, and Given Data: The function is periodic, with period
T = 27 /100 and peak amplitude of 1.5.

Assumptions: None.

Analysis: This function is already in Fourier series form, since it contains only sinusoidal
terms! We recognize the following parameters: wy = 100; ap = 0; a; = 1.5; b; = 0; etc. (all
other @, and b, coefficients are zero). Expressing the coefficients in magnitude-phase form, we
have

T
c1 = 1.5 and 91 = E

CHECK YOUR UNDERSTANDING

Determine the a, and b,, Fourier coefficients of the signal y(#) = 1.5 cos(100¢ + 7r/4). (Hint:
Use trigonometric identities to expand the cosine function.)

*0J9Z Al SJUSTOLFS0I IYIO [[V “L090 T = '9 ‘L090° T = '» ‘() = v 1omsuy

Response of Linear Systems to Periodic Inputs

The frequency response concept is particularly useful when one deals with a system
excited by a periodic input; in this case, the input may be modeled by a Fourier series
consisting of a summation of sinusoids of different frequencies. Each of these sinu-
soids is of known amplitude and phase. Assume that the Fourier series representing
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a signal consists of a finite number of terms:

N 2
x(t) = co + Z:; Cp Sin (n et 6,1> (6.23)
Each ofthe N sinusoids is then characterized by amplitude ¢, , phase 6,, and frequency
w, = hwo, where wy = 2 /T and T is the period of the input signal. For example,
the periodic input could be the periodic sawtooth waveform of Example 6.3.

Figure 6.14 illustrates the general input-output representation of a system, mak-
ing use of the frequency response concept. The figure shows that if the input to a linear
system gi, (t) can be represented in phasor form, that is, by the phasor Q;, (jw), then the
output can be computed by multiplying the phasor form of the input by the frequency
response function on the linear system. This product is, of course, a complex number
consisting of a magnitude and a phase, which can be computed by multiplying the
magnitude of the input phasor by the magnitude of the frequency response function,
and by adding the phase angle of the input phasor to the phase angle of the frequency
response function. We shall see various examples of this procedure in this section.

qi“(t) qout(t)
————{ H(jo) = 1H(jw)| ZH(jw) ——> _ .
Oin(j) 0ot j®) = O @ H( j)

Figure 6.14 Response of a linear system to a phasor input

In the case of a periodic input expressed in terms of a (truncated) Fourier series,
we must recognize that each of the input sinusoidal components propagates through
the system according to the frequency response. Thus, the discrete magnitude spec-
trum of the periodic output signal in the steady state is equal to the discrete magnitude
spectrum of the input signal multiplied by the amplitude ratio of the frequency re-
sponse of the system at the appropriate frequencies. The phase spectrum of the output
signal in the steady state is equal to the phase spectrum of the input signal added to
the phase angle frequency response of the system at the appropriate frequencies. If
X (¢) is the input to a linear system in the form given by equation 6.13, and if the linear
system has a frequency response function H (jw), then the output of the system y(¢)
is given by

N
Y(©) = Y |H(jou)| ¢y sin[wnt + 6, + LH (jeo,)] (6.24)
n=1
where |H (jw,)| and ZH (jw,) are the magnitude and phase, respectively, of the
frequency response of the system at the frequency corresponding to the nth harmonic
of the input nwy. Let us illustrate this idea by means of a couple of examples.

EXAMPLE 6.6 Response of Linear System to a Periodic Input <L02

Problem

Let a linear system with H (jw) = 2/(0.2 jw + 1) be excited by the sawtooth waveform of
Example 6.3, and assume that we are only interested in the response to the first two Fourier
components of the input waveform.
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Solution

Known Quantities: T =0.25s; A =2.

Find: Output of system y(#) in response to input x(¢).
Assumptions: None.

Analysis: According to the Fourier series definitions of the previous section, and using the
first two terms of the Fourier series expansion of the sawtooth waveform of Example 6.3, we
have

—t
0.25 T

Thus, for this example,

c1=+al +b} =|b| =
cx=,/a; +b; = |b| =

The frequency response of the system can then be expressed in magnitude and phase form:

2A 2 A "4 4 2
x(t) = — sin + —sin| ——t ) = —sin(8x¢t) + — sin(167¢)
b4 5 b4 b4

w; = 1a)0 =8
and

wy) = 26{)0 = 167

Qo 9|

2 2 w
H(jw) = — = |H(jw)|/ZH (jo) = —— /| — arctan —
(jo) 02w+ 1 |H (jw)|£H (jo) 2oy 1 ( arctan )

The frequency response plots (magnitude and phase) are shown in Figure 6.14. We should
observe that the system is excited only at the frequencies w; = 87 = 25.1 rad/s and w, =
167 = 50.2 rad/s. At this point, we could evaluate the frequency response of the system
at these frequencies either graphically (from the frequency response plots of Figure 6.14) or
analytically. We choose the latter because we can compute the answers with greater accuracy:

2
|H(jw)| = ——— = 0.39020(jw;) = —1.37 rad = —78.75°
V(02012 + 1
2
|H (je)| = = 0.1980®(jw;) = —1.47 rad = —84.32°

V(0207 + 1

Finally, we can compute the steady-state periodic output of the system:

2
y() =Y [H(jon)lcy sin [ont + 6, + LH (jo)]

n=1

4 2
=0.3902 x — sin(87¢ — 1.37) 4 0.1980 x — sin(1677 — 1.47)
g g

The input and output signals for the system are plotted in Figure 6.15. Note how the first two
components of the Fourier series of the sawtooth waveform of Example 6.1 provide a coarse
approximation of the general shape of the waveform. Given the frequency response of the
system used in this example, would the accuracy of the computed response increase if higher-
frequency components (n > 2) were included in the Fourier series expansion for the signal
x(t)?

Comments: A computer program was used to generate the plots of Figure 6.15(a) and (b),
and can be used to calculate the output of a linear system, with known frequency response
function, to an arbitrary input represented by a finite summation of sinusoidal terms.
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Figure 6.15 (a) Frequency response of linear system; (b) input and output waveforms

CHECK YOUR UNDERSTANDING

Extend the result of this example of considering the third frequency component. What are the
amplitude and phase of the component of y(¢) at the frequency 3wy ?

-T'98— = PeI 50§ T— = aseyd ‘79600 = SpmuSewr 1oMsUY

6.3 FILTERS

There are many practical applications that involve filters of one kind or another. Just
to mention two, filtration systems are used to eliminate impurities from drinking
water, and sunglasses are used to filter out eye-damaging ultraviolet radiation and to
reduce the intensity of sunlight reaching the eyes. An analogous concept applies to
electric circuits: it is possible to attenuate (i.e., reduce in amplitude) or altogether
eliminate signals of unwanted frequencies, such as those that may be caused by
electrical noise or other forms of interference. This section will be devoted to the
analysis of electrical filters.

Low-Pass Filters

Figure 6.16 depicts a simple RC filter and denotes its input and output voltages,
respectively, by V; and V,. The frequency response for the filter may be obtained by

(b)

RC low-pass filter. The circuit
preserves lower frequencies while
attenuating the frequencies above
the cutoff frequency @y = 1/RC.
The voltages V; and V,, are the
filter input and output voltages,
respectively.

Figure 6.16 A simple RC
filter
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considering the function
. vV, .
H (jo) = 7(]60) (6.25)

and noting that the output voltage may be expressed as a function of the input voltage
by means of a voltage divider, as follows:

. . 1/joC . 1
Vv, =V; — =YV, —_— 6.26
(jw) (o) & 1/ jC (o)1 T joRC (6.26)
Thus, the frequency response of the RC filter is
Vv, 1
—(Jjw) = ——— 6.27
v, Y = T jucr (6:27)

An immediate observation upon studying this frequency response, is that if the
signal frequency w is zero, the value of the frequency response function is 1. That
is, the filter is passing all the input. Why? To answer this question, we note that at
w = 0, the impedance of the capacitor, 1/jwC, becomes infinite. Thus, the capacitor
acts as an open circuit, and the output voltage equals the input:

V,(jo = 0) = Vi(jo = 0) (6.28)

Since a signal at sinusoidal frequency equal to zero is a DC signal, this filter circuit
doesnotin any way affect DC voltages and currents. As the signal frequency increases,
the magnitude of the frequency response decreases, since the denominator increases
with w. More precisely, equations 6.29 to 6.32 describe the magnitude and phase of

the frequency response of the RC filter:
H(joo) = 2 (jo) = ——
1= 5 VO = T oCR

1 e/0

= 1+ (C()CR)2 ej arctan(wCR/1) (6'29)

— 1 . efjarctan((oCR)
V1 + (wCR)?
or
H (joo) = |H (jw)|e! <M (6.30)
with
|H (jo)| ! ! (6.31)
Jo)| = = .
V14 (@CR? /14 (w/wy)?
and
ZH (jw) = —arctan(wCR) = —arctan @ (6.32)
[20)]
with
1
wy = RC (6.33)

The simplest way to envision the effect of the filter is to think of the phasor voltage
V; = V;e/? scaled by a factor of |H| and shifted by a phase angle ZH by the filter

o
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at each frequency, so that the resultant output is given by the phasor V,e/%, with
Vo=1|H|-Vi
¢0 =/ZH + ¢i

(6.34)

and where |H| and ZH are functions of frequency. The frequency wy is called the
cutoff frequency of the filter and, as will presently be shown, gives an indication of
the filtering characteristics of the circuit.

It is customary to represent H (jw) in two separate plots, representing |H | and
ZH as functions of w. These are shown in Figure 6.17 in normalized form, that is,
with |H | and £ZH plotted versus w/wy, corresponding to a cutoff frequency wy = 1
rad/s. Note that, in the plot, the frequency axis has been scaled logarithmically. This is
a common practice in electrical engineering, because it enables viewing a very broad
range of frequencies on the same plot without excessively compressing the low-
frequency end of the plot. The frequency response plots of Figure 6.17 are commonly
employed to describe the frequency response of a circuit, since they can provide a
clear idea at a glance of the effect of a filter on an excitation signal. For example,
the RC filter of Figure 6.16 has the property of “passing” signals at low frequencies
(v <« 1/RC) and of filtering out signals at high frequencies (w > 1/RC). This
type of filter is called a low-pass filter. The cutoff frequency @ = 1/RC has a
special significance in that it represents—approximately—the point where the filter
begins to filter out the higher-frequency signals. The value of |H (jw)| at the cutoff
frequency is 1/+/2 = 0.707. Note how the cutoff frequency depends exclusively on
the values of R and C. Therefore, one can adjust the filter response as desired simply
by selecting appropriate values for C and R, and therefore one can choose the desired
filtering characteristics.

Magnitude response of RC low-pass filter

~
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> o
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Phase response of RC low-pass filter
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Figure 6.17 Magnitude and phase response plots for RC filter
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EXAMPLE 6.7 Frequency Response of RC Filter

Problem

Compute the response of the RC filter of Figure 6.16 to sinusoidal inputs at the frequencies of
60 and 10,000 Hz.

Solution

Known Quantities: R = 1kQ; C = 0.47 uF; v;(t) = 5cos(wt) V.
Find: The output voltage v,(¢) at each frequency.

Assumptions: None.

Analysis: In this problem, we know the input signal voltage and the frequency response of the
circuit (equation 6.29), and we need to find the output voltage at two different frequencies. If
we represent the voltages in phasor form, we can use the frequency response to calculate the
desired quantities:

v, 1
2 (iw) = Hy(jo) = ———
v, Vo) = Hy (o) = 7=k

1
V,(jo) = Hy (jo)V,;(jo) = mvi (jo)

If we recognize that the cutoff frequency of the filter is wyp = 1/RC = 2,128 rad/s, we can
write the expression for the frequency response in the form of equations 6.31 and 6.32:

. 1 . 1
Hy(jo) = —————  [Hy(jo)| =

L+ jo/wo V14 (w/wp)?

Next, we recognize that at @ = 120z rad/s, the ratio w/wy = 0.177, and at ® = 20,0007,
w/wy = 29.5. Thus we compute the output voltage at each frequency as follows:

/H (jw) = —arctan <3>

wo

1
Vo(@ =2760) = T—— - Vi(w = 2760) = 0.985 x 5/-0.175V
j .

1
V,(w = 2710,000) = ———V, (w = 2710,000) = 0.0345 x 5/—1.537 V
1+ 295

And finally we write the time-domain response for each frequency:

V,(t) =4.923 cos(27w60t — 0.175) V at w = 2760 rad/s
v,(¢) = 0.169 cos(27 10,000t — 1.537) V at w = 2710,000 rad/s

The magnitude and phase responses of the filter are plotted in Figure 6.18. It should be evident
from these plots that only the low-frequency components of the signal are passed by the filter.
This low-pass filter would pass only the bass range of the audio spectrum.

Comments: Can you think of a very quick, approximate way of obtaining the answer to this
problem from the magnitude and phase plots of Figure 6.18? Try to multiply the input voltage
amplitude by the magnitude response at each frequency, and determine the phase shift at each
frequency. Your answer should be pretty close to the one computed analytically.
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Figure 6.18 Response of RC filter of Example 6.7

CHECK YOUR UNDERSTANDING

A simple RC low-pass filter is constructed using a 10-uF capacitor and a 2.2-k2 resistor. Over
what range of frequencies will the output of the filter be within 1 percent of the input signal
amplitude (i.e., when will V, > 0.99V)?

S/peIgy'9 > @ > () [Iomsuy
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EXAMPLE 6.8 Frequency Response of RC Low-Pass Filter in a

Problem

More Realistic Circuit

Compute the response of the RC filter in the circuit of Figure 6.19.

Solution

Known Quantities: Rg = 50 Q; R, =200 Q; R; = 500 Q; C = 10 uF.

Find: The output voltage v,(¢) at each frequency.

< LO3
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Figure 6.19 RC filter inserted in a circuit

Assumptions: None.

Analysis: The circuit shown in this problem is a more realistic representation of a filtering
problem, in that we have inserted the RC filter circuit between source and load circuits (where
the source and load are simply represented in equivalent form). To determine the response
of the circuit, we compute the Thévenin equivalent representation of the circuit with respect to
the load, as shown in Figure 6.20. Let R = Ry + R, and

1 R.
joC — 1+ joCR,
Then the circuit response may be computed as follows:

Z' =Rl

Z/

R +2
_ Ry /(1 + joCRp)
" Rs+ R+ Rp/(1 + joCRy;)

Ry

Ry + Rs + Ry + joCRL(Rs + Ry)
_ R /(RL+R)

1+ joCRL| R’

A/
v, (jo)

The above expression can be written as follows:
R./(RL+ R K 0.667

H(jw) = - -
Ge) = T JCRIR ~ 1+ joCReq 1+ j(w/600)

Comments: Note the similarity and difference between the above expression and equation
6.27: The numerator is different from 1, because of the voltage divider effect resulting from
the source and load resistances, and the cutoff frequency is given by the expression

1
" CRgq

wo

CHECK YOUR UNDERSTANDING

Connect the filter of Example 6.7 to a 1-V sinusoidal source with internal resistance of 50
to form a circuit similar to that of Figure 6.19. Determine the circuit cutoff frequency wy if the
load resistance is 470

S/peI ¢'€6G 9 = 0m Tomsuy
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EXAMPLE 6.9 Filter Attenuation

Problem

A low-pass filter has the frequency response given by the function shown below. Determine at
which frequency the output of the filter has magnitude equal to 10 percent of the magnitude of

the input.
. K
H(jow)— -
(jo/wr + D) (jo/wy + 1)
Solution

Known Quantities: Frequency response function of a filter.

Find: Frequency wjgq, at which the output peak amplitude is equal to 10 percent of the input
peak amplitude.

Schematics, Diagrams, Circuits, and Given Data: K = 1; w; = 100; w, = 1,000.
Assumptions: None.

Analysis: The statement of the problem is equivalent to asking for what value of @ the magni-
tude of the frequency response is equal to 0.1K . Since K = 1, we can formulate the problem
as follows.

K
B ‘ (jo/wy + D (jo/w; + 1)
1
VI = 0¥ 010)* + (1o + w)?

|H (jw)] =0.1K

Now let = w?, and expand the above expression:

Q \’ 11y
1-— +Q({—+—) =100
w1y [O]] w)

2 2 1 1 ? 2
Q + (a)la)z) — + — —2&)1&)2 Q—99(a)1a)2) =0

wi w3

Substituting numerical values in the expression, we obtain a quadratic equation that can be
solved to obtain the roots 2 = —1.6208 x 10° and = 0.6108 x 10°. Selecting the positive
root as the only physically possible solution (negative frequencies do not have a physical
meaning), we can then solve for @ = v/ = 782 rad/s. Figure 6.21(a) depicts the magnitude
response of the filter; you can see that around the frequency of 300 rad/s, the magnitude response
is indeed close to 0.1. The phase response is shown in Figure 6.21(b).

Comments: This type of problem, which recurs in the homework assignments, can be solved
numerically, as done above, or graphically, as illustrated in the next exercise.
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Figure 6.21 Frequency response of filter of Example 6.9. (a) Magnitude response; (b) phase response

preserves higher frequencies while
attenuating the frequencies below
the cutoff frequency wo = 1/RC.

C

+ O

\4

AY|
/1

YVVY

O +

Vo

-0

o

Figure 6.22 High-pass filter

CHECK YOUR UNDERSTANDING

Use the phase response plot of Figure 6.21(b) to determine at which frequency the phase shift
introduced in the input signal by the filter is equal to —90°.

(Aerewnrxoxdde) s/per )pg = @ :1omsuy

Much more complex low-pass filters than the simple RC combinations shown
so far can be designed by using appropriate combinations of various circuit elements.
The synthesis of such advanced filter networks is beyond the scope of this book;
however, we discuss the practical implementation of some commonly used filters in
Chapters 8 and 15, in connection with the discussion of the operational amplifier.
The next two sections extend the basic ideas introduced in the preceding pages to
high-pass and bandpass filters, that is, to filters that emphasize the higher frequencies
or a band of frequencies, respectively.

High-Pass Filters

Just as you can construct a simple filter that preserves low frequencies and attenuates
higher frequencies, you can easily construct a high-pass filter that passes mainly those
frequencies above a certain cutoff frequency. The analysis of a simple high-pass filter
can be conducted by analogy with the preceding discussion of the low-pass filter.
Consider the circuit shown in Figure 6.22. The frequency response for the high-pass
filter

. v, .
H(jo) = 7(110)
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may be obtained by noting that
. . R . JwCR
Vo(jw) = V,(jo) o—77— = Vi(jo) ———— (6.35)
R+ 1/joC 1+ joCR
Thus, the frequency response of the filter is
V, . JjoCR
v o) =—F——= (6.36)
which can be expressed in magnitude-and-phase form by
, vV, . jwCR wCRe/™/?
H (jow) = o (jo) = . = —
V,' 1 + ]a)CR /1 + (wCR)2ej arctan(wCR /1)
_ oCR . pil/2—arctan(@CR)]
V14 (wCR)?
or 6.37)
H (jo) = |H e’
with
. oCR
|H (jo)| = ———x
V14 (wCR)? (6.38)
/H(jw) = 90° — arctan(wCR)
You can verify by inspection that the amplitude response of the high-pass filter will
be zero at w = 0 and will asymptotically approach 1 as w approaches infinity, while
the phase shift is /2 at @ = 0 and tends to zero for increasing . Amplitude-and-
phase response curves for the high-pass filter are shown in Figure 6.23. These plots
have been normalized to have the filter cutoff frequency wy = 1 rad/s. Note that, once
again, it is possible to define a cutoff frequency at wo = 1/RC in the same way as
was done for the low-pass filter.
1
0.8 80
éoe g o0
T 04 g 40
£ £
0.2 20
0 0
102 10-1 100 10! 10? 103 104 10-2 10-! 100 10! 10? 10° 104

Radian frequency (logarithmic scale)

Figure 6.23 Frequency response of a high-pass filter

Radian frequency (logarithmic scale)

EXAMPLE 6.10 Frequency Response of RC High-Pass Filter

Problem

Compute the response of the RC filter in the circuit of Figure 6.22. Evaluate the response of

the filter at = 27 x 100 and 27 x 10,000 rad/s.

< LO3



Rizzoni: Principles and I. Circuits 6. Frequency Response and © The McGraw-Hill ‘ @
Applications of Electrical System Concepts Companies, 2007

Engineering, Fifth Edition

308 Chapter 6 Frequency Response and System Concepts

Solution

Known Quantities: R = 200 Q; C = 0.199 uF.
Find: The frequency response Hy (jw).
Assumptions: None.

Analysis: We first recognize that the cutoff frequency of the high-pass filter is wy = 1/RC =
2w x 4,000 rad/s. Next, we write the frequency response as in equation 6.36:

jwCR
1+ jwCR

et )
= —— /| — —arctan | —
J1+ @ N2 @0

‘We can now evaluate the response at the two frequencies:

. V, .
Hy (jo) = V(Jw) =

100/4,000 big 100
Hy (o =27 x 100) = /| = —arctan | —— = 0.025/1.546
V' 1+ (100/4,000)2 2 4,000
10,000/4,000 big 10,000
Hy (o =2 x 10,000) = /| — — arctan
V14 (10,000/4,000)> \2 4,000

=0.92920.38

The frequency response plots are shown in Figure 6.24.
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Figure 6.24 Response of high-pass filter of Example 6.10

Comments: The effect of this high-pass filter is to preserve the amplitude of the input signal
at frequencies substantially greater than wy, while signals at frequencies below wy would be
strongly attenuated. With wy = 27 x 4,000 (that is, 4,000 Hz), this filter would pass only the

treble range of the audio frequency spectrum.

CHECK YOUR UNDERSTANDING

Determine the cutoff frequency for each of the four “prototype” filters shown below. Which
are high-pass and which are low-pass?
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Show that it is possible to obtain a high-pass filter response simply by substituting an inductor
for the capacitor in the circuit of Figure 6.16. Derive the frequency response for the circuit.

(/1™ + 1
(L) weom + 06 = (O) {7 St = |(@l) H]
To— Y/ 1™

(mor) % — 0 (p) (yB1u) % = 0w (0) $(uBry) % — 0 () ‘(mor) % — 0o (8) :s1oMSUY

Bandpass Filters, Resonance, and Quality Factor

Building on the principles developed in the preceding sections, we can also construct
a circuit that acts as a bandpass filter, passing mainly those frequencies within a
certain frequency range. The analysis of a simple second-order bandpass filter (i.e.,
a filter with two energy storage elements) can be conducted by analogy with the
preceding discussions of the low-pass and high-pass filters. Consider the circuit shown  RLC bandpass filter. The circuit

in Figure 6.25 and the related frequency response function for the filter Do res frequencies within a
. Vo, . c L
H (jw) = v, (jo) +0—) I—’m\—ro+
Noting that Vi RE Vo
. . R
V,(jw) = V;(jo) ; ; -© 0-
R +1/jwC + joL (6.39) Figure 6.25 RLC bandpass

JoCR filter
1 4+ joCR + (jw)?LC
we may write the frequency response of the filter as

= Vi(jo)

VvV, . JjoCR
2 (jw) = . — (6.40)
\Y 1+ joCR + (jw)?’LC

Equation 6.40 can often be factored into the form
Vv, . JAw
- (o) = — : (6.41)
Vi (Jo/owr + D(jo/wy + 1)

where w; and w, are the two frequencies that determine the passband (or bandwidth)
of the filter—that is, the frequency range over which the filter “passes’ the input
signal—and A is a constant that results from the factoring. An immediate observation
we can make is that if the signal frequency w is zero, the response of the filter is
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equal to zero, since at w = 0 the impedance of the capacitor 1/jwC becomes infinite.
Thus, the capacitor acts as an open circuit, and the output voltage equals zero. Further,
we note that the filter output in response to an input signal at sinusoidal frequency
approaching infinity is again equal to zero. This result can be verified by considering
that as w approaches infinity, the impedance of the inductor becomes infinite, that is,
an open circuit. Thus, the filter cannot pass signals at very high frequencies. In an
intermediate band of frequencies, the bandpass filter circuit will provide a variable
attenuation of the input signal, dependent on the frequency of the excitation. This
may be verified by taking a closer look at equation 6.41:

H (jo) = o (jo) = — .
\E (jo/wr + D(jo/wy + 1)
Awel™?
o \/1 + (60/601)2\/1 + (60/602)28-/ arctan(a)/(ol)ejarctan((o/(og) (6'42)
— Aw ej[n/Zfarctan((o/w] )—arctan(w/wy)]
VI + @/?] [1+ (@/wn)?]
Equation 6.42 is of the form H (jw) = |H |e/“!, with
. Aw
|H (joo)| = - -
VI + (@/@)?[1 + (@/w)?]
and (6.43)

. 1 w w
ZH (jo) = 7 arctan o arctan .
1 2

The magnitude and phase plots for the frequency response of the bandpass filter of
Figure 6.25 are shown in Figure 6.26. These plots have been normalized to have the
filter passband centered at the frequency w = 1 rad/s.

The frequency response plots of Figure 6.26 suggest that, in some sense, the
bandpass filter acts as a combination of a high-pass and a low-pass filter. As illustrated
in the previous cases, it should be evident that one can adjust the filter response as
desired simply by selecting appropriate values for L, C, and R.

Resonance and Bandwidth

The response of second-order filters can be explained more generally by rewriting the
frequency response function of the second-order bandpass filter of Figure 6.25 in the
following forms:

E( ) = JjoCR

Vi " T LC (o) + jwCR + 1

_ (2¢ /wy) jow
(jw/wn)z + 2¢/wy) jo + 1

— (1/Qw,) jo
(jw/wn)z + (1/Qa),,)ja) +1

(6.44)
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Figure 6.26 Frequency response of RLC bandpass filter
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(6.45) < LO3

Figure 6.27 depicts the normalized frequency response (magnitude and phase) of the
second-order bandpass filter for @, = 1 and various values of Q (and ¢). The peak
displayed in the frequency response around the frequency w, is called a resonant
peak, and w, is the resonant frequency. Note that as the quality factor Q increases,
the sharpness of the resonance increases and the filter becomes increasingly selective
(i.e., it has the ability to filter out most frequency components of the input signals
except for a narrow band around the resonant frequency). One measure of the selec-
tivity of a bandpass filter is its bandwidth. The concept of bandwidth can be easily
visualized in the plot of Figure 6.27(a) by drawing a horizontal line across the plot

2If you have already studied the section on second-order transient response in Chapter 5, you will
recognize the parameters ¢ and w,.
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Magnitude response of second-order bandpass filter
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Figure 6.27 (a) Normalized magnitude response of second-order bandpass
filter; (b) normalized phase response of second-order bandpass filter

(we have chosen to draw it at the amplitude ratio value of 0.707 for reasons that will
be explained shortly). The frequency range between (magnitude) frequency response
points intersecting this horizontal line is defined as the half-power bandwidth of
the filter. The name half-power stems from the fact that when the amplitude response
is equal to 0.707 (or 1/ ﬁ), the voltage (or current) at the output of the filter has
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decreased by the same factor, relative to the maximum value (at the resonant fre-
quency). Since power in an electric signal is proportional to the square of the voltage
or current, a drop by a factor 1/4/2 in the output voltage or current corresponds to
the power being reduced by a factor of % Thus, we term the frequencies at which
the intersection of the 0.707 line with the frequency response occurs the half-power
frequencies. Another useful definition of bandwidth B is as follows. We shall make
use of this definition in the following examples. Note that a high-Q filter has a narrow
bandwidth, and a low-Q filter has a wide bandwidth.

B = % bandwidth (6.46) <L03

EXAMPLE 6.11 Frequency Response of Bandpass Filter <|_03

Problem

Compute the frequency response of the bandpass filter of Figure 6.25 for two sets of component
values.

Solution
Known Quantities:

(@ R=1k2;C =10 uF; L =5 mH.
(b) R=109;C = 10 uF; L = 5 mH.

Find: The frequency response Hy (jw).
Assumptions: None.

Analysis: We write the frequency response of the bandpass filter as in equation 6.40:

jwCR
1+ jwCR + (jw)’LC

. v, .
Hy (jo) = V(jw) =

wCR T wCR
= <7 Taen (T e
J = oLC) + @Cr) e

‘We can now evaluate the response for two different values of the series resistance. The frequency
response plots for case a (large series resistance) are shown in Figure 6.28. Those for case b
(small series resistance) are shown in Figure 6.29. Let us calculate some quantities for each
case. Since L and C are the same in both cases, the resonant frequency of the two circuits will
be the same:
1 3
w, = —— = 4.47 x 10 rad/s

VvLC

On the other hand, the quality factor Q will be substantially different:

1
Q. = ~2.22 case a

w,CR

1
0, = ~ 0.022 case b

w,CR
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Broadband filter amplitude response
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Figure 6.28 Frequency response of broadband bandpass filter of
Example 6.11
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Figure 6.29 Frequency response of narrowband bandpass filter of Example
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From these values of Q we can calculate the approximate bandwidth of the two filters:

B, = On ~ 10,000 rad/s case a
Q.
Wy

B, = ~ 100 rad/s case b

O
The frequency response plots in Figures 6.28 and 6.29 confirm these observations.

Comments: 1t should be apparent that while at the higher and lower frequencies most of the
amplitude of the input signal is filtered from the output, at the midband frequency (4,500 rad/s)
most of the input signal amplitude passes through the filter. The first bandpass filter analyzed in
this example would “pass” the midband range of the audio spectrum, while the second would
pass only a very narrow band of frequencies around the center frequency of 4,500 rad/s. Such
narrowband filters find application in tuning circuits, such as those employed in conventional
AM radios (although at frequencies much higher than that of the present example). In a tuning
circuit, a narrowband filter is used to tune in a frequency associated with the carrier of a radio
station (e.g., for a station found at a setting of AM 820, the carrier wave transmitted by the
radio station is at a frequency of 820 kHz). By using a variable capacitor, it is possible to tune
in a range of carrier frequencies and therefore select the preferred station. Other circuits are
then used to decode the actual speech or music signal modulated on the carrier wave; some of
these are discussed in Chapters 9 and 19.

© The McGraw-Hill
Companies, 2007

315

CHECK YOUR UNDERSTANDING

Compute the frequencies w; and w, for the bandpass filter of Example 6.11 (with R = 1 k)

for equating the magnitude of the bandpass filter frequency response to 1/ /2 (this will result
in a quadratic equation in w, which can be solved for the two frequencies). Note that these are
the half-power frequencies.

S/Pery ['00T = %@ /Pl G6'66 = '@ 1omsuy

FIND IT

Wheatstone Bridge Filter
LO3

Problem:

ON THE WEB

The Wheatstone bridge circuit of Example 2.14 and Focus on Measure-
ments, “Wheatstone Bridge and Force Measurements” in Chapter 2 is
used in a number of instrumentation applications, including the measurement of force.
Figure 6.30 depicts the appearance of the bridge circuit. When undesired noise and in-
terference are present in a measurement, it is often appropriate to use a low-pass filter to
reduce the effect of the noise. The capacitor that is connected to the output terminals of

with the bridge resistance. Assume that the average resistance of each leg of the bridge
is 350 © (a standard value for strain gauges) and that we desire to measure a sinusoidal

(Continued)

the bridge in Figure 6.30 constitutes an effective and simple low-pass filter, in conjunction |f !

in
airg

MEASUREMENTS
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Filter capacitor

/

o
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< <>
+
a b
Vu I ( V[, VT C :: Vout
< c <= -
Vs e RZ SRy
Wheatstone bridge
< equivalent circuit
Vour=Va= Vs

Figure 6.30 Wheatstone bridge with equivalent circuit and
simple capacitive filter

force at a frequency of 30 Hz. From prior measurements, it has been determined that a
filter with a cutoff frequency of 300 Hz is sufficient to reduce the effects of noise. Choose
a capacitor that matches this filtering requirement.

Solution:

By evaluating the Thévenin equivalent circuit for the Wheatstone bridge, calculating the
desired value for the filter capacitor becomes relatively simple, as illustrated on the right
side of Figure 6.30. The Thévenin resistance for the bridge circuit may be computed by
short-circuiting the two voltage sources and removing the capacitor placed across the
load terminals:

Rr =Ry | R+ Rs || Ry = 350 || 350 + 350 || 350 = 350 ©

Since the required cutoff frequency is 300 Hz, the capacitor value can be computed from
the expression

=27 x 300

= RC

or

1 1

C = =
Rrwg 350 x 27 x 300

=151 uF

The frequency response of the bridge circuit is of the same form as equation 6.27:

Vout . 1
(jo) = ~—F——7—
VT 1 + ja)CRT

This response can be evaluated at the frequency of 30 Hz to verify that the attenuation
and phase shift at the desired signal frequency are minimal:

Vout . . 1
— 27 x 30) =
v, Ve = 30 = s 0 % 151 % 106 x 350

=0.9951/(—5.7°)

Figure 6.31 depicts the appearance of a 30-Hz sinusoidal signal before and after the
addition of the capacitor to the circuit.

(Continued)
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(Concluded)
10 Noisy sinusoidal voltage
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10 Filtered noisy sinusoidal voltage
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-5
-10
0 0.08 0.16 0.24 0.32
t,s
Figure 6.31 Unfiltered and filtered bridge output
AC Line Interference Filter £ 03 L
Problem: 3

One application of narrowband filters is seen in rejecting interference jrrErmm=s
due to AC line power. Any undesired 60-Hz signal originating in the ACline

power can cause serious interference in sensitive instruments. In medical instruments such
as the electrocardiograph, 60-Hz notch filters are often provided to reduce the effect
of this interference® on cardiac measurements. Figure 6.32 depicts a circuit in which the
effect of 60-Hz noise is represented by way of a 60-Hz sinusoidal generator connected
in series with a signal source (Vs), representing the desired signal. In this example we
design a 60-Hz narrowband (or notch) filter to remove the unwanted 60-Hz noise.

3See Focus on Measurements: Electrocardiogram Amplifier in Chapter 8 and Section 15.2 for
further information on electrocardiograms and line noise, respectively.

(Continued)
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60-Hz notch filter

i

ey

e Veouz ‘ +
Ovs -

Figure 6.32 60-Hz notch filter

Solution:
Known Quantities—Rg = 50 .
Find — Appropriate values of L and C for the notch filter.
Assumptions —None.
Analysis—To determine the appropriate capacitor and inductor values, we write the
expression for the notch filter impedance:
JjoL/joC
Zy=Z\2c =71+
joL + 1/ joC
JjoL

1—w?’LC
Note that when w?LC = 1, the impedance of the circuit is infinite! The frequency

1
wy = ——

VvLC

is the resonant frequency of the LC circuit. If this resonant frequency were selected
to be equal to 60 Hz, then the series circuit would show an infinite impedance to 60-Hz
currents, and would therefore block the interference signal, while passing most of the other
frequency components. We thus select values of L and C that result in wy = 27 x 60.
Let L = 100 mH. Then

1
C =——=7036 uF
WAL H

The frequency response of the complete circuit is given below:
V(o) Ry
V,»(ja)) Rs—I—RL—FZ”

Ry
Rs+ Ry + joL/(1 — &*LC)

Hy (jw) =

and is plotted in Figure 6.33.

Comments—1t would be instructive for you to calculate the response of the notch filter
at frequencies in the immediate neighborhood of 60 Hz, to verify the attenuation effect
of the notch filter.

(Continued)

Q
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(Concluded)
Notch filter amplitude response
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Figure 6.33 Frequency response of 60-Hz notch filter
Seismic Transducer f] 03 LTINS

This example illustrates the application of the frequency response idea to
a practical displacement transducer. The frequency response of a seismic
displacement transducer is analyzed, and it is shown that there is an
analogy between the equations describing the mechanical transducer and those that de-
scribe a second-order electric circuit.

The configuration of the transducer is shown in Figure 6.34. The transducer is housed
in a case rigidly affixed to the surface of a body whose motion is to be measured. Thus,
the case will experience the same displacement as the body, x;. Inside the case, a small
mass M rests on a spring characterized by stiffness K, placed in parallel with adamper B.
The wiper arm of a potentiometer is connected to the floating mass M ; the potentiometer
is attached to the transducer case, so that the voltage V,, is proportional to the relative
displacement of the mass with respect to the case x,,.

ON THE WEB

(Continued)

TS
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Resistive displacement
transducer (potentiometer)

Motion to
be measured

T

Figure 6.34 Seismic displacement transducer

YVYVYVYY
=

” Case (grounded)

The equation of motion for the mass-spring-damper system may be obtained by
summing all the forces acting on mass M:

dx, d*xy d*x;  d*x,
Kx,+B =M =M

dt dr?

dr? dr?

where we have noted that the motion of the mass is equal to the difference between the
motion of the case and the motion of the mass relative to the case itself; that is,

XM = Xi — Xo

If we assume that the motion of the mass is sinusoidal, we may use phasor analysis to
obtain the frequency response of the transducer by defining the phasor quantities

X;(jo) = Xile’”  and  X,(jo) =|X,|e/*

The assumption of a sinusoidal motion may be justified in light of the discussion of
Fourier analysis in Section 6.2. If we then recall (from Chapter 4) that taking the derivative
of a phasor corresponds to multiplying the phasor by jw, we can rewrite the second-order
differential equation as follows:

M (jw)*X, + B(jo)X, + KX, = M (jw)*X;
(—’M + joB + K)X, = —*MX;

and we can write an expression for the frequency response:

(o) _ o oM
X, (jo) IV = T M + jwB + K

The frequency response of the transducer is plotted in Figure 6.35 for the component
values M = 0.005 kg and K = 1,000 N/m and for three values of B:

B =10 N-s/m (dotted line)
B =2 N-s/m (dashed line)

and
B =1 N-s/m (solid line)

The transducer clearly displays a high-pass response, indicating that for a sufficiently
high input signal frequency, the measured displacement (proportional to the voltage V)
is equal to the input displacement x;, which is the desired quantity. Note how sensitive
the frequency response of the transducer is to changes in damping: as B changes from 2
to 1, a sharp resonant peak appears around the frequency w = 316 rad/s (approximately
50 Hz). As B increases to a value of 10, the amplitude response curve shifts to the right.

(Continued)
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Figure 6.35 Frequency response of seismic transducer

Thus, this transducer, with the preferred damping given by B = 2, would be capa-
ble of correctly measuring displacements at frequencies above a minimum value, about
1,000 rad/s (or 159 Hz). The choice of B = 2 as the preferred design

may be explained by observing that, ideally, we would like to obtain a [N IES

constant amplitude response at all frequencies. The magnitude response
that most closely approximates the ideal case in Figure 6.35 corresponds
to B = 2. This concept is commonly applied to a variety of vibration |EreEr= =
measurements.

We now illustrate how a second-order electric circuit will exhibit the same type
of response as the seismic transducer. Consider the circuit shown in Figure 6.36. The
frequency response for the circuit may be obtained by using the principles developed in
the preceding sections:

v, (o) JoL (joL)(joC)

—(jw) = =

Vv, Y T R 1/joC + joL _ joCR + 1 + (joL)(jaC)
—?L

T —e?L + joR+1/C

Comparing this expression with the frequency response of the seismic transducer,

X, (jo) . —w™M
SO —H(jo) =
X (jow) —w*M + joB + K

we find that there is a definite resemblance between the two. In fact, it is possible to

draw an analogy between input and output motions and input and output voltages. Note

(Continued)
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(Concluded)

vi(n) L Vo)

O -

Figure 6.36 Electric circuit
analog of the seismic transducer

also that the mass M plays a role analogous to that of the inductance L. The damper
B acts in analogy with the resistor R; and the spring K is analogous to the inverse of
the capacitance, C. This analogy between the mechanical system and the electric circuit
derives simply from the fact that the equations describing the two systems have the same
form. Engineers often use such analogies to construct electrical models, or analogs, of
physical systems. Forexample, to study the behavior of a large mechanical system, it might
be easier and less costly to start by modeling the mechanical system with an inexpensive
electric circuit and testing the model, rather than the full-scale mechanical system.

6.4 BODE PLOTS

Frequency response plots of linear systems are often displayed in the form of loga-
rithmic plots, called Bode plots, where the horizontal axis represents frequency on a
logarithmic scale (base 10) and the vertical axis represents the amplitude ratio or phase
of the frequency response function. In Bode plots the amplitude ratio is expressed in
units of decibels (dB), where

AU
= 20log;y -* (6.47)

‘ AU
dB i

i

The phase shift is expressed in degrees or radians. Frequency is usually plotted on
a logarithmic (base-10) scale as well. Note that the use of the decibel units implies
that one is measuring a ratio. The use of logarithmic scales enables large ranges to
be covered. Furthermore, as shown subsequently in this section, frequency response
plots of high-order systems may be obtained easily from frequency response plots of
the factors of the overall sinusoidal frequency response function, if logarithmic scales
are used for amplitude ratio plots. Consider, for example, the RC low-pass filter of
Example 6.7 (Figure 6.16). The frequency response of this filter can be written in the

form
Yo jw) : ! / —tan™! ( @ ) (6.48)
—_— w) = " = — —_— o
v, " T Jojoe+1 T /T A (@jmo) o

where T = RC = 1/wo and wy is the cutoff, or half-power, frequency of the filter.
Figure 6.37 shows the frequency response plots (magnitude and phase) for this

filter; such plots are termed Bode plots, after the mathematician Hendrik W. Bode.

The normalized frequency on the horizontal axis is wz. One of the great advantages of
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Bode plots is that they permit easy straight-line approximations, as illustrated below. If
we express the magnitude frequency response of the first-order filter (V,/V;) (jo) =
K /(1 4 jw/wy) in units of decibels, we have

v,
—(jw =201o D ——
’Vi ve) 0|15 Jor e (649)

dB

= 201log,,

K =20log,, K — 1010 1+(“’>2
1 @/an)? £10 £10 o0

If w/wp < 1, then

~ 20log,, K — 10log,, 1 =201log,, K (6.50)

Thus, the expression 6.40 is well approximated by a straight line of zero slope at very
low frequencies (equation 6.50). This is the low-frequency asymptotic approximation
of the Bode plot.

If w/wo > 1, we can similarly obtain a high-frequency asymptotic approxima-
tion:

w
~ 20log,, K —20log,, —
10 ' wy (6.51)

= 201log,y K — 201log,, w + 2010g,, wo

Note that equation 6.51 represents a straight line of slope —20 dB per decade (factor-
of-10 increase in frequency). A decade increase in w results in an increase in log @
of unity. Note also that when w equals the cutoff frequency wy, the expression for
[(V,/V;)(jw)| given by equation 6.51 equals that given by equation 6.50. In other
words, the low- and high-frequency asymptotes intersect at wy. Thus, the magnitude
response Bode plot of a first-order low-pass filter can be easily approximated by two
straight lines intersecting at wy. Figure 6.37(a) clearly shows the approximation.

Magnitude response of low-pass filter 0 Phase angle response of low-pass filter
10 ==
—— Approximate 10 IR F-Amr%
— = Actual N | = = Actual |
0 = »
N 20
N ™ \ \
m —10 S 30 \
A N S N
() N = 40
o N o
2 20 Bl \
2 g 50
2 : N\
S 30 ~ 60 \\
N, W\
N 70 N
—40 N N\
80 3
\ ~
=50 90 K
10-1 100 10! 102 103 10! 100 10! 102 103
Frequency, rad/s Frequency, rad/s

(a) (b)

Figure 6.37 Bode plots for low-pass RC filter; the frequency variable is normalized to w/wy. (a) Magnitude
response; (b) phase response
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Consider now the phase angle of the frequency response function

£(V,/Vi)(jw) = —tan~!(w/wy). This response can be approximated as follows:
0 when o < wy
b3
—tan~! (ﬁ) -7 when o = wo
wo
b3
-3 when w > wy

If we (somewhat arbitrarily) agree that @ < 0.1wg is equivalent to the condition
w/wy K 1, and that o > 10wy is equivalent to the condition w/wy >> 1, then these
approximations are summarized by three straight lines: one of zero slope (with phase
equal to 0) for o < 0.1wy, one with slope —r /4 rad/decade between 0.1w and 10wy,
and one of zero slope (with phase equal to —z /2) for o > 10w,. These approximations
are illustrated in the plot of Figure 6.37(b). What errors are incurred in making these
approximations? Table 6.2 lists the actual errors. Note that the maximum magnitude
response error at the cutoff frequency is —3 dB; thus the cutoff or half-power frequency
is often called 3-dB frequency.

If we repeat the analysis done for the low-pass filter for the case of the high-pass
filter (see Figure 6.22), we obtain a very similar approximation:

V, . JjoCR J(w/wp)
V—(]CU) = 1 ; = -
i + jowCR 14+ j(w/wo)
(w/wo) (7 /2)

(6.52)

- V1 + (@/wo)? £ arctan(w/wp)

w/wy (n a))
=— /| = —arctan —
V1+ (@/wo)> \2 @o

Figure 6.38 depicts the Bode plots for equation 6.52, where the horizontal axis
indicates the normalized frequency w/wy. Asymptotic approximations may again be
determined easily at low and high frequencies. The results are exactly the same as for
the first-order low-pass filter case, except for the sign of the slope: in the magnitude
plot approximation, the straight-line approximation for w/wy > 1 has a slope of
+20 dB/decade, and in the phase plot approximation, the slope of the line between
0.1wp and 10wy is —7 /4 rad/decade. You are encouraged to show that the asymptotic
approximations shown in the plots of Figure 6.38 are indeed correct.

Table 6.2 Correction factors for asymptotic
approximation of first-order filter

Magnitude response  Phase response

®w/wy error,dB error, deg
0.1 0 -5.7

0.5 -1 49

1 -3 0

2 -1 —-49

10 0 +5.7

L/
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Figure 6.38 Bode plots for high-pass RC filter. (a) Magnitude response; (b) phase response

Bode Plots of Higher-Order Filters

Bode plots of high-order systems may be obtained by combining Bode plots of factors
of the higher-order frequency response function. Let, for example,

H(jw) = H,(jw)H;(jo) H3(jo) (6.53)
which can be expressed, in logarithmic form, as

|H (jo)lag = |Hi(jo)|as + |H2(jo)|as + [H3(jo)|as (6.54)
and

LH(jo) = ZH (jo) + ZHy(jo) + £ Hy(jo) (6.55)
Consider as an example the frequency response function

jo+5

. : (6.56)
(Jo + 10)(jo + 100)

H(jw) =

The first step in computing the asymptotic approximation consists of factoring each
term in the expression so that it appears in the form a; ( jo /w; 4 1), where the frequency
w; corresponds to the appropriate 3-dB frequency, w,, w,, or ws. For example, the
function of equation 6.56 is rewritten as follows:

- 5(jw/54+1)
"~ 10(jw/10 4+ 1)100(jw/100 + 1)

_0.005(jw/5+1) K (jo/w) +1)
© (jw/10+ D(jo/100 + 1) (jw/w + D) (jw/ws + 1)

H (jw)
(6.57)
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Equation 6.57 can now be expressed in logarithmic form:

Jjo 41
. 100

JH(jw) = 20005+ 2 (22 +1) = 2 (22 1) = 2 (22 14
Jor =20 5 10 100

Each of the terms in the logarithmic expression for the magnitude can now
be plotted individually. The constant corresponds to the value —46 dB, plotted in
Figure 6.39(a) as a line of zero slope. The numerator term, with a 3-dB frequency
w; = 5, is expressed in the form of the first-order Bode plot of Figure 6.37(a),
except for the fact that the slope of the line leaving the zero axis at w; = 5 is +20
dB/decade; each of the two denominator factors is similarly plotted as lines of slope
—20 dB/decade, departing the zero axis at w, = 10 and ws; = 100. You see that the
individual factors are very easy to plot by inspection, once the frequency response
function has been normalized in the form of equation 6.57.

If we now consider the phase response portion of equation 6.58, we recognize
that the first term, the phase angle of the constant, is always zero. The numerator
first-order term, on the other hand, can be approximated as shown in Figure 6.37(b),
that is, by drawing a straight line starting at 0.1ew; = 0.5, with slope +7/4 rad/decade
(positive because this is a numerator factor) and ending at 10w; = 50, where the
asymptote + /2 is reached. The two denominator terms have similar behavior, except
for the fact that the slope is —x /4 and that the straight line with slope —7r /4 rad/decade
extends between the frequencies 0.1w, and 10w,, and 0.1w; and 10ws, respectively.

Figure 6.39 depicts the asymptotic approximations of the individual factors in
equation 6.58, with the magnitude factors shown in part a and the phase factors in
part b. When all the asymptotic approximations are combined, the complete frequency
response approximation is obtained. Figure 6.40 depicts the results of the asymptotic
Bode approximation when compared with the actual frequency response functions.

) Jo
|H (jw)|ag = 10.005]4p + 5 +1

5
=41 =
10 dB dB

(6.58)

Straight-line approximation of phase angle response

Frequency, rad/s

(a)

Frequency, rad/s

(b)

Figure 6.39 Bode plot approximation for a second-order frequency response function. (a) Magnitude; (b) phase
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Magnitude response of second-order transfer function Phase angle response of second-order transfer function
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(a) 0

Figure 6.40 Comparison of Bode plot approximation with the actual frequency response function. (a) Magnitude;
(b) phase

You can see that once a frequency response function is factored into the appropriate
form, it is relatively easy to sketch a good approximation of the Bode plot, even for
higher-order frequency response functions. Examples 6.12 and 6.13 illustrate some
additional details. The methodology is summarized in the box below.

BODE PLOTS <|_04

This box illustrates the Bode plot asymptotic approximation construction pro-
cedure. The method assumes that there are no complex conjugate factors in the
response, and that both the numerator and denominator can be factored into
first-order terms with real roots.

1. Express the frequency response function in factored form, resulting in an
expression similar to equation 6.57:

K(jo/o+1)--- (jo/on +1)

(jo/®mt1+ 1) - - (jo/w, + 1)

2. Select the appropriate frequency range for the semilogarithmic plot,

extending at least a decade below the lowest 3-dB frequency and a decade
above the highest 3-dB frequency.

3. Sketch the magnitude and phase response asymptotic approximations for
each of the first-order factors, using the techniques illustrated in
Figures 6.37 and 6.38.

4. Add, graphically, the individual terms to obtain a composite response.
5. If desired, apply the correction factors of Table 6.2
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|_04> EXAMPLE 6.12 Bode Plot Approximation

Problem
Sketch the asymptotic approximation of the Bode plot for the frequency response function

0.1jw + 20

H(jw) =
(o) = S T05 ) + 0.1002( ) + Joo

Solution

Known Quantities: Frequency response function of a circuit.

Find: Bode plot approximation of given frequency response function.
Assumptions: None

Analysis: Following the Focus on Methodology box on Bode plots, we first factor the function
into the standard form
_ K(jw/oi+1)---(jo/o,+1)

H(jw) =
U2 = G Jamm + D) - Gofon + 1)

After a little algebra, we can obtain the following frequency response function in standard
form:

20(jw/200 + 1)
Jjo(jw/10 4+ 1)(jw /5,000 + 1)

H (joo) =

We immediately notice that there is a factor of jw in the denominator; this term needs to be
treated somewhat differently. The Bode plot of the function 1/jw can be expressed in logarithmic
form as follows:

w
—| = —20log,, —-
J@ |48 1
1 b4 b4
L—=0——=——
Jjo 2 2

Straight-line approximation of phase angle response

80 100 -
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2 20 %0 0 e e
S 40 2 00 hS
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60 A~ 40 Y | 1
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100

80 |4 ul
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(a) (b)

Figure 6.41 Approximate (asymptotic) frequency response of individual first-order terms. (a) Magnitude; (b) phase
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That is, the magnitude of the denominator factor jw is represented by a line with slope of
—20 dB/decade intersecting the frequency (horizontal) axis at @ = 1. Its phase response is a
constant equal to —m /2.

Now we can sketch the magnitude and phase response of each of the individual first-order
factors, as shown in Figure 6.41(a) and (b). The composite asymptotic approximations of the
magnitude and phase responses are shown in Figure 6.42(a) and (b).

Comments: A computer program can be used to generate the Bode plot approximation shown
in Figures 6.41 and 6.42. Note that the only real effort in generating the asymptotic approxi-
mation lies in the factoring of the frequency response function.

Actual magnitude of frequency response function Actual phase angle of frequency response function
40 | ] | L] _ Approx1mate —— Approximate
2o LI - - Actual 0 [~ = Actual ___
ST 1] -100 mi 1
0 LT L
~110 L L]
5 20 LTSS L] N
< < _120 \ L]
S 40 b \
T 0 5 130 A L
ED %0 N g 140 [ 1] L
s T Il g 150 L il
= 100 L L m £
-120 L (L ML -160 L] LU
~170 i L
—140 HH A N{ I
-160 e —H L] —180 HH > L
101 100 102 103 104 10° 106 10! 105 10°
Frequency, rad/s Frequency, rad/s
(@) (b)

Figure 6.42 Comparison of approximate and exact frequency response. (a) Magnitude; (b) phase

CHECK YOUR UNDERSTANDING

Show that you can obtain exactly the same plot if, instead of separately sketching the factor
K in the numerator and the factor jw in the denominator, you combine these two into a single
denominator factor equal to jow/K.

EXAMPLE 6.13 Bode Plot Approximation <|_04

Problem
Sketch the asymptotic approximation of the Bode plot for the frequency response function

1073 (jw)? + 0.1 jw

HU@) = 95 1091 (o) + (3.030/90,000) j 1 1

Solution

Known Quantities: Frequency response function of a circuit.
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Find: Bode plot approximation of given frequency response function.
Assumptions: None

Analysis: Following the Focus on Methodology box on Bode plots, we first factor the function
into the standard form
_ K(jw/oi+1)---(jo/o,+1)

(jo/Omi1 +1) -+ (jo/w, + 1)

H(jo)

After a little algebra, we can obtain the following frequency response function in standard
form:

0.1 jw(jw/100 + 1)

H(jw) = (jw/30 4+ 1)(jw/3,000 + 1)

‘We immediately notice that there is a factor of jw in the numerator; this term needs to be treated
somewhat differently. The Bode plot of the factor jw can be expressed in logarithmic form as
follows:

. w

| jwlag = 201logy, 1
Ljw="T
W= —
2=5

That is, the magnitude of the factor jw is represented by a line with slope +20 dB/decade
intersecting the frequency (horizontal) axis at @ = 1. The phase of the factor jw is a constant
equal to /2.

Now we can sketch the magnitude and phase response of each of the individual first-order
factors, as shown in Figure 6.43(a) and (b). The composite asymptotic approximations of the
magnitude and phase responses are shown in Figure 6.44(a) and (b).

Comments: A computer program can be used to generate the Bode plot approximation shown
in Figures 6.43 and 6.44. Note that the only real effort in generating the asymptotic approxi-
mation is expended in the factoring of the frequency response function.

Straight-line approximation of phase angle response
100 o

N

Phase angle, deg
<)
b |

ot 102 104 105 106 10-' 100 10!
Frequency, rad/s Frequency, rad/s

104 105

(a) (b)

Figure 6.43 Approximate (asymptotic) frequency response of individual first-order terms. (a) Magnitude; (b) phase
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Actual magnitude of frequency response function Actual phase angle of frequency response function
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Figure 6.44 Comparison of approximate and exact frequency response. (a) Magnitude; (b) phase
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CHECK YOUR UNDERSTANDING

Show that you can obtain exactly the same plot if, instead of separately sketching the factor
K and the factor jw in the numerator, you combine these two into a single denominator factor
equal to jw/K '

Conclusion

Chapter 6 focuses on the frequency response of linear circuits, and it is a natural extension of the
material covered in Chapter 4. The concepts of the spectrum of a signal, obtained through the
Fourier series representation for periodic signals, and of the frequency response of a filter are
very useful ideas that extend well beyond electrical engineering. For example, civil, mechanical,
and aeronautical engineering students who study the vibrations of structures and machinery
will find that the same methods are employed in those fields.

Upon completing this chapter, you should have mastered the following learning objec-
tives:

1. Understand the physical significance of frequency domain analysis, and compute the
frequency response of circuits by using AC circuit analysis tools. You had already
acquired the necessary tools (phasor analysis and impedance) to compute the frequency
response of circuits in Chapter 4; in the material presented in Section 6.1, these tools are
put to use to determine the frequency response functions of linear circuits.

2. Compute the Fourier spectrum of periodic signals by using the Fourier series
representation, and use this representation in connection with frequency response ideas
to compute the response of circuits to periodic inputs. The concept of spectrum is very
important in many engineering applications; in Section 6.2 you learned to compute the
Fourier spectrum of an important class of functions: those that repeat periodically. The
frequency spectrum of signals makes frequency domain analysis (i.e., computing the
response of circuits using the phasor domain representation of signals) very easy, even
for relatively complex signals, because it allows you to decompose the signals into a
summation of sinusoidal components, which can then be easily handled one at a time.
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3. Analyze simple first- and second-order electrical filters, and determine their frequency

response and filtering properties. With the concept of frequency response firmly in hand,

now you can analyze the behavior of electrical filters and study the frequency response
characteristics of the most common types, that is, low-pass, high-pass, and bandpass
filters. Filters are very useful devices and are explored in greater depth in Chapters 8

and 15.

4. Compute the frequency response of a circuit and its graphical representation in the form
of a Bode plot. Graphical approximations of Bode plots can be very useful to develop a
quick understanding of the frequency response characteristics of a linear system, almost
by inspection. Bode plots find use in the discipline of automatic control systems, a
subject that is likely to be encountered by most engineering majors.

HOMEWORK PROBLEMS

Section 6.1: Sinusoidal
Frequency Response

6.1

a. Determine the frequency response
Vou (j)/Vin(jow) for the circuit of Figure P6.1.

b. Plot the magnitude and phase of the circuit for
frequencies between 10 and 107 rad/s on graph
paper, with a linear scale for frequency.

c. Repeat part b, using semilog paper. (Place the
frequency on the logarithmic axis.)

d. Plot the magnitude response on semilog paper with
magnitude in decibels.

o—MN————0
°

>
>
>
>

v 200kQ 3 Vour()

(e, O
Figure P6.1

6.2 Repeat Problem 6.1 for the circuit of Figure P6.2.

500 Q

<>
vin(®)  500QF 200 uF T Vour(t)
5 _

Figure P6.2

6.3 Repeat Problem 6.1 for the circuit of Figure P6.3.

O MW MW °
I +
s
Vinl®) $2000Q 10 pF =2 voul®
o o
Figure P6.3

6.4 Repeat Problem 6.1 for the circuit of Figure P6.4.
R, =500 ; R, =1,0002; L =2H;C =100 uF.

Vin(?) Vout(£)

ol

C
—1
Figure P6.4
6.5 Determine the frequency response of the circuit of

Figure P6.5, and generate frequency response plots.
R, =20kQ; R, = 100k2; C; = 100 uF; C; =5 uF

C1 R2
o— - W1+——
+ +
i) RZ CGER Voul)
o o
=
Figure P6.5

6.6 In the circuit shown in Figure P6.6, where
C =0.5 uFand R = 2 k<2,
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a. Determine how the input impedance
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b. Find an expression for the input impedance in the

Z(jw) = % behaves at extremely high and low form
frequencies. Z(jw) = |:1 +Jjh (a))i|
jo) =Zo | —/—7—
b. Find an expression for the impedance. 1+ jfa(w)
c. Show that this expression can be manipulated into Z, =R+ L
the form Z (jo) = R[1+ j—L-]. e
d. Determine the frequency w = w¢ for which the filw) = @ RILC - Ri— R
imaginary part of the expression in part c is equal to @(RiRC + L)
L. @?LC —1
falw) = TRy

e. Estimate (without computing it) the magnitude and
phase angle of Z(j w) at ® = 10 rad/s and w =

c. Determine the four frequencies at which

10 rad/s. fi(w) = +1or —1 and fy(w) = +1 or —1.
d. Plot the impedance (magnitude and phase) versus
L (jw) frequency.
—
o—— ;
C L Li(jo)
Vi(jo) SR ——AMW\—s
+ R
_ R,
Vi(jw) C=
Figure P6.6 B L
o—
6.7 In the circuit shown in Figure P6.7, where L = 2 mH Figure P6.8
and R = 2k, 6.9 In the circuit of Figure P6.9:
a. Determine how the input impedance
Z(jw) = % behaves at extremely high and low Ry =13k Ry = 1.9k$2
frequencies. C =05182 uF
b. Find an expression for the impedance. Determine:

c. Show that this expression can be manipulated into
the form Z(jw) = R[1+ j%].

d. Determine the frequency w = w¢ for which the
imaginary part of the expression in part c is equal to
1.

e. Estimate (without computing it) the magnitude and

phase angle of Z(j w) at @ = 10° rad/s, 10° rad/s,
and 107 rad/s.

a. How the voltage transfer function

V. (jo)
Vi(jo)

Hy (jw) =

behaves at extremes of high and low frequencies.

b. An expression for the voltage transfer function and
show that it can be manipulated into the form

H,(jo) ,
W) = ——
1+ jf (@)
L(j
) where
RZ a)Rlec
Hy = ——— flw) =
R+ R, Ri+ Ry

c. The frequency at which f(w) = 1 and the value of

Figure P6.7 H, in decibels.
Lo g 1,(jo)
6.8 In the circuit shown in Figure P6.8, if —— AW\ -5
+ +

L=190mH R, =23k
C=5nF R,=1.1kQ

a. Determine how the input impedance behaves at
extremely high or low frequencies.

A\AAAJ

Vi(jo) CRZ Vi(jo)

o 0
Figure P6.9
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6.10 The circuit shown in Figure P6.10 is a
second-order circuit because it has two reactive
components (L and C). A complete solution will not
be attempted. However, determine:

a. The behavior of the voltage frequency response at
extremely high and low frequencies.

b. The output voltage V,, if the input voltage has a
frequency where:

Vv, = 7.074% VR =22k

R, =3.8kQ X.=5kQ X =125k

c. The output voltage if the frequency of the input
voltage doubles so that

Xe =25k X, =2.5kQ

d. The output voltage if the frequency of the input
voltage again doubles so that

Xe=125kQ X, =5k

—W—i—1

+ R C

Vi je) Ry3

Figure P6.10

6.11 In the circuit shown in Figure P6.11, determine the
frequency response function in the form

_V,(jo)  H,
C Vi(jo) 1+ jf(e)
and plot H, (jw).

H,(jo)

Ii(m) L ()
> —~——
o—MWW————o
+ R C +
Vi(jo) R 3 V,(jo)
(e, O

Figure P6.11

6.12 The circuit shown in Figure P6.12 has
Ri=100Q R, =100
R,=50Q  C =80nF

Compute and plot the frequency response function.
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Figure P6.12

6.13

a. Determine the frequency response
Vou (jw)/Vin(jw) for the circuit of Figure P6.13.

b. Plot the magnitude and phase of the circuit for
frequencies between 1 and 100 rad/s on graph
paper, with a linear scale for frequency.

c. Repeat part b, using semilog paper. (Place the
frequency on the logarithmic axis.)

d. Plot the magnitude response on semilog paper with
magnitude in dB.

o yve ’o)
+ +
Vin(®) 100 uF =< Vour(?)
o o

Figure P6.13

6.14 Consider the circuit shown in Figure P6.14.
a. Sketch the amplitude response of Y = [/Vs.
b. Sketch the amplitude response of V;/V.
c. Sketch the amplitude response of V,/V.
1 R
A

> AAAA
VVYY

+ V1 -

Q) 3.

Figure P6.14

Section 6.2: Fourier Analysis

6.15 Use trigonometric identities to show that the
equalities in equations 6.16 and 6.17 hold.

6.16 Derive a general expression for the Fourier series
coefficients of the square wave of Figure 6.11(a) in the
text.
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6.17 Compute the Fourier series coefficient of the
periodic function shown in Figure P6.17 and defined as

T
A 0<t<—
3

x(t) =
T
0 —<t<T
3
x(t)
07/3 T t

Figure P6.17

6.18 Compute the Fourier series coefficient of the
periodic function shown in Figure P6.18 and defined as

(27‘[ > T T
cos [ —t¢ —— <t<-—
x(t) = T 4 4
0 else
fR)
~T/4 ‘0 \ T
T/4 T-T/4

Figure P6.18

6.19 Compute the Fourier series expansion of the
function shown in Figure P6.19, and express it in
sine-cosine (a,, b, coefficients) form.

L x(t)

-

o T2 T ¢

Figure P6.19

6.20 Compute the Fourier series expansion of the
function shown in Figure P6.20, and express it in
sine-cosine (a,, b, coefficients) form.

. (27 T
sin | —¢ 0<tr<—
T 2

x(t) =
T
2

0

I;m\
0 172 T t

Figure P6.20

<t<T
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6.21 The trapezoidal function shown in Figure P6.21 is
often used as a voltage excitation to brushless DC
machines. Write a complete expression for the
function x (¢) and compute the Fourier coefficients.

R T+t -1

Figure P6.21

6.22 Write an expression for the signal shown in Figure
P6.22, and derive a complete expression for its Fourier
series.

x(t)

—1/4
-T 0 174 T t

Figure P6.22

6.23 Derive all Fourier series coefficients of the function
x(t) = 10 cos(10t + 7 /6).

6.24 Set up but do not compute the integrals for the
Fourier coefficients of the periodic function shown in
Figure P6.24.

A (1)

VN

I [
T/4 37/4 T 2T

Figure P6.24

Section 6.3: Filters

6.25 Using a 15-k< resistance, design an RC high-pass
filter with a breakpoint at 200 kHz.
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6.26 Using a 500-Q resistance, design an RC low-pass
filter that would attenuate a 120-Hz sinusoidal voltage
by 20 dB with respect to the DC gain.

6.27 Inan RLC circuit, assume w; and w, such that
I(jw) = I(jws) = Ina/+/2 and Aw such that
Aw = w, — w;. In other words, Aw is the width of the
current curve where the current has fallen to
1/+/2 = 0.707 of its maximum value at the resonance
frequency. At these frequencies, the power dissipated
in a resistance becomes one-half of the dissipated
power at the resonance frequency (they are called the
half-power points). In an RLC circuit with a high
quality factor, show that Q = wy/Aw.

6.28 In an RLC circuit with a high quality factor:

a. Show that the impedance at the resonance
frequency becomes a value of Q times the
inductive resistance at the resonance frequency.

b. Determine the impedance at the resonance
frequency, assuming L = 280 mH, C = 0.1 uE
R=25Q.

6.29 Compute the frequency at which the phase shift
introduced by the circuit of Example 6.7 is equal to
—10°.

6.30 Compute the frequency at which the output of the
circuit of Example 6.7 is attenuated by 10 percent (that
is, Vi = 0.9Vs).

6.31 Compute the frequency at which the output of the
circuit of Example 6.11 is attenuated by 10 percent
(that is, V;, = 0.9V5).

6.32 Compute the frequency at which the phase shift
introduced by the circuit of Example 6.11 is equal to
20°.

6.33 Consider that the filter shown in Figure P6.1 is
excited by a sawtooth waveform and that we are only
interested in the response to the first two Fourier
components of the waveform. Determine the output of
the filter, and plot the input and output waveforms on
the same graph. Assume the period 7 = 10 us and
the peak amplitude A = 1 for the sawtooth
waveform.

6.34 Repeat Problem 6.33 with the square wave of
Figure 6.11(a) as an input.

6.35 Repeat Problem 6.33 for the pulse train of Example
6.4 as an input.

6.36 Consider that the circuit shown in Figure P6.2 is
excited by the sawtooth waveform of Example 6.3 and
that we are only interested in the response to the first
three Fourier components of the waveform. Determine
the output of the filter, and plot the input and output
waveforms on the same graph. Assume 7 = 0.5 s and
A = 2 for the sawtooth waveform.
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6.37 Repeat Problem 6.36 with the square wave of
Figure 6.11(a) as an input.

6.38 Repeat Problem 6.36 with the pulse train of
Example 6.4 as an input.

6.39 Consider that the filter shown in Figure P6.3 is
excited by the sawtooth waveform of Example 6.3 and
that we are only interested in the response to the first
four Fourier components of the waveform. Determine
the output of the filter, and plot the input and output
waveforms on the same graph. Assume 7' = 0.1 s and
A =1 for the sawtooth waveform.

6.40 Repeat Problem 6.39 with the square wave of
Figure 6.11(a) as an input.

6.41 Repeat Problem 6.39 with the pulse train of
Example 6.4 as an input.

6.42 Consider that the filter shown in Figure P6.4 is
excited by a sawtooth waveform of Example 6.3 and
that we are only interested in the response to the first
two Fourier components of the waveform. Determine
the output of the filter, and plot the input and output
waveforms on the same graph. Assume 7 = 50 ms and
A = 2 for the sawtooth waveform.

6.43 Repeat Problem 6.42 for T = 0.5 s and 5 ms, and
compare the results with 7 = 50 ms.

6.44 Repeat Problem 6.42 for the square wave of Figure
6.11(a).

6.45 Repeat Problem 6.42 with the pulse train of
Example 6.4 as an input.

6.46 Consider that the filter shown in Figure P6.5 is
excited by the sawtooth waveform of Example 6.3 and
that we are only interested in the response to the first
three Fourier components of the waveform. Determine
the output of the filter, and plot the input and output
waveforms on the same graph. Assume 7 = 5 s and
A =1 for the sawtooth waveform.

6.47 Repeat Problem 6.46 for T = 50 s, and compare
the results with Problem 6.46.

6.48 Repeat Problem 6.46 with the square wave of
Figure 6.11(a) as an input.

6.49 Repeat Problem 6.46 with the pulse train of
Example 6.4 as an input.

6.50 Consider the circuit shown in Figure P6.50.
Determine the resonance frequency and the bandwidth
for the circuit.

3/4 H

~1/16 F

AAAA

VVVy
o
)|

Vs

Figure P6.50
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6.51 Are the filters shown in Figure P6.51 low-pass,
high-pass, bandpass, or bandstop (notch) filters?

+
< .
Vi (jw) CF R;EY;(J(D)

(b)

(©)
Figure P6.51

6.52 Determine if each of the circuits shown in Figure
P6.52 is a low-pass, high-pass, bandpass, or bandstop

(notch) filter.

R

¥
_‘é(jw)
V.(jo)
(a)
C
Rg -
L, L, R, %E V,(jow)
Vi jw) -
=
(b)

Figure P6.52 (Continued)
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[l
1T

Cc C,
<;+
L Ry %:Vo(jw)
L

R

Vi(jw)

1
S .
Ci== Cy=F R_ E:Y;(jw)

!
4

©
A11N
L,
L+
Vi(jo)
(d)

Figure P6.52

6.53 For the filter circuit shown in Figure P6.53:

a. Determine if this is a low-pass, high-pass,
bandpass, or bandstop filter.

337

b. Compute and plot the frequency response function

if
L=11mH C = 0.47 nF
R =22kQ R, =3.8kQ
O_AAAA,_IuUE‘ O
+ R L +
B e
Vi(joo) B3 CF V(o)
o °

Figure P6.53

6.54 In the filter circuit shown in Figure P6.54:

Rs=100Q R, =5kQ
R.=400Q L=1mH
C =0.5nF

Compute and plot the frequency response function.

What type of filter is this?

o—MW—TT
+ Ry L
R. +
<
Vi(jw) CF RV, (jo)
L
o

Figure P6.54
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6.55 In the filter circuit shown in Figure P6.54:

Rs=100Q R, =5k
R. =4 L=1mH
C =0.5nF

Compute and plot the frequency response function.
What type of filter is this?

6.56 In the filter circuit shown in Figure P6.56:

Rs =5kQ C =56nF
R; =100kQ L=9uH
Determine:

a. An expression for the voltage frequency response
function

V. (jo)
Vi(jo)

H,(jw) =

b. The resonant frequency.
c. The half-power frequencies.

d. The bandwidth and Q.

° MM
+ Ry
+
<>
Vi(jo) C L% R.ZV,(jo)

f +

Figure P6.56

6.57 In the filter circuit shown in Figure P6.56:

Ry =5kQ C =0.5nF
R; =100k L =1mH
Determine:

a. An expression for the voltage frequency response
function

V. (jo)
Vi(jo)

H,(jw) =

b. The resonant frequency.
c. The half-power frequencies.

d. The bandwidth and Q.

6.58 In the filter circuit shown in Figure P6.58:
Rs = 500 Q R, =5k
R. = 4kQ L=1mH

C =5pF

6. Frequency Response and
System Concepts
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Compute and plot the voltage frequency response
function
_ Vo(jo)

Vi(jo)

H(jo)

‘What type of filter is this?

Figure P6.58

6.59 In the filter circuit shown in Figure P6.59, derive
the equation for the voltage frequency response
function in standard form. Then, if

Rs =500
C =5pF

R, =5kQ
L =1mH

compute and plot the frequency response function

1y < Ve
"= Vi)
C
+ Rs E;L:;]
N
Vi(joo) RZV(jo)
s

Figure P6.59

6.60 In the filter circuit shown in Figure P6.59, derive
the equation for the voltage frequency response
function in standard form. Then if

R, =500 Q R; =5kQ
w, = 12.1278 Mrad/s  C = 68 nF
L=0.1uH

determine the half-power frequencies, bandwidth, and
Q. Plot H(jw).

6.61 In the filter circuit shown in Figure P6.59, derive
the equation for the voltage frequency response
function in standard form. Then if
R, =4.4kQ
C =0.8nF

R, = 60k
L=2uH

w, = 25 Mrad/s
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determine the half-power frequencies, bandwidth, and resistance and each speaker acts as an 8 2 resistance.

Q. Plot H (jw). If the crossover frequency is chosen to be 1,200 Hz,

6.62 In the bandstop (notch) filter shown in Figure evaluate C and L. [Hint: The break frequency would be
P6.62: a reasonable value to set as the crossover frequency.]

L =0.4mH R. =100 @
C =1pF R, =R, =3.8kQ

Determine:

Ayl

JA
a

~

a. An expression for the voltage frequency response
function in the form

V(o) 1+ jfi@)

10 Ve () }

H, (] a)) = 3 = I, .
Vi(jw) 1+ jf2(@) sz R
=z K 2
b. The magnitude of the function at high and low
frequencies and at the resonant frequency.
c. The resonant frequency.
. R1 = R2 =8Q
d. The half-power frequencies.
Figure P6.64
R R 6.65 What is the frequency response, Vg (0)/Vs(w),
) < + ) for the circuit of Figure P6.65? Sketch the frequency
Vi(jo) L Re B3 Y”(/w) response of the circuit (magnitude and phase) if
Rs =R, =5,000,L =10 uH, and C = 0.1 uF.
_ C T
[
= v e
Figure P6.62 ——WA— : °
. a :
6.63 In the filter circuit shown in Figure P6.56: : ; |
w0 () L cT L RZ o)
Rs=5kQ C =5nF : : <
R, =50kQ L=2mH : A :
. : _ : 5
Determine: Source E Filter E Load
a. An expression for the voltage frequency response ' :
function Figure P6.65
Hy (o) = V,(jo)
vije) = Vi (jw) 6.66 Many stereo speakers are two-way speaker

systems; that is, they have a woofer for low-frequency
sounds and a tweeter for high-frequency sounds. To get
the proper separation of frequencies going to the
woofer and to the tweeter, crossover circuitry is used.
A crossover circuit is effectively a bandpass,
high-pass, or low-pass filter. The system model is
shown in Figure 6.66.

a. If L =2mH, C =125 uF, and Ry = 4 €, find the

load impedance as a function of frequency. At what
frequency is maximum power transfer obtained?

b. The resonant frequency.
c. The half-power frequencies.
d. The bandwidth and Q.
e. Plot Hy (jw).
6.64 The function of a loudspeaker crossover network is
to channel frequencies higher than a given crossover

frequency, f., into the high-frequency speaker
(tweeter) and frequencies below f. into the

low-frequency speaker (woofer). Figure P6.64 shows
an approximate equivalent circuit where the amplifier
is represented as a voltage source with zero internal

b. Plot the magnitude and phase responses of the
currents through the woofer and tweeter as a
function of frequency.
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2 O
(I @4—— Tweeter
Amplifier
@<— ‘Woofer
Speaker
TR """ Crossover circuitry 1
——WW

—«— Tweeter

Amplifier

'
'
Woofer —>: 4Q
'
'
]
'

Figure P6.66

6.67 The same LC values of Problem 6.66 are used in
the circuit of Figure P6.67.

0 ()

a.

b.

Compute the frequency response of this circuit,
Vou (jo)/ Vs(jo).

Plot the frequency response of the circuit.

Source Filter Load

. L .
. )

i c i *

; v R Bu®)
: : °

R=R =500Q;L=10 mH; C=0.1 uF

Figure P6.67

6.68 It is very common to see interference caused by
power lines, at a frequency of 60 Hz. This problem
outlines the design of the notch filter, shown in Figure
P6.68, to reject a band of frequencies around 60 Hz.

a.

Write the impedance function for the filter of
Figure P6.68 (the resistor r represents the internal
resistance of a practical inductor).

For what value of C will the center frequency of the
filter equal 60 Hz if L = 100 mH and r;, =5 Q?

Would the “sharpness,” or selectivity, of the filter
increase or decrease if 7, were to increase?

Assume that the filter is used to eliminate the 60-Hz
noise from a signal generator with output frequency

6. Frequency Response and
System Concepts

e. Plot the magnitude frequency response

Noise :

Signal :

© The McGraw-Hill
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of 1 kHz. Evaluate the frequency response
V. /Vin(jw) at both frequencies if:

v, () =sin(2w1,0000)V  r, = 50 @
v,(t) = 3sin(2760¢) R =300 Q2
And if L and C are as in part b.

vs. w on a logarithmic scale and indicate the value
of
1,000 Hz on your plot.

\‘,’—’i (jo) ‘dB at the frequencies 60 Hz and

Zﬁltef

Figure P6.68

6.69 The circuit of Figure P6.69 is representative of an
amplifier-speaker connection. The crossover circuit
(filter) is a low-pass filter that is connected to a woofer.
The filter’s topography is known as a 7 network.

a. Find the frequency response V,(jw)/Vs(jw).
b. IfC;,=C, =C,Rs =R, =600, and 1/V/LC =

R/L = 1/RC = 2,0007, plot | V,(jw)/Vs(jw) | in
dB versus frequency (logarithmic scale) in the
range 100 Hz < f < 10,000 Hz.

[ O : ;
I i 1 ©
Amplifier , .
H ' @< ‘Woofer
, ' Speaker
R, L :
: 11N Y o—
I 1
) ' S
() E T G G T ERL E; V(1)
s - 5
: Crossover :
' filter H

Figure P6.69
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Section 6.4: Bode Plots

6.70 In the circuit shown in Figure P6.70:
a. Determine the frequency response function
Vou(jo)
H(jo) = <=
Vin (] a))

b. Manually sketch a magnitude and phase Bode plot
of the system, using a five-cycle semilog paper.
Show the factored polynomial and all the steps in
constructing the plot. Clearly show the break
frequencies on the w axis. (Hint: To factor the
denominator polynomial, you may find it helpful to
use the Matlab™ command “roots.”)

c. Use Matlab™ and the Bode command to generate
the same plot, and verify that your answer is indeed
correct. Assume R = R, = 1 kQ,C; =1 uF,
C,=1mF,L=1H.

R, R,
AAA —e AAAA
YVVY \AAAS
Lout
+
Vin (:;} Ci~ G, ng

1

Figure P6.70

6.71 Repeat Problem 6.70 for the frequency response
function

Iout (]a))

HUD =3, o

Use the same component values as in Problem 6.70.

6.72 Repeat Problem 6.70 for the circuit of Figure P6.72
and the frequency response function

Vout (] a))
Ly (jo)

LetRi =R, =1kQ,C=1uF, L =1H.

H(jo) =

R,
AAAA

\AAAJ
iin () =

o~

3
~
+

>
> Vout
>

~
Iy
=
3
_AAA
v

Figure P6.72
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6.73 Repeat Problem 6.70 for the circuit of Figure P6.72
and the frequency response function of

Lou (jo)

L (jo)
Use the same values as in Problem 6.72.

6.74 Repeat Problem 6.70 for the circuit of Figure P6.74
and the frequency response function

Vou(jo)

Lin (jo)

Assume that Ry = R, = 1 k&,

Cy=1uF,C; =1mF.

H(jw) =

H(jo) =

Ry
AAAA
WW
loull
+
iin R, Cim~ Gy,

out

T

Figure P6.74

6.75 Repeat Problem 6.70 for the circuit of Figure P6.74
and the frequency response function

Use the same component values as in problem 6.74.
6.76 With reference to Figure P6.4:

a. Manually sketch a magnitude and phase Bode plot
of the system using semilog paper. Show the
factored polynomial and all the steps in
constructing the plot. Clearly show the break
frequencies on the w axis.

b. Use Matlab™ and the Bode command to generate
the same plot, and verify that your answer is indeed
correct.

6.77 Repeat Problem 6.76 for the circuit of Figure P6.4,
considering the load voltage v, as a voltage across the
capacitor.

6.78 Repeat Problem 6.76 for the circuit of Figure P6.5.
6.79 Assume in a certain frequency range that the ratio
of output amplitude to input amplitude is proportional

to 1/w?. What is the slope of the Bode plot in this
frequency range, expressed in decibels per decade?
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6.80 Assume that the output amplitude of a circuit o0—
depends on frequency according to Re
C=
Aw+ B
V=—-r—= = L
/C + Da? 7 O
eq

Find:
a. The break frequency.

b. The slope of the Bode plot (in decibels per decade) 1Z eqlav Z eglav
above the break frequency.

c. The slope of the Bode plot below the break

frequency. /_ __/_\

d. The high-frequency limit of V. ] / ® \u)

6.81 Determine an expression for the circuit of Figure
P6.81(a) for the equivalent impedance in standard
form. Choose the Bode plot from Figure P6.81(b) that
best describes the behavior of the impedance as a \ —
function of frequency, and describe (a simple one-line \
statement with no analysis is sufficient) how you
would obtain the resonant and cutoff frequencies and
the magnitude of the impedance where it is constant

over some frequency range. Label the Bode plot to ®
indicate which feature you are discussing. Figure P6.81
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CHAWPTER

AC POWER

he aim of this chapter is to introduce the student to simple AC power calcu-

lations and to the generation and distribution of electric power. The chapter

builds on the material developed in Chapter 4—namely, phasors and com-

plex impedance—and paves the way for the material on electric machines in
Chapters 16, 17, and 18.

The chapter starts with the definition of AC average and complex power and
illustrates the computation of the power absorbed by a complex load; special attention
is paid to the calculation of the power factor, and to power factor correction. The next
subject is a brief discussion of ideal transformers and of maximum power transfer.
This is followed by an introduction to three-phase power. The chapter ends with a
discussion of electric power generation and distribution.

343
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i)

0@

AC circuit
v(f) =V cos(wt — OBy)
i(t) =1 cos(wt — 0)

I1=1e79
——

AC circuit
in phasor form

Figure 7.1 Circuit for
illustration of AC power
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:) Learning Objectives

1. Understand the meaning of instantaneous and average power, master AC power
notation, and compute average power for AC circuits. Compute the power factor of
a complex load. Section 7.1.

2. Learn complex power notation; compute apparent, real, and reactive power for com-
plex loads. Draw the power triangle, and compute the capacitor size required to
perform power factor correction on a load. Section 7.2.

3. Analyze the ideal transformer; compute primary and secondary currents and voltages
and turns ratios. Calculate reflected sources and impedances across ideal transform-
ers. Understand maximum power transfer. Section 7.3.

4. Learn three-phase AC power notation; compute load currents and voltages for bal-
anced wye and delta loads. Section 7 4.

5. Understand the basic principles of residential electrical wiring and of electrical safety.
Sections 7.5,7.6.

7.1 POWER IN AC CIRCUITS

The objective of this section is to introduce AC power. As already mentioned in
Chapter 4, 50- or 60-Hz AC electric power constitutes the most common form of
electric power distribution; in this section, the phasor notation developed in Chapter
4 will be employed to analyze the power absorbed by both resistive and complex
loads.

Instantaneous and Average Power

From Chapter 4, you already know that when a linear electric circuit is excited by a
sinusoidal source, all voltages and currents in the circuit are also sinusoids of the same
frequency as that of the excitation source. Figure 7.1 depicts the general form of a
linear AC circuit. The most general expressions for the voltage and current delivered
to an arbitrary load are as follows:

v(t) =V cos(wt — Oy)

i(t) =1 cos(wt — 6;) (7.1)

where V and I are the peak amplitudes of the sinusoidal voltage and current, respec-
tively, and 6y and 6; are their phase angles. Two such waveforms are plotted in Figure
7.2, with unit amplitude and with phase angles 8y = /6 and 6; = 7 /3. The phase
shift between source and load is therefore 8 = 6y — 0;. It will be easier, for the pur-
pose of this section, to assume that 8y = 0, without any loss of generality, since all
phase angles will be referenced to the source voltage’s phase. In Section 7.2, where
complex power is introduced, you will see that this assumption is not necessary since
phasor notation is used. In this section, some of the trigonometry-based derivations
are simpler if the source voltage reference phase is assumed to be zero.

Since the instantaneous power dissipated by a circuit element is given by the
product of the instantaneous voltage and current, it is possible to obtain a general
expression for the power dissipated by an AC circuit element:

p) =v()i(t) = VI cos(wt) cos(wt — 0) (7.2)

o
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Voltage waveforms for unity amplitude,
0° voltage phase angle and 60° current phase angle
Voltage

\
[ T

[\ [ ]\
[\ [ ]\
POV D
| VIV
| \ ll

1.0

0.8

0.6 \
0.4 \
o\

< 0
>

\\
-0.2
AN
ol A\ ]
-0.8 \ / \ \ / \
-1.0 \/ \J
0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09 0.1
Time (s)

Figure 7.2 Current and voltage waveforms for illustration of AC power

Equation 7.2 can be further simplified with the aid of trigonometric identities to yield
1%} VI
p) = > cos(0) + > cosLwt — 6) (7.3)

where 0 is the difference in phase between voltage and current. Equation 7.3 illustrates
how the instantaneous power dissipated by an AC circuit element is equal to the sum
of an average component %VI cos(0) and a sinusoidal component %VI coswt —0),
oscillating at a frequency double that of the original source frequency.

The instantaneous and average power are plotted in Figure 7.3 for the signals
of Figure 7.2. The average power corresponding to the voltage and current signals of
equation 7.1 can be obtained by integrating the instantaneous power over one cycle
of the sinusoidal signal. Let T = 27 /w represent one cycle of the sinusoidal signals.
Then the average power P,, is given by the integral of the instantaneous power p(¢)

Instantaneous and average power

to — Instantaneous power
0.8 — Average power
0.6
0.4
= 0.2
TV
-0.2
-0.4
0 0.02 0.04 0.06 0.08 0.1

Time (s)

Figure 7.3 Instantaneous and average power
dissipation corresponding to the signals plotted in
Figure 7.2
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over one cycle

since the second integral is equal to zero and cos(6) is a constant.

As shown in Figure 7.1, the same analysis carried out in equations 7.1 to 7.3
can also be repeated using phasor analysis. In phasor notation, the current and voltage
of equation 7.1 are given by

V(jw) = Ve (7.6)

I(jw) =Ie ™/’ (7.7)
Note further that the impedance of the circuit element shown in Figure 7.1 is defined

by the phasor voltage and current of equations 7.6 and 7.7 to be

Vv . .
Z = Te“@) =|Z|e’® (7.8)

The expression for the average power obtained in equation 7.4 can therefore also be
represented using phasor notation, as follows:

2

1
Py = —— €080 = E12|Z|cos9

=37 (7.9)

Average power

AC Power Notation

It has already been noted that AC power systems operate at a fixed frequency; in
North America, this frequency is 60 cycles per second, or hertz (Hz), corresponding
to a radian frequency

w =21 - 60 = 377 rad/s AC power frequency (7.10)

In Europe and most other parts of the world, AC power is generated at a frequency of
50 Hz (this is the reason why some appliances will not operate under one of the two
systems).

Therefore, for the remainder of this chapter the radian frequency o is fixed at
377 rad/s, unless otherwise noted.

1 T

Py = — 1) dt

w =T fo p() (7.4)
1 (T 1 (T
= — —cos(0)dt + — — cosRwt — 0) dt

T Jo 2 T Jo 2
VI

Py :7 cos(60) Average power (7.5)
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With knowledge of the radian frequency of all voltages and currents, it will always
be possible to compute the exact magnitude and phase of any impedance in a circuit.

A second point concerning notation is related to the factor % in equation 7.9. It
is customary in AC power analysis to employ the rms value of the AC voltages and
currents in the circuit (see Section 4.2). Use of the rms value eliminates the factor
% in power expressions and leads to considerable simplification. Thus, the following
expressions will be used in this chapter:

174 -
Vims = —= = (7'11)
V2
o= (7.12)
ms — ﬁ - .
1Vv?2 V2
P, == cosf = — cos 6
2|Z| |Z] (7.13)
1

= 512|Z|cos6 = 1%Z|cos6 = VI cos

Figure 7.4 illustrates the impedance triangle, which provides a convenient

graphical interpretation of impedance as a vector in the complex plane. From the R
figure, it is simple to verify that - e)

R = |Z]|cosO 7.14) X

X = |Z|sin6 (7.15)

Finally, the amplitudes of phasor voltages and currents will be denoted through- __—

. . . . _ Z
out this chapter by means of the rms amplitude. We therefore introduce a slight mod X
ification in the phasor notation of Chapter 4 by defining the following rms phasor gl
quantities: R

- . - - Fi 7.4 Imped

V = Vipeo!™ = Vel =V 26, (716)  tiamgle
and

I=1,,."%=1Ie% =16 (7.17)

In other words,

rms value of a voltage or a current, and the symbols V and I will denote rms

Throughout the remainder of this chapter, the symbols V and I will denote the @
phasor voltages and currents.

Also recall the use of the symbol £ to represent the complex exponential. Thus,
the sinusoidal waveform corresponding to the phasor current I = 7.£6; corresponds
to the time-domain waveform

i(t) = V21 cos(wt + 6;) (7.18)
and the sinusoidal form of the phasor voltage V = V /6y is
v(t) = v/2V cos(wt + 6y) (7.19)
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|_01> EXAMPLE 7.1 Computing Average and Instantaneous AC Power

Problem

Compute the average and instantaneous power dissipated by the load of Figure 7.5.

W) = 14.14 sin (o) )
(0 =377 rad/s)\=
i L

Figure 7.5

Solution
Known Quantities: Source voltage and frequency, load resistance and inductance values.
Find: P, and p(¢) for the RL load.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 14.14sin(377t) V; R = 4 Q;
L =8 mH.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we define the phasors and impedances at the frequency of interest in the
problem, w = 377 rad/s:

V=10 (—%) Z=R+ joL =4+ j3=50.644

V. 10£(-7/2)
Z~  5/0.644

i 2

=2/(-2.215)

The average power can be computed from the phasor quantities:
P, = VIcos(9) = 10 x 2 x cos(0.644) = 16 W
The instantaneous power is given by the expression
p(t) = v(t) x i(t) = /2 x 10sin(377t) x v/2 x 2cos(377t —2.215) W

The instantaneous voltage and current waveforms and the instantaneous and average power are
plotted in Figure 7.6.

Comments: Please pay attention to the use of rms values in this example: It is very important
to remember that we have defined phasors to have rms amplitude in the power calculation. This
is a standard procedure in electrical engineering practice.

Note that the instantaneous power can be negative for brief periods of time, even though
the average power is positive.

CHECK YOUR UNDERSTANDING

Show that the equalities in equation 7.9 hold when phasor notation is used.
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Voltage and current waveforms for Example 7.1
20
Lol N\ /T\
= Lo\ |/
< - —— ~ - p—— -
[ 2 ey
-10
> \//
-20
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
t,s
Instantaneous and average power for Example 7.1
40
- W}// \\ //\\ /\\ // \\
20
> / \ ] \ \ | \
O Y 5 W Y A WY /N W A |
VARV W /A
4 \V/ A\
7100 0.005 0.01 0.015 0.02 0.025 0.03 0.035
t,s
Figure 7.6
EXAMPLE 7.2 Computing Average AC Power <|_01
Problem
Compute the average power dissipated by the load of Figure 7.7. i
AW - +
Rs
Solution L o
(E) Vs EE CHVL
Known Quantities: Source voltage, internal resistance and frequency, load resistance and R.]
inductance values.
Find: P,, for the RC load. ® =377 rad/s
Figure 7.7

Schematics, Diagrams, Circuits, and Given Data: \75 = 110£0; Ry =2 Q; R, = 16 Q;
C =100 uF.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis: First, we compute the load impedance at the frequency of interest in the problem,
w = 377 rad/s:

1 R, 16

— = - = - = 13.74(-0.543) Q
joC 1+ joCR; 14 0.6032

Z, =R

Next, we compute the load voltage, using the voltage divider rule:

- Z g 13.7£(—0.543)

V.= = 11020 = 97.6/(—0.067) V
LT R+ 7, 8T 2413.74(—0.543) ( )
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Knowing the load voltage, we can compute the average power according to

V.2 97.62
Vil cos(f) =
|Z.] 13.7

Py = cos(—0.543) = 595 W
or, alternatively, we can compute the load current and calculate the average power according
to
.V,
I, = —=7.1£0476 A
Z

Py = [IL121Z1 | cos(@) = 7.12 x 13.7 x cos(—0.543) = 595 W

Comments: Please observe that it is very important to determine /oad current and/or voltage
before proceeding to the computation of power; the internal source resistance in this problem
causes the source and load voltages to be different.

i0)

o

40

1,000 pF T

C:f 155.6 cos (3771)

O
\ %

Figure 7.8

CHECK YOUR UNDERSTANDING

Consider the circuit shown in Figure 7.8. Find the load impedance of the circuit, and compute
the average power dissipated by the load.

MYEOT'T="d ‘O oeer-28'7 = Z HIMSUY

(e]

Its complex form

Figure 7.9

EXAMPLE 7.3 Computing Average AC Power

Problem

Compute the average power dissipated by the load of Figure 7.9.

Solution

Known Quantities: Source voltage, internal resistance and frequency, load resistance, capac-
itance and inductance values.

Find: P,, for the complex load.

Schematics, Diagrams, Circuits, and Given Data: \75 =110Z0V; R =10Q; L = 0.05 H;
C =470 uF

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load impedance at the frequency of interest in the problem,
w = 377 rad/s:

L/
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, 1 R+ jwL)/joC
ZL = R+ jol)|— = Rt oL
joC R+ joL +1/joC
R+ joL
o RAJel 6 78
1 —a?LC + jowCR

7274(~1.41) Q

Note that the equivalent load impedance consists of a capacitive load at this frequency, as shown
in Figure 7.10. Knowing that the load voltage is equal to the source voltage, we can compute
the average power according to

|V, |2 1102
P, = cos(f) = ——cos(—1.41) =266 W
|ZL] 7.27

© The McGraw-Hill
Companies, 2007

<2
(D)
©

Figure 7.10

1.16 Q

—j7.18Q

CHECK YOUR UNDERSTANDING

Compute the power dissipated by the internal source resistance in Example 7.2.

Use the expression P,, = 12|Z| cos(6) to compute the average power dissipated by the load of
Example 7.2.

7 L o1durexq 993G A\ 9% TQ] :SIomsuy

Power Factor

The phase angle of the load impedance plays a very important role in the absorption
of power by a load impedance. As illustrated in equation 7.13 and in the preceding
examples, the average power dissipated by an AC load is dependent on the cosine of
the angle of the impedance. To recognize the importance of this factor in AC power
computations, the term cos(0) is referred to as the power factor (pf). Note that the
power factor is equal to O for a purely inductive or capacitive load and equal to 1 for
a purely resistive load; in every other case,

0<pf<l (7.20)
Two equivalent expressions for the power factor are given in the following:

av

P,
pf = cos(6) = W Power factor (7.21)

where V and 7 are the rms values of the load voltage and current, respectively.

7.2 COMPLEX POWER

The expression for the instantaneous power given in equation 7.3 may be expanded
to provide further insight into AC power. Using trigonometric identities, we obtain
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the following expressions:
V2
p(t) = ﬁ[cos 0 4+ cos 6 cos(2wt) 4+ sin 0 sin(2wt)]
= f2|Z|[cos 6 + cos 6 cos(2wt) + sin 8 sin(2wt)]
= 1%Z|cosO(1 + cos2wt) 4+ I*|Z|sin 6 sin(2wt)

(7.22)

Recalling the geometric interpretation of the impedance Z of Figure 7.4, you may
recognize that

|Z|cosf = R

and (7.23)
|Z]sind = X

are the resistive and reactive components of the load impedance, respectively. On the

basis of this fact, it becomes possible to write the instantaneous power as
p(t) = I’R(1 4 cos 2wt) + 12X sinQQwt) 7.24)
= I°R + IR cosQut) + X sinQRwt) )

The physical interpretation of this expression for the instantaneous power should be
intuitively appealing at this point. As equation 7.24 suggests, the instantaneous power
dissipated by a complex load consists of the following three components:

1. An average component, which is constant; this is called the average
power and is denoted by the symbol P,y:

P, = I’R (7.25)

where R = Re Z.

2. A time-varying (sinusoidal) component with zero average value that is
contributed by the power fluctuations in the resistive component of the
load and is denoted by pg(¢):

pr(t) = I*R cos 2wt 7.26)
LO2 > = P,y cOS 2wt )

3. A time-varying (sinusoidal) component with zero average value, due to

the power fluctuation in the reactive component of the load and denoted
by px (1):
1) = I>X sin 2wt
px(t) sin2o .27
= Q sin2wt

where X = Im Z and Q is called the reactive power. Note that since
reactive elements can only store energy and not dissipate it, there is no
net average power absorbed by X.
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Since P,y corresponds to the power absorbed by the load resistance, it is also called
the real power, measured in units of watts (W). On the other hand, Q takes the name
of reactive power, since it is associated with the load reactance. Table 7.1 shows the Table 7.1 Real
general methods of calculating P and Q. and reactive power
The units of Q are volt-amperes reactive, or VAR. Note that Q represents an ~ Real Reactive
exchange of energy between the source and the reactive part of the load; thus, no net pfiwer Pav pfiwer 2
power is gained or lost in the process, since the average reactive power is zero. In Y/ cos®)  VIsin(6)
general, it is desirable to minimize the reactive power in a load. Example 7.6 will IR ’x
explain the reason for this statement.
The computation of AC power is greatly simplified by defining a fictitious but
very useful quantity called the complex power S

S =VI*  Complex power (7.28) < LO2

where the asterisk denotes the complex conjugate (see Appendix A). You may easily
verify that this definition leads to the convenient expression

S =VIcos6 + jVIsing = IR+ jI*X =I*Z

or (7.29)
S=P,+jO
The complex power S may be interpreted graphically as a vector in the complex plane,
as shown in Figure 7.11. s
The magnitude of S, denoted by | S|, is measured in units of volt-amperes (VA) [2 e
and is called the apparent power, because this is the quantity one would compute Pay

by measuring the rms load voltage and currents without regard for the phase angle
of the load. Note that the right triangle of Figure 7.11 is similar to the right triangle
of Figure 7.4, since 0 is the load impedance angle. The complex power may also
be expressed by the product of the square of the rms current through the load and the ~ @=¥7sin6
complex load impedance:

ISI=VP 2+ 2=V T
PaV:VTcosQ

Figure 7.11 The complex
power triangle

S=1%7

&
or (7.30) -

IR+ jIX =17

or, equivalently, by the ratio of the square of the rms voltage across the load to the
complex conjugate of the load impedance:

‘72

S=— 7.31
~ (7.31)
The power triangle and complex power greatly simplify load power calculations,

as illustrated in the following examples.
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LO2 > COMPLEX POWER CALCULATION FOR A SINGLE LOAD

1. Compute the load voltage and current in rms phasor form, using the AC
circuit analysis methods presented in Chapter 4 and converting peak
amplitude to rms values.

. Compute the complex power S = VI* and setRe S = P,,, Im S = Q.
. Draw the power triangle, as shown in Figure 7.11.
. If O is negative, the load is capacitive; if positive, the load is reactive.

1 S I \O)

. Compute the apparent power |S| in volt-amperes.

|_02> EXAMPLE 7.4 Complex Power Calculations

Problem

Use the definition of complex power to calculate real and reactive power for the load of
I Figure 7.12.

Vg C__ I_ZL—l Solution

Known Quantities: Source, load voltage, and current.

U

Find: S = P,, + jQ for the complex load.
Figure 7.12

Schematics, Diagrams, Circuits, and Given Data: v(t) = 100 cos(wt + 0.262) V;
i(t) = 2cos(wt — 0.262) A; w = 377 rad/s.
Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we convert the voltage and current to phasor quantities:

. 100 = 2
V=—20262V I=—4(-0.262) A
5 540262

Next, we compute real and reactive power, using the definitions of equation 7.13:
g 200
P,y = |V|[I|cos(0) = - co0s(0.524) = 86.6 W

. 200
0 = |VI|T|sin(9) = == sin(0.524) = 50 VAR

Now we apply the definition of complex power (equation 7.28) to repeat the same calculation:

~ - 100 2
S =VI" = —/0.262 x — £ —(—0.262) = 100£0.524

V2 V2
=86.6+ jSOW
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Therefore

P, =866 W 0 =50 VAR

Comments: Note how the definition of complex power yields both quantities at one time.

CHECK YOUR UNDERSTANDING

Use complex power notation to compute the real and reactive power for the load of Example 7.2.

AVA 85€— = O ‘M €65 = "d Jomsuy

EXAMPLE 7.5 Real and Reactive Power Calculations <L02
Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.13.

Solution

Known Quantities: Source voltage and resistance; load impedance.

Find: S = P,, + jO for the complex load.

Schematics, Diagrams, Circuits, and Given Data: {’5 =110A0V; Rs =2 Q; R;, =5;
C =2,000 uF. Figure 7.13

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Define the load impedance
1 .
Zr =R+ — =5—-,1326=5.1734(—-0.259) @
JjoC

Next, compute the load voltage and current:

. Zr g _5-j1326

V, = = 110 = 79.66./(—0.072) V
LT R+ 27, ST 71326 ¢ ( )

- V. 79.66/(—0.072)
I, = ——=————-——"=1544Z0.187 A

Z;,  5.1734£(-0.259)
Finally, we compute the complex power, as defined in equation 7.28:

S = VLij =79.94(—0.072) x 15.44/(—0.187) = 1,233£(—0.259)

=1,192 — j316 W



Rizzoni: Principles and
Applications of Electrical
Engineering, Fifth Edition

356

I. Circuits 7. AC Power © The McGraw-Hill

Companies, 2007

Chapter 7 AC Power

Therefore

P, =1192W Q0 = —-316 VAR

Comments: Is the reactive power capacitive or inductive?

CHECK YOUR UNDERSTANDING

Use complex power notation to compute the real and reactive power for the load of Figure 7.8.

AVAA6ET = O ‘M 1T = d 1omsuy

Although the reactive power does not contribute to any average power dissi-
pation in the load, it may have an adverse effect on power consumption, because it
increases the overall rms current flowing in the circuit. Recall from Example 7.2 that
the presence of any source resistance (typically, the resistance of the line wires in AC
power circuits) will cause a loss of power; the power loss due to this line resistance
is unrecoverable and constitutes a net loss for the electric company, since the user
never receives this power. Example 7.6 illustrates quantitatively the effect of such
line losses in an AC circuit.

|_02> EXAMPLE 7.6 Real Power Transfer for Complex Loads

JXL é

Figure 7.14

Problem

Use the definition of complex power to calculate the real and reactive power for the load of
Figure 7.14. Repeat the calculation when the inductor is removed from the load, and compare
the real power transfer between source and load for the two cases.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find:

1. Si = Pua + JO, for the complex load.
2. S, = P,y + JO) for the real load.

3. Compare P,,/Ps for the two cases.

Schematics, Diagrams, Circuits, and Given Data: Vs =110Z0V; Rs =4 Q; Ry =10 %;
JjX. = j6 Q.

Assumptions: Use rms values for all phasor quantities in the problem.
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Analysis:
1. The inductor is part of the load. Define the load impedance.

10 x j6
10+ j6

=5.145/1.03 @

Zy =R joL =

Next, compute the load voltage and current:

. Z, - 5.145/1.03
vV, = ¢ = x 110 = 70.920.444 V
Rs+ 7, 4+5.145/1.03
. V. 70.9£0.444
. L = 13.84(—0.586) A

= Z,5.145/1.03

Finally, we compute the complex power, as defined in equation 7.28:

S, = V. I =70.920.444 x 13.8.20.586 = 978./1.03
=503+ j839 W

Therefore
Py, =503W 0, = +839 VAR

2. The inductor is removed from the load (Figure 7.15). Define the load impedance:
Z,=Rp =10

Next, compute the load voltage and current:

~ Z, - 10

V. = Vs = x 110 =78.6£0V
Rs+7; 4+ 10

. V., 78.6£0

I, =— = =7.86,0A
Zr 10

Finally, we compute the complex power, as defined in equation 7.28:
S, =V, I* =78.6/0 x 7.86/0 = 617/0 = 617 W
Therefore
Py, =617TW 0, =0VAR

3. Compute the percent power transfer in each case. To compute the power transfer we must
first compute the power delivered by the source in each case, Ss = VI§. For Case 1:

i Vs Vs 110
ST Zww Rs+Z, 4+5.145/1.03

= 13.84(—0.586) A

Ssq = VIt = 110 x 13.82 — (—0.586) = 1,264 + j838 VA = Ps, + jOs,

and the percent real power transfer is:

P, 503

100 x = = 39.8%
Ps, 1,264
For Case 2:
. Vs v 110
I =7.86£0 A

" Zow  Rs+ R, 4410
Sgp = VI = 110 x 7.86 = 864 + jOW = Pg, + jQs

© The McGraw-Hill

Companies, 2007

Figure 7.15
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and the percent real power transfer is:

P, 617
100 x —2 = —— =71.4%
Py, 864

Comments: You can see that if it were possible to eliminate the reactive part of the impedance,
the percentage of real power transferred from the source to the load would be significantly
increased! A procedure that accomplishes this goal, called power factor correction, is discussed
next.

LO2 >

CHECK YOUR UNDERSTANDING

Compute the change in percent of power transfer for the case where the inductance of the load
is one-half of the original value.

judorad 1777 :Tomsuy

Power Factor, Revisited

The power factor, defined earlier as the cosine of the angle of the load impedance,
plays a very important role in AC power. A power factor close to unity signifies an
efficient transfer of energy from the AC source to the load, while a small power factor
corresponds to inefficient use of energy, as illustrated in Example 7.6. It should be
apparent that if a load requires a fixed amount of real power P, the source will be
providing the smallest amount of current when the power factor is the greatest, that
is, when cos @ = 1. If the power factor is less than unity, some additional current
will be drawn from the source, lowering the efficiency of power transfer from the
source to the load. However, it will be shown shortly that it is possible to correct
the power factor of a load by adding an appropriate reactive component to the load
itself.

Since the reactive power Q is related to the reactive part of the load, its sign
depends on whether the load reactance is inductive or capacitive. This leads to the
following important statement:

If the load has an inductive reactance, then 6 is positive and the current /ags (or
follows) the voltage. Thus, when 6 and Q are positive, the corresponding power
factor is termed lagging. Conversely, a capacitive load will have a negative QO
and hence a negative 6. This corresponds to a leading power factor, meaning
that the load current /eads the load voltage.

Table 7.2 illustrates the concept and summarizes all the important points so far. In the
table, the phasor voltage V has a zero phase angle, and the current phasor is referenced
to the phase of V.

o
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Table 7.2 Important facts related to complex power

Resistive load Capacitive load Inductive load
Ohm's law ‘7L = ZLTL ‘~]L = ZLTL ‘~]L = ZLTL
Complex ZL=Ry ZL=Rp+jX, Zp=Ry+jX,
impedance X, <0 X, >0
Phase angle 6=0 6<0 6>0
Im Im o Im
1
Complex ~9 =0 ~ ~ LO2
plane 1 V /6] V \'%
sketch Re Re N Re
i
The current is in phase | The current “leads” | The current “lags”
Explanation with the voltage. the voltage. the voltage.
Power factor Unity Leading, < 1 Lagging, < 1
Reactive power | 0 Negative Positive
The following examples illustrate the computation of complex power for a
simple circuit.
EXAMPLE 7.7 Complex Power and Power Triangle LO2

Problem

Find the reactive and real power for the load of Figure 7.16. Draw the associated power triangle.

JXL

JXc

Figure 7.16

Complex load

Solution

Known Quantities: Source voltage; load impedance.

Find: S = P,, + jQO for the complex load.
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Schematics, Diagrams, Circuits, and Given Data: \Y s =60Z0V; R =3Q; jX;, = j9Q;
jXc =—j5 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load current:

T Z. 3+,9-j5 5,09273

AL 6020 6020 _ 12/(—0.9273) A
Next, we compute the complex power, as defined in equation 7.28:
S = {/Li’z = 6020 x 12£0.9273 = 720£0.9273 = 432 4+ j576 VA
Therefore
P, =432 W 0 =576 VAR
If we observe that the total reactive power must be the sum of the reactive powers in each of
the elements, we can write Q = Q¢ + O and compute each of the two quantities as follows:
Qc = I x X¢ = (144)(—5) = —720 VAR
01 = |I.|> x X, = (144)(9) = 1,296 VAR

and
Q =0+ Qc =576 VAR

Comments: The power triangle corresponding to this circuit is drawn in Figure 7.17. The
vector diagram shows how the complex power S results from the vector addition of the three
Figure 7.17 components P, Qc,and Q.

Note: S = Pg +jO+jOL

CHECK YOUR UNDERSTANDING

Compute the power factor for the load of Example 7.7 with and without the inductor in the
circuit.

('7 moym) Sutpes] ‘16 () = fd ‘(oo ur 7 yim) Sursse ‘') = fd Tomsuy

The distinction between leading and lagging power factors made in Table 7.2
is important, because it corresponds to opposite signs of the reactive power: Q is
positive if the load is inductive (6 > 0) and the power factor is lagging; Q is negative
if the load is capacitive and the power factor is leading (6 < 0). Itis therefore possible
to improve the power factor of a load according to a procedure called power factor
correction, that is, by placing a suitable reactance in parallel with the load so that the
reactive power component generated by the additional reactance is of opposite sign to
the original load reactive power. Most often the need is to improve the power factor of
an inductive load, because many common industrial loads consist of electric motors,
which are predominantly inductive loads. This improvement may be accomplished
by placing a capacitance in parallel with the load. Example 7.8 illustrates a typical
power factor correction for an industrial load.
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COMPLEX POWER CALCULATION FOR POWER FACTOR < LO2
CORRECTION

1. Compute the load voltage and current in rms phasor form, using the AC
circuit analysis methods presented in Chapter 4 and converting peak
amplitude to rms values.

2. Compute the complex power S = VI* and set Re S = Py, ImS = Q.
3. Draw the power triangle, for example, as shown in Figure 7.17.
4. Compute the power factor of the load pf = cos(9).
5. If the reactive power of the original load is positive (inductive load), then
the power factor can be brought to unity by connecting a parallel capacitor
across the load, such that Q. = —1/wC = —(Q, where Q is the reactance
of the inductive load.
EXAMPLE 7.8 Power Factor Correction < LO2
Problem
Calculate the complex power for the circuit of Figure 7.18, and correct the power factor to i
unity by connecting a parallel reactance to the load. 5, .
R
Solution Cf>‘~7s v
iXe
Known Quantities: Source voltage; load impedance.
Find: Figure 7.18

1. S = Py + jO for the complex load.

2. Value of parallel reactance required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: Vs =117£0V; R; =50 Q;
JXL = j86.7 Q.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis:

1. First, we compute the load impedance:
Z;, =R+ jX; =50+ j86.7=100£1.047 Q

Next, we compute the load current

.V, 11720 11720

= b — __ = 1.174(—1.047) A
Z, 50+ 86.6  100/1.047

and the complex power, as defined in equation 7.28:

S=V.Ii =117/0 x 1.17£1.047 = 137/1.047 = 68.4 + j118.5 W
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Therefore
P, =68.4W Q0 =118.5 VAR

The power triangle corresponding to this circuit is drawn in Figure 7.19. The vector
diagram shows how the complex power S results from the vector addition of the two
components P and Q. To eliminate the reactive power due to the inductance, we will
need to add an equal and opposite reactive power component —Q , as described below.

2. To compute the reactance needed for the power factor correction, we observe that we need
to contribute a negative reactive power equal to —118.5 VAR. This requires a negative
reactance and therefore a capacitor with Q¢ = —118.5 VAR. The reactance of such a
capacitor is given by

A 117)2
Xc=| A )] 150
Oc 118.5
and since
_ 1
- a)Xc
we have
1 1
C=— = =23.1 uF

wXc  377(=115)

Comments: The power factor correction is illustrated in Figure 7.20. You can see that it
is possible to eliminate the reactive part of the impedance, thus significantly increasing the
percentage of real power transferred from the source to the load. Power factor correction is a
very common procedure in electric power systems.

Lj» i Im
g
50 Q
~ ~ L
Vs <3> Vi T 0 =119 VAR
j86.7Q =
_ 68.4 VA
= Re
Parallel 68.4 W
capacitor _
for power factor Qc=-119 VAR
correction

Figure 7.20 Power factor correction

CHECK YOUR UNDERSTANDING

Compute the magnitude of the current drawn by the source after the power factor correction in
Example 7.8.

V 78C°0 Iemsuy




@ ‘ Rizzoni: Principles and I. Circuits 7. AC Power © The McGraw-Hill
Applications of Electrical Companies, 2007
Engineering, Fifth Edition

Part I Circuits 363

EXAMPLE 7.9 Can a Series Capacitor Be Used for Power Factor <L02

Correction?

Problem

The circuit of Figure 7.21 proposes the use of a series capacitor to perform power factor correc-
tion. Show why this is not a feasible alternative to the parallel capacitor approach demonstrated I jXc
in Example 7.8.

. Vg
Solution X,
Known Quantities: Source voltage; load impedance.
Find: Load (source) current. Figure 7.21

Schematics, Diagrams, Circuits, and Given Data: Vs =117£0V; R; =50 Q;
JXL = j86.7Q; jXc = —j86.7 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: To determine the feasibility of the approach, we compute the load current and
voltage, to observe any differences between the circuit of Figure 7.21 and that of Figure 7.20.
First, we compute the load impedance:

Z; =R+ jX; — jXc =50+ j86.7— j86.7=50Q
Next, we compute the load (source) current:

- . V. 11720
I, == —=—=234A
Zr 50

Comments: Note that a twofold increase in the series current results from the addition of the
series capacitor. This would result in a doubling of the power required by the generator, with
respect to the solution found in Example 7.8. Further, in practice, the parallel connection is
much easier to accomplish, since a parallel element can be added externally, without the need
for breaking the circuit.

CHECK YOUR UNDERSTANDING

Determine the power factor of the load for each of the following two cases, and whether it is
leading or lagging.

a. v(t) = 540cos(wt + 15°) V,i(t) = 2cos(wt + 47°) A

b. v(t) = 155cos(wt — 15°) V,i(t) = 2 cos(wt — 22°) A

SuSSe[ ‘G766°0 "q SuIped] ‘gy]°( B [Iomsuy

The measurement and correction of the power factor for the load are an ex-
tremely important aspect of any engineering application in industry that requires the
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use of substantial quantities of electric power. In particular, industrial plants, con-
struction sites, heavy machinery, and other heavy users of electric power must be
aware of the power factor that their loads present to the electric utility company. As
was already observed, a low power factor results in greater current draw from the
electric utility and greater line losses. Thus, computations related to the power fac-
tor of complex loads are of great utility to any practicing engineer. To provide you
with deeper insight into calculations related to power factor, a few more advanced
examples are given in the remainder of the section.

|_02> EXAMPLE 7.10 Power Factor Correction

Problem
i A capacitor is used to correct the power factor of the load of Figure 7.22. Determine the reactive
L, power when the capacitor is not in the circuit, and compute the required value of capacitance
i for perfect pf correction.
|
v €L 100 kW
Vs T pf=0.7
Solution
Known Quantities: Source voltage; load power and power factor.
Figure 7.22

Find:

1. Q when the capacitor is not in the circuit.

2. Value of capacitor required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: Vs =480£0; P = 10° W;
pf = 0.7 lagging.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis:

1. With reference to the power triangle of Figure 7.11, we can compute the reactive power
of the load from knowledge of the real power and of the power factor, as shown below:

P P 10° 5
=—=—=1429 x10° VA
cos(9) pf 0.7

IS =

Since the power factor is lagging, we know that the reactive power is positive (see Table
7.2), and we can calculate Q as shown below:

Q = |S|sin(0) 6 = arccos(pf) = 0.795
Q = 1.429 x 10° x sin(0.795) = 102 kVAR

2. To compute the reactance needed for the power factor correction, we observe that we need
to contribute a negative reactive power equal to —102 kVAR. This requires a negative
reactance and therefore a capacitor with Q. = —102 kVAR. The reactance of such a
capacitor is given by

_ e @s0p

- — 2258
Oc  —102 x 10°

Xc
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and since
_ 1
o a)XC
we have
1 1
C=-— = = 1,175 uF

wXc 377 x (=2.258)

Comments: Note that it is not necessary to know the load impedance to perform power factor
correction; it is sufficient to know the apparent power and the power factor.
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CHECK YOUR UNDERSTANDING

Determine if a load is capacitive or inductive, given the following facts:

a.
b.

C.

pf = 0.87, leading

pf = 0.42, leading

v(t) =42cos(wt) V,i(t) = 4.2sin(wt) A

v(t) = 10.4 cos(wt —22°) V,i(t) = 0.4cos(wt — 22°) A

(RATISISAI) JAYIIAU "p LdATIONPUT -0 ‘oanroeded *q ‘oanoede)) e lIomsuy

EXAMPLE 7.11 Power Factor Correction

Problem

A second load is added to the circuit of Figure 7.22, as shown in Figure 7.23. Determine the
required value of capacitance for perfect pf correction after the second load is added. Draw
the phasor diagram showing the relationship between the two load currents and the capacitor

current.
s i
—_— —_—
ICL ¢ Il ¢ 12
{‘, A 100 kW 50 kW
s T pf=0.7 pf=0.95
Figure 7.23
Solution

Known Quantities: Source voltage; load power and power factor.

< LO2
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Find:

1. Power factor correction capacitor.

2. Phasor diagram.

Schematics, Diagrams, Circuits, and Given Data: \75 =48040V; P, = 10° W; pf; = 0.7
lagging; P, = 5 x 10* W; pfy = 0.95 leading; @ = 377 rad/s.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis:

1. We first compute the two load currents, using the relationships given in equations 7.28
and 7.29:

P = |Vg]|[T}| cos(6y)

- P,
= ————
[Vs|cos(6;)
i A, of,) 10° / (0.7)
= — — arccos = - — arccos(v.
RS P = 80% 07
=298/(—0.795) A
and similarly
P, 5% 10*

L £ —arccos(pf,) = —arccos(0.95)

—Z
480 x 0.95
= 1104(—0.318) A

IVs|pt,

where we have selected the positive value of arccos (pf;) because pf; is lagging, and the
negative value of arccos (pf,) because pf, is leading. Now we compute the apparent power
at each load:

P, P, 10° s
[Sil=— = = — =1.429 x 10° VA
pf, cos(6y) 0.7
P P 5% 10
1S5 = 2= 2 =227 _ 5263 x10° VA

T pf,  cos(y)  0.95
and from these values we can calculate Q as shown:

Q1 = |S1]sin(6;) 01 = arccos(pf,) = 0.795

0, = 1.429 x 10° x sin(0.795) = 102 kVAR

0, = |S,]sin(6,) 0, = — arccos(pf,) = —0.318
0, = 5.263 x 10* x sin(—0.318) = —16.43 kVAR

where, once again, 6, is positive because pf is lagging and 6, is negative because pf; is
leading (see Table 7.2).

The total reactive power is therefore Q = Q| + Q, = 85.6 kVAR.

To compute the reactance needed for the power factor correction, we observe that
we need to contribute a negative reactive power equal to —85.6 kVAR. This requires a
negative reactance and therefore a capacitor with Q. = —85.6 kVAR. The reactance of
such a capacitor is given by

Vs 4800

= = —2.694
Oc  —856x 10°

Xc
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and since
Im

_ 1

o wX, C
we have

1 1
C = =— = 984.6 uF
wXc 377(—2.692)

2. To draw the phasor diagram, we need only to compute the capacitor current, since we
have already computed the other two:

Zc = jXc = —j2.692 Q Figure 7.24
~ VS T
Ic=—=1782/—A

Zc 2

The total current is is = il + iz + ic = 312.5£0° A. The phasor diagram corre-
sponding to these three currents is shown in Figure 7.24.

CHECK YOUR UNDERSTANDING

Compute the power factor for an inductive load with L = 100 mH and R = 0.4 Q.

SwSSe[ ‘601070 = Jd :Tomsuy

The Wattmeter <|_02 FIND IT ME;gSMENTs

The instrument used to measure power is called a wattmeter. The
external part of a wattmeter consists of four connections and a metering
mechanism that displays the amount of real power dissipated by a circuit. The external
and internal appearance of a wattmeter is depicted in Figure 7.25. Inside the wattmeter are
two coils: a current-sensing coil and a voltage-sensing coil. In this example, we assume for
simplicity that the impedance of the current-sensing coil Z; is zero and that the impedance
of the voltage-sensing coil Zy is infinite. In practice, this will not necessarily be true;
some correction mechanism will be required to account for the impedance of the sensing
coils. F g

A wattmeter should be connected as shown in Figure 7.26, to provide both cur- ;
rent and voltage measurements. We see that the current-sensing coil is placed in series
with the load and that the voltage-sensing coil is placed in parallel with the load. In this

ON THE WEB

(Continued)
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manner, the wattmeter is seeing the current through and the voltage across the load.
Remember that the power dissipated by a circuit element is related to these two quantities.
The wattmeter, then, is constructed to provide a readout of the real power absorbed by
the load: P = Re (S) = Re (VI*).

+ 7 =
9 Current 9 EE — T
o+ + Ly
+
Voltage Ly V
o_ —_
External connections Wattmeter coils (inside)
Figure 7.25

i
——

Zs + L; —
AA

YO g [

Figure 7.26

Problem:

1. For the circuit shown in Figure 7.27, show the connections of the wattmeter, and
find the power dissipated by the load.

2. Show the connections that will determine the power dissipated by R,. What should
the meter read?

1
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
|
T
1
1
1

Source | Load

vs(f) = 156 cos(377¢)
Ri=10Q

Ry=5Q

L=20mH

Figure 7.27
(Continued)
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(Concluded)
Solution:

1. To measure the power dissipated by the load, we must know the current through
and the voltage across the entire load circuit. This means that the wattmeter must be
connected as shown in Figure 7.28. The wattmeter should read

I 156 (156/2)20 '\
P = Re(Vsi*) = Re|:<ﬁ40> (R1 +R2+ij) }

110£0 *
=Re | 110£0° | ——————
15+ j7.54

110£0 * 1102
=Re|110£0° | ————— =Re ————
16.79£0.466 16.79£(—0.466)
= Re (720.67.£0.466)
= 643.88 W

Figure 7.28

2. To measure the power dissipated by R, alone, we must measure the current through
R; and the voltage across R, alone. The connection is shown in Figure 7.29. The
meter will read

- 110 : 110
P=IR,=

(152 + 7.542)12 T t758 "
—215W

Figure 7.29
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Power Factor <|_02

Problem:

A capacitor is being used to correct the power factor to unity. The circuit is shown in
Figure 7.30. The capacitor value is varied, and measurements of the total current are
taken. Explain how it is possible to zero in on the capacitance value necessary to bring
the power factor to unity just by monitoring the current L.

i i
—= (@D

Gf) Vs /;{ c |re 1@

Figure 7.30

Solution:
The current through the load is

i Vs L0° Vs (R — jol)
= = — Jw
LS R¥joL ~ RrtaerL2z 7
VsR . Vsa)L

TRt Rt e212
The current through the capacitor is

. Vs L0° .
I S

= = jVsoC
€= 1joc ~ 775
The source current to be measured is
fooftic = =R 4 (Vewe — sk
ST e T R T\ T R e

The magnitude of the source current is

N 2 N 2
I~ _ VsR + ‘7 C Vsa)L
5= R2 + 2L2 5@ R2 + 22

We know that when the load is a pure resistance, then the current and voltage
are in phase, the power factor is 1, and all the power delivered by the source is dissi-
pated by the load as real power. This corresponds to equating the imaginary part of the
expression for the source current to zero or, equivalently, to the following expression:

Vsa)L
R? + &?L?
in the expression for Is. Thus, the magnitude of the source current is actually a minimum
when the power factor is unity! It is therefore possible to “tune” a load to a unity pf
by observing the readout of the ammeter while changing the value of the capacitor and
selecting the capacitor value that corresponds to the lowest source current value.

= Vsa)C
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7.3 TRANSFORMERS

AC circuits are very commonly connected to each other by means of transform-
ers. A transformer is a device that couples two AC circuits magnetically rather than
through any direct conductive connection and permits a “transformation” of the volt-
age and current between one circuit and the other (e.g., by matching a high-voltage,
low-current AC output to a circuit requiring a low-voltage, high-current source).
Transformers play a major role in electric power engineering and are a necessary part
of the electric power distribution network. The objective of this section is to introduce
the ideal transformer and the concepts of impedance reflection and impedance match-
ing. The physical operations of practical transformers, and more advanced models, is
discussed in Chapter 16.

The Ideal Transformer

The ideal transformer consists of two coils that are coupled to each other by some
magnetic medium. There is no electrical connection between the coils. The coil on
the input side is termed the primary, and that on the output side the secondary. The
primary coil is wound so that it has n; turns, while the secondary has n, turns. We
define the turns ratio N as

N=" (7.32)

ni
Figure 7.31 illustrates the convention by which voltages and currents are usually
assigned at a transformer. The dots in Figure 7.31 are related to the polarity of the
coil voltage: coil terminals marked with a dot have the same polarity.

Since an ideal inductor acts as a short circuit in the presence of DC, transformers
do not perform any useful function when the primary voltage is DC. However, when
a time-varying current flows in the primary winding, a corresponding time-varying
voltage is generated in the secondary because of the magnetic coupling between the
two coils. This behavior is due to Faraday’s law, as explained in Chapter 16. The
relationship between primary and secondary current in an ideal transformer is very
simply stated as follows:

V, =NV,

~ I, Ideal transformer (7.33)
L=—

TN

An ideal transformer multiplies a sinusoidal input voltage by a factor of N and
divides a sinusoidal input current by a factor of N.

If N is greater than 1, the output voltage is greater than the input voltage and the
transformer is called a step-up transformer. If N is less than 1, then the transformer
is called a step-down transformer, since \72 is now smaller than \71. An ideal trans-
former can be used in either direction (i.e., either of its coils may be viewed as the

© The McGraw-Hill
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il ny:inp iz
— or —
I:N
+ .o +
Vi V2
Primary Secondary

Figure 7.31 Ideal
transformer
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I,
—
~ ny ~
+ ° V2 = n_l V1
’{71 m
- ~ n3 ~
V=2V,

Figure 7.32 Center-tapped
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input side, or primary). Finally, a transformer with N = 1 is called an isolation trans-
former and may perform a very useful function if one needs to electrically isolate
two circuits from each other; note that any DC at the primary will not appear at the
secondary coil. An important property of ideal transformers is the conservation of
power; one can easily verify that an ideal transformer conserves power, since

L .V L
S, =1V, = ngﬁz =LV, =5, (7.34)

That is, the power on the primary side equals that on the secondary.

In many practical circuits, the secondary is tapped at two different points, giving
rise to two separate output circuits, as shown in Figure 7.32. The most common
configuration is the center-tapped transformer, which splits the secondary voltage
into two equal voltages. The most common occurrence of this type of transformer is
found at the entry of a power line into a household, where a high-voltage primary (see
Figure 7.58) is transformed to 240 V and split into two 120-V lines. Thus, V, and V3
in Figure 7.32 are both 120-V lines, and a 240-V line (V, + V3) is also available.

transformer
LO3 >

EXAMPLE 7.12 Ideal Transformer Turns Ratio

Problem

We require a transformer to deliver 500 mA at 24 V from a 120-V rms line source. How many
turns are required in the secondary? What is the primary current?

Solution

Known Quantities: Primary and secondary voltages; secondary current; number of turns in
the primary coil.

Find: n, and il.

Schematics, Diagrams, Circuits, and Given Data: ‘71 =120V; ‘72 =24V, fz = 500 mA;
ny = 3,000 turns.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Using equation 7.33, we compute the number of turns in the secondary coil as

follows:
Vi W, Vv, 24
— = ny, = n;—= = 3,000 x — = 600 turns
ni ny Vl 120

Knowing the number of turns, we can now compute the primary current, also from equation
7.33:
- - N 600
}’11112}’1212 11=—IZI—X500=100H1A
ny 3,000
Comments: Note that since the transformer does not affect the phase of the voltages and
currents, we could solve the problem by using simply the rms amplitudes.
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CHECK YOUR UNDERSTANDING

With reference to Example 7.12, compute the number of primary turns required if n, = 600
but the transformer is required to deliver 1 A. What is the primary current now?

VW 00T = '7:000°€ = 'u 1omsuy

EXAMPLE 7.13 Center-Tapped Transformer <|_03

Problem

A center-tapped power transformer has a primary voltage of 4,800 V and two 120-V secondaries
(see Figure 7.32). Three loads (all resistive, i.e., with unity power factor) are connected to
the transformer. The first load, R;, is connected across the 240-V line (the two outside taps
in Figure 7.32). The second and third loads, R, and Rj, are connected across each of the
120-V lines. Compute the current in the primary if the power absorbed by the three loads
is known.

Solution

Known Quantities: Primary and secondary voltages; load power ratings.

Find: I imary-

Schematics, Diagrams, Circuits, and Given Data: ‘71 = 4,800V, ‘72 =120V; ‘73 =120V;
P, =5,000 W; P, = 1,000 W; P; = 1,500 W.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Since we have no information about the number of windings or about the secondary
current, we cannot solve this problem by using equation 7.33. An alternative approach is to
apply conservation of power (equation 7.34). Since the loads all have unity power factor, the
voltages and currents will all be in phase, and we can use the rms amplitudes in our calculations:

‘ S, primary N secondary

or
Viimary X Iprimary = Prccondary = P1 + P2 + Ps
Thus,
4,800 x ipﬁmary = 5,000 + 1,000 + 1,500 = 7,500 W

~ 7,500 W

iy = ————— = 1.5625 A
PImAY 774,800 A
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CHECK YOUR UNDERSTANDING

If the transformer of Example 7.13 has 300 turns in the secondary coil, how many turns will
the primary require?

000°C1 = U :1omsuy

Impedance Reflection and Power Transfer

As stated in the preceding paragraphs, transformers are commonly used to couple one
AC circuit to another. A very common and rather general situation is that depicted in
Figure 7.33, where an AC source, represented by its Thévenin equivalent, is connected
to an equivalent load impedance by means of a transformer.

It should be apparent that expressing the circuit in phasor form does not alter
the basic properties of the ideal transformer, as illustrated in the following equations:

AV

Vl = — il = Niz
N ; (7.35)
V, =NV, L= NI

These expressions are very useful in determining the equivalent impedance seen by
the source and by the load, on opposite sides of the transformer. At the primary
connection, the equivalent impedance seen by the source must equal the ratio of V;
to Il

7 = = (7.36)
L
which can be written as
V,)N 1V
7= YIN _ — = (7.37)
NI, N- 1,
But the ratio \72 /iz is, by definition, the load impedance Z; . Thus,
, 1

That is, the AC source “sees” the load impedance reduced by a factor of 1/N2.
The load impedance also sees an equivalent source. The open-circuit voltage is
given by

Voc = NV, = NV (7.39)

since there is no voltage drop across the source impedance in the circuit of Figure 7.33.
The short-circuit current is given by

Isc = Vs | (7.40)
ST ZsN :
and the load sees a Thévenin impedance equal to
— E — Nivs 2

7' = = N%Z (7.41)

Isc  (Vs/Zs)(1/N)
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7
NZZS =z < L03

K,’<I
(@]
N
SN
=
K,’<I
__@_
o
_D_
[L\]

O O

A 7
Reflected load Reflected source
impedance circuit impedance circuit

Figure 7.34 Impedance reflection across a transformer

Thus the load sees the source impedance multiplied by a factor of N2. Figure 7.34
illustrates this impedance reflection across a transformer. It is very important to note
that an ideal transformer changes the magnitude of the load impedance seen by the
source by a factor of 1/N2. This property naturally leads to the discussion of power
transfer, which we consider next.

Recall that in DC circuits, given a fixed equivalent source, maximum power is
transferred to a resistive load when the latter is equal to the internal resistance of the
source; achieving an analogous maximum power transfer condition in an AC circuit
is referred to as impedance matching. Consider the general form of an AC circuit,
shown in Figure 7.35, and assume that the source impedance Zg is given by

Zs = Rs + jX5 (7.42)

The problem of interest is often that of selecting the load resistance and reactance
that will maximize the real (average) power absorbed by the load. Note that the

requirement is to maximize the real power absorbed by the load. Thus, the problem Vs=Vs 26
can be restated by expressing the real load power in terms of the impedance of the
source and load. The real power absorbed by the load is Figure 7.35 The maximum
power transfer problem in AC
PL =Vl cos6 = Re(VLI}) (7.43) circuits
where
- 7. -
Vp=—""V; (7.44)
Zs+ 7y
and
i v\ W
I = S - ) (7.45)
Zs+Zt (Zs+Zp)*

Thus, the complex load power is given by

Z.Vs \72 \N]%
X —
Zs+Zp  (Zs+Zo)*  |ZsH+ ZL)?

S, =V.Il = Zr (7.46)
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and the average (real) power by

2

P =Re (V. I!) = Re[ ——5—
g Vilo) <|ZS+ZL|2

) Re (Z L)
V2
= - - Re(Z1)
(Rs +Rp)* + (Xs + X1)
V2R,
(Rs + Rp)* + (X5 + X1)?
The expression for P, is maximized by selecting appropriate values of Ry and X ;
it can be shown that the average power is greatest when R; = Rg and X; = — X,
that is, when the load impedance is equal to the complex conjugate of the source
impedance, as shown in the following equation:

(7.47)

Zp =273 Maximum power transfer
that is, (7.48)
R, = Rs X, =—Xs

When the load impedance is equal to the complex conjugate of the source
impedance, the load and source impedances are matched and maximum power
is transferred to the load.

In many cases, it may not be possible to select a matched load impedance,
because of physical limitations in the selection of appropriate components. In these
situations, it is possible to use the impedance reflection properties of a transformer to
maximize the transfer of AC power to the load. The circuit of Figure 7.36 illustrates
how the reflected load impedance, as seen by the source, is equal to Z; /N2, so that
maximum power transfer occurs when

Zr

N2 T

R, = N?Rs (7.49)
X, = —N3?Xg

with a transformer
LO3 >

EXAMPLE 7.14 Use of Transformers to Increase Power Line
Efficiency

Problem

Figure 7.37 illustrates the use of transformers in electric power transmission lines. The practice
of transforming the voltage before and after transmission of electric power over long distances
is very common. This example illustrates the gain in efficiency that can be achieved through the
use of transformers. The example makes use of ideal transformers and assumes simple resistive
circuit models for the generator, transmission line, and load. These simplifications permit a
clearer understanding of the efficiency gains afforded by transformers.

< LO3
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Transmission
Generator line Load
AA AAAA
\AAAZ VVVv
R source R line
<
EE R load
VSOL“'CC
/ ; ;Y; ;
(a)
Transmission
Generator line Load
R source R line
R load
Vsource
O
Step-up Step-down /7J77
transformer transformer
(b)
Reflected
Transmission Reflected transmission ~ Reflected
Generator line load Generator line load
o P—AWY '°=AvﬁvAvAv .,
Rsource Rline Rsource line load
R ,load —
Vsource Vsource
P ,d 1 d
)7 Step-up 77777 17777 17777
transformer
(©)
Reflected
Reflected  Transmission Reflected transmission
generator line Load generator line Load
AAAA o—AW—]
YVVv Y A
R source Rline R source R line R load
Rioad ——
V ;ource ”source
hd 1% h d
77777 Step-down /7777 17777 17777
transformer
()

Figure 7.37 Electric power transmission: (a) direct power transmission; (b) power transmission
with transformers; (c) equivalent circuit seen by generator; (d) equivalent circuit seen by load.

Solution
Known Quantities: Values of circuit elements.
Find: Calculate the power transfer efficiency for the two circuits of Figure 7.37.

Schematics, Diagrams, Circuits, and Given Data: Step-up transformer turns ratio is N,
step-down transformer turns ratiois M = 1/N.

Assumptions: None.
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Analysis: For the circuit of Figure 7.37(a), we can calculate the power transmission efficiency
as follows, since the load and source currents are equal:

n= Pload _ Vloadlload _ Vload _ Rload
P source Vsource 1 load Vsource R source + Rline + Rload

For the circuit of Figure 7.37(b), we must take into account the effect of the transformers. Using
equation 7.38 and starting from the load side, we can “reflect” the load impedance to the left
of the step-down transformer to obtain

1
Rl/oad = WRload = Nleoad
Now, the source sees the equivalent impedance R; ; + Ry across the first transformer. If we
reflect this impedance to the left of the step-up transformer, the equivalent impedance seen by
the source is

. 1
Rl = m(Rload + Riine) = Rioad + ﬁRline

These two steps are depicted in Figure 7.37(c). You can see that the effect of the two transformers
is to reduce the line resistance seen by the source by a factor of 1/N2. The source current is

i Vsource Vsource
source —

Rsource + Rl’;ad B Rsource + (1/N2)Rline + Rload

and the source power is therefore given by the expression

2
source

Rsource + (1/N2)Rline + Rload

P, source —

Now we can repeat the same process, starting from the left and reflecting the source circuit to
the right of the step-up transformer:

‘7/ = stource and R; = Nstource

source source

Now the circuit to the left of the step-down transformer comprises the series combination of

> / . . .

Vources Rsources and Rine. If we reflect this to the right of the sztep—down transformer, we ol;taln a
. H 3 M 4 ! ! ! /

series circuit with V. = MV = Viouces Riguee = M R e = Rsourcer Rijne = M Ryine,

and Ry in series. These steps are depicted in Figure 7.37(d). Thus the load voltage and current
are

Vsnurce

Rsource + (1/N2)Rline + Rload

I load =

and

> il Rload
Vload = Vsource
Rsource + (1/N2)Rline + Rload

and we can calculate the load power as

‘7 2 R load

source

(Rsource + (1/N2)Rline + Rload)2

P load = I load Vload =

Finally, the power efficiency can be computed as the ratio of the load to source power:

n= Pload _ VszourceRload Rsource + (1/N2)Rline + Rload
Psource (Rsource + (1/N2)Rline + Rload)2 Vs%mrce

_ Rload
Rsource + (1/N2)Rline + Rload

Q
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Comparing the expression with the one obtained for the circuit of Figure 7.37(a), we can see
that the power transmission efficiency can be significantly improved by reducing the effect of
the line resistance by a factor of 1/N2.

CHECK YOUR UNDERSTANDING

Assume that the generator produces a source voltage of 480 Vrms, and that N = 300. Further
assume that the source impedance is 2 €2, the line impedance is also 2 €2, and that the load
impedance is 8 2. Calculate the efficiency improvement for the circuit of Figure 7.37(b) over
the circuit of Figure 7.37(a).

‘9419 “SA 9%()g IoMSUY

EXAMPLE 7.15 Maximum Power Transfer Through a <|_03

Transformer

Problem

Find the transformer turns ratio and load reactance that results in maximum power transfer in
the circuit of Figure 7.38.

Solution LN
Known Quantities: Source voltage, frequency, and impedance; load resistance. Lg RL
Find: Transformer turns ratio and load reactance. Rs
Schematics, Diagrams, Circuits, and Given Data: \~’s =24040V; Ry =10 ;
Ls =0.1 H; R, =400 Q; w = 377 rad/s. Vg XL
Assumptions: Use rms values for all phasor quantities in the problem.

Figure 7.38

Analysis: For maximum power transfer, we require that R, = N 2Rg (equation 7.48). Thus,

R 400
N2=-Lt=""240 N =+40=6.325
Rg 10
Further, to cancel the reactive power, we require that X; = —N 2X g, that is,

Xs=wx0.1=377
and
X, = —40 x 37.7 = —1,508
Thus, the load reactance should be a capacitor with value

1 1
C=——=——  _176uF
X, 0 (—1,508)(377)
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CHECK YOUR UNDERSTANDING

The transformer shown in Figure 7.39 is ideal. Find the turns ratio N that will ensure maximum
power transfer to the load. Assume that Zg = 1,800 Q and Z; = 8 Q.

The transformer shown in Figure 7.39 is ideal. Find the source impedance Zs that will ensure
maximum power transfer to the load. Assume that N = 5.4 and Z;, =2+ j10 Q.

B 6P 0! —9890°0 = 5Z ‘L990°0 = N :SIomsuy

———0
Zs +
[

vs(0) 271 Vou(d)
>

AAAA

o]

1:N

Figure 7.39

7.4 THREE-PHASE POWER

The material presented so far in this chapter has dealt exclusively with single-phase
AC power, that is, with single sinusoidal sources. In fact, most of the AC power used
today is generated and distributed as three-phase power, by means of an arrangement
in which three sinusoidal voltages are generated out of phase with one another. The
primary reason is efficiency: The weight of the conductors and other components
in a three-phase system is much lower than that in a single-phase system delivering
the same amount of power. Further, while the power produced by a single-phase
system has a pulsating nature (recall the results of Section 7.1), a three-phase system
can deliver a steady, constant supply of power. For example, later in this section it
will be shown that a three-phase generator producing three balanced voltages—that
is, voltages of equal amplitude and frequency displaced in phase by 120°—has the
property of delivering constant instantaneous power.

Another important advantage of three-phase power is that, as will be explained
in Chapter 17, three-phase motors have a nonzero starting torque, unlike their single-
phase counterpart. The change to three-phase AC power systems from the early DC
system proposed by Edison was therefore due to a number of reasons: the efficiency
resulting from transforming voltages up and down to minimize transmission losses
over long distances; the ability to deliver constant power (an ability not shared by
single- and two-phase AC systems); a more efficient use of conductors; and the ability
to provide starting torque for industrial motors.

To begin the discussion of three-phase power, consider a three-phase source
connected in the wye (or Y) configuration, as shown in Figure 7.40. Each of the
three voltages is 120° out of phase with the others, so that, using phasor notation, we
may write

o



@ ‘ Rizzoni: Principles and I. Circuits 7. AC Power

Applications of Electrical
Engineering, Fifth Edition

Part I Circuits

Figure 7.40 Balanced three-phase AC circuit

{7(1/1 = ‘>a/1 Z0°

Ven = Ven Z(=240°) = V,,,£120°

where the quantities Van, Von, and V., are rms values and are equal to each other. To
simplify the notation, it will be assumed from here on that

Van = ‘717/1 = ‘7(:/1 = ‘7 (7.51)

Chapter 17 will discuss how three-phase AC electric generators may be constructed
to provide such balanced voltages. In the circuit of Figure 7.40, the resistive loads are
also wye-connected and balanced (i.e., equal). The three AC sources are all connected
together at a node called the neutral node, denoted by n. The voltages Va,,, \71,,,, and

V., are called the phase voltages and form a balanced set in the sense that
‘N]an + ‘N]hn + ‘N]('n =0 (7.52)

This last statement is easily verified by sketching the phasor diagram. The sequence
of phasor voltages shown in Figure 7.41 is usually referred to as the positive (or abc)
sequence.

Consider now the “lines” connecting each source to the load, and observe that it
is possible to also define line voltages (also called line-to-line voltages) by considering
the voltages between lines aa’ and bb’, lines aa’ and cc’, and lines bb" and cc’. Since
the line voltage, say, between aa’ and bb’ is given by

Vah = Van + Vﬂb = ‘N]an - Vlm (7'53)

the line voltages may be computed relative to the phase voltages as follows:

Vo = V20° =V Z(=120°) = +/3V 230°

- -~ B ~ voltages
Ve = VZ120° — V £0° = /3V £150°

© The McGraw-Hill
Companies, 2007

Vin = Vi Z—(120°) Phase voltages (7.50) <|_o4

--->—Re

1

i

i
. i
Von i
Figure 7.41 Positive, or
abc, sequence for balanced
three-phase voltages

Voo = VZ(—120°) — V£120° = /37 £(—90°)  Hne (7.54) <|_o4
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It can be seen, then, that the magnitude of the line voltages is equal to +/3 times
the magnitude of the phase voltages. It is instructive, at least once, to point out that
the circuit of Figure 7.40 can be redrawn to have the appearance of the circuit of
Figure 7.42, where it is clear that the three circuits are in parallel.

al o — One of the important features of a balanced three-phase system is that it does
. © ° - not require a fourth wire (the neutral connection), since the current I, is identically
5 . zero (for balanced load Z, = Z, = Z. = Z). This can be shown by applying KCL
" i >, B v at the neutral node n:
i ~ o i in = ia + ib + i(:
i Vor c L ¢ i 1 - - -
i . © © - j = E (Van + th + V(:n) (7'55)
7777777777 :E"""’"’ —0

Figure 7.42 Balanced
three-phase AC circuit (redrawn) Another, more important characteristic of a balanced three-phase power system

may be illustrated by simplifying the circuits of Figures 7.40 and 7.42 by replacing
the balanced load impedances with three equal resistances R. With this simplified
configuration, one can show that the total power delivered to the balanced load by the
three-phase generator is constant. This is an extremely important result, for a very
practical reason: Delivering power in a smooth fashion (as opposed to the pulsating
nature of single-phase power) reduces the wear and stress on the generating equip-
ment. Although we have not yet discussed the nature of the machines used to generate
power, a useful analogy here is that of a single-cylinder engine versus a perfectly bal-
anced V-8 engine. To show that the total power delivered by the three sources to a
balanced resistive load is constant, consider the instantaneous power delivered by
each source:

72

V_
Pa(t) = ?(1 + cos 2wt)

(8]

po(t) = —[1 + cosQwt — 120°)] (7.56)

| o Y

Pe(t) = —[1 + coswt + 120°)]

The total instantaneous load power is then given by the sum of the three contributions:

Pa (f) + Pb(f) + Pr(f)

vz y?
= R + 7[cos 2wt + cosRwt — 120°)

+ cosRawt + 120°)]
a7

p(t)

(7.57)

2

= —— = constant!
R

A delta-connected

three-phase generator ‘You may wish to verify that the sum of the trigonometric terms inside the brackets is

with line voltages identically zero.

Vab, Vies Vea It is also possible to connect the three AC sources in a three-phase system in a
Figure 7.43 Delta- delta (or A) connection, although in practice this configuration is rarely used. Figure
connected generators 7.43 depicts a set of three delta-connected generators.



‘ Rizzoni: Principles and I. Circuits 7. AC Power © The McGraw-Hill

Applications of Electrical Companies, 2007
Engineering, Fifth Edition

Part I Circuits 383

EXAMPLE 7.16 Per-Phase Solution of Balanced Wye-Wye <|_04

Circuit
Problem

Compute the power delivered to the load by the three-phase generator in the circuit shown in
Figure 7.44.

Solution

Known Quantities: Source voltage, line resistance, load impedance.

Find: Power delivered to the load Py.

Rueutral
AAAA

\AAAJ

§chematics, Diagrames, C:‘ircuits, and Given Data: Van =480£0V;
Vp, =4804(—2n/3) V; V., = 48042 /3) V; Zy =2+ j4 = 4.47/1.107 Q; Figure 7.44
Rline =2 Q’ Rneutral =10 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Since the circuit is balanced, we can use per-phase analysis, and the current through
the neutral line is zero, thatis, V,,_,, = 0. The resulting per-phase circuit is shown in Figure 7.45.
Using phase a for the calculations, we look for the quantity

P, =[IPR,
where
. \2 48020 4800
I = = - = =84.85A a Rine ¢
Zy + Rijne 24 j442 5.664(r /4) MW
and P, = (84.85)? x 2 = 14.4 kW. Since the circuit is balanced, the results for phases » and 1.
c are identical, and we have (Z> Vs Z;
P, =3P, =432 kW

Comments: Note that since the circuit is balanced, there is zero voltage across neutrals. This n n

fact is shown explicitly in Figure 7.45, where n and n’ are connected to each other directly. Figure 7.45 One phase of
Per-phase analysis for balanced circuits turns three-phase power calculations into a very simple  the three-phase circuit
exercise.

CHECK YOUR UNDERSTANDING

Find the power lost in the line resistance in the circuit of Example 7.16.

Compute the power delivered to the balanced load of Example 7.16 if the lines have zero
resistance and Z; = 1 + j3 Q.

Show that the voltage across each branch of the wye load is equal to the corresponding phase
voltage (e.g., the voltage across Z,, is Va).

Prove that the sum of the instantaneous powers absorbed by the three branches in a balanced
wye-connected load is constant and equal to 3VIcos6.

VA 7'L0TL + M TI'69 = TS ‘M T'epr = g s1emsuy
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Balanced Wye Loads

In the previous section we performed some power computations for a purely resistive
balanced wye load. We now generalize those results for an arbitrary balanced complex
load. Consider again the circuit of Figure 7.40, where now the balanced load consists
of the three complex impedances

Za=7Zp=7Zc=27,=1|Z,|26 (7.58)

From the diagram of Figure 7.40, it can be verified that each impedance sees the
corresponding phase voltage across itself; thus, since currents I, I, and I have the
same rms value /, the phase angles of the currents will differ by +=120°. It is therefore
possible to compute the power for each phase by considering the phase voltage (equal
to the load voltage) for each impedance, and the associated line current. Let us denote
the complex power for each phase by S

S = VI* (7.59)
so that
S=P+j0 7.60)

= VI cos6 + j\ﬁsin@

where V and / denote, once again, the rms values of each phase voltage and line
current, respectively. Consequently, the total real power delivered to the balanced
wye load is 3P, and the total reactive power is 3Q. Thus, the total complex power St
is given by

St = Pr+ jOr =3P + j30
=+ (3P)>+(30)2£6

and the apparent power is

(7.61)

|Sr| = 3\/(v1)2 cos2 6 + (VI)? sin? 0
=3VI

and the total real and reactive power may be expressed in terms of the apparent
power:

Pr = |S7|cosf

7.62
QOr = |Sr|sin6 762

Balanced Delta Loads

In addition to a wye connection, it is possible to connect a balanced load in the delta
configuration. A wye-connected generator and a delta-connected load are shown in
Figure 7.46.

Note immediately that now the corresponding line voltage (not phase voltage)
appears across each impedance. For example, the voltage across Z. . is Vw. Thus,
the three load currents are given by

o
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i _ Va _ V3VZ/6)

SN VNVZ

i, — Vie _ V3V Z(=7/2) (7.63)
Zn |Za|£06

i _ Ve _ V3VZG57/6)

“Za o 1Zal40

To understand the relationship between delta-connected and wye-connected
loads, it is reasonable to ask the question, For what value of Z, would a delta-
connected load draw the same amount of current as a wye-connected load with
impedance Z, for a given source voltage? This is equivalent to asking what value
of Z, would make the line currents the same in both circuits (compare Figure 7.42

with Figure 7.46).
The line current drawn, say, in phase a by a wye-connected load is
il Van ‘7
L,),=—= Z(—6 7.64
Tan)y 5 7 (=0) (7.64)

while that drawn by the delta-connected load is

(ia)A = iah - i('a

o {]ah Vc‘a
 Za Za
1 - - - -
i (Van - th - V('n + V(m) (7.65)
Za

1 - - -
i 2Va/1 -V n — V('n
ZA( b )

_3V., 3V
Za [Z Al

Z(—0)

© The McGraw-Hill
Companies, 2007
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One can readily verify that the two currents (iu) A and (iu) y will be equal if the
magnitude of the delta-connected impedance is 3 times larger than Z ,:

Zp=3Z, (7.66)

This result also implies that a delta load will necessarily draw 3 times as much current
(and therefore absorb 3 times as much power) as a wye load with the same branch
impedance.

EXAMPLE 7.17 Parallel Wye-Delta Load Circuit
Problem

Compute the power delivered to the wye-delta load by the three-phase generator in the circuit
shown in Figure 7.47.

O o B o
\_’/ YWy Zy
v,
Riine 4 4
n 5% owm—18 7 1—4"
u YVVY | yl
; Z:
< c Rijne red
() AAA 7.
N\ YVVy 'y
Rieutral
AAA

vyvy

Figure 7.47 AC circuit with delta and wye loads

Solution
Known Quantities: Source voltage, line resistance, load impedance.
Find: Power delivered to the load P; .

§chematics, Diagrames, C:‘ircuits, and Given Data: Van =480£0V;
Vi =480£(—27/3) V; V,,, =480LQ2n/3) V; Z, = 2 + j4 = 4.47/£1.107 Q;
Zpn=5—j2=544(—0.381) Q; Rjjne =2 25 Ryeurras = 10 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: We first convert the balanced delta load to an equivalent wye load, according to
equation 7.66. Figure 7.48 illustrates the effect of this conversion.

z
Zay = TA = 1.667 — j0.667 = 1.8/(—0.381) .

Since the circuit is balanced, we can use per-phase analysis, and the current through the neutral

line is zero, that is, V,,_,» = 0. The resulting per-phase circuit is shown in Figure 7.49. Using
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4 [Z] a
L= —|
Zx Zp
N —1%
A 7] : 5 :
'y n —— e n
-
Zx
-] ,
o [Z1 —
L=

Figure 7.48 Conversion of delta load to equivalent wye load

phase a for the calculations, we look for the quantity
P, = IR,
where

Zy X ZAfy

2= 220y = Tt
y -y

=1.62 — j0.018 = 1.624(-0.011) @

and the load current is given by

\ P
Z1 + Riine

I = =132.6 A

B 48020
© 1,62 + j0.018 + 2

and P, = (132.6)? x Re (Z;) = 28.5 kW. Since the circuit is balanced, the results for phases
b and ¢ are identical, and we have

P, =3P, = 85.5kW

Comments: Note that per-phase analysis for balanced circuits turns three-phase power cal-
culations into a very simple exercise.

© The McGraw-Hill
Companies, 2007
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Figure 7.49 Per-phase
circuit

CHECK YOUR UNDERSTANDING

Derive an expression for the rms line current of a delta load in terms of the rms line current
of a wye load with the same branch impedances (that is, Zy = Z,) and same source voltage.
Assume Zg = 0.

The equivalent wye load of Example 7.17 is connected in a delta configuration. Compute the
line currents.

V 0217681 = T 'V (0T1—)7681 = I 'V -07681 = "I *A[¢ = V] is1omsuy
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7.5 RESIDENTIAL WIRING; GROUNDING
AND SAFETY

Common residential electric power service consists of a three-wire AC system sup-
plied by the local power company. The three wires originate from a utility pole and
consist of a neutral wire, which is connected to earth ground, and two “hot” wires.
Each of the hot lines supplies 120 V rms to the residential circuits; the two lines are
180° out of phase, for reasons that will become apparent during the course of this
discussion. The phasor line voltages, shown in Figure 7.50, are usually referred to
by means of a subscript convention derived from the color of the insulation on the
different wires: W for white (neutral), B for black (hot), and R for red (hot). This
convention is adhered to uniformly.
The voltages across the hot lines are given by

Vs — Vi =Vgr = Vg — (=Vp) =2V = 24020° (7.67)

Thus, the voltage between the hot wires is actually 240 V rms. Appliances such as
electric stoves, air conditioners, and heaters are powered by the 240-V rms arrange-
ment. On the other hand, lighting and all the electric outlets in the house used for
small appliances are powered by a single 120-V rms line.

The use of 240-V rms service for appliances that require a substantial amount
of power to operate is dictated by power transfer considerations. Consider the two
circuits shown in Figure 7.51. In delivering the necessary power to a load, a lower
line loss will be incurred with the 240-V rms wiring, since the power loss in the
lines (the I2R loss, as it is commonly referred to) is directly related to the current
required by the load. In an effort to minimize line losses, the size of the wires is
increased for the lower-voltage case. This typically reduces the wire resistance by a
factor of 2. In the top circuit, assuming Rgs/2 = 0.01 €2, the current required by the
10-kW load is approximately 83.3 A, while in the bottom circuit, with Rg = 0.02 €2,
it is approximately one-half as much (41.7 A). (You should be able to verify that the

Hot ~
+ I
—
Vs % O
O Neutral Cl: 120V Ea
A PL=10kW
L o
+
Hot ~
(o] Ii
Vw=0Z£0° (Neutral) o
V=120 £0°  (Hot)
V=120 £180°  (Hot)
or Vg =—Vp C:' 240V [R]
Figure 7.50 Line voltage P;=10kW
convention for residential o—

circuits ; . .
Figure 7.51 Line losses in

120- and 240-VAC circuits

o
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approximate /R losses are 69.4 W in the top circuit and 34.7 W in the bottom circuit.)
Limiting the 7R losses is important from the viewpoint of efficiency, besides reducing
the amount of heat generated in the wiring for safety considerations. Figure 7.52 shows
some typical wiring configurations for a home. Note that several circuits are wired
and fused separately.

R B w ’
Main
breaker_ - | ‘... ‘|
i \ = Earth ground
:
____________ ]
20 A —\é’— Kitchen
av, B — (120-V circuit)
15A T—\é’_ Bedroom
v, B — (120-V circuit)
20 A —\é] Washing machine,
- f\/ B — Dryer (120-V circuit)
f 20 A
r\J L %\/ or G Electric stove
Av, (240-V circuit)
20 A GFECI L
v, 0O R
15 A o w Outdoor
? = A A G lighting

Figure 7.52 A typical residential wiring arrangement

CHECK YOUR UNDERSTANDING

Use the circuit of Figure 7.51 to show that the I’R losses will be higher for a 120-V service
appliance than a 240-V service appliance if both have the same power usage rating.

‘Suryex
Iomod aures 9y I0J IINOID A-OfZ Yl JO SISSO[ Y S[qNOP SBY NI A-OZ] Y], :Tomsuy

Today, most homes have three wire connections to their outlets. The outlets ap-
pear as sketched in Figure 7.53. Then why are both the ground and neutral connections

© The McGraw-Hill
Companies, 2007
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< LO5
< LO5
Neutral Hot
(white (black
wire) wire)

Ground (green or bare wire)

Figure 7.53 A three-wire

outlet
n
(o]
|
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needed in an outlet? The answer to this question is safety: The ground connection is
used to connect the chassis of the appliance to earth ground. Without this provision,
the appliance chassis could be at any potential with respect to ground, possibly even
at the hot wire’s potential if a segment of the hot wire were to lose some insulation and
come in contact with the inside of the chassis! Poorly grounded appliances can thus
be a significant hazard. Figure 7.54 illustrates schematically how, even though the
chassis is intended to be insulated from the electric circuit, an unintended connection
(represented by the dashed line) may occur, for example, because of corrosion or a
loose mechanical connection. A path to ground might be provided by the body of a
person touching the chassis with a hand. In the figure, such an undesired ground loop
current is indicated by /. In this case, the ground current /¢ would flow directly
through the body to ground and could be harmful.

In some cases the danger posed by such undesired ground loops can be great,
leading to death by electric shock. Figure 7.55 describes the effects of electric currents
on an average male when the point of contact is dry skin. Particularly hazardous con-
ditions are liable to occur whenever the natural resistance to current flow provided by
the skin breaks down, as would happen in the presence of water. Thus, the danger pre-
sented to humans by unsafe electric circuits is very much dependent on the particular
conditions—whenever water or moisture is present, the natural electrical resistance of
dry skin, or of dry shoe soles, decreases dramatically, and even relatively low voltages
can lead to fatal currents. Proper grounding procedures, such as are required by the
National Electrical Code, help prevent fatalities due to electric shock. The ground
fault circuit interrupter, labeled GFCI in Figure 7.52, is a special safety circuit used

B .
+0O Chassis
1 L
1 I
————— AW -----
120V Load
w | [} O +
-0 Unknown
potential
G
O O
B
+O Chassis
] [l
1 I
----- AW --==-
120V Load
w { |}
-0
G
o - . Earth ground

Figure 7.54 Unintended connection

L~/
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Severe burns

T TT

Respiratory paralysis
| )Ventricular fibrillation

0.1 Severe shock

Extreme breathing

/
- difficulties e \ % AN
Cannot let go

Amperes
X

0.01 ! Painful / /
K Mild sensation / q
Threshold of
I perception
0.001 T
Figure 7.55 Physiological - o~
effects of electric currents
—_—

Figure 7.56 Outdoor pool

primarily with outdoor circuits and in bathrooms, where the risk of death by electric
shock is greatest. Its application is best described by an example.

Consider the case of an outdoor pool surrounded by a metal fence, which uses
an existing light pole for a post, as shown in Figure 7.56. The light pole and the metal
fence can be considered as forming a chassis. If the fence were not properly grounded
all the way around the pool and if the light fixture were poorly insulated from the
pole, a path to ground could easily be created by an unaware swimmer reaching, say,
for the metal gate. A GFCI provides protection from potentially lethal ground loops,
such as this one, by sensing both the hot-wire (B) and the neutral (W) currents. If the
difference between the hot-wire current /g and the neutral current Iy is more than
a few milliamperes, then the GFCI disconnects the circuit nearly instantaneously.
Any significant difference between the hot and neutral (return-path) currents means
that a second path to ground has been created (by the unfortunate swimmer, in this
example) and a potentially dangerous condition has arisen. Figure 7.57 illustrates the
idea. GFCIs are typically resettable circuit breakers, so that one does not need to
replace a fuse every time the GFCI circuit is enabled.

+ O
120 vV
w

Figure 7.57 Use of a GFCI in a potentially hazardous setting
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7.6 GENERATION AND DISTRIBUTION
OF AC POWER

We now conclude the discussion of power systems with a brief description of the
various elements of a power system. Electric power originates from a variety of
sources; in Chapter 17, electric generators will be introduced as a means of producing
electric power from a variety of energy conversion processes. In general, electric
power may be obtained from hydroelectric, thermoelectric, geothermal, wind, solar,
and nuclear sources. The choice of a given source is typically dictated by the power
requirement for the given application, and by economic and environmental factors. In
this section, the structure of an AC power network, from the power-generating station
to the residential circuits discussed in Section 7.5, is briefly outlined.

A typical generator will produce electric power at 18 kV, as shown in the diagram
of Figure 7.58. To minimize losses along the conductors, the output of the generators
is processed through a step-up transformer to achieve line voltages of hundreds of
kilovolts (345 kV, in Figure 7.58). Without this transformation, the majority of the
power generated would be lost in the transmission lines that carry the electric current
from the power station.

The local electric company operates a power-generating plant that is capable of
supplying several hundred megavolt-amperes (MVA) on a three-phase basis. For this
reason, the power company uses a three-phase step-up transformer at the generation
plant to increase the line voltage to around 345 kV. One can immediately see that
at the rated power of the generator (in megavolt-amperes) there will be a significant
reduction of current beyond the step-up transformer.

18 kV /\ /\
= J) / 3¢ step-down
transformer
345 kV 140 KV
Generator
Generating plant
46 kV
< 3¢ step-down
( ( ( transformer
3¢ step-down 4,800 V 3¢ step-down
< transformer transformer to
substation industrial or
( ) \\\\/\\\\/@/ commercial
| | | | | | customer
AVAAVA V4
4,800 V Center-tap

transformer

i

120/240 V

A4

= Three-wire service

Figure 7.58 Structure of an AC power distribution network
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Beyond the generation plant, an electric power network distributes energy to

several substations. This network is usually referred to as the power grid. At the
substations, the voltage is stepped down to a lower level (10 to 150 kV, typically).
Some very large loads (e.g., an industrial plant) may be served directly from the power
grid, although most loads are supplied by individual substations in the power grid. At
the local substations (one of which you may have seen in your own neighborhood),
the voltage is stepped down further by a three-phase step-down transformer to 4,800
V. These substations distribute the energy to residential and industrial customers. To
further reduce the line voltage to levels that are safe for residential use, step-down
transformers are mounted on utility poles. These drop the voltage to the 120/240-V
three-wire single-phase residential service discussed in Section 7.5. Industrial and
commercial customers receive 460- and/or 208-V three-phase service.

Conclusion

Chapter 7 introduces the essential elements that permit the analysis of AC power systems. AC
power is essential to all industrial activities, and to the conveniences we are accustomed to in
residential life. Virtually all engineers will be exposed to AC power systems in their careers,
and the material presented in this chapter provides all the necessary tools to understand the
analysis of AC power circuits. Upon completing this chapter, you should have mastered the
following learning objectives:

1.

Understand the meaning of instantaneous and average power, master AC power notation,
and compute average power for AC circuits. Compute the power factor of a complex
load. The power dissipated by a load in an AC circuit consists of the sum of an average
and a fluctuating component. In practice, the average power is the quantity of interest.

Learn complex power notation, compute apparent, real, and reactive power for complex
loads. Draw the power triangle, and compute the capacitor size required to perform
power factor correction on a load. AC power can best be analyzed with the aid of
complex notation. Complex power S is defined as the product of the phasor load voltage
and the complex conjugate of the load current. The real part of S is the real power actually
consumed by a load (that for which the user is charged); the imaginary part of S is called
the reactive power and corresponds to energy stored in the circuit—it cannot be directly
used for practical purposes. Reactive power is quantified by a quantity called the power
factor, and it can be minimized through a procedure called power factor correction.

Analyze the ideal transformer; compute primary and secondary currents and voltages
and turns ratios. Calculate reflected sources and impedances across ideal transformers.
Understand maximum power transfer. Transformers find many applications in electrical
engineering. One of the most common is in power transmission and distribution, where
the electric power generated at electric power plants is stepped “up” and “down’ before
and after transmission, to improve the overall efficiency of electric power distribution.
Learn three-phase AC power notation; compute load currents and voltages for balanced
wye and delta loads. AC power is generated and distributed in three-phase form.
Residential services are typically single-phase (making use of only one branch of the
three-phase lines), while industrial applications are often served directly by three-phase
power.

Understand the basic principles of residential electrical wiring, of electrical safety, and
of the generation and distribution of AC power.
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HOMEWORK PROBLEMS

Section 7.1: Power in AC Circuits

7.1 The heating element in a soldering iron has a
resistance of 30 2. Find the average power dissipated
in the soldering iron if it is connected to a voltage
source of 117 V rms.

7.2 A coffeemaker has a rated power of 1,000 W at 240
V rms. Find the resistance of the heating element.

7.3 A current source i (¢) is connected to a 50-S2 resistor.

Find the average power delivered to the resistor, given
that i (¢) is

a. Scos50r A

b. Scos(50t —45°) A

c. 5c¢0s50f —2cos(50t — 0.873) A
d. 5cos50r —2 A

7.4 Find the rms value of each of the following periodic
currents:
a. cos 450t 4+ 2 cos450¢
b. cos 5t + sin 5¢

cos 4507 4 2

o

a

cos 5t + cos(5t + 7 /3)
e. cos 200t + cos400¢

7.5 A current of 4 A flows when a neon light
advertisement is supplied by a 110-V rms power
system. The current lags the voltage by 60°. Find the
power dissipated by the circuit and the power factor.

7.6 A residential electric power monitoring system rated
for 120-V rms, 60-Hz source registers power
consumption of 1.2 kW, with a power factor of 0.8.
Find
a. The rms current.

b. The phase angle.

c. The system impedance.

d. The system resistance.

7.7 A drilling machine is driven by a single-phase
induction machine connected to a 110-V rms supply.
Assume that the machining operation requires 1 kW,
that the tool machine has 90 percent efficiency, and
that the supply current is 14 A rms with a power factor
of 0.8. Find the AC machine efficiency.

7.8 Given the waveform of a voltage source shown in
Figure P7.8, find:

a. The steady DC voltage that would cause the same
heating effect across a resistance.

b. The average current supplied to a 10-€2 resistor
connected across the voltage source.

c. The average power supplied to a 1-€2 resistor
connected across the voltage source.

vs(®),V
1 —
] ]
ol 1 2\3|4\5‘6t,s
3+
Figure P7.8

7.9 A current source i (¢) is connected to a 100-Q
resistor. Find the average power delivered to the
resistor, given that i (¢) is:

a. 4 cos 100r A

b. 4 cos (100r — 50°) A

c. 4 cos 100f — 3 cos (100r — 50°) A
d. 4cos 100r —3 A

7.10 Find the rms value of each of the following
periodic currents:

a. cos 377t + cos 377t

b. cos 2t + sin 2t

cos 377t + 1

d. cos 2t + cos (2t+ 135°)
e. cos 2t + cos 33

o

Section 7.2: Complex Power

7.11 A current of 10 A rms flows when a single-phase
circuit is placed across a 220-V rms source. The
current lags the voltage by 60°. Find the power
dissipated by the circuit and the power factor.

7.12 A single-phase circuit is placed across a 120-V
rms, 60-Hz source, with an ammeter, a voltmeter, and a
wattmeter connected. The instruments indicate 12 A,
120V, and 800 W, respectively. Find

a. The power factor.
b. The phase angle.
c. The impedance.
d. The resistance.

7.13 For the following numeric values, determine the
average power, P, the reactive power, O, and the

L/
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complex power, S, of the circuit shown in Figure
P7.13. Note: phasor quantities are rms.

a. vg(t) = 650 cos (377t) V
ir(t) = 20 cos (377t — 10°) A

b. Vg =460£0°V
I, =14.142 - 45° A

c. Vg =100£0°V
I, =8.6£—-86°A

d. Vg =208£4—-30°V
I, =234-63°A

iy()

v(®) Z,

Figure P7.13

7.14 For the circuit of Figure P7.13, determine the
power factor for the load and state whether it is leading
or lagging for the following conditions:

a. vs(t) =540 cos (wt + 15°) V
ir(t) =20 cos (wt +47°) A
b. vs(t) = 155 cos (wt — 15°) V
ir(t) =20 cos (wt —22°) A
c. vg(t) =208 cos (wt) V
ir(t) = 1.7sin (ot + 175°) A
d. Z, =(48+,j16)Q

7.15 For the circuit of Figure P7.13, determine whether
the load is capacitive or inductive for the circuit shown
if
a. pf = 0.87 (leading)

b. pf = 0.42 (leading)

c. vg(t) =42 cos (wt)
ip(t) = 4.2 sin (wt)

d. vg(t) = 10.4 cos (wt — 12°)
ir(t) = 0.4 cos (wt — 12°)

7.16 The circuit shown in Figure P7.16 is to be used on
two different sources, each with the same amplitude
but at different frequencies.

a. Find the instantaneous real and reactive power if
vs(¢) = 120 cos 377t (i.e., the frequency is 60 Hz).

b. Find the instantaneous real and reactive power if
vs(t) = 650 cos 314¢ (i.e., the frequency is 50 Hz).

© The McGraw-Hill
Companies, 2007

Part I Circuits 395

o) 1)

AAMA
VVVy
]

C =265 uF L=2555mH R=10Q

Figure P7.16

7.17 A load impedance, Z; = 10 + j3 , is connected
to a source with line resistance equal to 1 €2, as shown
in Figure P7.17. Calculate the following values:

a. The average power delivered to the load.
b. The average power absorbed by the line.

c. The apparent power supplied by the generator.

a

The power factor of the load.

e. The power factor of line plus load.

I Line
> AAAA
Yvvy
R=1Q
Vs =23020°

Load

Figure P7.17

7.18 A single-phase motor draws 220 W at a power
factor of 80 percent (lagging) when connected across a
200-V, 60-Hz source. A capacitor is connected in
parallel with the load to give a unity power factor, as
shown in Figure P7.18. Find the required capacitance.

| O

O) c

[,

Figure P7.18
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7.19 If the circuits shown in Figure P7.19 are to be at c. What value of load impedance would permit
unity power factor, find Cp and Cs. maximum power transfer?
: ¢ —) 0V
: : TGy T
5 E E Ry, + E E Ry &/
WO el 3O
: : L : ' L
Source : ' Load Source  * ' Load
R, =5Q,X;=5Q, vy(t) = 100 sin(3771) 10Q §
Figure P7.19
7.20 A 1,000 W electric motor is connected to a source
of 120 V, 60 Hz, and the result is a lagging pf of 0.8.
To correct the pf to 0.95 lagging, a capacitor is placed
in parallel with the motor. Calculate the current drawn 100 k€
from the source with and without the capacitor Source
connected. Determine the value of the capacitor
required to make the correction.
7.21 The motor inside a blender can be modeled as a N
resistance in series with an inductance, as shown in Jj50Q
Figure P7.21.
a. What is the average power, Pay, dissipated inthe 7 7777777 T A e
load? Load
b. What is the motor’s power factor?
c. What value of capacitor when placed in parallel —— MWWN—
with the motor will change the power factor to 0.9 j2Q 9.6 Q
lagging)?
(lagging) Figure P7.22
:' ------------------ E :' ------------------ E 7.23 For the following numerical values, determine the
: ; ; : average power P, the reactive power Q, and the
! 2’0 ! ! ! complex power S of the circuit shown in Figure P7.23.
; ; ; ; Note: phasor quantities are rms.
s Wby ———o— i e
' ' : ' a. vg(t) =450cos (377t) V
: : ; 0o ! ir(t) = 50 cos(377t — 0.349) A
120 Ve ; : : b. Ys = 14040V
! ' ' ' I, =5.854(—n/6) A
; ; 5 0mH | c. Vs =500V
; P ; I, =19.2/0.8A
; 5 ; ; d. Vs =740/ (—m/4) V
R : b l I, =1084(-1.5 A
Wall Blender .
socket motor ()

—

Figure P7.21

vs0(®) [z]

7.22 For the circuit shown in Figure P7.22,

a. Find the Thévenin equivalent circuit for the source.

b. Find the power dissipated by the load resistor. Figure P7.23
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7.24 TFor the circuit of Figure P7.23, determine the
power factor for the load and state whether it is leading
or lagging for the following conditions:

a. vg(t) =780cos(wt +1.2) V
ip(t) =90cos(wt + 7 /2) A
b. vg(t) =39cos(wt +/6) V
ir(t) = 12cos(wt — 0.185) A
c. vg(t) =104 cos(wt) V
ip(t) =48.7sin(wt +2.74) A
d Z,=012+,8)Q
7.25 For the circuit of Figure P7.23, determine whether
the load is capacitive or inductive for the circuit shown
if
a. pf = 0.48 (leading)
b. pf = 0.17 (leading)
c. vg(t) = 18 cos(wt)
ir(t) = 1.8sin(wt)
d. vs(t) = 8.3 cos(wt — 1 /6)
ip(t) = 0.6 cos(wt — 7 /6)
7.26 Find the real and reactive power supplied by the

source in the circuit shown in Figure P7.26. Repeat if
the frequency is increased by a factor of 3.

1
2H  1sF

vg(f) =10 cos 3t V 4 Q

Figure P7.26

7.27 In the circuit shown in Figure P7.27, the sources
are Vg; = 364(—n/3) Vand Vs, =24/0.644 V. Find

a. The real and imaginary current supplied by each
source.

b. The total real power supplied.

8 Q 6Q —12Q
Jj6 Q ?’LDVSZ

7.28 The load Z, in the circuit of Figure P7.28 consists
of a 25-Q resistor in series with a 0.1-mF capacitor.
Assuming f = 60 Hz, find

Vs

Figure P7.27
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The source power factor.

IS

The current is.

o

The apparent power delivered to the load.

a

The apparent power supplied by the source.

e. The power factor of the load.

~
Is

—> Line

AAAA

\AAAJ

R=1Q

(’:) Vi = 230.20°

|:ZL Load

Figure P7.28

7.29 The load Z; in the circuit of Figure P7.28 consists
of a 25-Q2 resistor in series with a 0.1-H inductor.
Assuming f = 60 Hz, calculate the following.

a. The apparent power supplied by the source.
b. The apparent power delivered to the load.
c. The power factor of the load.
7.30 The load Z; in the circuit of Figure P7.28 consists
of a 25-Q resistor in series with a 0.1-mF capacitor and

a 70.35-mH inductor. Assuming f = 60 Hz, calculate
the following.

a. The apparent power delivered to the load.
b. The real power supplied by the source.
c. The power factor of the load.
7.31 Calculate the apparent power, real power, and

reactive power for the circuit shown in Figure P7.31.
Draw the power triangle. Assume f = 60 Hz.

Ts

—

R=20Q
C:)VS:SOV

C =100 uF

Figure P7.31

7.32 Repeat Problem 7.31 for the two cases f = 50 Hz
and f = 0 Hz (DC).

7.33 A single-phase motor is connected as shown in
Figure P7.33 to a 50-Hz network. The capacitor value
is chosen to obtain unity power factor. If V. =220V,
I =20 A, and I, = 25 A, find the capacitor value.
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® *

|1
1
9}

Figure P7.33

7.34 Suppose that the electricity in your home has gone

out and the power company will not be able to have
you hooked up again for several days. The freezer in
the basement contains several hundred dollars’ worth
of food that you cannot afford to let spoil. You have
also been experiencing very hot, humid weather and
would like to keep one room air-conditioned with a
window air conditioner, as well as run the refrigerator
in your kitchen. When the appliances are on, they draw
the following currents (all values are rms):

Air conditioner: 9.6 A@ 120V
pf = 0.90 (lagging)

Freezer: 42A@ 120V
pf = 0.87 (lagging)

Refrigerator: 35A@ 120V

pf = 0.80 (lagging)
In the worst-case scenario, how much power must an
emergency generator supply?

7.35 The French TGV high-speed train absorbs 11 MW

at 300 km/h (186 mi/h). The power supply module is
shown in Figure P7.35. The module consists of two
25-kV single-phase power stations connected at the
same overhead line, one at each end of the module. For
the return circuits, the rail is used. However, the train is
designed to operate at a low speed also with 1.5-kV
DC in railway stations or under the old electrification
lines. The natural (average) power factor in the AC
operation is 0.8 (not depending on the voltage).
Assuming that the overhead line equivalent specific
resistance is 0.2 /km and that the rail resistance could
be neglected, find

a. The equivalent circuit.

b. The locomotive’s current in the condition of a
10 percent voltage drop.

c. The reactive power.

d. The supplied real power, overhead line losses, and
maximum distance between two power stations
supplied in the condition of a 10 percent voltage

7. AC Power
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drop when the train is located at the half-distance
between the stations.

e. Overhead line losses in the condition of a
10 percent voltage drop when the train is located at
the half-distance between the stations, assuming
pf = 1. (The French TGV is designed with a
state-of-the-art power compensation system.)

f. The maximum distance between the two power
stations supplied in the condition of a 10 percent
voltage drop when the train is located at the
half-distance between the stations, assuming the
DC (1.5-kV) operation at one-quarter power.

Overhead line

Iy

V51 =25 kV.£0 Vga =25 kV.L0

Rail
| 1 OO0 OO0 L | v
T C T C 7 C 7 C T .7 .1 .
Figure P7.35

7.36 An industrial assembly hall is continuously lighted

by one hundred 40-W mercury vapor lamps supplied
by a 120-V and 60-Hz source with a power factor of
0.65. Due to the low power factor, a 25 percent penalty
is applied at billing. If the average price of 1 kWh is
$0.01 and the capacitor’s average price is $50 per
millifarad, compute after how many days of operation
the penalty billing covers the price of the power factor
correction capacitor. (To avoid penalty, the power
factor must be greater than 0.85.)

7.37 With reference to Problem 7.36, consider that the

current in the cable network is decreasing when power
factor correction is applied. Find

a. The capacitor value for the unity power factor.

b. The maximum number of additional lamps that can
be installed without changing the cable network if a
local compensation capacitor is used.

7.38 If the voltage and current given below are supplied

by a source to a circuit or load, determine

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive components in the
circuit (load).

c. The power factor angle and the power factor.

V, =7/0873V

I, = 13 £(—0.349) A

o



@ ‘ Rizzoni: Principles and I. Circuits 7. AC Power © The McGraw-Hill
Applications of Electrical Companies, 2007

Engineering, Fifth Edition

Part I Circuits 399
7.39 Determine the time-averaged total power, the real 7.42 A center-tapped transformer has the schematic
power dissipated, and the reactive power stored in each representation shown in Figure P7.41. The
of the impedances in the circuit shown in Figure P7.39 primary-side voltage is stepped down to a
if secondary-side voltage {]f“ by aratioof n : 1. On the
{]s | =170/ V20V secondary side, Viec; = Ve = %VSEC.
V,=170/v2/Z v a. If Vi = 22020° V and n = 11, find Veee, Veeers
2 and {’mz.
w =377 rad/s L~ .
- b. What must z be if Vyim = 110£0° V and we desire
Z, :0~74€ Q |\~75502| tobe 5 V rms?

Z; =1.520.105 Q 7.43 For the circuit shown in Figure P7.43, assume that
Z3;=03+ ;04 Q v, = 120 V rms. Find

a. The total resistance seen by the voltage source.

b. The primary current.

c. The primary power.

Figure P7.39 1Q

7.40 If the voltage and current supplied to a circuit or 1:4
load by a source are Vg H VZEE 16 Q
V, = 1704(—0.15) V. I, = 1320.28 A

determine

Figure P7.43
a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).
b. The power stored in reactive components in the . .
S 7.44 With reference to Problem 7.43 and Figure P7.43
circuit (load).

find
c. The power factor angle and power factor.
a. The secondary current.

Section 7.3: Transformers b. The installation efficiency Piou/ Prource -

7.41 A center-tapped transformer has the schematic c. The value of the load resistance which can absorb
representation shown in Figure P7.41. The the maximum power from the given source.
primary-side voltage is stepped down to two
secondary-side voltages. Assume that each secondary
supplies a 5-kW resistive load and that the primary is
connected to 120 V rms. Find a. How much current can the transformer supply to

the customer?

7.45 An ideal transformer is rated to deliver 460 kVA at
380 V to a customer, as shown in Figure P7.45.

a. The primary power.
b. If the customer’s load is purely resistive (i.e., if
pf = 1), what is the maximum power that the

customer can receive?

b. The primary current.

n:1

O c. If the customer’s power factor is 0.8 (lagging),

* . what is the maximum usable power the customer
can receive?

Vorim d. What is the maximum power if the pf is 0.7

(lagging)?

- e. If the customer requires 300 kW to operate, what is

(e,

the minimum power factor with the given size
Figure P7.41 transformer?
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(o]

(o]

zZ
[] Customer’s
load

Customer

(e,

o

Ideal transformer

3t

Figure P7.45

7.46 For the ideal transformer shown in Figure P7.46,
consider that vs(t) = 294 cos(377¢) V. Find

a. Primary current.
b. v, ().
c. Secondary power.

d. The installation efficiency Pload / Psource-

100 Q

25:1
0
. . +
vs(0) % 2250 v
o)

Figure P7.46

7.47 1f the transformer shown in Figure P7.47 is ideal,
find the turns ratio N = 1/n that will provide
maximum power transfer to the load.

Ry n:l
0
. ° +
vs(0) H IR0
o)

Rs=1800Q R, =8Q

AAAA

Figure P7.47

7.48 Assume the 8- resistor is the load in the circuit
shown in Figure P7.48. Assume v, = 110 V rms and a
variable turns ratio of 1 : n. Find

a. The maximum power dissipated by the load.
b. The maximum power absorbed from the source.

c. The power transfer efficiency.

) 0

© The McGraw-Hill
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Figure P7.48

7.49 1If we knew that the transformer shown in Figure

P7.49 were to deliver 50 A at 110 V rms with a certain
resistive load, what would the power transfer efficiency
between source and load be?

e

Figure P7.49

7.50 A method for determining the equivalent circuit of

a transformer consists of two tests: the open-circuit test
and the short-circuit test. The open-circuit test, shown
in Figure P7.50(a), is usually done by applying rated
voltage to the primary side of the transformer while
leaving the secondary side open. The current into the
primary side is measured, as is the power dissipated.

The short-circuit test, shown in Figure P7.50(b),
is performed by increasing the primary voltage until
rated current is going into the transformer while the
secondary side is short-circuited. The current into the
transformer, the applied voltage, and the power
dissipated are measured.

The equivalent circuit of a transformer is shown
in Figure P7.50(c), where r,, and L, represent the
winding resistance and inductance, respectively, and 7.
and L. represent the losses in the core of the
transformer and the inductance of the core. The ideal
transformer is also included in the model.

With the open-circuit test, we may assume that
ip = is = 0. Then all the current that is measured is
directed through the parallel combination of r. and L..
We also assume that |r.|| jwL.| is much greater than
rw + joL,. Using these assumptions and the
open-circuit test data, we can find the resistance . and
the inductance L..
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In the short-circuit test, we assume that Vsmnda,y is
zero, so that the voltage on the primary side of the ideal

transformer is also zero, causing no current flow through the

re — L. parallel combination. Using this assumption with
the short-circuit test data, we are able to find the resistance
rw» and inductance L.

Using the following test data, find the equivalent
circuit of the transformer:

Open-circuit test: V=241V
I =095A
P=32W
Short-circuit test: V=5V
I =525A
P =26W

Both tests were made at w = 377 rad/s.

@ W—1—; —0
'O §> |
o O
(a)
W 9 O
+ [ ] [ ]
; |
. (b) -

Iy L w
O—AWW—TT 0+
~ e o ~
e
e %E L. g ‘ ‘ E Vsecondary
(e, O -

©
Figure P7.50

7.51 Using the methods of Problem 7.50 and the
following data, find the equivalent circuit of the
transformer tested:

Open-circuit test: Vpr =4,600V
Ioc =0.7A
P =200W

Short-circuit test: P =50W
Vp =52V

7. AC Power
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The transformer is a 460-k VA transformer, and the
tests are performed at 60 Hz.

7.52 A method of thermal treatment for a steel pipe is to
heat the pipe by the Joule effect, flowing a current
directly in the pipe. In most cases, a low-voltage
high-current transformer is used to deliver the current
through the pipe. In this problem, we consider a
single-phase transformer at 220 V rms, which delivers
1 V. Due to the pipe’s resistance variation with
temperature, a secondary voltage regulation is needed
in the range of 10 percent, as shown in Figure P7.52.
The voltage regulation is obtained with five different
slots in the primary winding (high-voltage regulation).
Assuming that the secondary coil has two turns, find
the number of turns for each slot.

+ 220V -

Pipe

Sliding contact

Figure P7.52

7.53 With reference to Problem 7.52, assume that the
pipe’s resistance is 0.0002 €2, the secondary resistance
(connections + slide contacts) is 0.00005 €2, and the
primary current is 28.8 A with pf = 0.91 Find

a. The plot number.
b. The secondary reactance.
c. The power transfer efficiency.

7.54 A single-phase transformer used for street lighting
(high-pressure sodium discharge lamps) converts 6 kV
to 230 V (to load) with an efficiency of 0.95. Assuming

pf = 0.8 and the primary apparent power is 30 kVA,
find

a. The secondary current.

b. The transformer’s ratio.
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7.55 The transformer shown in Figure P7.55 has several
sets of windings on the secondary side. The windings
have the following turns ratios:

a. : N =1/15
b. :N =1/4
c. :N =1/12
d. :N =1/18

If Viim = 120V, find and draw the connections that will
allow you to construct the following voltage sources:

a. 24.67£0°V
b. 36.67£0° V
18£0° V

. 54.67£180° V

o

o

(o2

= Oa
+
°
o
b
Vorim ° b’
c
o ’
c
%,, O d
o od

Figure P7.55

7.56 The circuit in Figure P7.56 shows the use of ideal
transformers for impedance matching. You have a
limited choice of turns ratios among available
transformers. Suppose you can find transformers with
turns ratios of 2:1, 7:2, 120:1, 3:2, and 6:1. If Z; is
475/ — 25°Q and Z,;, must be 267/ — 25°, find the
combination of transformers that will provide this
impedance. (You may assume that polarities are easily
reversed on these transformers.)

© The McGraw-Hill
Companies, 2007

n:n, ny:n,

Zuh ‘
o

Figure P7.56

7.57 The wire that connects an antenna on your roof to
the TV set in your den is a 300-2 wire, as shown in
Figure P7.57(a). This means that the impedance seen
by the connections on your set is 300 2. Your TV,
however, has a 75-Q impedance connection, as shown
in Figure P7.57(b). To achieve maximum power
transfer from the antenna to the television set, you
place an ideal transformer between the antenna and the
TV as shown in Figure P7.57(c). What is the turns
ratio, N = 1/n, needed to obtain maximum power
transfer?

AN
N
300 Q
° a N
o
o -4 | I
(@)
75Q 4|
Antenna @
connections
Rear view of
television
(b)
300 Q

A\ 75 Q

antenna signal

]

©)
Figure P7.57

Section 7.4: Three-Phase Power

7.58 The magnitude of the phase voltage of a balanced
three-phase wye system is 220 V rms. Express each
phase and line voltage in both polar and rectangular
coordinates.
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7.59 The phase currents in a four-wire wye-connected
load are as follows:

- - S ~
I, = 10£0, I, = 124? I, =8£2.88
Determine the current in the neutral wire.

7.60 For the circuit shown in Figure P7.60, we see that
each voltage source has a phase difference of 277/3 in
relation to the others.

a. lfind VRV!, {’th, an(~i {’BR, where B

VRW~: VR - VW’~VWB = VW - VB’
and VBR = VB — VR.

b. Repeat part a, using the calculations
Vaw = Va/32(=7/6)
Vg = Viw/32(=7/6)
Vir = Vp/324(—1/6)

c. Compare the results of part a with the results of
part b.

Figure P7.60

7.61 For the three-phase circuit shown in Figure P7.61,
find the current in the neutral wire and the real power.

Ve=110£0V

Viy=110£2n/3 V

Vp= 1102 4n/3V

Figure P7.61

© The McGraw-Hill
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7.62 For the circuit shown in Figure P7.62, find the
current in the neutral wire and the real power.

Vr=22020

Iy

~ T 10Q
Viy=220£2n/3 O——

i;
Vi =220£ 41/3 O——
Iy

——

T

Figure P7.62

7.63 A three-phase steel-treatment electric oven has a
phase resistance of 10 2 and is connected at
three-phase 380-V AC. Compute

a. The current flowing through the resistors in wye
and delta connections.

b. The power of the oven in wye and delta

connections.

7.64 A naval in-board synchronous generator has an
apparent power of 50 kVA and supplies a three-phase
network of 380 V. Compute the phase currents, the
active powers, and the reactive powers if

a. The power factor is 0.85.

b. The power factor is 1.

7.65 In the circuit of Figure P7.65:
vs1 = 170 cos(wt) \'%
vsp = 170 cos(wt + 27 /3) \'%
vs3 = 170 cos(wt — 27 /3) \'%
f=60Hz Z, =0.52£20° Q
Z, =0.35£0° Q Z3=1.74(-90°) @
Determine the current through Z;, using
a. Loop/mesh analysis.
b. Node analysis.

c. Superposition.

Figure P7.65
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7.66 Determine the current through R in the circuit of v, v v
Figure P7.66:
vy = 170 cos(wt) \'% R, Ry R3
v, = 170 cos(wt — 2m/3) v 1st winding 2nd winding 3rd winding
v3 = 170 cos(wt + 27 /3) \'% L Ly L3
f =400Hz R =100 @
C =0.47 uF L =100 mH

(a)

Vi A/ V3
R
R, Ry R3
Figure P7.66 L Ly L3
RS
7.67 The three sources in the circuit of Figure P7.67 are (b)
connected in wye configuration and the loads in a delta
configuration. Determine the current through each ~ o~
impedance. - Ve Ik
+
vs1 = 170 cos(wt) \" 416/ —30° ;/W7 iw
p— P
vy, = 170 cos(wt + 27/3) \'% 416 210° o
vy3 = 170 cos(wt — 27/3) \'%
416£ 90°
f=60Hz Z, =309 Vi, 15
7y =7/7/29 Zy=0—j11Q " —o—

Iy
T
(©)
Figure P7.68

7.69 With reference to the motor of Problem 7.67,

Figure P7.67

a. How much power (in watts) is delivered to the

motor?
7.68 If we model each winding of a three-phase motor b. What is the motor’s power factor?
like the circuit shown in Figure P7.68(a) and connect c. Why is it common in industrial practice nof to

the windings as shown in Figure P7.68(b), we have the

. e connect the ground lead to motors of this type?
three-phase circuit shown in Figure P7.68(c). The

motor can be constructed so that R; = R, = R; and 7.70 1In general, a three-phase induction motor is

L = L, = L3, as is the usual case. If we connect the designed for wye connection operation. However, for
motor as shown in Figure P7.68(c), find the currents short-time operation, a delta connection can be used at
iR, iw, ig, and iN, assuming that the resistances are the nominal wye voltage. Find the ratio between the
40 Q each and each inductance is 5 mH. The frequency power delivered to the same motor in the wye and delta

of each of the sources is 60 Hz. connections.
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7.71 A residential four-wire system supplies power at
220 V rms to the following single-phase appliances: On
the first phase, there are ten 75-W bulbs. On the second
phase, there is a 750-W vacuum cleaner with a power
factor of 0.87. On the third phase, there are ten 40-W
fluorescent lamps with power factor of 0.64. Find

a. The current in the netural wire.

b. The real, reactive, and apparent power for each
phase.

7.72 The electric power company is concerned with the
loading of its transformers. Since it is responsible for a
large number of customers, it must be certain that it
can supply the demands of a// customers. The power
company’s transformers will deliver rated kVA to the
secondary load. However, if the demand increased to a
point where greater than rated current were required,
the secondary voltage would have to drop below rated
value. Also, the current would increase, and with it the
IR losses (due to winding resistance), possibly
causing the transformer to overheat. Unreasonable
current demand could be caused, for example, by
excessively low power factors at the load.

The customer, on the other hand, is not greatly
concerned with an inefficient power factor, provided
that sufficient power reaches the load. To make the
customer more aware of power factor considerations,
the power company may install a penalty on the
customer’s bill. A typical penalty—power factor chart is
shown in Table 7.3. Power factors below 0.7 are not
permitted. A 25 percent penalty will be applied to any
billing after two consecutive months in which the
customer’s power factor has remained
below 0.7.

Table 7.3

Power factor Penalty

0.850 and higher =~ None

0.8 to 0.849 1%
0.75 t0 0.799 2%
0.7 to 0.749 3%

Courtesy of Detroit Edison.

The wye-wye circuit shown in Figure P7.72 is
representative of a three-phase motor load. Assume
rms values.

a. Find the total power supplied to the motor.

b. Find the power converted to mechanical energy if
the motor is 80 percent efficient.

c. Find the power factor.

© The McGraw-Hill
Companies, 2007
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d. Does the company risk facing a power factor
penalty on its next bill if all the motors in the
factory are similar to this one?

Figure P7.72

7.73 To correct the power factor problems of the motor
in Problem 7.72, the company has decided to install
capacitors as shown in Figure P7.73. Assume rms
values.

a. What capacitance must be installed to achieve a
unity power factor if the line frequency is 60 Hz?

b. Repeat part a if the power factor is to be 0.85
(lagging).

5Q

j6Q

e —AW,

Figure P7.73

7.74 Find the apparent power and the real power
delivered to the load in the Y-A circuit shown in Figure
P7.74. What is the power factor? Assume rms values.
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Figure P7.74

7.75 The circuit shown in Figure P7.75 is a Y-A-Y
connected three-phase circuit. The primaries of the
transformers are wye-connected, the secondaries are
delta-connected, and the load is wye-connected. Find
the currents Izp, Iyp, Igp, 14,15, and I¢.

1 X 1,
460£0° V o 411 —
100
" 100
I —
wpP . —71Q —71Q
46021200 Vo——g— 41 / J

é" _j7 "’
- 4:1 - N4 10Q
3| [l

T,

Igp
460£-120° Vo——%

= Ideal
transformer

Figure P7.75

7.76 A three-phase motor is modeled by the
wye-connected circuit shown in Figure P7.76. At
t = t1, aline fuse is blown (modeled by the switch).
Find the line currents I, Iy, and Iz and the power
dissipated by the motor in the following conditions:

a t K h
b. t >t

R
120£0°V o

Fuse

w
120£120° V

1=t

B
120£-120°V o

Figure P7.76

7.77 For the circuit shown in Figure P7.77, find the
currents 14, I, Ic and Iy, and the real power
dissipated by the load.

220£0°V

IB
110£120° V°—| 00Q
IC
110£-120° V o—= l)
L m—
= IN

Figure P7.77
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CHAWPTER

OPERATIONAL AMPLIFIERS

n this chapter we analyze the properties of the ideal amplifier and explore the fea-

tures of a general-purpose amplifier circuit known as the operational amplifier (op-

amp). Understanding the gain and frequency response properties of the operational

amplifier is essential for the user of electronic instrumentation. Fortunately, the
availability of operational amplifiers in integrated-circuit form has made the task of
analyzing such circuits quite simple. The models presented in this chapter are based
on concepts that have already been explored at length in earlier chapters, namely,
Thévenin and Norton equivalent circuits and frequency response ideas.

Mastery of operational amplifier fundamentals is essential in any practical ap-
plication of electronics. This chapter is aimed at developing your understanding of
the fundamental properties of practical operational amplifiers. A number of useful
applications are introduced in the examples and homework problems.

409
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:) Learning Objectives

1. Understand the properties of ideal amplifiers and the concepts of gain, input im-
pedance, and output impedance. Section §.1.

2. Understand the difference between open-loop and closed-loop op-amp configura-
tions; and compute the gain of (or complete the design of) simple inverting, nonin-
verting, summing, and differential amplifiers using ideal op-amp analysis. Analyze
more advanced op-amp circuits, using ideal op-amp analysis; and identify important
performance parameters in op-amp data sheets. Section 8.2.

3. Analyze and design simple active filters. Analyze and design ideal integrator and
differentiator circuits. Sections 8.3, 8.4.

4.  Understand the structure and behavior of analog computers; design analog computer
circuits to solve simple differential equations. Section 8.5.

5. Understand the principal physical limitations of an op-amp. Section 8.6.

8.1 IDEAL AMPLIFIERS

One of the most important functions in electronic instrumentation is that of amplifi-
cation. The need to amplify low-level electric signals arises frequently in a number of
applications. Perhaps the most familiar use of amplifiers arises in converting the low-
voltage signal from a cassette tape player, a radio receiver, or a compact disk player to
alevel suitable for driving a pair of speakers. Figure 8.1 depicts a typical arrangement.
Amplifiers have a number of applications of interest to the non—electrical engineer,
such as the amplification of low-power signals from transducers (e.g., bioelectrodes,
strain gauges, thermistors, and accelerometers) and other, less obvious functions that
will be reviewed in this chapter, for example, filtering and impedance isolation. We
turn first to the general features and characteristics of amplifiers, before delving into
the analysis of the operational amplifier.

©

©

___I©

Speakers
olejele) . ey load
B ——

I
Amplifier |
I

CD player

Source

Figure 8.1 Amplifier in audio system

Ideal Amplifier Characteristics

The simplest model for an amplifier is depicted in Figure 8.2, where a signal vg(¢) is
shown being amplified by a constant factor A, called the gain of the amplifier. Ideally,
the load voltage should be given by the expression

v (1) = Avs (1) 8.1
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Note that the source has been modeled as a Thévenin equivalent, and the load as an
equivalent resistance. Thévenin’s theorem guarantees that this picture can be repre-
sentative of more complex circuits. Hence, the equivalent source circuit is the circuit
the amplifier “sees” from its input port; and R, , the load, is the equivalent resistance
seen from the output port of the amplifier.

‘What would happen if the roles were reversed? That is, what does the source see
when it “looks” into the input port of the amplifier, and what does the load see when it
“looks” into the output port of the amplifier? While it is not clear at this point how one
might characterize the internal circuitry of an amplifier (which is rather complex), it
can be presumed that the amplifier will act as an equivalent load with respect to the
source and as an equivalent source with respect to the load. After all, this is a direct
application of Thévenin’s theorem. Figure 8.3 provides a pictorial representation of Rs Ront
this simplified characterization of an amplifier. The “black box” of Figure 8.2 is now

represented as an equivalent circuit with the following behavior. The input circuit has Avin ®
equivalent resistance Rj,, so that the input voltage v, is given by Rin Lz
R.
Uin = ——— g (8.2)
Rs + Rin

Figure 8.3 Simple voltage
The equivalent input voltage seen by the amplifier is then amplified by a constant amplifier model
factor A. This is represented by the controlled voltage source Avy,. The controlled
source appears in series with an internal resistor R,y, denoting the internal (output)
resistance of the amplifier. Thus, the voltage presented to the load is
Ry

v, = Avjy—— 8.3
t Rout + RL ( )

or, by substituting the equation for v;,,

Rin R
v, = (A = ) vs (8.4)
RS + Rin Rout + RL

In other words, the load voltage is an amplified version of the source voltage.

Unfortunately, the amplification factor is now dependent on both the source
and load impedances, and on the input and output resistance of the amplifier. Thus, a
given amplifier would perform differently with different loads or sources. What are
the desirable characteristics for a voltage amplifier that would make its performance
relatively independent of source and load impedances? Consider, once again, the ex-
pression for vy,. If the input resistance of the amplifier R;, were very large, the source
voltage vs and the input voltage v;, would be approximately equal:

Vin ~ Ug (8.5)
since

Rin
lim ——m (8.6)
Rn—0 Ry + Rg

By an analogous argument, it can also be seen that the desired output resistance for
the amplifier R, should be very small, since for an amplifier with Ro,c = 0, the load
voltage would be

v = Avin (8'7)
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Combining these two results, we can see that as Rj, approaches infinity and Ry
approaches zero, the ideal amplifier magnifies the source voltage by a factor A

v = AUS (8.8)

just as was indicated in the “black box” amplifier of Figure 8.2.

Thus, two desirable characteristics for a general-purpose voltage amplifier are
avery large input impedance and a very small output impedance. In the next sections
we will show how operational amplifiers provide these desired characteristics.

8.2 THE OPERATIONAL AMPLIFIER

An operational amplifier is an integrated circuit, that is, a large collection of
individual electric and electronic circuits integrated on a single silicon wafer. An op-
erational amplifier—or op-amp—can perform a great number of operations, such as
addition, filtering, and integration, which are all based on the properties of ideal am-
plifiers and of ideal circuit elements. The introduction of the operational amplifier in
integrated-circuit (IC) form marked the beginning of a new era in modern electronics.
Since the introduction of the first IC op-amp, the trend in electronic instrumentation
has been to move away from the discrete (individual-component) design of electronic
circuits, toward the use of integrated circuits for a large number of applications. This
statement is particularly true for applications of the type the non—electrical engineer
is likely to encounter: op-amps are found in most measurement and instrumentation
applications, serving as extremely versatile building blocks for any application that
requires the processing of electric signals.

Next, we introduce simple circuit models of the op-amp. The simplicity of the
models will permit the use of the op-amp as a circuit element, or building block, with-
out the need to describe its internal workings in detail. Integrated-circuit technology
has today reached such an advanced stage of development that it can be safely stated
that for the purpose of many instrumentation applications, the op-amp can be treated
as an ideal device. Following the introductory material presented in this chapter, more
advanced instrumentation applications are explored in Chapter 15.

The Open-Loop Model

The ideal operational amplifier behaves very much as an ideal difference amplifier,
that is, a device that amplifies the difference between two input voltages. Operational
amplifiers are characterized by near-infinite input resistance and very small output
resistance. As shown in Figure 8.4, the output of the op-amp is an amplified version
of the difference between the voltages present at the two inputs:'

Vou = Ay ony(vT —v7) 8.9

The input denoted by a plus sign is called the noninverting input (or terminal), while
that represented with a minus sign is termed the inverting input (or terminal). The
amplification factor, or gain, Ay o, is called the open-loop voltage gain and is quite
large by design, typically on the order of 10° to 107; it will soon become apparent
why a large open-loop gain is a desirable characteristic. Together with the high input
resistance and low output resistance, the effect of a large amplifier open-loop voltage

IThe amplifier of Figure 8.4 is a voltage amplifier; another type of operational amplifier, called a current
or transconductance amplifier, is described in the homework problems.



413

Rizzoni: Principles and I1. Electronics 8. Operational Amplifiers © The McGraw-Hill
Applications of Electrical Companies, 2007
Engineering, Fifth Edition
Part I Electronics
Positive
; power supply
N - 4 -
Vo Inverting input s
+ o—/
< Rout
Vin s Rin MW O
<
3 + Output
- AyoLyVin . O—
L Noninverting input _
v O — > Vout Vs
_ Negative
power supply
Op-amp model I Simplified circuit symbol
oVs
Offset null No connection
:l_ Inverting input
.Invert.ing Noninverting input Output
nput i — o
Nf)ninve.:rting Output Offset null
mnput 1n +
iE — Integrated-circuit operational
amplifier (IC op-amp)
—
o Vs

IC op-amp diagram

Figure 8.4 Operational amplifier model symbols, and circuit diagram

gain Ay or) 18 such that op-amp circuits can be designed to perform very nearly as
ideal voltage or current amplifiers. In effect, to analyze the performance of an op-amp
circuit, only one assumption will be needed: that the current flowing into the input

circuit of the amplifier is zero, or
Im =20 (8.10)

This assumption is justified by the large input resistance and large open-loop gain of
the operational amplifier. The model just introduced will be used to analyze three
amplifier circuits in the next part of this section.

The Operational Amplifier in Closed-Loop Mode

The Inverting Amplifier

One of the more popular circuit configurations of the op-amp, because of its sim-
plicity, is the so-called inverting amplifier, shown in Figure 8.5. The input signal to
be amplified is connected to the inverting terminal, while the noninverting terminal

FIND IT

ON THE WEB
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is grounded. It will now be shown how it is possible to choose an (almost) arbitrary
gain for this amplifier by selecting the ratio of two resistors. The analysis is begun by
noting that at the inverting input node, KCL requires that

s +ip =i 8.11)

The current iz, which flows back to the inverting terminal from the output, is appro-
priately termed feedback current, because it represents an input to the amplifier that
is “fed back” from the output. Applying Ohm’s law, we may determine each of the
three currents shown in Figure 8.5:

. Vs — U . VUout — VU .

o — fp= 7 i =0 8.12

N RS F RF in ( )
(the last by assumption, as stated earlier). The voltage at the noninverting input v is
easily identified as zero, since it is directly connected to ground: v+ = 0. Now, the
open-loop model for the op-amp requires that

Vout = Aviony(vT —v7) = —Ayonv” (8.13)
or
_ Uout
v =— 8.14)
AvoL)

Having solved for the voltage present at the inverting input v~ in terms of vy, wWe
may now compute an expression for the amplifier gain voy /vs. This quantity is called
the closed-loop gain, because the presence of a feedback connection between the
output and the input constitutes a closed loop.? Combining equations 8.11 and 8.12,
we can write

ig=—ip (8.15)
and

Rs  AvouRs  Rr  AvonRr
which leads to the expression

E UOUT . UOLlI UOUT (8 16)

& _ Vout _ Vout _ Vout (8.17)
Rs Rr  AvouRr AvoooRs
or
1 1 1
S— ( + + ) 8.18)
Rp/Rs  AvonRr/Rs  Avorn

If the open-loop gain of the amplifier Ay or) is sufficiently large, the terms
1/(AvoL)Rr/Rs) and 1/Ayo) are essentially negligible, compared with
1/(Rr/Rs). As stated earlier, typical values of Ay or, range from 10° to 107, and thus
it is reasonable to conclude that, to a close approximation, the following expression
describes the closed-loop gain of the inverting amplifier:

Vou R . . .
- = —R—F Inverting amplifier closed-loop gain 8.19)
Us N

2This terminology is borrowed from the field of automatic controls, for which the theory of closed-loop
feedback systems forms the foundation.
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That is, the closed-loop gain of an inverting amplifier may be selected simply by the
appropriate choice of two externally connected resistors. The price for this extremely
simple result is an inversion of the output with respect to the input—that is, a minus
sign.

Next, we show that by making an additional assumption itis possible to simplify
the analysis considerably. Consider that, as was shown for the inverting amplifier, the
inverting terminal voltage is given by

p = o (8.20)
AvoL)

Clearly, as Ay o) approaches infinity, the inverting-terminal voltage is going to be
very small (practically, on the order of microvolts). It may then be assumed that in
the inverting amplifier, v~ is virtually zero:

v A0 (8.21)

This assumption prompts an interesting observation (which may not yet appear ob-
vious at this point):

The effect of the feedback connection from output to inverting input is to force
the voltage at the inverting input to be equal to that at the noninverting input.

This is equivalent to stating that for an op-amp with negative feedback,
v AT 8.22)

The analysis of the operational amplifier can now be greatly simplified if the following
two assumptions are made:

1. iimw=0 Assumptions for analysis of ideal

2. v =v" op-amp with negative feedback (8.23)

This technique will be tested in the next subsection by analyzing a noninverting
amplifier configuration. Example 8.1 illustrates some simple design considerations.

CHECK YOUR UNDERSTANDING

Consider an op-amp connected in the inverting configuration with a nominal closed-loop gain
—Rp/Rs = —1,000 (this would be the gain if the op-amp had infinite open-loop gain). Derive
an expression for the closed-loop gain that includes the value of the open-loop voltage gain as
a parameter (Hint: start with equation 8.18, and do not assume that Ay or, is infinite); compute
the closed-loop gain for the following values of Ay or): 107, 10, 10°, 10*. How large should
the open-loop gain be if we desire to achieve the intended closed-loop gain with less than 0.1
percent error?

501 [enba prnoys (100 4y, “Koeinooe 1uadrad 1°0 10 "T°606 ‘1°066 0°666 ‘1°666 :SIomsuy
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Operational Amplifiers

Why Feedback?

Why is such emphasis placed on the notion of an
amplifier with a very large open-loop gain and with
negative feedback? Why not just design an amplifier
with a reasonable gain, say, x 10, or x 100, and just
use it as such, without using feedback connections?
In these paragraphs, we hope to answer these and
other questions, introducing the concept of negative
feedback in an intuitive fashion.

The fundamental reason for designing an am-
plifier with a very large open-loop gain is the flexi-
bility it provides in the design of amplifiers with an
(almost) arbitrary gain; it has already been shown that
the gain of the inverting amplifier is determined by the
choice of two external resistors—undoubtedly a con-
venient feature! Negative feedback is the mechanism
that enables us to enjoy such flexibility in the design
of linear amplifiers.

To understand the role of feedback in the oper-
ational amplifier, consider the internal structure of the
op-amp shown in Figure 8.4. The large open-loop gain
causes any difference in voltage at the input terminals
to appear greatly amplified at the output. When a neg-
ative feedback connection is provided, as shown, for
example, in the inverting amplifier of Figure 8.5, the
output voltage voy causes a current iz to flow through
the feedback resistance so that KCL is satisfied at the
inverting node. Assume, for a moment, that the dif-
ferential voltage

Av=v"—v~

is identically zero. Then the output voltage will con-
tinue to be such that KCL is satisfied at the inverting
node, that is, such that the current iz is equal to the
current ig.

Suppose, now, that a small imbalance in voltage
Av is present at the input to the op-amp. Then the out-

put voltage will be increased by anamount Ay o1y Av.
Thus, an incremental current approximately equal to
Avor) Av/Rp will flow from output to input via
the feedback resistor. The effect of this incremen-
tal current is to reduce the voltage difference Av
to zero, so as to restore the original balance in the
circuit. One way of viewing negative feedback, then,
is to consider it a self-balancing mechanism, which
allows the amplifier to preserve zero potential differ-
ence between its input terminals.

A practical example that illustrates a common
application of negative feedback is the thermostat.
This simple temperature control system operates by
comparing the desired ambient temperature and the
temperature measured by a thermometer and turning
a heat source on and off to maintain the difference be-
tween actual and desired temperature as close to zero
as possible. An analogy may be made with the invert-
ing amplifier if we consider that, in this case, negative
feedback is used to keep the inverting-terminal volt-
age as close as possible to the noninverting-terminal
voltage. The latter voltage is analogous to the desired
ambient temperature in your home, while the former
plays a role akin to that of the actual ambient temper-
ature. The open-loop gain of the amplifier forces the
two voltages to be close to each other, in much the
same way as the furnace raises the heat in the house
to match the desired ambient temperature.

It is also possible to configure operational am-
plifiers in a positive feedback configuration if the
output connection is tied to the noninverting input.
We do not discuss this configuration in this chapter,
but present an example of it, the voltage comparator,
in Chapter 15.

EXAMPLE 8.1

LO2 >

Problem

Inverting Amplifier Circuit

Determine the voltage gain and output voltage for the inverting amplifier circuit of Figure 8.5.
What will the uncertainty in the gain be if 5 and 10 percent tolerance resistors are used,
respectively?
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Solution

Known Quantities: Feedback and source resistances, source voltage.
Find: Ay = Uoy/vin; maximum percent change in Ay for 5 and 10 percent tolerance resistors.

Schematics, Diagrams, Circuits, and Given Data: R = 1kQ; R = 10k2;
vs(t) = Acos(wt); A =0.015 V; w = 50 rad/s.

Assumptions: The amplifier behaves ideally; that is, the input current into the op-amp is zero,
and negative feedback forces vt = v™.

Analysis: Using equation 8.19, we calculate the output voltage:

R
Vou (1) = Ay X vs(t) = —R—F X vs(t) = —10 x 0.015 cos(wt) = —0.15 cos(wt)
s

The input and output waveforms are sketched in Figure 8.6.

0.15
GRA AR A AN
1 11y 1
11 l|' 1\ 1y 1 [}
|
005 -1 v 1 Vg I [
AT V()

Voltage V
o
- §

) 1 1 1 ———
-0.05 '||‘|'|,'|||'lll"|,'|| Youl®
T T R N RS B N
01fp 1 I‘l S W B R N
-0.15 KU \-, LY L%/ U ‘a Y
0 01 02 03 04 05 06 07 08 09 1.0
Time, s
Figure 8.6
The nominal gain of the amplifier is Ay pom = —10. If 5 percent tolerance resistors are
employed, the worst-case error will occur at the extremes:
Ry min 9,500 RrF max 10,500
AV min = — —2min _ =9.05  Appa = — 21— =11.05
RSmax 17050 RSmin 950
The percentage error is therefore computed as
AV nom — AV min 10 —9.05
100 x —2rom 2V 100 x ———— =9.5%
V nom
AV nom — AV max 10 —11.05
100 x —Lrom Ve 00 x = ~10.5%

V nom

Thus, the amplifier gain could vary by as much as £10 percent (approximately) when 5 percent
resistors are used. If 10 percent resistors were used, we would calculate a percent error of

approximately & 20 percent, as shown below.
9,000
1,100

Rpmw 11,000
AVmax = - = - =12.2
RSmin 900

10 —8.18
— =182%
10

10 —12.2

R min
Fmin _ =8.18

AVmin = _R
S max

A nom_A min
100 x ZYrom = ZVmin _ 1050

AV nom

A nom_A max
100 x —Lmom = ZVma 100 x

V nom

= —-222%
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Comments: Note that the worst-case percent error in the amplifier gain is double the resistor
tolerance.
CHECK YOUR UNDERSTANDING
Calculate the uncertainty in the gain if 1 percent “precision” resistors are used.
Jueordd ()7'z— 01 86° 1+ :Iomsuy
The Summing Amplifier
A useful op-amp circuit that is based on the inverting amplifier is the op-amp summer,
or summing amplifier. This circuit, shown in Figure 8.7, is used to add signal sources.
Rs The primary advantage of using the op-amp as a summer is that the summation occurs
WA independently of load and source impedances, so that sources with different internal
i impedances will not interact with one another. The operation of the summing amplifier
'St is best understood by application of KCL at the inverting node: The sum of the N
= Rs source currents and the feedback current must equal zero, so that
2
- iWtir+--+iv=—ir 8.24)
v 1
= | But each of the source currents is given by
= 1
1 RSN v
' iy = — n=12,....,N (8.25)
- Rg
N n
VSy

Figure 8.7 Summing

amplifier

while the feedback current is

Vout

:RF

ir (8.26)

Combining equations 8.25 and 8.26, and using equation 8.15, we obtain the following
result:

N o v
Yo = (8.27)
n=1 RS” RF
or
YR
F . .
Vout = — —0 Summing amplifier 8.28
t ; Rs, S, g amp ( )

That is, the output consists of the weighted sum of N input signal sources, with the
weighting factor for each source equal to the ratio of the feedback resistance to the
source resistance.
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The Noninverting Amplifier

To avoid the negative gain (i.e., phase inversion) introduced by the inverting amplifier,
a noninverting amplifier configuration is often employed. A typical noninverting
amplifier is shown in Figure 8.8; note that the input signal is applied to the noninverting
terminal this time.

The noninverting amplifier can be analyzed in much the same way as the in-
verting amplifier. Writing KCL at the inverting node yields

ip =is+in ~is (8.29)
where
. VUout — v
= — 8.30
193 Ry ( )
o= (8.31)
Rs

Now, since i;, = 0, the voltage drop across the source resistance R is equal to zero.
Thus,

v = ug (8.32)
and, using equation 8.22, we get

v =v" =g (8.33)
Substituting this result in equations 8.29 and 8.30, we can easily show that

ir =Iig (8.34)
or

Vout — Us Ug

= 8.35
Ry Ry (8.35)

It is easy to manipulate equation 8.35 to obtain the result

Vout _ n Rr Noninverting amplifier

Us Ry closed-loop gain (8.36)

which is the closed-loop gain expression for a noninverting amplifier. Note that the
gain of this type of amplifier is always positive and greater than (or equal to) 1.

The same result could have been obtained without making the assumption that
vt = v~, at the expense of some additional work. The procedure one would follow
in this latter case is analogous to the derivation carried out earlier for the inverting
amplifier, and it is left as an exercise.

In summary, in the preceding pages it has been shown that by constructing a
nonideal amplifier with very large gain and near-infinite input resistance, it is possible
to design amplifiers that have near-ideal performance and provide a variable range
of gains, easily controlled by the selection of external resistors. The mechanism
that allows this is negative feedback. From here on, unless otherwise noted, it will

© The McGraw-Hill ‘ @
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i1

Figure 8.8 Noninverting
amplifier
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be reasonable and sufficient in analyzing new op-amp configurations to utilize these
two assumptions:

1. im=0 Approximations used for ideal 8.37)
2. v =v" op-amps with negative feedback )

i ——

Vout

I 1

Figure 8.9 Voltage follower

Vs

EXAMPLE 8.2 Voltage Follower

Problem

Determine the closed-loop voltage gain and input resistance of the voltage follower circuit of
Figure 8.9.

Solution
Known Quantities: Feedback and source resistances, source voltage.

Find:

Vout Vin
Ay = ri =
Vs Lin

Assumptions: The amplifier behaves ideally; that is, the input current into the op-amp is zero,
and negative feedback forces v = v~.

Analysis: From the ideal op-amp assumptions, v" = v™~. But v* = vy and v~ = vy, thus

Vs = Ugut Voltage follower

The name voltage follower derives from the ability of the output voltage to “follow” exactly
the input voltage. To compute the input resistance of this amplifier, we observe that since the
input current is zero,

Us

ri=— >0

Lin
Comments: The input resistance of the voltage follower is the most important property of the
amplifier: The extremely high input resistance of this amplifier (on the order of megohms to
gigohms) permits virtually perfect isolation between source and load and eliminates loading
effects. Voltage followers, or impedance buffers, are commonly packaged in groups of four
or more in integrated-circuit form. The data sheets for one such IC are contained in the ac-
companying CD-ROM, and may also be found in the device templates for analog ICs in the
Electronics Workbench™ libraries.
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CHECK YOUR UNDERSTANDING

Derive an expression for the closed-loop gain of the voltage follower that includes the value
of the open-loop voltage gain as a parameter. (Hint: follow the procedure of equations 8.11
through 8.19 with the appropriate modifications, and do not assume that Ay, is infinite.)
How large should the open-loop gain be if we desire to achieve the intended closed-loop gain
(unity) with less than 0.1 percent error?

“Koeanode Juaoiad 1°() 10J .01 [enbs pinoys
(10) Ay snyy (10 Ay /1 + 1 = "a /™ st ured doo[-paso[o a1} 10J UOTSsaIdXa A I, :ToMSUY

The Differential Amplifier

The third closed-loop model examined in this chapter is a combination of the inverting
and noninverting amplifiers; it finds frequent use in situations where the difference
between two signals needs to be amplified. The basic differential amplifier circuit
is shown in Figure 8.10, where the two sources v; and v, may be independent of each
other ormay originate from the same process, as they do in the Focus on Measurements
box “Electrocardiogram (EKG) Amplifier.”

The analysis of the differential amplifier may be approached by various meth- e
ods; the one we select to use at this stage consists of A
1. Computing the noninverting- and inverting-terminal voltages v and v~ il R

2. Equating the inverting and noninverting input voltages: v~ = v, V2
3. Applying KCL at the inverting node, where i, = —ij. =

Since it has been assumed that no current flows into the amplifier, the noninverting-  Figure 8.10 Differential

terminal voltage is given by the following voltage divider: amplifier
R
vh= "2 (8.38)
Ry + R,

If the inverting-terminal voltage is assumed equal to v™, then the currents i; and i»
are found to be

) v, — vt
1= —f— (8.39)
and
Vout — VT
i = T (8.40)
and since
ir = —i (8.41)

the following expression for the output voltage is obtained:

—V1 1 R2 ]

— 4 vy + v 8.42
Ri "R +R, ° R(R+Ry ° (8.42)

Vout = RZ |:
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R
Vout = R_Z(vz —vy) Differential amplifier closed-loop gain
1

Thus, the differential amplifier magnifies the difference between the two input signals
by the closed-loop gain R,/R;.

In practice, it is often necessary to amplify the difference between two signals
that are both corrupted by noise or some other form of interference. In such cases,
the differential amplifier provides an invaluable tool in amplifying the desired signal
while rejecting the noise. The Focus on Measurements box “Electrocardiogram (EKG)
Amplifier” provides a realistic look at a very common application of the differential
amplifier.

In summary, Table 8.1 provides a quick reference to the basic op-amp circuits
presented in this section.

CHECK YOUR UNDERSTANDING

Derive the result given above for the differential amplifier, using the principle of superposition.
Think of the differential amplifier as the combination of an inverting amplifier with input equal
to v, and a noninverting amplifier with input equal to v;.

'
(Ta — Zn)z— = "o Jomsuy
d

Table 8.1 Summary of basic op-amp circuits

Closed-loop gain
(under ideal assumptions of

Configuration Circuit diagram equation 8.23)
. . ) Rp
Inverting amplifier Figure 8.5 Vout = — R—vs
s
. . X Rp Rp Rp
Summing amplifier Figure 8.7 Vout = ———U§|] — —U§2 — +++ — —USy
R Ry R,
. . . ) Rp
Noninverting amplifier Figure 8.8 Vour = | 1 + Re vs
s
Voltage follower Figure 8.9 Vout = VS
R
Differential amplifier Figure 8.10 Vout = R_z (vy —vp)
1
Electrocardiogram (EKG) Amplifier FIND IT

This example illustrates the principle behind a two-lead electrocardio-
gram (EKG) measurement. The desired cardiac waveform is given by |[FIErEE:
the difference between the potentials measured by two electrodes suitably

(Continued)
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placed on the patient’s chest, as shown in Figure 8.11. A healthy, noise-free EKG wave-
form v; — v, is shown in Figure 8.12.

vi—vy, V

— o~ N WA OO

|
NS}

0 02 04 06 08

Electrodes Time, s

Figure 8.12 EKG waveform

Figure 8.11 Two-lead
electrocardiogram

Unfortunately, the presence of electrical equipment powered by the 60-Hz, 110-V
AC line current causes undesired interference at the electrode leads: the lead wires act as
antennas and pick up some of the 60-Hz signal in addition to the desired EKG voltage. In
effect, instead of recording the desired EKG signals v; and v,, the two electrodes provide
the following inputs to the EKG amplifier, shown in Figure 8.13:
Lead 1:

vi(0) + va () = v1(t) + Vi cos(377t + ¢n)

va(t)

Lead 2

v Equivalent

|
|

circuit for : W
4 lead 2 |
|

Ry
| AW O
Lead 1 L o+
+
Vout

Vi Equivalent L
circuit for EKG amplifier
= lead 1

Figure 8.13 EKG amplifier

Lead 2:

U2 (1) + v, (1) = va(t) + Vi cos(377t + ¢y)

The interference signal V,, cos(377t+¢,) is approximately the same at both leads, because
the electrodes are chosen to be identical (e.g., they have the same lead lengths) and are
in close proximity to each other. Further, the nature of the interference signal is such that

(Continued)
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(Concluded)

it is common to both leads, since it is a property of the environment in which the EKG
instrument is embedded. On the basis of the analysis presented earlier, then,

R,
Vour = R_l{[vl +va (D] = [v2 + va (D]}

or

Rz( )
Vout = — (V] — v

Thus, the differential amplifier nullifies the effect of the 60-Hz interference, while am-
plifying the desired EKG waveform.

The preceding Focus on Measurements box introduces the concept of common-
mode and differential-mode signals. The desired differential-mode EKG signal was
amplified by the op-amp while the common-mode disturbance was canceled. Thus,
the differential amplifier provides the ability to reject common-mode signal compo-
nents (such as noise or undesired DC offsets) while amplifying the differential-mode
components. This is a very desirable feature in instrumentation systems. In practice,
rejection of the common-mode signal is not complete: some of the common-mode
signal component will always appear in the output. This fact gives rise to a figure of
merit called the common-mode rejection ratio, which is discussed in Section 8.6.

Often, to provide impedance isolation between bridge transducers and the differ-
ential amplifier stage, the signals v; and v, are amplified separately. This technique
gives rise to the instrumentation amplifier (IA), shown in Figure 8.14. Example
8.3 illustrates the calculation of the closed-loop gain for a typical instrumentation
amplifier.

Figure 8.14 Instrumentation amplifier

|_02> EXAMPLE 8.3 Instrumentation Amplifier

Problem

Determine the closed-loop voltage gain of the instrumentation amplifier circuit of Figure 8.14.
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Known Quantities: Feedback and source resistances.
Find:
Ay = o (8.43)
vy — U

Assumptions: Assume ideal op-amps.

Analysis: We consider the input circuit first. Thanks to the symmetry of the circuit, we can
represent one-half of the circuit as illustrated in Figure 8.15(a), depicting the lower half of the
first stage of the instrumentation amplifier. We next recognize that the circuit of Figure 8.15(a)
is a noninverting amplifier (see Figure 8.8), and we can directly write the expression for the
closed-loop voltage gain (equation 8.36):
Ro 2R
Ry /2 R
Each of the two inputs v; and v; is therefore an input to the second stage of the instrumentation
amplifier, shown in Figure 8.15(b). We recognize the second stage to be a differential amplifier
(see Figure 8.10), and can therefore write the output voltage after equation 8.42:
Rr 2R,

R
Vour = % (Av; — Awn) = 7 (1 + R—l) (v1 — v2) (8.44)

from which we can compute the closed-loop voltage gain of the instrumentation amplifier:

A=1+

Uout RF 2R2 . .
Ay = —=— 14+ — Instrumentation amplifier
v — Uy R R 1
R RF
O_AVAYAVAV AVAVAVAV
J_- SR An
- 2
—0O
R2 Vout
%1 R
O WW—t
Avy
EE R
(@) (b)

Figure 8.15 Input (a) and output (b) stages of Instrumentation amplifier

Comments: This circuit is analyzed in depth in Chapter 15.

© The McGraw-Hill
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Because the instrumentation amplifier has widespread application—and in or-
der to ensure the best possible match between resistors—the entire circuit of
Figure 8.14 is often packaged as a single integrated circuit. The advantage of this
configuration is that resistors R; and R, can be matched much more precisely in an
integrated circuit than would be possible by using discrete components. A typical,
commercially available integrated-circuit package is the AD625. Data sheets for this
device are provided in the accompanying CD-ROM.

Another simple op-amp circuit that finds widespread application in electronic
instrumentation is the level shifter. Example 8.4 discusses its operation and its ap-
plication. The following Focus on Measurements box illustrates its use in a sensor
calibration circuit.

Vsensor Ry

Vout

V.
Viet — §

.||_|

Figure 8.16 Level shifter

EXAMPLE 8.4 Level Shifter

Problem

The level shifter of Figure 8.16 has the ability to add or subtract a DC offset to or from a signal.
Analyze the circuit and design it so that it can remove a 1.8-V DC offset from a sensor output
signal.

Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors.
Find: Value of V¢ required to remove DC bias.

Schematics, Diagrams, Circuits, and Given Data: vg(t) = 1.8 4+ 0.1 cos(wt);
Rr =220kQ; Ry = 10k<Q.

Assumptions: Assume an ideal op-amp.

Analysis: We first determine the closed-loop voltage gain of the circuit of Figure 8.16. The
output voltage can be computed quite easily if we note that, upon applying the principle of
superposition, the sensor voltage sees an inverting amplifier with gain —Rg /R, while the
battery sees a noninverting amplifier with gain 1 + Rg/Rs. Thus, we can write the output
voltage as the sum of two outputs, due to each of the two sources:

Rr Rp
Vout = _R_Svsensor + 1 + R_S Vref
Substituting the expression for vg,s., into the equation above, we find that

RF RF
Vour = ———[1.8 +0.1cos(wt)]+ ( 1 + — | Vit
R Rs

Rr 01 cosn) — BE sy + (14 20,
= ——1[0.1cos — — (1. — | Ve
Rs T Ry Rs) ™

Since the intent of the design is to remove the DC offset, we require that

RF(18)+ T RV
RS . RS ref —
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or

Rr/R
Vi = 18 Re/Rs g4y
14+ Rr/Rs

Comments: The presence of a precision voltage source in the circuit is undesirable, because
it may add considerable expense to the circuit design and, in the case of a battery, it is not
adjustable. The circuit of Figure 8.17 illustrates how one can generate an adjustable voltage
reference by using the DC supplies already used by the op-amp, two resistors R, and a poten-
tiometer R ,. The resistors R are included in the circuit to prevent the potentiometer from being
shorted to either supply voltage when the potentiometer is at the extreme positions. Using the
voltage divider rule, we can write the following expression for the reference voltage generated
by the resistive divider:

R + AR
Vit = — (Vi — V¢
"T2R+R, (V=)
If the voltage supplies are symmetric, as is almost always the case, we can further simplify the
expression to
R+ AR
Vit = £ X Ar 173
2R+ R,

Note that by adjusting the potentiometer R ,, we can obtain any value of V,.; between the supply
voltages.

© The McGraw-Hill
Companies, 2007
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CHECK YOUR UNDERSTANDING

With reference to Example 8.4, find AR if the supply voltages are symmetric at £15 V and a
10-k<2 potentiometer is tied to the two 10-k2 resistors.

With reference to Example 8.4, find the range of values of Vi if the supply voltages are
symmetric at 15 V and a 1-k2 potentiometer is tied to the two 10-kS2 resistors.

A PIL0F UOmIaq ST P (25 P19 = YV SIOMSUY

EXAMPLE 8.5 Temperature Control Using Op-Amps

Problem

One of the most common applications of op-amps is to serve as a building block in analog control
systems. The objective of this example is to illustrate the use of op-amps in a temperature control
circuit. Figure 8.18(a) depicts a system for which we wish to maintain a constant temperature
of 20°C in a variable temperature environment. The temperature of the system is measured via
a thermocouple (see Chapter 15, Temperature Measurements). Heat can be added to the system
by providing a current to a heater coil, represented in the figure by the resistor R.;. The heat flux
thus generated is given by the quantity ¢;, = i2R.o;;, where i is the current provided by a power
amplifier and R, is the resistance of the heater coil. The system is insulated on three sides,
and loses heat to the ambient through convective heat transfer on the fourth side [right-hand

< LO2
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side in Figure 18(a)]. The convective heat loss is represented by an equivalent thermal resistance,
R;. The system has mass m, specific heat ¢, and its thermal capacitance is C; = mc (see Make
the Connection — Thermal Capacitance, p. 218 and Make the Connection — Thermal System
Dynamics, p. 219 in Chapter 5).

Solution

Known Quantities: Sensor (input) voltage; feedback and source resistors, thermal system
component values.

Find: Select desired value of proportional gain, K p, to achieve automatic temperature control.

Schematics, Diagrams, Circuits, and Given Data: R.,; = 5Q; R, = 2°C/W; C, = 50]/°C;
o =1 V/°C. Figure 8.18 (a), (b), (c), (d).

Thermal insulation

: C, =mc
i t T T
f\-}» a
R,
- R, Ve ~ R Gout
1 <:./'> t
Rcoil< Gin o
1 +
= Thermocouple -)E Viemp

Figure 8.18 (a) Thermal system

Assumptions: Assume ideal op-amps.

Analysis: The thermal system is described by the following equation, based on conservation
of energy.

qin — qout = Ystored

where g, represents the heat added to the system by the electrical heater, g, represents the
heat lost from the system through convection to the surrounding air, and gsorea represents the
heat stored in the system through its thermal capacitance. In the system of Figure 8.18(a),
the temperature, 7', of the system is measured by a thermocouple that we assume produces a
voltage proportional to temperature: vimp = o'T. Further, we assume that the power amplifier
can be simply modeled by a voltage-controlled current source, as shown in the figure, such
that its current is proportional to an external voltage. This error voltage, v., depends on the
difference between the actual temperature of the system, 7', and the reference temperature, 7T,
i.e., Vo = Vref — Viemp = (Tt — T'). With reference to the block diagram of Figure 8.18(b), we
see that to maintain the temperature of the system at the desired level, we can use the difference
voltage v, as an input to the power amplifier [the controlled current source of Figure 8.18(a)].
You should easily convince yourself that a positive v, corresponds to the need for heating
the system, since a positive v, corresponds to a system temperature lower than the reference
temperature. Next, the power amplifier can output a positive current for a positive v,. Thus,
the block diagram shown in Figure 8.18(b) corresponds to an automatic control system that
automatically increases or decreases the heater coil current to maintain the system temperature
at the desired (reference) value. The “Amplifier” block in Figure 8.18(b) gives us the freedom
to decide how much to increase the power amplifier output current to provide the necessary
heating. The proportional gain of the amplifier, K p, is a design parameter of the circuit that
allows the user to optimize the response of the system for a specific design requirement. For
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example, a system specification could require that the automatic temperature control system
be designed so as to maintain the temperature to within 1 degree of the reference temperature
for external temperature disturbances as large as 10 degrees. As you shall see, we can adjust
the response of the system by varying the proportional gain.

Thermal system

i vtemp
Power | Ampliﬁer with v, —
amplifier (variable) A
proportional gain Kp

v,

ref

Figure 8.18 (b) Block diagram of control system

The objective of this example is to show how operational amplifiers can be used to provide
two of the functions illustrated in the block diagram of Figure 8.18(b):(1) the summing amplifier
computes the difference between the reference temperature and the system temperature; and
(2) an inverting amplifier implements the proportional gain function that allows the designer to
select the response of the amplifier by choosing an appropriate proportional gain. Figure 8.18(c)
depicts the two-stage op-amp circuit that performs these functions. The first element is an
inverting amplifier with unity gain, with the function of changing the sign of v.¢. The second
amplifier, and inverting summing amplifier, adds vemp 10 —Vrer and inverts the sum of these
two signals, while at the same time amplifying it by the gain R,/R,. Thus, the output of the
circuit of Figure 8.18(c) consists of the quantity Ro/R{(Vret — Viemp) = Kp (Vret — Viemp)- In
other words, selection of the feedback resistor R, is equivalent to choosing the gain Kp.

Rl
AW R,
Rl AvA
A _ R,
MW -
Vref + —o0
L Ry -
- M L
— Vtemp — R, ¢

= L

Figure 8.18 (c) Circuit for generating error voltage and proportional gain

To analyze the response of the system for various values of Kp, we must first under-
stand how the system responds in the absence of automatic control. The differential equation
describing the system is:

T —T, dT (1)
=C,
R, dt

qin (t) -

dT (1)
RtCtT +T@) =Rgn@® +T,

qin(t) = Rcoiliz (t)

429



@ ‘ Rizzoni: Principles and

Applications of Electrical
Engineering, Fifth Edition

430

I1. Electronics

© The McGraw-Hill
Companies, 2007

8. Operational Amplifiers

Chapter 8 Operational Amplifiers

Thus, the thermal system is a first-order system, and its time constant is T = R,C, = 2°C/W x
50 J/°C = 100 s. The inputs to the system are the ambient temperature, 7,, and the heat flux,
¢in, Which is proportional to the square of the heater coil current. Imagine now that the thermal
system is suddenly exposed to a 10-degree change in ambient temperature (for example, a
drop from 20°C to 10°C). Figure 8.18(d) depicts the response of the system for various values
of Kp. Kp = 0 corresponds to the case of no automatic control—that is, the open loop
response of the system. In this case, we can clearly see that the temperature of the system
drops exponentially from 20 to 10 degrees with a time constant of 100 s. This is so because no
heating is provided from the power amplifier. As the gain Kp is increased to 1, the difference
or “error” voltage, v,, increases as soon as the temperature drops below the reference value.
Since o = 1, the voltage is numerically equal to the temperature difference. Figure 8.18(d)
shows the temperature response for values of K » ranging from 1 to 50. You can see that as the
gain increases, the error between the desired and actual temperatures decreases very quickly.
In particular, the error becomes less than 1 degree, which is the intended specification, for
Kp =5 (in fact, we could probably achieve the specification with a gain slightly less than 5).
To better understand the inner workings of the automatic temperature control system, it is also
helpful to look at the error voltage, which is amplified to provide the power amplifier output
current. With reference to Figure 8.18(e), we can see that when K = 1, the current increases
somewhat slowly to a final value of about 2.7 A; as the gain is increased to 5 and 10, the current
response increases more rapidly, and eventually settles to values of 3 and 3.1 A, respectively.
The steady state value of the current is reached in about 20 s for Kp = 5, and in about 10 s
for Kp = 10.

Comments: Please note that even though the response of the system is satisfactory, the tem-
perature error is not zero. That is, the automatic control system has a steady-state error. The
design specifications recognized this fact by specifying that a 1°C tolerance was sufficient.

20

Temperature, degC
o
T
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Time, s

Figure 8.18 (d) Response of thermal system for various values of proportional gain, K,
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Figure 8.18 (e) Power amplifier output current for various proportional gain, K,

CHECK YOUR UNDERSTANDING

How much steady state power, in Watts, will be input to the thermal system of Example 8.5 to

maintain its temperature in the face of a 10°C ambient temperature drop for values of K p of 1,
5, and 10?

MSYI0T = 9Y ‘M SPi§ = 7Y M ¢ :T = <Y 1s1omsuy

Sensor Calibration Circuit <|_02

In many practical instances, the output of a sensor is related to the physical variable we
wish to measure in a form that requires some signal conditioning. The most desirable
form of a sensor output is one in which the electrical output of the sensor (e.g., voltage)
is related to the physical variable by a constant factor. Such a relationship is depicted in

L

(Continued)
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Figure 8.19(a), where k is the calibration constant relating voltage to temperature. Note
that k is a positive number, and that the calibration curve passes through the (0, 0) point.
On the other hand, the sensor characteristic of Figure 8.19(b) is best described by the
following equation:

Usensor = _ﬁT + VO

Vout Vsensor \
N
Yo

B
k
g 0 To T,°C
0 T,°C
(@ (b)

Figure 8.19 Sensor calibration curves

It is possible to modify the sensor calibration curve of Figure 8.19(b) to the more
desirable one of Figure 8.19(a) by means of the simple circuit displayed in Figure 8.20.
This circuit provides the desired calibration constant k by a simple gain adjustment,
while the zero (or bias) offset is adjusted by means of a potentiometer connected to
the voltage supplies. The detailed operation of the circuit is described in the following
paragraphs.

Rp
AAAA
YVVy
Vs
Vsensor
R S —O
Vout
Vref VS

Figure 8.20 Sensor calibration
circuit

As noted before, the nonideal characteristic can be described by the following equa-
tion:
Usensor = _ﬁT + VO

(Continued)
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Then the output of the op-amp circuit of Figure 8.20 may be determined by using the
principle of superposition:

Rp Rr

out — — = Usensor 1 o Vre
o Fs" +< - RS> '

R R
__(_ﬁT+V0)+ 1+ — Vref

Ry Ry
After substituting the expression for the transducer voltage and after some manipulation,
we see that by suitable choice of resistors, and of the reference voltage source, we can
compensate for the nonideal transducer characteristic. We want the following expression
to hold:

Rp Rp Rp
i = —EBT 4 (14 25 ) Vg — 22 vy = kT
Vout Rsﬁ +< +Rs> (TR0

If we choose

Rp
R
s
and
_ Rg/Rs
ref 1+ RF/RS 0
then voy = kT .
Note that
. Rp
Vit = Vo if — > 1
Rs

and we can directly convert the characteristic of Figure 8.19(b) to that of Figure 8.19(a).
Clearly, the effect of selecting the gain resistors is to change the magnitude of the slope of
the calibration curve. The fact that the sign of the slope changes is purely a consequence
of the inverting configuration of the amplifier. The reference voltage source simply shifts
the DC level of the characteristic, so that the curve passes through the origin.

CHECK YOUR UNDERSTANDING

With reference to the Focus on Measurements box “Sensor Calibration Circuit,” find numerical
values of Rr/Rys and V., if the temperature sensor has 8§ = 0.235 and V) = 0.7 V and the
desired relationship is v,y = 10 T'.

A V89°0 = A GG Ty = SY/ 1Y s1omsuy
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Practical Op-Amp Design Considerations <L02

The results presented in the preceding pages sug-
gest that operational amplifiers permit the design of a
rather sophisticated circuit in a few very simple steps,
simply by selecting appropriate resistor values. This
is certainly true, provided that the circuit component
selection satisfies certain criteria. Here we summa-
rize some important practical design criteria that the
designer should keep in mind when selecting compo-
nent values for op-amp circuits. Section 8.6 explores
the practical limitations of op-amps in greater detail.

1.

Use standard resistor values. While any arbitrary
value of gain can, in principle, be achieved by se-
lecting the appropriate combination of resistors,
the designer is often constrained to the use of
standard 5 percentresistor values (see Table 2.1).
For example, if your design requires a gain of 25,
you might be tempted to select, say, 100- and 4-
k€2 resistors to achieve Rp/Rs = 25. However,
inspection of Table 2.1 reveals that 4 k€2 is not a
standard value; the closest 5 percent tolerance re-
sistor value is 3.9 k€2, leading to a gain of 25.64.
Canyou find a combination of standard 5 percent
resistors whose ratio is closer to 25?

Ensure that the load current is reasonable (do
not select very small resistor values). Consider
the same example given in step 1. Suppose
that the maximum output voltage is 10 V.
The feedback current required by your design
with Rrp = 100 k2 and Rs = 4 k2 would be
Ir = 10/100,000 = 0.1 mA. This is a very
reasonable value for an op-amp, as explained

3.

in Section 8.6. If you tried to achieve the same
gain by using, say, a 10-2 feedback resistor and
a 0.39-Q2 source resistor, the feedback current
would become as large as 1 A. This is a value
that is generally beyond the capabilities of a
general-purpose op-amp, so the selection of ex-
ceedingly low resistor values is not acceptable.
On the other hand, the selection of 10-k2 and
390-€2 resistors would still lead to acceptable
values of current, and would be equally good.
As a general rule of thumb, you should avoid
resistor values lower than 100 €2 in practical
designs.

Avoid stray capacitance (do not select exces-
sively large resistor values). The use of exceed-
ingly large resistor values can cause unwanted
signals to couple into the circuit through a mech-
anism known as capacitive coupling. This phe-
nomenon is discussed in Chapter 15. Large
resistance values can also cause other problems.
Asa general rule of thumb, avoid resistor values
higher than 1 M€ in practical designs.
Precision designs may be warranted. If a certain
design requires that the amplifier gain be set to
a very accurate value, it may be appropriate to
use the (more expensive) option of precision re-
sistors: for example, 1 percent tolerance resis-
tors are commonly available, at a premium cost.
Some of the examples and homework problems
explore the variability in gain due to the use of
higher- and lower-tolerance resistors.

USING OP-AMP DATA SHEETS

< LO2

FIND IT

Here we illustrate use of device data sheets for two commonly used operational amplifiers. The
first, the LM741, is a general-purpose (low-cost) amplifier; the second, the LMC6061, is a pre-
cision CMOS high-input-impedance single-supply amplifier. Excerpts from the data sheets are
shown below, with some words of explanation. Later in this chapter we compare the electrical
characteristics of these two op-amps in greater detail.

ON THE WEB

(Continued)
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LM741 General Description and Connection Diagrams—This sheet summarizes the general characteristics
of the op-amp. The connection diagrams are shown. Note that the op-amp is available in various packages: a
metal can package, a dual-in-line package (DIP), and two ceramic dual-in-line options. The dual-in-line (or
S.0.) package is the one you are most likely to see in a laboratory. Note that in this configuration the integrated
circuit has eight connections, or pins: two for the voltage supplies (V* and V 7); two inputs (inverting and
noninverting); one output; two offset null connections (to be discussed later in the chapter); and a no-connection
(NC) pin.

LM741 Operational Amplifier

General Description

The LM741 series are general-purpose operational amplifiers which feature improved performance over in-
dustry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439, and
748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection
on the input and output, no latch-up when the common-mode range is exceeded, as well as freedom from
oscillations.

The LM741C and LM741E are identical to the LM741 and LM741A except that the LM741C and
LMT741E have their performance guaranteed over a 0 to +70°C temperature range, instead of —55 to +125°C.

Ceramic dual-in-line package

Metal can package T
NC Ne 1 14| NC
NCH2 13 FNC
.
Offset null (1) \ + Offset null {3 12FNC
—In44 11V
Inverting input ) (6) Output
8" F} P +]5 10 f-Out
Noninverting input (3) (5) Offset null vV q6 9 | — Offset null

@ NCH{7 8 FNC

V-

Order number LM741H, LM741H/883*,
LM741AH/883 or LM741CH
See NS package number HOSC

Dual-in-line or S.O. package

N\
Offset null 4 1 8 -NC
Inverting input 42 TFV*
Noninverting 43 6 |- Output
input
V44 5 |- Offset null

Order number LM741J, LM741J/883,
LM741CM, LM741CN or LM741EN
See NS package number JOSA, MO8A or NOSE

Order number LM741J-14/883*, LM741AJ-14/883**
See NS package number J14A

*also available per JM38510/10101
#*also available per IM38510/10102

Ceramic Flatpak

1 10
NC —]@®

- ———INC
+ Offset null ] 8:I NC
———v*

— Input |:4 LM741W
+ Input |:5
V- —]

Order number LM741W/883
See NS package number W10A

7
——1Output
1 Offset null

(Continued)
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(Concluded)

LMC6061 General Description and Connection Diagrams—The description and diagram below reveal
several similarities between the 741 and 6061 op-amps, but also some differences. The 6061 uses more advanced
technology and is characterized by some very desirable features (e.g., the very low power consumption of
CMOS circuits results in typical supply currents of only 20 nA!). You can also see from the connection
diagram that pins 1 and 5 (used for offset null connections in the 741) are not used in this IC. We return to this
point later in the chapter. A further point of comparison between these two devices is their (1998) cost: the
LM741 (in quantities of 1,000) costs $0.32 per unit; the LMC6061 sells for $0.79 per unit, also in quantities
of 1,000 or more.

LMC6061 Precision CMOS Single Micropower Operational Amplifier

General Description

The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision
single-supply operation. Performance characteristics include ultralow input bias current, high voltage gain,
rail-to-rail output swing, and an input common-mode voltage range that includes ground. These features, plus
its low power consumption, make the LMC6061 ideally suited for battery-powered applications.

Other applications using the LMC6061 include precision full-wave rectifiers, integrators, references,
sample-and-hold circuits, and true instrumentation amplifiers.

This device is built with National’s advanced double-poly silicon-gate CMOS process. For designs that
require higher speed, see the LMC6081 precision single operational amplifier. For a dual or quad operational
amplifier with similar features, see the LMC6062 or LMC6064, respectively.

Features (typical unless otherwise noted) Applications

e Low offset voltage: 100 uV o Instrumentation amplifier

o Ultralow supply current: 20 A e Photodiode and infrared detector preamplifier
e Operates from 4.5- to 15-V single supply o Transducer amplifiers

e Ultralow input bias current of 10 fA o Handheld analytic instruments

e Output swing within 10 mV of supply rail, 100-kS2 load ¢ Medical instrumentation

o Input common-mode range includes V-~ o Digital-to-analog converter

e High voltage gain: 140 dB e Charge amplifier to piezoelectric transducers

e Improved latch-up immunity

8-Pin DIP/SO

N
Nt & Ne
Inverting input Z = 7 v+
Noninverting g + 6 Output
input
v-4 5 NC

Top view
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8.3 ACTIVE FILTERS

The range of useful applications of an operational amplifier is greatly expanded if
energy storage elements are introduced into the design; the frequency-dependent prop-
erties of these elements, studied in Chapters 4 and 6, will prove useful in the design
of various types of op-amp circuits. In particular, it will be shown that it is possible
to shape the frequency response of an operational amplifier by appropriate use of
complex impedances in the input and feedback circuits. The class of filters one can
obtain by means of op-amp designs is called active filters, because op-amps can pro-
vide amplification (gain) in addition to the filtering effects already studied in Chapter
6 for passive circuits (i.e., circuits comprising exclusively resistors, capacitors, and
inductors).

The easiest way to see how the frequency response of an op-amp can be shaped
(almost) arbitrarily is to replace the resistors Ry and Rg in Figures 8.5 and 8.8 with
impedances Zr and Zg, as shown in Figure 8.21. It is a straightforward matter to
show that in the case of the inverting amplifier, the expression for the closed-loop
gain is given by

VOLl . Z
F(jo) = —- (8.45)
VS ZS
whereas for the noninverting case, the gain is
Vout . ZF
— =14 — 8.46
Vs (jo)y=1+ 7 (8.46)

where Zr and Zs can be arbitrarily complex impedance functions and where Vg,
Vout, I, and I are all phasors. Thus, it is possible to shape the frequency response
of an ideal op-amp filter simply by selecting suitable ratios of feedback impedance
to source impedance. By connecting a circuit similar to the low-pass filters studied in
Chapter 6 in the feedback loop of an op-amp, the same filtering effect can be achieved
and, in addition, the signal can be amplified.

The simplest op-amp low-pass filter is shown in Figure 8.22. Its analysis is
quite simple if we take advantage of the fact that the closed-loop gain, as a function
of frequency, is given by

. Zr
App(jo) = —— (8.47)
Zs
where
1 R
Zr =Rp || — = —" (8.48)
]C()CF 1 + ]C()CFRF
and
Zs = Rs (8.49)

Note the similarity between Zr and the low-pass characteristic of the passive RC
circuit! The closed-loop gain Arp(jw) is then computed to be

Zr __ Re/Rs
ZS 1 + ]C()CFR F
This expression can be factored into two terms. The first is an amplification factor
analogous to the amplification that would be obtained with a simple inverting amplifier
(i.e., the same circuit as that of Figure 8.22 with the capacitor removed); the second
is a low-pass filter, with a cutoff frequency dictated by the parallel combination of

App(jo) = — Low-pass filter (8.50)
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Figure 8.21 Op-amp
circuits employing complex
impedances
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o
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L ——— 1
Rg
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VS Vout

Figure 8.22 Active
low-pass filter
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Rr and Cr in the feedback loop. The filtering effect is completely analogous to what

Rp would be attained by the passive circuit shown in Figure 8.23. However, the op-amp
filter also provides amplification by a factor of Rr/Rg.

Cpa= V:m It should be apparent that the response of this op-amp filter is just an amplified

version of that of the passive filter. Figure 8.24 depicts the amplitude response of the

active low-pass filter (in the figure, Rr/Rs = 10 and 1/RrCr = 1) in two different

Figure 8.23 Passive graphs; the first plots the amplitude ratio Vo (jw) versus radian frequency o on a
low-pass filter logarithmic scale, while the second plots the amplitude ratio 20 log Vs(jw) (in units

Figure 8.25 Active Zs = Rg +

of decibels), also versus w on a logarithmic scale. You will recall from Chapter 6 that
decibel frequency response plots are encountered very frequently. Note that in the
decibel plot, the slope of the filter response for frequencies significantly higher than
the cutoff frequency,

1
"~ RyCr
is —20 dB/decade, while the slope for frequencies significantly lower than this cutoff

frequency is equal to zero. The value of the response at the cutoff frequency is found
to be, in units of decibel,

(8.51)

wo

R
|ALp(jeoo) lan = 2010g)o -~ —20log V2 8.52)
S

where
—201log,,v/2 = —3dB (8.53)

Thus, wy is also called the 3-dB frequency.

10 Amplitude response of active low-pass filter dB amplitude response of active low-pass filter
Y 20
.8 8 N 0 “‘in
=
= 6 \‘n.
3 \ -20 5
E \ Pé \~‘n
£ 4 40 i
& \
g N\ \~‘~.
< 2 —60
0 80 ™
107! 10° 10! 102 103 104 10° 107! 10° 10! 102 103 104 10°
Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 8.24 Normalized response of active low-pass filter

Among the advantages of such active low-pass filters is the ease with which the
gain and the bandwidth can be adjusted by controlling the ratios Rr/Rs and 1/RrCp,
respectively.

It is also possible to construct other types of filters by suitably connecting
resistors and energy storage elements to an op-amp. For example, a high-pass active
filter can easily be obtained by using the circuit shown in Figure 8.25. Observe that
the impedance of the input circuit is

1

(8.54)

high-pass filter ] wCyg
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and that of the feedback circuit is
Zr =Rp (8.55)
Then the following gain function for the op-amp circuit can be derived:
Zr JjoCsRp .
_— = High-pass filter 8.56
Zs I+ jwRsCy gh-p (8.56) (LO3

As w approaches zero, so does the response of the filter, whereas as w approaches
infinity, according to the gain expression of equation 8.56, the gain of the amplifier
approaches a constant:

App(jo) = —

. . Rp
lim Apgp(jw) = —— (8.57)
w— 00 R s

That is, above a certain frequency range, the circuit acts as a linear amplifier. This is
exactly the behavior one would expect of a high-pass filter. The high-pass response is
depicted in Figure 8.26, in both linear and decibel plots (in the figure, Rr/Rs = 10
and 1/RsC = 1). Note that in the decibel plot, the slope of the filter response for
frequencies significantly lower than w = 1/RsCs = 1 is +20 dB/decade, while the
slope for frequencies significantly higher than this cutoff (or 3-dB) frequency is equal
to zero.

0 Amplitude response of active high-pass filter 20 dB amplitude response of active high-pass filter
= .
o .
2 s / P
5 0
g 6 v
E s /
= 4 < /
g / -20 p
/

< 2 P

0 at —40

103 102 10! 10° 10! 102 10 103 102 107! 100 10! 102 10°
Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 8.26 Normalized response of active high-pass filter

As a final example of active filters, let us look at a simple active band-pass filter Rp
configuration. This type of response may be realized simply by combining the high- Ww
R . ... R Cr
and low-pass filters we examined earlier. The circuit is shown in Figure 8.27. T
The analysis of the bandpass circuit follows the same structure used in previous Rs Cs
examples. First we evaluate the feedback and input impedances:
—O +
Zr = Rp || —— = Rr (8.58) Vs Vou
Em N i eCr T 1+ joCrRy ) [
1 14 joCsRs - . -
— — 8.59 igure 8.27 Active
Zs = Rs+ JjoCyg JjoCyg ( ) band-pass filter

Next we compute the closed-loop frequency response of the op-amp, as follows:

Z i R i
App(jw) = _or . JoCsRE . Band-pass (8.60) @
Zs (1+ jowCrRp)(1 + joCsRs)  filter
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The form of the op-amp response we just obtained should not be a surprise. It is very
similar (although not identical) to the product of the low-pass and high-pass responses
of equations 8.50 and 8.56. In particular, the denominator of Agp(jw) is exactly the
product of the denominators of Arp(jw) and Ayp(jw). Itis particularly enlightening
to rewrite App(jw) in a slightly different form, after making the observation that each
RC product corresponds to some “critical” frequency:

1 1 1
w = wp = ——— wgp = —— 8.61
1 RFCS LP RFCF HP RSCS ( )
It is easy to verify that for the case where
wyp > WLp (8.62)

the response of the op-amp filter may be represented as shown in Figure 8.28 in both
linear and decibel plots (in the figure, w1 = 1, wgp = 1,000, and wrp = 10). The
decibel plot is very revealing, for it shows that, in effect, the bandpass response is
the graphical superposition of the low-pass and high-pass responses shown earlier.
The two 3-dB (or cutoff) frequencies are the same as in Arp(jw), 1/RrCr; and in
App(jow), 1/RsCy. The third frequency, w; = 1/RrCy, represents the point where
the response of the filter crosses the 0-dB axis (rising slope). Since 0 dB corresponds
to a gain of 1, this frequency is called the unity gain frequency.

Amplitude response of active band-pass filter dB amplitude response of active band-pass filter
10 q 20 s
° l N ) ~
= 8 7/
8 10
g 6 N
E / \ B0 [ \w\
e 4 \ /
E \ 10 /
< 2 N \
0 =2 =t -20 N
ot 100 10! 102 10 104 10° ot 100 10! 102 10 104 10°

Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 8.28 Normalized amplitude response of active band-pass filter

The ideas developed thus far can be employed to construct more complex func-
tions of frequency. In fact, most active filters one encounters in practical applications
are based on circuits involving more than one or two energy storage elements. By
constructing suitable functions for Zr and Zg, it is possible to realize filters with
greater frequency selectivity (i.e., sharpness of cutoff), as well as flatter bandpass or
band-rejection functions (i.e., filters that either allow or reject signals in a limited
band of frequencies). A few simple applications are investigated in the homework
problems and some advanced applications in Chapter 15. One remark that should be
made in passing, though, pertains to the exclusive use of capacitors in the circuits
analyzed thus far. One of the advantages of op-amp filters is that it is not necessary to
use both capacitors and inductors to obtain a bandpass response. Suitable connections
of capacitors can accomplish that task in an op-amp. This seemingly minor fact is
of great importance in practice, because inductors are expensive to mass-produce to
close tolerances and exact specifications and are often bulkier than capacitors with
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equivalent energy storage capabilities. On the other hand, capacitors are easy to manu-
facture in a wide variety of tolerances and values, and in relatively compact packages,
including in integrated-circuit form.

Example 8.6 illustrates how it is possible to construct active filters with greater
frequency selectivity by adding energy storage elements to the design.

EXAMPLE 8.6 Second-Order Low-Pass Filter <|_03

Problem

Determine the closed-loop voltage gain as a function of frequency for the op-amp circuit of

Figure 8.29. Ry
AV‘VAVAV
I
) 1
Solution R L C
Known Quantities: Feedback and source impedances. o
T
A\
Find: s Vout
VQu j -
AGjw) = t(] )
Vs(jow) =
Figure 8.29

Schematics, Diagrams, Circuits, and Given Data: R,C = L/R| = wy.
Assumptions: Assume an ideal op-amp.

Analysis: The expression for the gain of the filter of Figure 8.29 can be determined by using
equation 8.45:

Voulj®) _ Zp(jo)

Vs(jo) Zs(jo)

A(jow) =

where

. 1 R, R,
Zr(jo) = Rol| —— = - = .
JjoC 1+ jwCR; 1+ jo/wo

[20]

. . L Jjw
=R, + joL =R, 1+ja)R— =R/ |1+ —
1
Thus, the gain of the filter is
_ R/ + jo/wy)
Ri(1+ jo/wo)

_ Ry/Ry
(14 jo/wp)*

A(jw)

Comments: Note the similarity between the expression for the gain of the filter of Figure 8.29
and that given in equation 8.50 for the gain of a (first-order) low-pass filter. Clearly, the circuit
analyzed in this example is also a low-pass filter, of second order (as the quadratic denominator
term suggests). Figure 8.30 compares the two responses in both linear and decibel (Bode)
magnitude plots. The slope of the decibel plot for the second-order filter at higher frequencies
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is twice that of the first-order filter (—40 versus —20 dB/decade). We should also remark that
the use of an inductor in the filter design is not recommended in practice, as explained in the
above section, and that we have used it in this example only because of the simplicity of the
resulting gain expressions. Section 15.3 introduces design methods for practical high-order

filters.

Comparison of active low-pass filters (dB plot)

= = = : Response of filter of Figure 8.21 = = = : Response of filter of Figure 8.21
= : Response of filter of Example 8.5 = : Response of filter of Example 8.5
10 & 50
!
° N
= 8 -
g 1 0 Tl
i B
E ° M 8 50 ™~ iintiEAI
= 4 I NN
=4 \ Y N
g 5 . \ -100 q
0 ha. (I E ~150 T
103 102 10t 10° 10! 102 10° 102 102 107! 100 10! 102 10°

Radian frequency (logarithmic scale)

Radian frequency (logarithmic scale)

Figure 8.30 Comparison of first- and second-order active filters

CHECK YOUR UNDERSTANDING

Design a low-pass filter with closed-loop gain of 100 and cutoff (3-dB) frequency equal to 800
Hz. Assume that only 0.01-uF capacitors are available. Find Ry and Rj.

Repeat the design of the exercise above for a high-pass filter with cutoff frequency of 2,000 Hz.
This time, however, assume that only standard values of resistors are available (see Table 2.1
for a table of standard values). Select the nearest component values, and calculate the percent
error in gain and cutoff frequency with respect to the desired values.

Find the frequency corresponding to attenuation of 1 dB (with respect to the maximum value
of the amplitude response) for the filter of the two previous exercises.

What is the decibel gain for the filter of Example 8.6 at the cutoff frequency wy? Find the 3-dB
frequency for this filter in terms of the cutoff frequency wy, and note that the two are not the
same.

0m79'0) = @ @ ‘gp 9— ‘ZH L0y Duediad g7 = € t@ usorad
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8.4 INTEGRATOR AND DIFFERENTIATOR
CIRCUITS

In the preceding sections, we examined the frequency response of op-amp circuits
for sinusoidal inputs. However, certain op-amp circuits containing energy storage
elements reveal some of their more general properties if we analyze their response
to inputs that are time-varying but not necessarily sinusoidal. Among such circuits
are the commonly used integrator and differentiator; the analysis of these circuits is
presented in the following paragraphs.



Rizzoni: Principles and I1. Electronics 8. Operational Amplifiers
Applications of Electrical
Engineering, Fifth Edition

Part IT Electronics

The Ideal Integrator

Consider the circuit of Figure 8.31, where vg(¢) is an arbitrary function of time (e.g., a
pulse train, a triangular wave, or a square wave). The op-amp circuit shown provides
an output that is proportional to the integral of vg(¢). The analysis of the integrator
circuit is, as always, based on the observation that

is(t) = —ip(t) (8.63)
where
is(t) = v;(sr) (8.64)

It is also known that

dVou (1)

o (8.65)

ir(t)=Cp

from the fundamental definition of the capacitor. The source voltage can then be
expressed as a function of the derivative of the output voltage:

dvoy (1)
{) = ——
ReC, @ dt

(8.66)

By integrating both sides of equation 8.66, we obtain the following result:

t
Vou (1) = — f vs(t) dt’ Op-amp integrator (8.67)

—0Q

RsCrF

This equation states that the output voltage is the integral of the input voltage.

There are numerous applications of the op-amp integrator, most notably the
analog computer, which is discussed in Section 8.5. Example 8.7 illustrates the
operation of the op-amp integrator.
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Figure 8.31 Op-amp
integrator

< LO3

EXAMPLE 8.7 Integrating a Square Wave
Problem

Determine the output voltage for the integrator circuit of Figure 8.32 if the input is a square
wave of amplitude +A and period T'.

Solution
Known Quantities: Feedback and source impedances; input waveform characteristics.
Find: vy (1).

Schematics, Diagrams, Circuits, and Given Data: T = 10ms; Cr = 1 uF;
Rs = 10 k<.

Assumptions: Assume an ideal op-amp. The square wave starts at + = 0, and therefore
Vout (0) = 0.

< LO3

vs(t)
A 1
1
0
r T t
2
At
Figure 8.32
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Vout(f)

0

—50AT
Figure 8.33
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Analysis: Following equation 8.67, we write the expression for the output of the integrator:

1 t 1 0 t
tdt = — t"hdt t"dt
RFCs/wovS() RoCs |:/wa5( ) +/0 vs(t) ]

1 t
= _m |:vout(0) +‘/0\ vs(t/)dt/i|

Next, we note that we can integrate the square wave in a piecewise fashion by observing that
vs(t) = Afor0 <t <T/2and vg(t) = —AforT/2 <t < T. We consider the first half of

the waveform:

1 t t
Vout (F) = TRC. |:Uout(0) +/ Us(f/)df/i| =—100 <0+/ Adt’)
FCs 0 0

= —100A¢ 0§t<5

Vout (t) = -

T 1 ! ’ ’ T ! ’
Vout(t) = Vour | = ) — vg(t) dt' = —100A— — 100 (—A) dt
2 RrCs Jrp 2 /2

T T T
= —100A— +100A |t — — ) = —100A(T —1¢) —<t<T

2 2 2
Since the waveform is periodic, the above result will repeat with period T, as shown in
Figure 8.33. Note also that the average value of the output voltage is not zero.

Comments: The integral of a square wave is thus a triangular wave. This is a useful fact to
remember. Note that the effect of the initial condition is very important, since it determines the
starting point of the triangular wave.

CHECK YOUR UNDERSTANDING

Plot the frequency response of the ideal integrator in the form of a Bode plot. Determine the
slope of the straight-line segments in decibels per decade. You may assume RgCp = 10.

opeodp/gp 07— ToMSuy

EXAMPLE 8.8 Proportional-Integral Control with Op-Amps

Problem

Consider the temperature control circuit of Example 8.5, shown again in Figure 8.34(a). The
aim of this example is to illustrate the very common practice of proportional-integral, or PI,
control. In Experiment 8.5, we discovered that the proportional control implemented with the
gain K p could still give rise to a steady-state error in the final temperature of the system. This
error can be eliminated by using an automatic control system that feeds back a component that
is proportional to the integral of the error voltage, in addition to the proportional term used in
Example 8.5. Figure 8.34(b) depicts the block diagram of such a PI controller. Now, the design
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of the control system requires selecting two gains, the proportional gain K, and the integral
gain K.

Viemp

Thermal system
Viemp

Thermal insulation Amplifier with Ve

— (variable)
i C=me p proportional gain K

R Y
(=% v ~ R
1 = t Power -
Reoii| in amplifier +

T ),
+ .
= Thermocouple _)E Viemp { Integrator with

(variable) Veer
KIJ‘ v, dt integral gain K, M

@ ®

[

n

Figure 8.34 (a) Thermal system and (b) Block diagram of control system

Solution

Known Quantities: Sensor (input) voltage; feedback and source resistors, thermal system
component values.

Find: Select desired value of proportional gain, K p, and integral gain, K, to achieve automatic
temperature control with zero steady-state error.

Schematics, Diagrams, Circuits and Given Data: R.;; =5 Q; R, =2°C/W;C, =50]/°C;
a=1V/C.

Assumptions: Assume ideal op-amps.

Analysis: The circuit of Figure 8.34(c) shows two op-amp circuits — the top circuit generates
the error voltage v,, as was done in Example 8.5. The only difference is that in this case the
circuit does not provide any gain. The bottom circuit amplifies v, by the proportional gain,
—Kp = —R,/R; and also computes the integral of v, times the integral gain —K; = —1/R;C.
These two quantities are then summed through another inverting summer circuit, which takes
care of the sign change as well.

Figure 8.34(d) depicts the temperature response of the system for Kp = 5 (the value we
had selected in Example 8.5) and different values of K;. Note that the steady-state error is
now zero! This is a property of controllers that incorporate an integral term. Figure 8.34(e)
shows the current supplied to the heater coil. Note that the response is quite fast, and that the
temperature deviation is minimal.

Comments: The addition of the integral term in the controller causes the system temperature to
oscillate in response to the —10°C temperature disturbance described in Example 8.5 (p. 430)
(for sufficiently high values of K;). This oscillation is a characteristic of an underdamped
second-order system (see Chapter 5)—but we originally started out with a first-order thermal
system! The addition of the integral term has increased the order of the system, and now it is
possible for the system to display oscillatory behavior, that is, to have complex conjugate roots
(poles). To those familiar with thermal systems, this behavior should cause a raised eyebrow!
It is well known that thermal systems cannot display underdamped behavior (that is, there is
no thermal system property analogous to inductance. The introduction of the integral gain can
in fact cause temperature oscillations, as if we had introduced an artificial “thermal inductor”
in the system.
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Figure 8.34 (c) Circuit for generating error voltage and proportional gain and (d) Response of thermal
system for various values of integral gain, K; (Kp =5)
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Power amplifier output current for various integral gains (Kp= 5)
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(®
Figure 8.34 (e) Power amplifier current system for various values of integral gain, K
(Kp =5)
Charge Amplifiers

One of the most common families of transducers for the measurement
of force, pressure, and acceleration is that of piezoelectric transducers.
These transducers contain a piezoelectric crystal that generates an electric
charge in response to deformation. Thus, if a force is applied to the crystal

(leading to a displacement), a charge is generated within the crystal. If
the external force generates a displacement x;, then the transducer will generate a charge

q according to the expression

FIND IT

ON THE WEB

q = Kpx;

Figure 8.35 depicts the basic structure of the piezoelectric transducer, and a simple circuit
model. The model consists of a current source in parallel with a capacitor, where the
current source represents the rate of change of the charge generated in response to an
external force; and the capacitance is a consequence of the structure of the transducer,
which consists of a piezoelectric crystal (e.g., quartz or Rochelle salt) sandwiched between
conducting electrodes (in effect, this is a parallel-plate capacitor).

(Continued)
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(Concluded)

Electrodes

O+
. d 4
Leads i= d_‘? co= Vo
Crystal o~
Piezoelectric transducer Circuit model

Figure 8.35 Piezoelectric transducer

Although it is possible, in principle, to employ a conventional voltage amplifier to
amplify the transducer output voltage v,, given by

1 1 [d Kpxi
vo=5[idt:— Mgy =L 2P

C dt C C

it is often advantageous to use a charge amplifier. The charge amplifier is essentially
an integrator circuit, as shown in Figure 8.36, characterized by an extremely high input
impedance.> The high impedance is essential; otherwise, the charge generated by the
transducer would leak to ground through the input resistance of the amplifier.

Cr
| L
I\
-~
7 ir(1)
—— _
dq _L 11::0
i=—= C * —O +
dt T ic=0 Vout(?)
i + i _
Transducer = —

Figure 8.36 Charge amplifier

Because of the high input impedance, the input current to the amplifier is negligible;
further, because of the high open-loop gain of the amplifier, the inverting-terminal voltage
is essentially at ground potential. Thus, the voltage across the transducer is effectively
zero. As a consequence, to satisfy KCL, the feedback current iy (#) must be equal and
opposite to the transducer current i:

ip(t)y =—i

and since )
out(t) = — | ip(t)dt
Vour () CF[IF()

it follows that the output voltage is proportional to the charge generated by the transducer,
and therefore to the displacement:
Vou () = L[—idt = L —d—q di=—1 _ —pri
Cr Cr dt Cr Cr
Since the displacement is caused by an external force or pressure, this sensing principle
is widely adopted in the measurement of force and pressure.

3Special op-amps are employed to achieve extremely high input impedance, through FET input
circuits.
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The Ideal Differentiator

Using an argument similar to that employed for the integrator, we can derive a result
for the ideal differentiator circuit of Figure 8.37. The relationship between input and
output is obtained by observing that

dvs(t)

is(t) =Cs — (8.68)
and
ip(t) = U°I‘§§r) (8.69)
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>