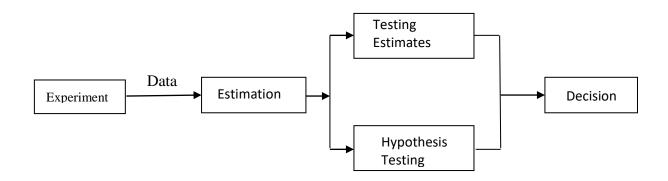
8. Statistical Intervals for Single Sample:

Process of making decisions:



Estimation: Using an Estimator to obtain estimates of population parameters based on sample data.

Inferences: Expressing an estimate with a certain probability statement; or making a hypothesis about a parameter and testing the hypothesis for acceptance or rejection. The result of the test is in terms of a certain probability of being correct.

Estimators:

- Point Estimates: Single valued estimates are considered.
 - -Express probability of its having a certain value.
- Interval Estimators: Range of values between which the parameter will lie with a given probability is considered.

Confidence Interval: Interval Estimator

It is an interval estimate for a population parameter. The length of the interval indicates precision of the estimate. We have high confidence that the interval contains the unknown population parameter.

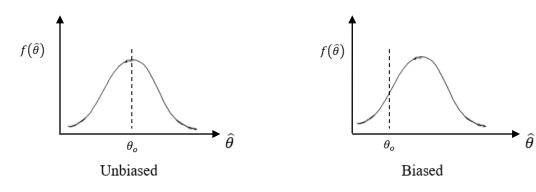
Confidence coefficient: $(1-\alpha)$ [= 90%, 95% or 99%]

Proportion of cases (%) that the parameter under consideration lies within the interval estimator. [usually 95%].

Properties of Estimators:

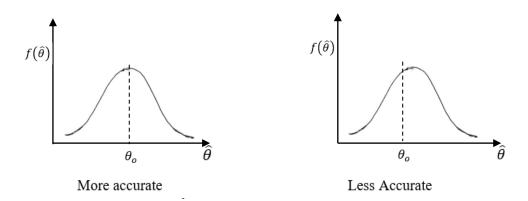
Quality of an estimator is judged by the distribution of the estimates (sampling distribution)

• Estimator should be unbiased:



• Estimator should be consistent:

Spread of distribution of estimate should be as small as possible. It is inversely proportional to the sample size.



 $\hat{\theta}$: Sampling Distribution of Estimator; θ_o Population Parameter

Confidence Interval on the Mean of a Normal Distribution: known σ^2 and unknown μ .

$$\bar{X}$$
: is Normal then $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ is also normal.

We define interval for μ as:

$$l \le \mu \le u$$

l and *u* are end points computed from sample data. Therefore, they are also random variables: L and U. *l* and *u* are the lower and upper confidence limits, such that

$$P\{L \le \mu \le U\} = 1 - \alpha \qquad 0 \le \alpha \le 1$$

This means that there is a probability of $(1-\alpha)$ of selecting a sample for which the interval will contain the true value of μ . $(1-\alpha)$ is known as the confidence coefficient.

The Z values that correspond to the probability of $(1-\alpha)$ are defined as

$$P\left\{-Z\alpha_{/2} \le Z \le +Z\alpha_{/2}\right\} = 1 - \alpha$$

$$P\left\{-Z\alpha_{/2} \le \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le +Z\alpha_{/2}\right\} = 1 - \alpha$$

$$P\left\{ \bar{X} - Z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + Z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}} \right\} = 1 - \alpha$$

Definition of Confidence Interval. known σ^2 and unknown μ :

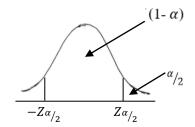
A 100 $(1 - \alpha)$ % confidence interval for μ is given by:

$$\bar{X} - Z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} + Z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}}$$
Lower limit l upper limit u

n: sample size $\alpha/2$

 \bar{x} : sample mean

 $Z_{\alpha/2}$ = upper 100 $\alpha/2$ percentage point of standard normal distribution



This means that if an infinite number of random samples are collected and a $100 (1 - \alpha)$ % confidence interval for μ for each sample, then $100 (1 - \alpha)$ % of these intervals will contain the true value of μ . In other words, the observed interval [l, u] brackets the true value of μ with confidence of $100(1 - \alpha)$. Which means that the method used to obtain the interval [l, u] yields correct statements $100 (1 - \alpha)$ % of the time.

Example:

Experiment on measurements of impact energy (J) on specimens of A238 Steel cut at 6°C.

Assume impact energy is normally distributed with $\sigma = 1$ J. Find 95% CI for μ , mean impact energy.

$$\bar{x} - z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\bar{x} = \frac{\sum \bar{x}_i}{n} = 64.46 \qquad n = 10$$

$$100 \alpha = 5\% \rightarrow \alpha_{/2} = 0.025$$

$$z\alpha_{/2} = z_{0.025} = 1.96$$

95% CI:

$$64.46 - 1.96.\frac{1}{\sqrt{10}} \leq \ \mu \leq 64.46 + 1.96.\frac{1}{\sqrt{10}}$$

$$63.84 \le \mu \le 65.08$$

Confidence Level and Precision of Estimation:

The length of Confidence Interval is:

$$2\left(Z\alpha_{/2},\frac{\sigma}{\sqrt{n}}\right)$$

It is a measure of precision, and it is $\propto \frac{\sigma}{\sqrt{n}}$.

Choice of sample size:

The error $E = |\bar{x} - \mu|$ should be $\leq \left(Z\alpha_{/2}, \frac{\sigma}{\sqrt{n}}\right)$ with confidence 100 (1- α).

$$\therefore n = \frac{\left(Z\alpha_{/2}\sigma\right)^2}{E} \quad [n \text{ to be rounded up}]$$

The error $|\bar{x} - \mu|$ will not exceed E. In this case 2E is the resulting confidence interval.