5. Joint probability Distribution:

Defines the simultaneous behavior of more than one random variable:

$$P(x_1 \le X \le x_2 \text{ AND } y_1 \le Y \le y_2)$$

Ex: length and diameter of a piece of plastic material from injection molding machine

Ex: X: no. of bars on cell phone
Y: no. of times city name is stated
1, 2, 3
1,2,3,4

x y	1	2	3	Sum
4	.15	.1	.05	.30
3	.02	.1	.05	<mark>.17</mark>
2	.02	.03	.2	.25
1	.01	.02	.25	.28
Sum	.2	.25	<mark>.55</mark>	1.0

- Each entry in the table specifies the joint probability distribution of X and Y
- Range of (X,Y): set of points (x,y) in 2-Dimensional space for which P(X=x) and P(Y=y) is positive
- The joint probability of two variables is called bivariate probability distribution OR bivariate distribution.

Discrete Variates X and Y:

Joint probability distribution of X and Y is a distribution of the points (x,y) in the range of (X,Y) along with the probability of each point.

Joint probability Mass function of (X,Y) is $f_{XY}(x,y)$ and must satisfy

- 1) $f_{XY}(x,y) \ge 0$
- $\sum_{x} \sum_{y} f_{XY}(x, y) = 1.0$
- 3) $f_{XY}(x, y) = P(X = x, Y = y)$

 $f_{XY}(x, y) = 0.0$ for values of (x,y) outside the range of X and Y

Continuous Variates X and Y

Probability distribution of two continuous random variables X,Y can be specified by providing a method for calculating the probability that X and Y assume a value in the region R of two dimensional space.

Joint Probability density function $f_{XY}(x,y)$ must satisfy

2)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x, y) dx dy = 1.0$$

Probability that (X, Y) is in the region R is determined by the volume of $f_{XY}(x, y)$ over the region R.

3) For any region R of two dimensional space

$$P((X,Y) \in R) = \iint_R f_{XY}(x,y) dx dy$$

= Probability X,Y assume values in R
= Vol under surface $f_{XY}(x,y)$ over R

Marginal Probability Distributions:

It is the individual Probability distribution of a random variable in cases in which more than one variable is defined in a random experiment.

Discrete Random Variable

Mass function for X and Y is $f_{XY}(x,y)$

$$f_{XY}(x_i, y_j)$$

$$f_{XY}(y_i) = \sum_{i} f_{xy}(x_i, y_j)$$

$$f_{Y}(y_j) = \sum_{i} f_{xy}(x_i, y_j)$$

 $f_X(x_i) = P(X=x_i) = Sum \text{ of } P(X=x_i; Y=y_j) \text{ for all points in the range of } X, Y \text{ for which } X=x_i$

x y	1	2	3	$f_Y(y)$
4	.15	.1	.05	0.3
3	.02	.1	.05	0.17
2	.02	.03	.2	0.25
1	.01	.02	.25	0.28
$f_X(x)$	0.2	0.25	0.55	1.0

Continuous Random Variable

Marginal Probability density function

$$f_{X}(x) = \int_{y} f_{xy}(x,y) dy$$
; $f_{Y}(y) = \int_{x} f_{xy}(x,y) dx$
 \uparrow
 χ is constant χ y is constant

$$P(a < X < b) = \int_{a}^{b} f_{X}(x) dx = \int_{a}^{b} \left[\int_{all \ y} f_{XY}(x, y) dy \right] dx$$

Example:

Let X denote the temperature (°C) and let Y denote the time in minutes that it takes for a diesel engine on an automobile to get ready to start. Assume that the joint density for (X,Y) is given by:

$$f_{xy}(x,y) = c(4x + 2y + 1)$$

$$0 \le x \le 40$$

$$0 \le y \le 2$$

- a. Find the value of c that makes this a density.
- b. Find the probability that on a randomly selected day, the air temperature will exceed 20°C and it will take at least one minute for the car to be ready to start.
- c. Find the marginal densities for X and Y.
- d. Find the probability that on a randomly selected day it will take at least one minute for the car to be ready to start.
- e. Are X and Y independent? explain on a mathematical basis.

Solution:

a) For $f_{XY}(x,y)$ to be a density, the condition $\int_0^2 \int_0^{40} c(4x+2y+1)dxdy = 1$ must be satisfied. Therefore, c can be found upon integration and solving for it. Upon integration we obtain:

$$(2x^{2}y + xy^{2} + xy) \begin{vmatrix} x = 40 \\ x = 0 \end{vmatrix} \begin{vmatrix} y = 2 \\ y = 0 = \frac{1}{c}$$

$$(2x40^{2}x2 + 40x2^{2} + 40x2) = \frac{1}{c}$$

$$(6400 + 160 + 80) = \frac{1}{c} \qquad ; \qquad c = \frac{1}{6640} \qquad ; \qquad = 1.506x10^{-4}$$

b)
$$P(X>20 \text{ and } Y\ge 1) = ?$$

$$P(X > 20 \text{ and } Y \ge 1) = \int_{1}^{2} \int_{20}^{40} \frac{1}{6640} (4x + 2y + 1) dx dy$$
$$= \frac{2480}{6640} = 0.3735$$

c)
$$f_X(x) = \int_0^2 f_{XY}(x, y) dy$$

$$f_X(x) = \int_0^2 c(4x + 2y + 1)dy$$
$$= c [4xy + y^2 + 2]_0^2$$
$$f_X(x) = c(8x + 6)$$

$$f_Y(y) = \int_0^{40} f_{XY}(x, y) dx$$

$$f_Y(y) = \int_0^{40} c(4x + 2y + 1) dx$$

$$= c \left[2x^2 + 2xy + x \right]_0^{40}$$

$$f_Y(y) = c(3240 + 80y)$$

d)
$$P(Y \ge 1) = \int_{1}^{2} f_{Y}(y) dy$$

 $= \int_{1}^{2} c(3240 + 80y) dy$
 $= c[3240y + 40y^{2}]_{1}^{2}$
 $= \frac{3360}{6640}$

e) check if
$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

$$f_X(x)f_Y(y) = c(8x+6) c(3240+80y)$$

= $c^2 (25920 x + 640xy + 480y + 19440) \neq f_{XY}(x,y)$

Therefore, X and Y are NOT independent

Conditional Probability Distribution:

For two events A and B

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

This is the conditional probability of B given A provided A and B are dependent

Discrete RV:

A: event defined to be X=x

B: event defined to be Y=y

$$P(Y=y \mid X=x) = \frac{P(X=x,Y=y)}{P(x)} = \frac{Joint}{Marginal}$$

This is a new Probability Distribution of Y defined for each X.

x y	1	2	3	$f_Y(y)$
4	.15	.1	.05	0.3
3	.02	.1	.05	0.17
2	.02	.03	.2	0.25
1	.01	.02	.25	0.28
$f_X(x)$	0.2	0.25	0.55	1.0

x y	1	2	3
4	.75	.4	.091
3	.1	.4	.091
2	.1	.12	.364
1	.05	.08	.454
$f_{Y _X}(y)$	1.0	1.0	1.0

Each column represents a conditional Probability Mass Function

Ex: Signal bars

$$P(Y=1 \mid X=3) = \frac{P(X=3,Y=1)}{P(X=3)} = \frac{f_{XY}(3,1)}{f_{X}(3)} = \frac{0.25}{0.55} = 0.454$$

The conditional PMF must satisfy the condition:

$$\sum_{i} P(Y = y_j | X = x_i = 1.0$$

Continuous RV

$$f_{Y|X}(y) = \frac{f_{XY}(x,y)}{f_{X}(x)}$$
 for $f_{X}(x) > 0$

It is a probability density function for all Y in Rx

- 1) $f_{Y|X}(y) \ge 0$
- $2) \int f_{Y|X}(y) dy = 1$
- 3) $P(Y \in B|_{X=x}) = \int_B (f_{Y|x}(y) dy)$ For any set B in the range of Y.

Similar results are for X can be written

Using the results in the example of the diesel engine:

$$f_{Y|x}(y) = \frac{f_{xy}(x,y)}{f_X(x)}$$

$$= \frac{c(4x + 2y + 1)}{c(8x + 6)}$$

$$= \frac{(4x + 2y + 1)}{(8x + 6)}$$

Find probability Y>1 given X=20

$$P(Y > 1, X = 20) = \int_{1}^{2} \frac{(4x + 2y + 1)}{(8x + 6)} dy \quad ; \qquad for \ x = 20$$
$$= \frac{1}{166} \int_{1}^{2} (4x + 2y + 1) dy$$
$$= \frac{1}{166} (84) = 0.51$$

Conditional Mean and Variance:

Mean:

Discrete:
$$E(Y|_x) = \mu_{Y|x} = \sum_y f_{y|x}(y).y$$

Continuous:
$$E(Y|x) = \mu_{Y|x} = \int_{V} f_{Y|x}(y). y \, dy$$

Variance:

Discrete:
$$V(Y|_x) = \sigma_{Y|_x}^2 = \sum_y f_{Y|_x}(y) (y - \mu_{Y|_x})^2$$

Continuous:
$$V(Y|_x) = \sigma_{Y|_x}^2 = \int_{y} f_{Y|_x}(y) \cdot (y - \mu_{Y|_x})^2 dy$$

Ex:

$$E(Y|_1) = \mu_{Y|1} = 1 \times 0.05 + 2 \times 0.1 + 3 \times 0.1 + 4 \times 0.75 = 3.55$$

$$V(Y|_1) = \sigma_{Y|_1}^2 = (1 - 3.55)^2 \times 0.05 + (2 - 3.55)^2 \times 0.1 + (3 - 3.55)^2 \times 0.1 + (4 - 3.55)^2 \times 0.75$$