
Problem 19.1 

Solution: 
Known quantities: 

The square wave signal: , 
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Find: 
a. The Fourier series coefficients for the square wave signal. 
b. Frequency spectrum of the signal for the numerical values. 
Analysis: 
a. Fourier series coefficients: 

From Fourier series theory we know that the Fourier series representation of any signal is given as:  

frequency. natural  theis and signal,  theof period  theis T signal,  theis x(t)  where
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The square wave signal is an odd function, so we need to compute only the Fourier coefficients. The interval of 

integration 
nb

τ≤≤ t0  would be convenient. 
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b. Frequency spectrum of the signal for %50=η is shown in Figure 19.xx and for %30=η is shown in Figure 
19.xx 
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Problem 19.2 

Solution: 
Known quantities: 
Functional form of a full-wave rectified sinusoidal signal of time period T |)sin(|)(  sec, ttx oω= , and natural 

frequency 
s
radπω 2000 = . 

Find: 
a. The Fourier series coefficients. 
b. Frequency spectrum of the signal. 
Analysis: 
The rectified sine wave signal is an even function. Hence, we need to compute only the coefficients of the 
Fourier series. 
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b. The Frequency spectrum for the full wave rectified sinusoid of frequency 
s
radπω 2000 =  is shown in 

Figure 19.xx. 
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Problem 19.3 

Solution: 
Known quantities: 
Functional form of a full-wave rectified cosine wave of time period T |)sin(|)(  sec, ttx oω= , and natural 

frequency 
s
radπω 1500 = . 

Find: 
a. The Fourier series coefficients. 
b. Frequency spectrum of the signal. 
Analysis: 

The rectified cosine wave signal is same as the rectified sine wave with a phase shift of rad 
2
π

. The Fourier series 

coefficients are to be found over a period of rad. π If we consider the period from rad 
2

3  to
2

ππ
, the analysis is 

same as a full wave rectified sinusoid. Hence, the Fourier series coefficients are the same as computed in Problem 
19.2.  

π

ωω
π

ωω
π

π

π

π

4

)()sin(2)(|)cos(|1

0

2
3

2

2

0
0

=

== ∫∫

a

tdttdta oooo

 

19.2 



[ ]





 +−+=

=







+−=

=

−=

==

=

===

∫

∫∫

∫∫∫

)6cos(65
2)4cos(15

2)2cos(
3
214)(

0
odd :n                           0

even :n    
)1)(1(

24
3
24

)()sin()3sin(
2
14

)()2cos()sin(4)()2cos(|)cos(|2

0

)()sin(
2
14)()cos()sin(4)()cos(|)cos(|2

000

2

2
3

2

2
3

2

2

0
2

1

0

2
3

2

2

0
1

ttttx

b

nna

a

tdtt

tdtttdtta

a

tdttdtttdtta

n

n

ooo

oooooo

oooooooo

ωωωπ

π

π

ωωω
π

ωωω
π

ωωω
π

ωω
π

ωωω
π

ωωω
π

π

π

π

π

π

π
π

π

π

 

 

b. The Frequency spectrum for the full wave rectified cosine wave of frequency 
s
radπω 1500 =  is shown in 

Figure 19.xx. 
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Problem 19.4 

Solution: 
Known quantities: 
Functional form of a cosine burst as shown in Fig. 19.xx and mathematically defined as: 

)cos()( t
T

tx π
=

Find: 
Fourier series coefficients for the cosine burst. 
Analysis: 
The Fourier series coefficients can be calculated as follows: 
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Since the cosine burst is an even signal the coefficients are all zero. Hence nb 0bn = . 
The cosine burst signal can be written as: 
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Problem 19.5 

Solution: 
Known quantities: 
Functional form of a triangular pulse signal as shown in Fig. 19.xx and mathematically defined as:  
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Find: 
a. Fourier transform of the function. 
b. Plot the frequency spectrum of the triangular pulse of period, T 0.01  = sec and amplitude, . 0.5  A =
Analysis: 
The mathematical equation for the triangular pulse can be split into a function defined over different periods as 
follows: 
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The Fourier transform is defined as:  and can be computed for the triangular 

pulse as follows: 
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b. The Frequency spectrum for the signal as computed from Matlab is shown in Figure 19.xx. 
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Problem 19.6 

Solution: 
Known quantities: 
Functional form of a exponential pulse signal as shown in Fig. 19.xx and mathematically defined as:  









<

=
>

=

−

0for,(exp)-
0for       ,0
0for ,(exp)

)(
t
t
t

tx
at

at

 

Find: 
Fourier transform for the exponential pulse. 
Analysis: 
We can formulate a compact notation for the pulse signal by using “signum function” which equals +1 for positive 
time and –1 for negative time. This function is defined as: 
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The signal can be written as: )(tx
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The Fourier transform is now calculated as follows: 
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b. The Frequency spectrum for the signal is shown in Figure 19.xx. 
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Problem 19.7 

Solution: 
Known quantities: 

)()2cos(exp(-at))( tutftx cπ=
Functional form of a damped sinusoid signal as shown in Fig. 19.xx and mathematically defined as: 
Find: 
Fourier transform for the damped sinusoid. 
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b. The Frequency spectrum from Matlab is shown in Figure 19.xx. 
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Problem 19.8 

Solution: 
Known quantities: 

Functional form of an ideal sampling function of frequency Hz
0T

1 as shown in Figure 19.xx and having 

mathematical equation:  ∑
∞

−∞=

−=
m

T mTt )( 00
δδ
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Find: 
a. The Fourier transform for the periodic signal. 
b. Frequency spectrum of the signal for T sec 0.01  o = . 

Analysis: 
In a limiting sense, Fourier transforms can be defined for periodic signals. Therefore, it is reasonable to represent 
that a periodic signal can be represented in terms of a Fourier transform, provided that this transform is permitted to 
include delta functions. An ideal sampling function consists of an infinite sequence of uniformly spaced delta 
functions. We observe that the generating function for the ideal sampling function is simply a delta function )(tδ . 
The periodic signal can be represented in terms of the complex exponential Fourier series: 
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whereG is the Fourier transform of )( 0nf )(tδ evaluated at the frequency nf . For the delta function: 0

n allfor        1)( 0 =nfG  

Therefore, using the relation for Fourier transform pair for a periodic signal with a generating function  

and period T : 
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We get the Fourier transform pair for the ideal sampling function as: 
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We can see that the Fourier transform of a periodic train of delta functions, spaced T seconds apart, consists of 

another set of delta functions weighted by a factor 

0

0
0

1
T

f = and regularly spaced  Hz apart along the frequency 

axis. 
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Problem 19.9 

Solution: 
Known quantities:  
Functional form of the modulating signal m , the carrier signal , and the modulation index )(t )(tc µ . 
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Find: 
The average power delivered to a 1-ohm resistor. 
Analysis: 
The AM signal is given by: 

[ ] )2cos()2cos(1)( tftfAts cmc ππµ+=  
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Expressing the product of two cosines as the sum of sinusoidal waves, we get: 
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The Fourier transform of is therefore: )(ts
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Thus the spectrum of an AM wave, for sinusoidal modulation, consists of delta functions at 
as seen from its Fourier transform. mcmcc fffff ±−±± ,,

In practice, the AM wave  is a voltage or current wave. In either case, the average power delivered to a 1-ohm 
resistor by  is comprised of three components: 

)(ts
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dttx
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Using Parsevals energy relation we can find average power in frequency domain as: 
0  fat      power  Average 2 == |X(f)|  

Hence the carrier frequency, upper side-frequency and lower side-frequency power is: 
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For a load resistor R different from 1-ohm, which is usually the case in practice, the expression for carrier power, 

upper side-frequency power, and lower side-frequency power are merely scaled by the factor R
1 or R , depending 

on whether the modulated wave  is a voltage or current, respectively. )(ts
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Problem 19.10 

Solution: 
Known quantities: 
Carrier signal frequency, , upper side-band frequency components at frequencies  MHz82.0=cf

  MHz,83.0  MHz84.0  MHz,825.0 321 == sf= ss ff , their amplitudes and the modulation index 1=µ . 

Find: 
a. Modulating signal equation. 
b. Plot spectrum of the modulating signal. 
c. Plot the spectrum of the AM signal including the lower side-band. 
Analysis: 
a. We know from the theory for AM that the upper side-band frequency has frequency components at frequencies: 

signal modulating  thein componentsfrequency  ofnumber   theis n    wheremncsn fff +=  

and, their amplitudes in the AM signal are 2
1 times the original amplitude of the modulating signal for a 

modulation index 1=µ . Hence, we can find the modulating signal components to be: 
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Hence the modulating signal is: 
)200002sin(5.0)100002sin(4.0)50002sin(8.0)( ttttm πππ ++=  

b. The spectrum for the modulating signal is shown in Figure 19.xx 
c. The spectrum for the AM modulated signal with the lower side-band is shown in Figure 19.xx 
 

Problem 19.11 
Known quantities: 
AM frequency spectrum from 525 , bandwidth for each channel is 10   MHz1.7  tokHz kHz 
Find: 
a. Number of channels that can be transmitted in the given frequency range  
b. The maximum modulating frequency that can be transmitted without overlap. 
Analysis: 
Assume: No guardband between channels. 
a. The frequency range allocated for AM broadcast is  

kHz 11755251700 =−=Rf  
This range is partitioned to allow 10 of separation between each channel; therefore, the total number of 
channels, 

kHz 
N is 

channels 118
10

1175
≈=N  

b. The carriers of two separate channels are separated by 10 . If we let the maximum frequency of the 
message signal increase, the outer edges of both sidebands move away from the carrier frequency and into each 
other, thereby increasing the bandwidth of each AM channel. The maximum allowable message frequency will 
occur at the midpoint of the spacing between the carriers. Hence, the maximum message frequency is half the 
frequency spacing between the carriers. 

kHz 

kHz 5(max) =mf  
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