Simple Linear Regression:

e Many engineering problems involve relationships between variables which are not
deterministic.

¢ Instochastic situations the value of the response ( dependent variable) cannot be predicted
perfectly from the independent variables (input variables).

Regression Analysis: collection of statistical tools that are used to model and explore
relationships between variables tjhat are not related in a deterministic manner.

Objective of Regression:

Build a model based on a set of observations which can be used for:
» Prediction
> Interpolation or extrapolation
» Optimization
» Control

The parameters in the model are called regression coefficients. e.g intercept and slope in a linear model.

Regressor(s) or predictor(s): is (are) the set of independent variable(s). Input variables for the model.
Response: is the dependent variable (output of the model)

In a distillation process,

y is the purity of oxygen produced in a chemical distillation process, and x is the percentage of
hydrocarbons that are present in the main condenser of the distillation unit
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Each observation, Y can be described by the model (as an estimation):

§=Bo+ Bix+ € eisrandom error
Where the intercept S, and the slope f, are unknown regression coefficients
Assumptions for € :

> Zero mean value
*  Variance o is constant
” Normally distributed

The method of least squares is used to estimate the parameters 8, and ;by minimizing the sum of the
squares of the vertical deviations [(observed — calculated)] of the dependent variable.
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» The sum of the squares of the deviations of the observations from the true regression line is:
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For the function L to be minimum; its first derivatives with respect to all parameters must equal zero. This
yields a number of first order differential equations that equals the number of parameters of concern.
Solving this system of equations, we obtain estimates of the parameters.
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After rearrangement:

From these equations we obtain the least square estimates of the intercept and the slope in the simple
linear regression model as:
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We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The
following quantities may be computed:
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B, = y — B1x = 92.1605 — (14.94748)1.196 = 74.28331

The fitted simple linear regression model is:

$ = 74.283 + 14.947 x
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The coefficient of determination R? is often used to judge the adequacy of a regression model:

, SSR _
~SST

Where SSR = Sum square of residuals

The range of R? is :

0 <R?’<1

1 SSE
SST

The correlation coefficient (R) is the positive square root of R

The coefficient of determination can sometimes be considered as the amount of variability in the

data accounted for by the regression model.

For the oxygen purity regression model, we have

R? = SS,/8S; = 152.13/173.38 = 0.877.

that is, the model accounts for 87.7% of the variability in the data.

Many models are intrinsically linear 1.e.. can be
transformed to linear form by proper manipulations
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Transform using
logarithms then the new
variables will be In v and
In x. Also. the parameters
will be In @ and original .
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Transform using
logarithms then the new
variables will be In y and
original x. Also, the
parameters will be In @ and
original .
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Transform using
reciprocals then the new
variables will be 1/y and
1/x. Also. the parameters
will be b/a and reciprocal
a.




