Simple Linear Regression:

- Many engineering problems involve relationships between variables which are not deterministic.
- In stochastic situations the value of the response (dependent variable) cannot be predicted perfectly from the independent variables (input variables).

Regression Analysis: collection of statistical tools that are used to model and explore relationships between variables tihat are not related in a deterministic manner.

Objective of Regression:

Build a model based on a set of observations which can be used for:

- Prediction
- ➤ Interpolation or extrapolation
- Optimization
- Control

The parameters in the model are called regression coefficients. e.g intercept and slope in a linear model.

Regressor(s) or **predictor(s)**: is (are) the set of independent variable(s). Input variables for the model. **Response**: is the dependent variable (output of the model)

In a distillation process,

y is the purity of oxygen produced in a chemical distillation process, and x is the percentage of hydrocarbons that are present in the main condenser of the distillation unit

Each observation, Y can be described by the model (as an estimation):

$$\hat{y} = \beta_0 + \beta_1 x + \varepsilon$$
 ε is random error

Where the intercept β_o and the slope β_1 are unknown regression coefficients

Assumptions for ε :

- > Zero mean value
- \rightarrow Variance σ^2 is constant
- Normally distributed

The method of least squares is used to estimate the parameters β_o and β_1 by minimizing the sum of the squares of the vertical deviations [(observed – calculated)] of the dependent variable.

Figure 11-3 Deviations of the data from the estimated regression model.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$
 $i = 1, 2, \dots, n$

> The sum of the squares of the deviations of the observations from the true regression line is:

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_o - \beta_1 x_i)^2$$

For the function L to be minimum; its first derivatives with respect to all parameters must equal zero. This yields a number of first order differential equations that equals the number of parameters of concern. Solving this system of equations, we obtain estimates of the parameters.

$$\left. \frac{\partial L}{\partial \beta_o} \right|_{\beta_o \beta_1} = -2 \sum_{i=1}^n (y_i - \hat{\beta}_o - \hat{\beta}_1 x_i) = 0$$

$$\left. \frac{\partial L}{\partial \beta_1} \right|_{\beta_0 \beta_1} = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

After rearrangement:

$$\hat{\beta}_{o} n + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{o} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i} x_{i}$$

From these equations we obtain the least square estimates of the intercept and the slope in the simple linear regression model as:

$$\hat{\beta}_{o} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} y_{i} x_{i} - \frac{(\sum_{i=1}^{n} y_{i}) (\sum_{i=1}^{n} x_{i})}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}$$

where
$$\bar{y} = (1/n) \sum_{i=1}^{n} y_i$$
 and $\bar{x} = (1/n) \sum_{i=1}^{n} x_i$

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}}$$

$$S_{xy} = \sum_{i=1}^{n} y_{i} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} y_{i} x_{i} - \frac{(\sum_{i=1}^{n} y_{i}) (\sum_{i=1}^{n} x_{i})}{n}$$

$$S_{xx} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}$$

$$SSE = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Error sum of squares

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Total sum of squares

We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The following quantities may be computed:

$$n = 20 \quad \sum_{i=1}^{20} x_i = 23.92 \quad \sum_{i=1}^{20} y_i = 1,843.21 \quad \overline{x} = 1.1960 \quad \overline{y} = 92.1605$$

$$\sum_{i=1}^{20} y_i^2 = 170,044.5321 \quad \sum_{i=1}^{20} x_i^2 = 29.2892 \quad \sum_{i=1}^{20} x_i y_i = 2,214.6566$$

$$S_{xx} = \sum_{i=1}^{20} x_i^2 - \frac{\left(\sum_{i=1}^{20} x_i\right)^2}{20} = 29.2892 - \frac{(23.92)^2}{20} = 0.68088$$

and

$$S_{xy} = \sum_{i=1}^{20} x_i y_i - \frac{\left(\sum_{i=1}^{20} x_i\right) \left(\sum_{i=1}^{20} y_i\right)}{20} = 2,214.6566 - \frac{(23.92)(1,843.21)}{20} = 10.17744$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{10.17744}{0.68088} = 14.94748$$

$$\hat{\beta}_o = \bar{y} - \hat{\beta}_1 \bar{x} = 92.1605 - (14.94748)1.196 = 74.28331$$

The fitted simple linear regression model is:

$$\hat{y} = 74.283 + 14.947 \, x$$

Figure 11-4 Scatter plot of oxygen purity y versus hydrocarbon level x and regression model $\hat{y} = 74.20 + 14.97x$.

The coefficient of determination R^2 is often used to judge the adequacy of a regression model:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Where SSR = Sum square of residuals

The range of R^2 is: $0 \le R^2 \le 1$

$$0 \le R^2 \le 1$$

The correlation coefficient (R) is the positive square root of R^2

The coefficient of determination can sometimes be considered as the amount of variability in the data accounted for by the regression model.

For the oxygen purity regression model, we have

$$R^2 = SS_R/SS_T = 152.13/173.38 = 0.877$$

that is, the model accounts for 87.7% of the variability in the data.

- Many models are intrinsically linear i.e., can be transformed to linear form by proper manipulations
 - Power law
 - Exponential
 - Saturation

$$y = ax^{\circ}$$

$$y = ax^{b}$$

$$y = ae^{bx}$$

$$y = ae^{bx}$$

$$y = \ln a + b \ln x$$

$$y = \ln a + bx$$

$$y' = \beta_{0} + \beta_{1}x'$$

$$y' = \beta_{0} + \beta_{1}x$$

$$\longrightarrow y' = \beta_0 + \beta_1 x'$$

Exponential

$$v = ae^b$$

$$\longrightarrow \ln y = \ln a + bx$$

$$\longrightarrow y' = \beta_0 + \beta_1 x$$

Saturation

$$y = \frac{ax}{1 + bx}$$

$$\frac{1}{y} = \frac{b}{a} + \frac{1}{a} \frac{1}{x}$$

$$\longrightarrow y' = \beta_0 + \beta_1 x'$$

Transform using logarithms then the new variables will be ln y and $\ln x$. Also, the parameters will be $\ln a$ and original b. Transform using logarithms then the new variables will be ln v and original x. Also, the parameters will be ln a and original b.

Transform using reciprocals then the new variables will be 1/y and 1/x. Also, the parameters will be b/a and reciprocal