3.1 Random Variables (variates):

In many situations it is useful to associate a number with each outcome of a random experiment in a sample space.

Random Variable: it is a function that assigns a real number to each outcome in the sample space of a random experiment.

Notations:

X: Name of random variable

 x_i : the ith measurement of a random variable

In dealing with random variables, we associate probabilities with the values of the random variable in the sample space

Discrete Random Variable: it is a random variable with measurements that are limited to discrete points on the real line. It has a finite (or countably infinite) range.

Continuous Random Variable: The function (out come of the measurement) assumes any value of real numbers on an interval defined between two limits (finite or infinite).

3.2 Discrete Random Variable

- ➤ These are generated by random experiments
- Focus is made on the random variable and its distribution without much regard to the details of the sample space.

Ex 1 Communication system consisting of 48 lines

X : Number of lines being used at a particular time

 x_i : can assume values: 0 - 48

Ex 2: Testing two components in sequence from a lot: assuming that components are independent

Result: Pass (f) or Fail (f)

Sample space: (pass, pass; fail, pass; pass, fail; fail, fail)

X: number of components that pass

Assume the probability of pass of each component =0.8

Component		V	Prob.
Comp 1	Comp 2	X	PIOD.
pass	pass	2	0.64
fail	pass	1	0.16
pass	fail	1	0.16
fail	fail	0	0.04

3.3 Probability Distributions and Probability Mass Functions Probability distribution of a discrete random variable (X) is described by a function $f(x_i)$ that specifies the probability at each of the possible values of X. It is similar to loading of a beam with different masses at different points.

Definition:

For a discrete random variable (X) with possible values x_1, x_2,x_n a probability mass function is a function defined such that :

1)

2)

3)

Probability mass function = probability function = probability distribution

Cumulative Distribution Function

For any discrete random variable (X) with possible values x_1, x_2,x_n the events $[X = x_1], [X = x_2],, [X = x_n]$ are mutually exclusive.

With properties:

1)

2)

3)

3.4 Mean and Variance of a discrete Random Variable

Long run average of a measured quantity

Expectation:

Average value of a statistic

Expected Value of a random variable E(X):

by definition $E(X) = \mu$

For a discrete random variable:

$$\mu = E(X) = \sum_{x_i} f(x_i) . x_i$$

- $=\sum mass.distance$
- = First non central moment
- = Centroid of the probability mass
- = Weighted average of possible values of X

Variance of Random Variable (X): σ^2 , V(X) or Var(X)

$$\sigma^{2} = V(X) = E(X - \mu)^{2} = \sum_{x_{i}} (x_{i} - \mu)^{2} f(x_{i})$$
$$= \sum_{x_{i}} x_{i}^{2} f(x_{i}) - \mu^{2}$$

= Second central moment

Standard deviation of X is $\sigma = \sqrt{\sigma^2}$

For a specific function of X, i.e. h(X)

$$E[h(X)] = \sum_{x_i} h(x_i) f(x_i)$$

Properties of E(X)

$$E(c) = c$$

$$E(cX) = cE(X)$$

$$E(a+bX) = a + bE(X)$$

$$E[g(X)] \neq g[E(X)]$$

Properties of VAR(X)

$$V(c) = 0$$

$$V(a\pm bX) = b^{2}V(X)$$

$$V(X) = E(X^{2}) - E(X)^{2}$$

3.5 Discrete Uniform Probability Distribution

A discrete random variable X has a discrete uniform distribution if each of the n values in its range $(x_1, x_2, ...x_n)$ has equal probability. Then:

$$f(x_i) = 1/n$$

Suppose that the range of X is the consecutive integers a, a+1, a+2, a+3......b for a \leq b ; b = a+ (n-1) and $x_i = a + (i-1)$ Range of X : a ---> b ; it contains b-a+1 = a + (n-1) - a +1 = n $f(x_i) = \frac{1}{b-a+1}$

$$\mu = E(X) = \frac{b+a}{2}$$
; $\sigma^2 = \text{Var}(X) = \frac{(b-a+1)^2 - 1}{12}$