
3. Discrete Random Variables and Probability Distribution

3.1 Random Variables (variates):

In many situations it is useful to associate a number 
with each outcome of a random experiment in a sample 
space.

Random Variable: it is a function that assigns a real 
number to each outcome in the sample space of a 
random experiment.

Notations:

X: Name of random variable

xi : the ith measurement of a random variable

In dealing with random variables, we  associate 
probabilities with the values of the random variable in 
the sample space
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Discrete Random Variable: it is a random variable with 
measurements that are limited to discrete points on the 
real line. It has a finite (or countably infinite) range.

Continuous Random Variable: The function ( out come 
of the measurement) assumes any value of real numbers 
on an interval defined between two limits ( finite or 
infinite).
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3.2 Discrete Random Variable

These are generated by random experiments

Focus is made on the random variable and its            
distribution without much regard to the details of the 
sample space.

Ex 1 Communication system consisting of 48 lines

X : Number of lines being used at a particular time

xi : can assume  values : 0 - 48



3. Discrete Random Variables and Probability Distribution

Ex 2: Testing two components in sequence from a lot: 
assuming that components are independent

Result: Pass (f) or Fail (f)

Sample space: (pass, pass ; fail, pass ; pass, fail ; fail, fail)

X: number of components that pass

Assume the probability of pass of each component =0.8

Comp 1 Comp 2

pass pass 2 0.64

fail pass 1 0.16

pass fail 1 0.16

fail fail 0 0.04

Component
x Prob.
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3.3 Probability Distributions and Probability Mass Functions

Probability distribution of a discrete random variable 
(X) is described by a function f(xi) that specifies the 
probability at each of the possible values of X. It is 
similar to loading of a beam with different masses at 
different points.
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Definition:

For a discrete random variable (X) with possible values 

x1, x2, …..xn a probability mass function is a function 
defined such that :

1)

2)

3)

Probability mass function = probability function = 
probability distribution
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Cumulative Distribution Function 

For any discrete random variable (X) with possible values 
x1, x2, …..xn the events [X= x1], [X= x2], …., [X= xn] are 
mutually exclusive.

With properties:

1)

2)

3)
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3.4 Mean and Variance of a discrete Random Variable

Long run average of a measured quantity

Expectation:

Average value of a statistic

Expected Value of a random variable E(X):

by definition E(X)= μ

For a discrete random variable:

= First non central moment

= Centroid of the probability mass

= Weighted average of possible      
values of X

=σ𝑚𝑎𝑠𝑠 . 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
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Variance of Random Variable (X):

= Second central moment

Standard deviation of X is

For a specific function of X , i.e. h(X)
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Properties of E(X)

E(c) = c

E(cX) = cE(X)

E(a+bX) = a + bE(X) 

E[g(X)] ≠ g[E(X)]

Properties of VAR(X)

V(c) = 0

V(a±bX) = b2V(X)

V(X) = E(X2) – E(X)2
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3.5 Discrete Uniform Probability Distribution

A discrete random variable X has a discrete uniform 
distribution if each of the n values in its range (x1, x2, ...xn) 
has equal probability. Then:

Suppose that the range of X is the consecutive integers

a, a+1, a+2, a+3…….b for a ≤ b ;  b = a+ (n-1) and xi = a +(i-1)

Range of X : a ---> b ; it contains b-a+1 = a + (n-1) – a +1 = n

𝑓 𝑥𝑖 =
1

𝑏 − 𝑎 + 1

𝜇 = 𝐸 𝑋 =
𝑏+𝑎

2
;        𝜎2 = Var (X) =

(𝑏−𝑎+1)2 −1
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