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Mechanics of Particle Motion

For a rigid particle moving through a fluid, there are 3 forces acting on the body

- The external force (gravitational or centrifugal force)
- The buoyant force (opposite but parallel direction to external force)
- The drag force (opposite direction to the particle motion)
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One-dimensional Motion of Particle through Fluid

= Consider a particle of mass m moving through a fluid under the action of an external
force F,. Let the velocity of the particle relative to the fluid be u, let the buoyant force
on the particle be F, and let the drag be Fj, then

du—F Fp, — F 1
m—=F-F—F (1)

= The external force (F, ) - Expressed as a product of the mass (m) and the acceleration
(a.) of the particle from this force

F,= ma, (2)
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The buoyant force (F,) — Based on Archimedes’ law, the product of the
mass of the fluid displaced by the particle and the acceleration from the

external force.
The volume of the particle is Vp = mn
Pp
. . . m

The mass of fluid displacedis m = —p
Pp

where P is the density of the fluid. The buoyant force is given by

mpa
Fy= ——=—  (3)
Pp
The drag force (Fo) )
C A
Fp= 2 —  (4)

where Cj, is the drag coefficient, A, is the projected area of the particle in the
plane perpendicular to the flow direction.
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» By substituting all the forces in the Eq. (1)

du pa, Cpu’pA, pp—p Cpu’pA,
.- Qe — — — —

5
dt Py 2m Py 2m (%)

Case 1 : Motion from gravitational force

du Po-P Cpu’pA,

E:g Py 2m

(6)
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Case 2 : Motion in a centrifugal field

A, = Tw

du PP Cpu’®pA,
dt Pp 2m

(7)

r = radius of path of particles
() = angular velocity, rad/s

In this equation, u is the velocity of the particle relative to the fluid and is directed
outwardly along a radius.
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Terminal Velocity

In gravitational settling, g is constant ( 9.81m/s2)
The acceleration (a) decreases with time and approaches zero.

The particle quickly reaches a constant velocity which is the
maximum attainable under the circumstances.

This maximum settling velocity is called terminal velocity.

du Pp-P CDHE ﬂﬂp Drag Force
dt Jﬂp Zm i Particle Terminal
Velocity
2g (p,p_p )Tﬂ, Gravitational Force
AppPpClpp

rrrta

Velocity of Fluid
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For spherical particle of diameter D, moving through the fluid, the
terminal velocity is given by

1 1

m = EHDS}S‘F Ap = 1“55

Substitution of m and A, into the equation for u, gives the equation
for gravity settling of spheres

~
AaD _ Frequently
Uy = g p(pF P) (12) used
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In motion from a centrifugal force, the velocity depends on the
radius

The acceleration is not constant if the particle is in motion with
respect to the fluid.

In many practical use of centrifugal force, is small (—t = ~0) thus, it
can be neglected to give

du _p Cpu?pA
o2l Py (10
dt Pp 2m
2rl p,,_ m
U = W (ﬂp P ) (11)
Apﬁpcﬂp
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Reynolds Number

- Particle Reynolds Number

u : velocity of fluid stream

Po — Hﬂp,ﬂ D,: diameter of the particle
€ = " p : density of fluid
LL : viscosity of fluid

» For the case of creeping flow, that is flow at very low velocities relative to the sphere, the
Navier—Stokes equations, give:

(1) skin friction: 2w udu

— total 37 ud
F =3mpdu (ii) form drag: 7 pudu } S

» This equation is known as Stokes’ law and it is applicable only at very low values of the
particle Reynolds number and deviations become progressively greater as Re increases.
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= As R, increases, skin friction
becomes proportionately less
and, at values greater than
about 20, flow separation
occurs with the formation of
vortices in the wake of the
sphere.

= At high Reynolds numbers, the
size of the vortices
progressively increases until, at
values of between 100 and
200, instabilities in the flow
give rise to vortex shedding.
The effect of these changes in
the nature of the flow on the
force exerted on the particle is
now considered.
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Drag Coefficient

* Drag coefficient is a function of Reynolds number (Ngg).
= The drag curve applies only under restricted conditions:
i.  The particle must be a solid sphere;

ii. The particle must be far from other particles and the vessel wall so that
the flow pattern around the particle is not distorted;

iii. It must be moving at its terminal velocity with respect to the fluid.

=  The most satisfactory way of representing the relation between drag force
and velocity involves the use of two dimensionless groups:

The first group is the particle Reynolds number Re'(= udp/ ).
The second is the group R'/pu?, in which R’ is the force per unit projected area of
particle in a plane perpendicular to the direction of motion.
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= For a sphere, the projected area is that of a circle of the same diameter as the sphere.

F
Thus: R=———
- (rd?/3)
R’ 4F
and —_— = —
pu?  wd?pu?

R'/pu? is a form of drag coefficient, often denoted by the symbol C/,. Frequently, a drag
coefficient Cp, is defined as the ratio of R’ to % pu’.

2R

Thus: Cp =2CpH = —
pu’

It is seen that C/, is analogous to the friction factor ¢(= R/pu?) for pipe flow, and
Cp 1s analogous to the Fanning friction factor f.
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Region (a) (10~% < Re’ < 0.2)

At very low values of the Reynolds number, the force F is given by Stokes’ law:

R.F
— =125 = 12Re!
pu? udp
In this region, the relationship between —— and Re’ is a straight line of slope —I

pu’

The limit of 10~* is imposed because reliable experimental measurements have not
been made at lower values of Re’.

, 12
R' = 12pu~ (—PL ) _
udp d

P [2up

zndz = 37 ndu
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Region (b) (0.2 < Re’ < 500-1000)

In this region, the slope of the curve changes progressively from —1 to 0 as Re’ increases.

R!

Thus: — 2R~ +0.22

pu? l

I

Stokes’ law

Additional non-viscous effects

» A reasonable approximation for values of Re¢’ up to about 1000:

f

— 12Re’ (1 + 0.15R™9%7)

pu?
12up

R = T(l + 0.15R V%%

F =3mpudu(l + 0.15Re-%%7)
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Region (c) (500-1000 < Re’ < ca 2 x 10°)

In this region, Newton’s law is applicable and the value of R'/pu?’ is approximately
constant giving:

R.I"
= _o02
pu?

R = 0.22pu”

F = 0.22pu2£nd2 = 0.0557d* pu’

Region (d) (Re’ > ca 2 x 10°)

When Re’ exceeds about 2 x 10°, the flow in the boundary layer changes from streamline
to turbulent and the separation takes place nearer to the rear of the sphere. The drag force
is decreased considerably and:

R.I"
=005
pu?

R = 0.05pu*

F = 0.01257d? pu*
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Terminal falling velocities

= |f a spherical particle is allowed to settle in a fluid under gravity, its velocity will increase
until the accelerating force is exactly balanced by the resistance force.

= The accelerating force due to gravity is given by:

= (gmd”)(p; — p)g

where p, is the density of the solid.

The terminal falling velocity ug corresponding to region (a) is given by:

Or if the particle has started from

| 3
rest, the drag force is given by : (Fd )(ps — plg = Impdug

d*g
and: uy = W[.ﬂu £)

The terminal falling velocity corresponding to region (c) i1s given by:

'{%-'Tﬂﬂ]{ﬁx —plg = ﬂ.ﬂ55:?ﬁrzpu[:;

':: 1__|G}
P

or: i

]
!
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Under terminal falling
conditions, velocities are rarely
high enough for Re’ to
approach 10°, with the small
particles generally used in
industry.
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Assumptions

In the expressions given for the drag force and the terminal falling velocity, the following
assumptions have been made:

A. That the settling is not affected by the presence of other particles in the fluid. This
condition is known as “free settling”. When the interference of other particles is
appreciable, the process is known as “hindered settling”.

B. That the walls of the containing vessel do not exert an appreciable retarding effect.
C. That the fluid can be considered as a continuous medium, that is the particle is large
compared with the mean free path of the molecules of the fluid, otherwise the particles

may occasionally “slip” between the molecules and thus attain a velocity higher than
that calculated.
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Terminal Velocity for two materials

If for a particle of material A of diameter d, and density p,, Stokes’ law is applicable, then the
terminal falling velocity u,, is given by equation

dig
Hpa = = [ A —
0A 18, PA — )

Similarly, for a particle of material B:

dig

B
g = (op — pP)
0B 18,2 P Iz

The condition for the two terminal velocities to be equal i1s then:

172
dp _ (m —p )
dy op — P

If Newton's law is applicable, equation 3.25 holds and:

; ddagipa — p)

Upg =
i
, 2 3dpglpp —p)
and Uy =
i

For equal settling velocities:
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In general, the relationship for equal settling velocities is:
5
dp _ (Pn - p)
d s Pp— P

where § = % for the Stokes™ law region, § = 1 for Newton’s law and, as an approximation,

% < § = 1 for the intermediate region.
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Galileo number (Ga)

The dimensionless group (R./puz)Rer does not involve ug since:
group (i, / pug) ey

R, ugd*p*  2dg(p, — p) ugd”p*

pus 1 3puj =
_2d(ps — p)pg
- 31’
d’p(ps — p)g . |
The group — is known as the Galileo number Ga
LL
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Table 3.4. Values of log Re' as a function of log{(R’/pu’)Re™} for spherical particles

log{(R'/pu®)Re™} 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 i i i i i i i 3.620 3720 3819
1 3919 2018 2117 2216 2315 2414 2513 2612 2711 2810
0 2908 1.007 1.105 1203 1301 1.398 1495 1591 1.686 1.781
1 1.874 1.967 0.008 0.148 0236 0324 0410 0495 0577 0.659
2 0738 0.817 0.895 0972 1048 1124 1.199 1273 1.346 1419
3 1.491 1.562 1.632 1.702 1.771 1.839 1907 1974 2.040 2.106
4 2171 2236 2300 2363 2425 2487 2548 2608 2667 2725
5 2783  2.841 2899 2956 3013 3070 3.127 3.183 3239 3.295
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Example

What is the terminal velocity of a spherical steel particle, 0.40 mm in diameter, settling in an oil
of density 820 kg/m” and viscosity 10 mN s/m”?? The density of steel is 7870 kg/m".

Solution
For a sphere:
Ry oo _2d *(ps — P)pg
pug 3p”
2 x 0.00047 % 820(7870 — 820)9.81
3(10 % 1077)?

= 24.2
log,,24.2 = 1.384
From Table 3.4: log,, Re, = 0.222
Thus: Rey, = 1.667

1.667 x 10 x 10~
820 = 0.0004

= 0.051 m/s or 531 mm/s

and: g =
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Terminal falling velocities of non-spherical particles

For a non-spherical particle:

total drag force, F = Ryymd, = (ps — p)gk'd,
R, 4k'd,g

Thus: S = —(ps — p)

pug TTPU
R, , Ak'pdyg
“Ref = ——"2(py — p)

pug L= TT
R, 4k’ i g

and: 0 Rea_' — f (g (pg — p)
pu TPUy
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Heywood Approach

= A mean projected diameter of the particle dp is defined as the diameter of a circle
having the same area as the particle when viewed from above and lying in its most
stable position.

=  \olume=K’ dp3

If d,, is the mean projected diameter, the mean projected area is Hd§ /4 and the volume
is Adp where k' is a constant whose value depends on the shape of the particle. For

a spherical particle, k" is equal to m /6. For rounded isometric particles, that is particles
in which the dimension in three mutually perpendicular directions is approximately the
same, k' is about 0.5, and for angular particles k" is about 0.4. For most minerals k' lies
between 0.2 and 0.5.

M. Saidan 28



Table 3.7. Corrections to log Re’ as a function of log{(R'/pu”)Re™*) for
non-spherical particles

Iﬂg{{R';’puzjﬁ'e“z} =04 k'=10.3 k'=0.2 E=0.1
2 —0.022 —0.002 +0.032 +0.131
1 —0.023 —0.003 +0.030 +0.131
0 —0.025 —0.005 +0.026 +0.129
1 —0.027 —0.010 +0.021 +0.122
2 —0.031] —0.016 1+0.012 +0.111
2.5 —0.033 —0.020 AN +0.080
3 —0.038 —0.032 —0.022 +0.025
3.5 —0.051 —0.052 —0.056 —0.0440)
4 —0.068 —0.074 —0.089 —0.098
4.5 —0.083 —0.093 —0.114 —0.146
3 —0.097 —0.110 —0.135 —0.186
3.5 —0.109 —0.125 —0.154 —0.224
6 —0.120 —0.134 —0.172 —0.255
M. Saidan 29



Table 3.8. Corrections to log Re’ as a function of [log(R'/pu?)Re'—'} for
non-spherical particles

log{(R'/pu”)Re"") K'=0.4 K'=0.3 k'=0.2 K'=0.1
4 +0.185 +0.217 +0.289
45 +0.149 +0.175 +0.231
3 +0.114 +0.133 +0.173 +0.282
35 +0.082 +0.095 +0.119 +0.170
2 +0.056 +0.061 +0.072 +0.062
2.5 +0.038 +0.034 +0.033 —0.018
1 40.028 +0.018 +0.007 —0.053
1.5 4+0.024 +0.013 —0.003 —0.061
0 +0.022 +0.011 —0.007 —0.062
1 +0.019 +0.009 —0.008 —0.063
2 +0.017 +0.007 —0.010 —0.064
3 +0.015 +0.003 —0.012 —0.065
4 +0.013 +0.003 —0.013 —0.066
5 +0.012 +0.002 —0.014 —0.066
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Exam

What 1m.fill g the terminal velocities of mica plates, 1 mm thick and ranging in area from 6 to
600 mm? sctt 1ng in an oil of density 820 kg/m® and viscosity 10 mN s/m”? The density of mica

smallest particles largest particles

A 6 x 107% m? 6 x 107* m?
d, V@ x6x10%/7) =276 x 10> m J@ x6x107%/1) =276 x 1072 m
d; 2.103 x 107* m’ 2.103 x 107 m’
volume 6x107 m? 6 x 1077 m?
k' 0.285 0.0285

R; |

(—%—) Rey =«——(p; — p,)pd,':g (equation 3.52)
pu- =TT

= (4 x 0.285/7 x 0.01?)(3000 — 820)(820 x 2.103 x 10~* x 9.81)
= 1340 for the smallest particles and, similarly, 134,000 for the largest

particles.
Thus:
smallest particles largest particles
log( Ro L Ref} ) 3.127 5.127
pug
log Re;, 1.581 2.857 (from Table 3.4)
Correction from Table 3.6 —0.038 —0.300 (estimated)
Corrected log Re;, 1.543 2.557
Re; 349 361
Uy 0.154 m/s 0.159 m/s

Thus it is seen that all the mica particles settle at approximately the same velocity.
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