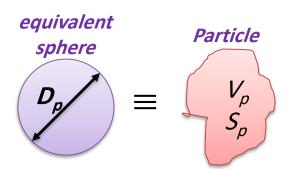
Particle Shape and Measuring Techniques

Particle shape

 The shape of an individual particle is expressed in terms of the sphericity ϕ_s , which is independent of particle size. The sphericity of a particle is the ratio of the surface-volume ratio of a sphere with equal volume as the particle and the surface-volume ratio of the particle. For a spherical particle of diameter D_p , $\phi_s = 1$; for a non-spherical particle, the sphericity is defined as


$$\psi = \frac{\text{surface area of sphere of same volume as particle}}{\text{surface area of particle}}$$

Sphericity can also be found from the following Definition:

$$\varphi_{s} = \frac{(\pi D_{p}^{2})/(\pi D_{p}^{3}/6)}{S_{p}/V_{p}} = \frac{6V_{p}}{S_{p}D_{p}}$$

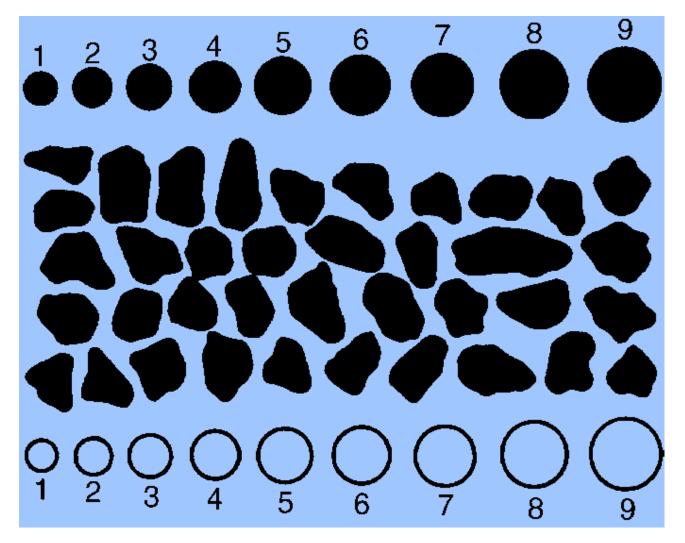
$$\varphi_{s} = \frac{6v_{p}}{S_{p}D_{p}}$$

- D_p: equivalent diameter of particle
- S_p: surface area of one particle
- v_p : volume of one particle For many crushed materials, ϕ_s is between 0.6 and 0.8. For particles rounded by abrasion, ϕ_s may be as high as 0.95.

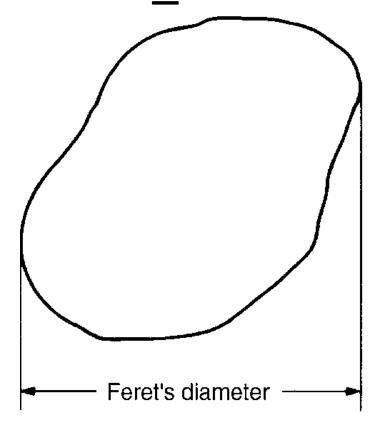
Notes

- The equivalent diameter is sometimes defined as the diameter of a sphere of equal volume.
- For fine particles, D_p is usually taken to be the nominal size based on screen analysis or microscopic analysis.
- The surface area is found from adsorption measurements or from the pressure drop in a bed of particles.

Particle size


- In general "diameter" may be specified for any equidimensional particles.
- Particles that are not equidimensional, i.e.
 that are longer in one direction than in others,
 are often characterized by the second longest
 major dimension.
- For needle like particles, D_p would refer to the thickness of the particle, not their length

Measuring Techniques


- Microscopy
- Sieving or Screening
- Permeability method 'Packed bed of cell'
- Sedimentation method 'pipette method'
- Size analysis by Elutriation method
- Coulter Counter and Electrozone analyzer

Microscopy Electron Microscope Optical Microscope Sizes down to 5µm Sizes below 5µm

Particle profiles and comparison circles

Feret's diameter statistical diameter

The mean distance apart of two parallel lines which are tangential to the particle in an arbitrarily fixed direction. Changing orientation will lead to a large number of Feret's diameter = 'Microscopy dimension'

Particle Characterization

Size of equivalent sphere For Irregular Shape

PARTICLE CHARACTERISATION

Sizes of equivalent spheres (Single particles)

- (a) The sphere of the same volume as the particle.
- (b) The sphere of the same surface area as the particle.
- (c) The sphere of the same surface area per unit volume as the particle.
- (d) The sphere of the same area as the particle when projected on to a plane perpendicular to its direction of motion.
- (e) The sphere of the same projected area as the particle, as viewed from above, when lying in its position of maximum stability such as on a microscope slide for example.
- (f) The sphere which will just pass through the same size of square aperture as the particle, such as on a screen for example.
- (g) The sphere with the same settling velocity as the particle in a specified fluid.

Derived diameter

- Volume diameter, $d_v = \sqrt[3]{\frac{6V_p}{\pi}}$ Surface diameter, $d_s = \sqrt{\frac{S_p}{\pi}}$
- Surface volume diameter, $d_{sv} = d_{v}^{3}/d_{s}^{2}$
- Free falling diameter
- Projected area diameter

Measuring techniques

Sieving > 50 μ m

Prof Y H Khraisha

Prof Y H Khraisha

Prof Y H Khraisha

Sieve's opening

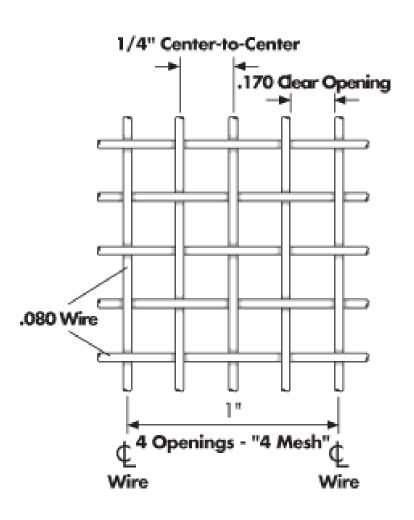


Table 1.1. Standard sieve sizes

British fine mesh (B.S.S. 410) ⁽³⁾		I.M.M. ⁽⁴⁾		U.S. Tyler ⁽⁵⁾			U.S. A.S.T.M. ⁽⁵⁾				
Sieve	Nominal aperture		Sieve	Nominal aperture		Sieve	Nominal aperture		Sieve	Nominal aperture	
no.	in.	μm	no.	in.	μm	NO.	in.	μm	no.	in.	μm
						325	0.0017	43	325	0.0017	44
						270	0.0021	53	270	0.0021	53
300	0.002.1	53				250	0.0024	61	230	0.0024	61
240	0.002.6	66	200	0.0025	63	200	0.0029	74	200	0.0029	74
200	0.0030	76							170	0.0034	88
170	0.0035	89	150	0.0033	84	170	0.0035	89			
150	0.0041	104				150	0.0041	104	140	0.0041	104
120	0.0049	124	120	0.0042	107	1 15	0.0049	125	120	0.0049	125
100	0.0060	152	100	0.0050	127	100	0.0058	147	100	0.0059	150
			90	0.0055	139	80	0.0069	175	80	0.0070	177
85	0.0070	178	80	0.0062	157	65	0.0082	208	70	0.0083	210
			70	0.0071	180				60	0.0098	250
72	0.0083	211	60	0.0083	211	60	0.0097	246	50	0.0117	297
60	0.0099	251							45	0.0138	350
52	0.0116	295	50	0.0100	254	48	0.0116	295	40	0.0165	420
			4∩	0.0195	347	49	0.0133	351	35	0.0197	500

The Institute of Mining and Metallurgy (I.M.M.)

British fine mesh (B.S.S. 410) ⁽³⁾		I.M.M. ⁽⁴⁾		U.S. Tyler ⁽⁵⁾			U.S. A.S.T.M. ⁽⁵)				
Sieve no.	Nominal aperture		Sieve	Nominal aperture		Sieve	Nominal aperture		Sieve	Nominal aperture	
	in.	μm	no.	in.	μm	no.	in.	μm	no.	in.	μm
22	0.0275	699	20	0.0250	635	24	0.0276	701	25	0.0280	710
18	0.0336	853	16	0.0312	792	20	0.0328	833	20	0.0331	840
16	0.0395	1003				16	0.0390	991	18	0.0394	1000
14	0.0474	1204	12	0.0416	1056	14	0.0460	1168	16	0.0469	1190
12	0.0553	1405	10	0.0500	1270	12	0.0550	1397			
10	0.0660	1676	8	0.0620	1574	10	0.0650	1651	14	0.0555	1410
8	0.0810	2057				9	0.0780	1981	12	0.0661	1680
7	0.0949	2411				8	0.0930	2362	10	0.0787	2000
б	0.1107	2812	5	0.1000	2540	7	0.1100	2794	8	0.0937	2380
5	0.1320	3353				б	0.1310	3327			
						5	0.1560	3962	7	0.1110	2839
						4	0.1850	4699			
									б	0.1320	3360
									5	0.1570	4000
									4	0.1870	4760

Notes "Sieving"

- Set of sieves.
- Arrangement: ratio = $2 \text{ or } 2^{1/2} \text{ or } 2^{1/4}$
- Vibrator or shaker (vertical or horizontal vibration).
- Fine particles may stick together (due to attractive forces) and block the screen.
- Standards; UK British standard, IMM standard, Tyler series

Particle Size Conversion Table

Sieve De	signation	Nominal Sieve Opening				
Standard	Mesh	inches	mm	Microns		
25.4 mm	1 in.	1.00	25.4	25400		
22.6 mm	7/8 in.	0.875	22.6	22600		
19.0 mm	3/4 in.	0.750	19.0	19000		
16.0 mm	5/8 in.	0.625	16.0	16000		
13.5 mm	0.530 in.	0.530	13.5	13500		
12.7 mm	1/2 in.	0.500	12.7	12700		
11.2 mm	7/16 in.	0.438	11.2	11200		
9.51 mm	3/8 in.	0.375	9.51	9510		
8.00 mm	5/16 in.	0.312	8.00	8000		
6.73 mm	0.265 in.	0.265	6.73	6730		
6.35 mm	1/4 in.	0.250	6.35	6350		
5.66 mm	No.3 1/2	0.223	5.66	5660		
4.76 mm	No. 4	0.187	4.76	4760		
4.00 mm	No. 5	0.157	4.00	4000		
3.36 mm	No. 6	0.132	3.36	3360		
2.83 mm	No. 7	0.111	2.83	2830		
2.38 mm	No. 8	0.0937	2.38	2380		
2.00 mm	No. 10	0.0787	2.00	2000		
1.68 mm	No. 12	0.0661	1.68	1680		
1.41 mm	No. 14	0.0555	1.41	1410		
1.19 mm	No. 16	0.0469	1.19	1190		
			Prof Y H Khra	aisha		

Mesh	Micron	Inches
4	4760	0.185
6	3360	0.131
8	2380	0.093
12	1680	0.065
16	1190	0.046
20	840	0.0328
30	590	0.0232
40	420	0.0164
50	297	0.0116
60	250	0.0097
70	210	0.0082
80	177	0.0069
100	149	0.0058
140	105	0.0041
200	74	0.0029
230	62	0.0023
270	53	0.0021
325	44	0.0017
400	37	0.0015
625	20	0.0008
1250	10	0.0004
2500	5	0.0002

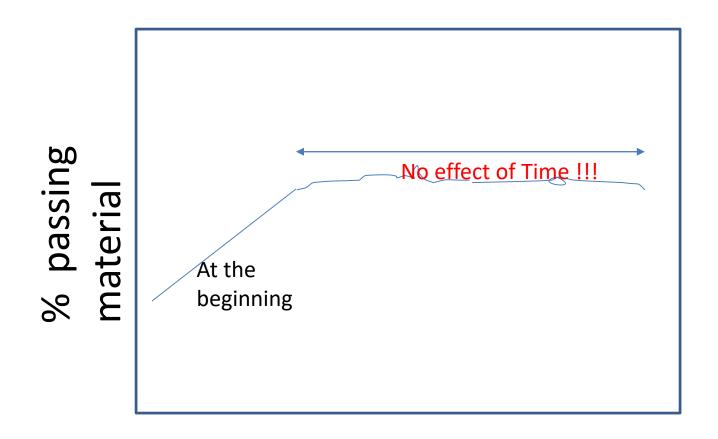
Notes

- Larger sieve openings (1 in. to 1/4 in.) have been designated by a sieve "mesh" size that corresponds to the size of the opening in inches.
- Smaller sieve "mesh" sizes of 3 1/2 to 400 are designated by the number of openings per linear inch in the sieve.
- The following convention is used to characterize particle size by mesh designation:
 - a "+" before the sieve mesh indicates the particles are retained by the sieve;
 - a "-" before the sieve mesh indicates the particles pass through the sieve; typically 90% or more of the particles <u>will lie within</u> the indicated range.

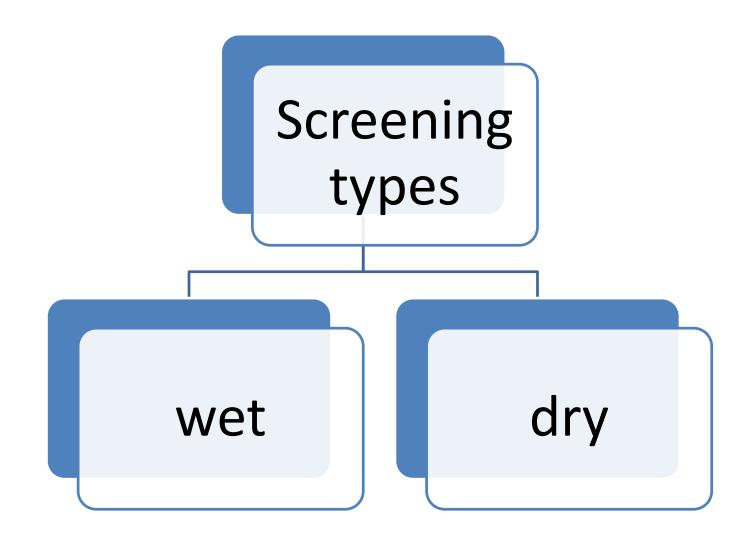
<u>For example</u>, if the particle size of a material is described as -4 +40 mesh, then 90% or more of the material will pass through a 4-mesh sieve (particles smaller than 4.76 mm) and be retained by a 40-mesh sieve (particles larger than 0.420 mm). <u>If a material is described as -40 mesh, then 90% or more of the material will pass through a 40-mesh sieve (particles smaller than 0.420 mm.</u>

Sieving efficiency & rate of screening or passage of particles through sieve

$$\eta_{sieving} = \frac{\text{wt of material which passes the screen}}{\text{wt of material which capable of passing}}$$

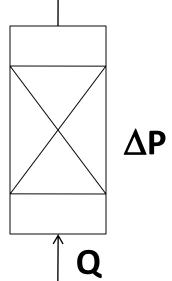

rate of passage of particles =
$$\frac{dw}{dt} = -kw$$

where w is the mass of particles of a certain size on the screen.

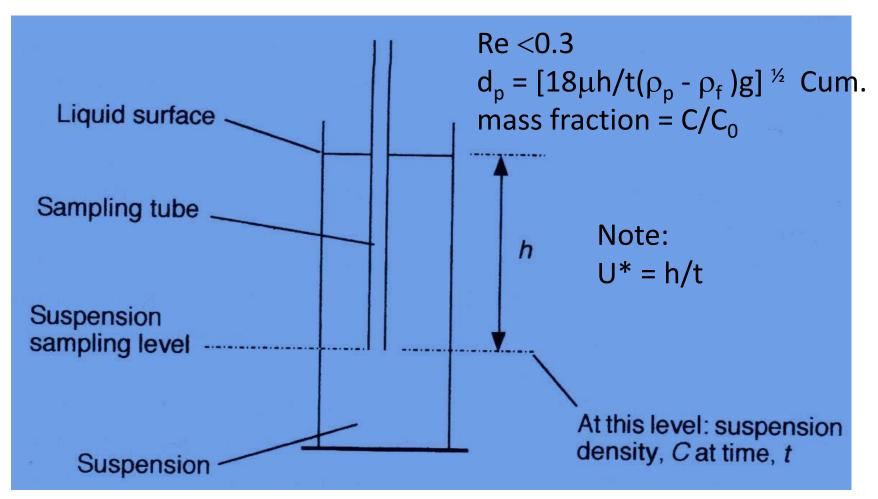

mass of particles, w₁ -w₂, passing the screen in

time t is
$$\ln \frac{W_2}{W_1} = -kt$$
; $0r W_2 = W_1 e^{-kt}$

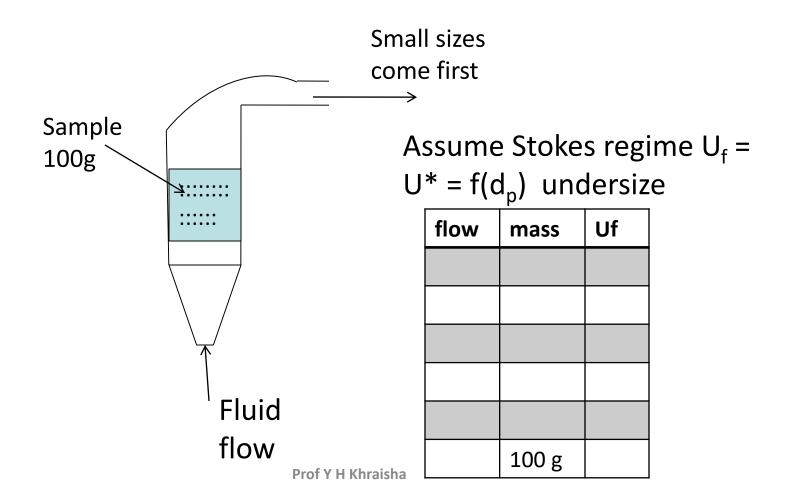
General trend of screening process


Screening Time, sec

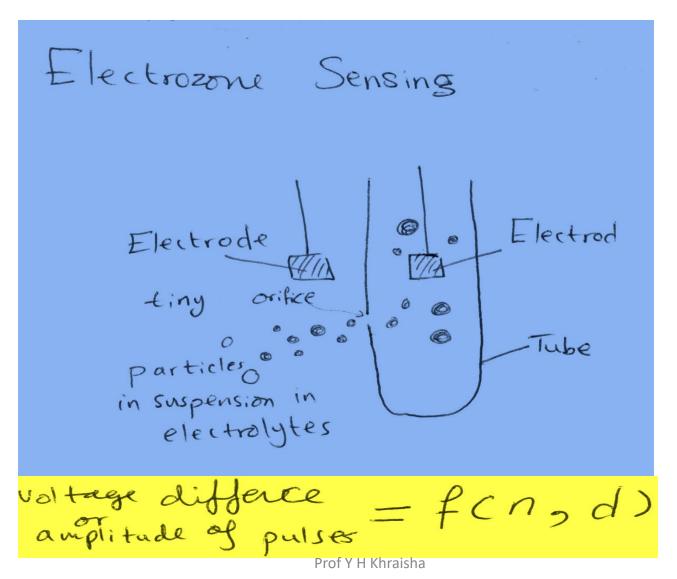
Permeability methods (>1 μm)


•These methods depend on the fact that at low flow rates the flow through a packed bed is directly proportional to the pressure difference, the proportionality constant being proportional to the square of the specific surface of the powder.

•From this method it is possible to obtain the diameter of the sphere with the same specific surface as the powder.



• Further details are given in Chapter 4.


Size analysis by Sedimentation pipette method

Size analysis by Elutriation

Coulter Counter and Electrozone analyzer (1-1000µm)

Principle of Coulter Counter and Electrozone Analyser

- As particles enter the orifice they displace an equivalent volume of electrolyte, thereby producing a change in the electrical resistance of the circuit, the magnitude of which is related to the displaced volume.
- The consequent voltage pulse across the electrodes is fed to a multi-channel analyzer. The distribution of pulses arising from the passage of many thousands of particles is then processed to provide a particle (volume) size distribution.
- By using orifices of various diameters, different particle size ranges may be examined and the resulting data may then be combined to provide size distributions extending over a large proportion of the sub-millimetre size range.