Mean Particle Size

Example 1

Calculate the volume diameter, surface volume diameter for a cuboid of side length of 1, 2, 4 mm. compare the results with the surface equivalent diameter.

Cumulative screen analysis curve

Plot Cumulative mass fraction vs Average particle size

Example for Discussion

Plot Cumulative mass fraction vs Average particle size

Particle size distribution

cumulative mass fraction curve, in which the proportion of particles (x) smaller than a certain size (d) is plotted against that size (d)

Figure 1.5. Size distribution curve—cumulative basis

Particle size distribution

the slope
(dx/dd) of the
cumulative
curve (Figure
1.5) is plotted
against particle
size (d).

Figure 1.6. Size distribution curve—frequency basis

Three values are very important

- I. Mode
- II. Median
- III. Mean

These values can be found directly from the frequency and cumulative curves.

Mean values can be found algebraically based on size intervals.

Consider a unit mass of n_1 particles of characteristic length d_1 with mass fraction x_1 and so on

Note:

Aggregate length $n_i d_i$ Aggregate surface $n_i d_i^2$ Aggregate volume $n_i d_i^3$

Mean particle size

• Considering unit mass of particles consisting of n_1 particles of characteristic dimension d_1 , constituting a mass fraction x_1 , n_2 particles of size d_2 , and so on, then:

$$x_i = n_i k_i d_i^3 \rho_s \tag{1.4}$$

and:
$$\Sigma x_i = 1 = \rho_s k \Sigma (n_i d_i^3) \qquad (1.5)$$

Thus:
$$n_i = (1 / \rho_s k_i) (x_i / d_i^3)$$
 (1.6)

• If the size distribution can be represented by a continuous function, then:

$$dx = \rho_s k_i d^3 dn$$

or:

$$\frac{dx}{dn} = \rho_s k_1 d^3 \tag{1.7}$$

And:

$$\int_{0}^{1} dx = 1 = \rho_{s} k_{1} \int d^{3} dn \qquad (1.8)$$

where ρ_s is the density of the particles, and k_1 is a constant whose value depends on the shape of the particle.

Summary Means based on volume

 Volume mean diameter, dv

$$d_{v} = \frac{\sum (n_{i}d_{i})v_{i}}{\sum n_{i}v_{i}} = \frac{\sum n_{i}d_{i}^{4}}{\sum n_{i}d_{i}^{3}}$$

in terms of x_i :

$$d_{v} = \frac{\sum d_{i} x_{i}}{\sum x_{i}} = \sum d_{i} x_{i}$$

 Mean volume diameter dv'

$$d_{v'}^{3} \sum n_{i} = \sum n_{i} d_{i}^{3}$$

$$d_{v'} = \sqrt[3]{\frac{\sum n_{i} d_{i}^{3}}{\sum n_{i}}} \quad , \text{ since } n_{i} = \sqrt[x_{i}]{\rho_{s} k_{i} d_{i}^{3}}$$

$$\therefore \qquad d_{v'} = \sqrt[3]{\frac{\sum x_{i}}{\sum (x_{i} / d_{i}^{3})}}$$

Means based on surface

Surface mean diam, ds

$$d_{s} = \frac{\sum (n_{i}d_{i})s_{i}}{\sum n_{i}s_{i}} = \frac{\sum n_{i}d_{i}^{3}}{\sum n_{i}d_{i}^{2}}$$

in terms of x_i :

$$d_{s} = \frac{\sum x_{i}}{\sum (x_{i}/d_{i})} = \frac{1}{\sum (x_{i}/d_{i})}$$

Sauter mean diameter

Mean surface diam, ds'

$$d_{s'}^{2} \sum n_{i} = \sum n_{i} s_{i} = \sum n_{i} d_{i}^{2}$$

$$d_{s'} = \sqrt{\frac{\sum n_{i} d_{i}^{2}}{\sum n_{i}}} \quad , \text{ since} \quad n_{i} = \sqrt[x_{i}]{\rho_{s} k_{i} d_{i}^{3}}$$

$$d_{s'} = \sqrt{\frac{\sum (x_{i} / d_{i})}{\sum (x_{i} / d_{i}^{3})}}$$

Means based on length

Length mean diam, d₁

$$d_{l} = \frac{\sum (n_{i}d_{i})d_{i}}{\sum n_{i}d_{i}} = \frac{\sum n_{i}d_{i}^{2}}{\sum n_{i}d_{i}}$$

in terms of x_i :

$$d_{l} = \frac{\sum (x_{i}/d_{i})}{\sum (x_{i}/d_{i}^{2})}$$

Mean length diam, d_/

$$d_{l'} \sum n_i = \sum n_i d_i$$

$$d_{l'} = \frac{\sum n_i d_i}{\sum n_i}$$

in terms x_i

$$d_{l'} = \frac{\sum (x_i / d_i^2)}{\sum (x_i / d_i^3)}$$

Exercise 1

Sl. No.	Mesh No.	Screen Opening D _{pi} (cm)	Mass retained on a screen m _i (gm)
	4		0
	6		25
	8		125
	10		325
	14		250
	20		160
	28		50
	35		20
	48		10
	65		8
	100		6
	150		4
	200		3
	pan		2

Plot the cumulative curve, and calculate the Sauter mean diameter. Use mat lab or excel programs