


Mixing &Segregation

¢ Introduction

¢ Objective ~ to obtain homogeneous mixture in
terms: concentration or density, particle size
distribution.

¢ Mixing of solids is not an easy process.




¢ Example: F.F Powders of different sizes and
densities ~ lead to segregation by nature and due
to differences in densities and sizes. Steal ball or

disk immersed in sand particles.




¢ Mixing of particulate solids against liquid

streams mixing,



Perfect mixture Random mixture
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Rise of coarse
particles on

Vibration




1 rise of a steel disc through a bed of 2
- mm glass spheres due to vibration.
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components as
similar as possible
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not serious
problem when
sizes <30 um

The mobility of
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liquid
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Note

If it is not possible to alter the size of the
components of the mixture or to add liquid,
then in order to avoid serious segregation, care
should be taken to avoid s/tuations which are
likely to promote segregation. In particular
pouring operations and the formation of a
moving sloping powder surface should be
avoided.




Mechanisms of Mixing

In the mixing of solid particles, the following three
mechanisms may be involved:

(a) Convective mixing, in which groups of particles
are moved from one position to another.

(b) Diffusion mixing. This one takes place when
particles roll down a sloping surface.

(c) Shear mixing. In this type, shear stresses give
rise to slip zones and mixing takes place by
interchange of particles between layers within the
zone.
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circulating pattern of solids around bubbles.
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The degree of mixing

* For solid particles, the statistical variation in
composition among samples withdrawn at any
time from a mix is commonly used as a measure
of the degree of mixing.

 The standard deviation s (the square root of the
mean of the squares of the individual deviations)
or the variance s?is generally used.

* |t should be noted that particulate material
cannot attain the perfect mixing.



* The best that can be obtained is a degree of
randomness in which two similar particles may
well be side by side.

* For a completelyrandom mix of uniform
particles, it is suggested that:

s? =p(1-p)/n (1.33)
Where 572 is the variance for the mixture, p is

the overall proportion of particles of one

colour, and n is the number of particles in each
sample.




* For completely unmixed system, indicated by the
suffix 0, it may be shown that:

o> =p(1-p) (1.34)

which is independent of the number of particles
in the sample.

* When a material is partly mixed, then the degree
of mixing may be represented by some term b,
and several methods have been suggested for
expressing b in terms of measurable quantities.

Partly Random
mixed mix



* b may be defined as being equal to s /s, or

(s)=S)(s,—5,)
* Note:
b=0 forunmixed mixture

b =1 foracompletely randomized material,
where s = s,
e |f s?isinstead of s, then b could be written as:

b=(s?-s)s/?—-s?) or

1-b=(s°-s‘)/s;—5s7) (1.35)
V ' v
Partly Random

mixed mix



Discussion and

useful Expressions

* When nixing continues over a long period demixing
or ségregation can occur, particularly if the materials
are of different sizes or density.

* |If the average number fraction of one type of particle
is 1, consider N samples taken from the mixture.

* The measured number fraction of one type of
particle in each of these N samples x;(/=1,2, .....,N)
will differ from p and from the measured values for
the other samples.



* The mean, X of the x;s will not be equal to
unless a very large number of samples is taken.

e The standard deviation around is X :

r — x
S (z; —T)?2) 0
N1

S —

* Even when mixing is complete (ie random) the
composition of successive samples will not be
the same, unless the samples are very large.
Otherwise, the standard deviation about pu, the

true mean is



—

p(l—p))*
e = { } ‘randomly mixed’

('
As

given
before

where n is the number of particles in each
sample.

 The Mixing Index, / is defined by
7 Te (N = 1)1 — p) z
8 | nXlii(mi—-T)
I.e the predicted standard deviation divided by
the actual measured standard deviation.

* Note: S, is always greater than §.



Mixing rate and mixing time

* First Order Mixing Approximation

dI
= k(1-1
y (1=1)

where k is a constant characteristic of the
system and the mixing unit used.

* This integrates to

| I (I lm(]—fl)
2Tkl 1-1 kT \1-1







The performance of a solids mixer was assessed by calculating the variance occurring in the mass
fraction of a component amongst a selection of samples withdrawn from the mixture. The quality
was tested at intervals of 30 s and the data obtained are:

sample variance () 0.025 0006 0015 0.018 0.019
mixing time () 30 l 9% 120 [50

I the component analysed represents 20 per cent of the mixture by mass and each of the samples
removed contains approximately 100 particles, comment on the quality of the mixture produced
and present the data 1n graphical form showing the variation of the mixing index with time.



For a completely unmixed system:

sg = p(1—p)=0.20(1-0.20) =0.16 (equation 1.34)
For a completely random mixture:
s; = p(1—p)/n=020(1 —0.20)/100 = 0.0016 (equation 1.33)

The degree of mixing b is given by equation 1.35 as: b = (s; —s%)/(s; — 5?) In this case, b =
(0.16 —57)/(0.16 — 0.0016) = 1.01 — 6.313s* The calculated data are therefore:

t(s) 30 60 90 120 150
5 0.025 0.006 0.015 0.018 0.019
b 0.852 0.972 0.915 0.896 0.890

These data are plotted in Figure 1.19 from which it is clear that the degree of mixing is a
maximum at f = 60s.
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Figure 1.19. Example 1.3. Degree of mixing as a function of mixing time



