Motion of Particles in a Fluid



Motion of Particles in a Fluid

INTRODUCTION

1. Flow over a flat surface

a. Drag force ~ fluid flows over a solid flat

surface. Velocity gradient as shown.,

Drag force arises due to the

eftect Of retardation of fluid
at the Surface
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b. Boundary layer (B.L) ~ a specific region
where the velocity profile is changed
with distance,

Thickness of B.L = f (distance from the leading edge)
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Eddy formation

NOTE: The force acting on the fluid at some point in the boundary layer may then be
sufficient to bring it to rest or to cause flow in the reverse direction with the result that
an eddy current is set up. Aregion of reverse flow then exists near the surface where

the boundary layer has separated as shown in the above Figure.


11a Eddy formation.ppt

Notes

e The velocity at any pt. in the B.L varies from 0
at surface to the velocity of undisturbed stream,
L

® For a short distance on the surface, the flow is
streamline.

o At a certain critical distance, x., the flow is
changed for streamline to turbulent, except thin




layer near the surface where 1t remains
streamline ‘called laminar sub-layer’.

o There is a thin layer between the sub-layer and
the turbulent , the regime is transient and the
layer is called ‘buffer layer’!

e X. = F ( shape of leading edge, roughness of
solid surface, properties of fluid, fluid velocity)

o Transition in regime can be examined via Re.




Laminar and turbulent flow over a flat
surface
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Velocity B.L developed on a flat
surface
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2. Flow round (past) a Cylinder
/—_\

=

A D

===

Flow round a-cylinder

e For viscous/non-viscous fluid, the velocity, u, varies
round the wall of cylinder = at A & D the fluid 1s
stagnant i.e u =0 = whilstat B & C u is max. {
K.Eismax at B & C and zero at A & D




o Also the Pressure falls from A to B and rises from B

to D
o ¥ (K.E + Pressure Energy} is constant at all the
points on the surface.

Note 1: when the pressure falls in the direction of flow, th
retardation of the fluid will be less and the B.L will b
thinner and visa versa.




Note 2:Thin B.L is noted in the front of the cylinder,
whilst a thick B.L takes place at the back or in the wake of
the cylinder that tends to .separate from the surface. If
separation occurs, the eddy currents are builds up in the
wake and drag force (form drag) is made up.




Flow past a sphere
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e Similar observations as flow past a cylinder.

e At large values of Re number, we can see two main
zones: (1) a region of high vorticity comprising a thin
B.L over the front half of the sphere and a turbulent
wake on the downstream side of the sphere, and (ii)
an external irrotational flow region outside the B.L
and wake.




Effect of roughening front face of a sphere (a) 216 mm
diameter ball entering water at 298 K (b) As before,
except for 100 mm diameter patch of sand on nose




Note

v’ Turbulence may arise either from an increased fluid
velocity or from artificial roughening of the forward
face of the immersed body. Prandtl roughened the
forward face of a sphere by fixing a hoop to it, with
the result that the drag was considerably reduced.

v Further experiments have been carried out in which
sand particles have been stuck to the front face, as
shown in previous Figure. The tendency for
separation, and hence the magnitude of the form
drag, are also dependent on the shape of the body.



Drag force on a spherical particle

The drag force, F, on a sphere is usually given in terms of
a drag coefficient, Cp.

. F
CD_I 9
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Note: Cp, is analogous to friction factor, f, for pipe
flow ‘funning friction factor’.




Stokes showed a formula for the drag force for a
sphere moving at a low velocity (creeping motion) In
a continuos fluid.

F=3nudu

Where
F: total drag-resisting motion

o, W: density and viscosity of a fluid, respectively.
d: diameter of a spherical particle.
u: velocity of the fluid relative to the particle.

A: projected area




Note I: F consists of two components; a pressure drag
force, F,, and a shear stress force, F.

Fp:Zn;ldu Fo=nudu

Note 2: Experimentally, Stoke’s Law is found to hold
almost exactly for single particle Reynolds number,
Re<0.1.

Particle Re=udp/u and Cp=f(Re)

Where p is the density of the fluid, u is the viscosity of

the fluid, d is the diameter of the sphere, and u is the
velocity of the fluid relative to the particle.




For spherical particle A=(/4)d’
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Direction of Drag:

F drag F drag
Sphere
T Fluid direction
direction
Fluid stationary

Body stationary




Equations of motion of particles:

Forces acting on particle
o External force Fg = gravity, centrifugal etc.

e Buoyancy force Fy = if pr # pp acts vertically

upwards.
o Drag force Fp = aclts parallel to relative velocity In

opposite direction.




Motion of a particle in gravitational
field

Two dimensional motion in gravitational field

X

Uy

Direction of motion of particle #Y



x=U cosa
y=Usina

= 159 =9
U=yx~+)~

FE:m g

i
FB =m 7); g

_gi o 72
Fp=Cp3 P, U* 4




Force balance in X direction

Gravity — Buoyancy — drag = acceleration force

—F. cosa=mX
D
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Force balance in Y direction

Gravity - Buoyancy — drag = acceleration force

p
mg(l- f) fC 41[2+12:m‘




For spherical particle

For Sphere = A=(m/4) d* , m=(1/6) d’ p,
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Note

Special case
Spherical particle in stokes’ regime Re<0.1=>Cp=24/Re

p
24u ) I
fdu Pp

fetd xu




Note

Similarly

L P g .
y=—ap+g(l-—")=—ay+b
Pp

where a and b are constants.

In order to solve the previous equations, use the
following B.C —=at t=0 = x=0, y=0
X=u 0’ y=0,




Equilibrium or terminal velocity

* Assume a particle that falls from rest in a fluid.
The particle will initially accelerate as the shear
stress drag (which increases with velocity) will be
small. As the particle accelerates the drag force
increases, causing the acceleration to reduce. Later
on a force balance will be achieved where the
acceleration is zero and a maximum or terminal
velocity Is reached.




Single Particle terminal velocity

* This is known as the single particle terminal
velocity.

* For a spherical particle, the following equation
becomes:

gravity —buoyancy-drag = acceleration force

FE_FB—FD =
Or




Or

Fp = Fg — Fg = mg (1- pr pp)

Fp = (w6) d’ p, g (1- pr /py)

*. Fp = (v6) d* g (py - Pr)
for stokes’ regime Fp=3mpu,d, where u, is terminal
velocity.
. 3npu,d=(wb) d’ g (p, - pr)
2

¢ J8u\"F Y[ a

Note that in the stokes’ law region the terminal velocity is
proportional to the square of the particle diameter.




For the form drag regime (Newton’s Law), Cp=0.44
Fo=(1/2) pru’ A Cp
At force balance

0.44_ 2 2 _d?
5 " g =g m80pPy)
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Note that in this region the terminal velocity is
independent of the fluid viscosity and proportional to
the square root of the particle size.




General Method to obtain Terminal

Velocity
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Using equations a and b, form the following dimensionless
equations:

d3gp
4 i wp B
CDRe 3 ”2 (pp pf) 3Ga .......... (¢)
C Jo=
p_4ug /P f
- 3u3( ; | R ————— (d)




Procedure to find u,,

¢ Eq. (¢) is free of u,, which can therefore be
calculated, if d specified.

¢ Eq. (d) is free of d, which can therefore be
calculated, if u, specified.

¢ In order to obtain u, or d, use tables or charts
given in the text.

¢ The method covers all the regimes; Stokes’,
Transition, and Form drag “Newton’s”.
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Generally speaking, for free settling, the terminal
velocity of a particle in a given fluid tends to be
higher as both its particle size and density are
increased.

Suppose we have two particles: particle A and
particle B with densities and sizes: pa, o I d, , and
dg, respectively.

In case of Stokes’ regime = Terminal velocities
are







For equal settling velocities
I — ]
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In general, for equal settling velocities

=
dp |Pa" Py |
d

A |PB7Pr|
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Where the index S= 1/2 for stokes’ regim

S =1 for Newton’s regim
me particle

1> $>1/2 for transient reg




Note

e If, for example, it is desired to separate particles of a
relatively dense material A of density p, from
particles of a less dense material B and the size range
is large, the terminal falling velocities of the largest
particles of B of density p; may be greater than
those of the smallest particles of A, and therefore a
complete separation will not be possible. The
maximum range of sizes that can be separated is
calculated from the ratio of the sizes of the particles
of the two materials which have the same terminal
falling velocities



Example 2

A finely ground mixture of galena and limestone in the
proportion of 1 to 4 by mass is subjected to elutriation
by an upward-flowing stream of water flowing at a
velocity of 5 mm/s. Assuming that the size distribution
for each material is the same, and is as shown in the
following table, estimate the percentage of galena in the
material carried away and in the material left behind.
The viscosity of water is 1 mN s/m? and Stokes’ equation
(3.1) may be used. The densities of galena and
limestone are 7500 and 2700 kg/m?3, respectively.

Diameter (pum) 20 30 40 50 60 70 80 [ (W)
Undersize (per cent by mass) 15 28 48 3 bd 12 T8 88










Creeping flow j Inertial flow
,q _— —_——

log Cp T Stokes' law - Intermediate _ Newton's law - Boundary
. layer
- separation

4 : - -
=0.3 ~ 500 =2 x 105 log Rep

Standard drag curve for motion of a sphere in a fluid

Reynolds number ranges for single particle drag coetticient

correlations
Region Stokes Intermediate Newton’'s Law
Rep range =10.3 0.3 < Rep, <500 500 < Rep, >2 X 10°

Cp 24/ Rep ~ 24/Rep + 0.44 ~ 0.44
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Figure 3.4. R'/pu” versus Re' for spherical partic
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Table 3.2, R /pu?. (R pu?)Re® and (R'/ pu?)Re'~" as a function of Re’

R [ pu’ (R fpu” )R (R o )R

12,000
A0
2400
12000 1.20 = 10"
&00 2.40 = 10"
240 600 s 10—t
124 1.24
s 252
263 6.4
138 1.38 = 10
745 298 = 10
349 873 = 10
208 208 = 107
130 5.20 = 102
0.768 1.92 = 10°
0.547 547 = 10
1.62 = 104
708 s 10*
221 = 10°
EE = 1P
55 = 10°
22 = 107
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Table 3.4 Values of lop Re' as a funciion of log|{ R ou®) Re?} for spherical particles

log{(R'fpu®) Re®|

0.0

0l

02

03

04

0.3

06

0.7

0.8

0.0

Ll s fpid Prod == [ === [l

3919
2908
1874
0,738

1491
1171

1783

1018
1.007
1967
0817

1562
113k

1841

117
105
0.008
0,893

|.632
1300

109

1214
1.203
0.148
0972

1.
1363

103

1315
1301
0.3
1048

L.T71
2413

3013

2414
1308
034
1124

1830
1487

3070

1513
| 495

0410
190
| 07

1127

3620
2612
1581
0.495
|.273

1674
1608

3183

370
2711
| A&
05n
1.346

2,040
2667

3230

3819
1810
1781

1419
1106
175

3203




Table 3.5, Values of log Re' as a function of log[( R’/ pu®1Re’" | for spherical partiches

log|(R /s Ry 00 01 02 03 04 05 06 07T 08 09
i 3401
i 3316 3231 3048 3065 2084 21003 28M 2745 1668 2501
3 1517 2443 2372 2300 2231 LI&2 2085 2007 186l 1804
) 1820 1763 1699 1634 1571 1508 149 1383 1312 1240
1 1200 1140 L1081 1022 0063 004 0846 0TRR 0730 0672
0 0616 0560 0505 (440 03 0339 028 0212 0I78 0I5
1 0072 0019 1940 1919 185 LRI 1760 1708 165 1605
1 1554 1503 1452 1401 1350 1200 1240 1008 1148 1097
3 47 2006 1045 2805 2R45 1704 2744 2604 264 2504
[ 1544 2403 243 2303 2343 1MW







Alternative solution




Non-spherical particles
Since C, =f(Re’, shape)

There are a set of experimental curves (C,
against Re’) for various shapes, similar to
spherical particles.

For non-spherical particles, the orientation
must be specified before the drag force can be
calculated.

Re’ = ud’p/u , where d’ the diameter of the
circle having the same area as the projected
area of the particle



* The curve for R’/pu2 against Re’ may be
divided into three main regions, (a), (b), and
(c) as before.

lamipar Transition Form drag
region
e
(O CD’=K/Re’
K=12
Cp #f(Re’)
Re’

In this region (a), a particle falling freely in the fluid under the action of
gravity will normally move with its longest surface nearly parallel to the
direction of motion.



Region (b) represents transition conditions and
commences at a lower value of Re’, and a
correspondingly higher value of R’/pu?, than in
the case of the sphere.

A freely falling particle will tend to change its
orientation as the value of Re’ changes and
some instability may be apparent.

In region (c) the particle tends to fall so that it
is presenting the maximum possible surface to
the oncoming fluid.

Typical values of R’/pu? for non-spherical
particles in region (c) are given in Table 3.6



Table 3.6. Drag coefficients for Non - Spherical

Particles
Configuration Length/breadth R’/pu?
Thin rectangular plates 1-5 0.6
with their planes 20 0.75
Perpendicular to the oo 0.95
direction of motion
Cylinders with axes parallel 1 0.45
to the direction of motion
Cylinders with axes 1 0.3
perpendicular to the 20 0.45
Direction of motion co 0.6




Free falling velocity for Non-
spherical particles
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Assume that dp is the same as the mean projected diameter d’ For sphere k = /6



| Multiply by Re?
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Example 4

What will be the terminal velocities of mica
plates, 1 mm thick and ranging in area from 6
to 600 mm?, settling in an oil of density 820
kg/m3 and viscosity 10 mN s/m?? The density
of mica is 3000 kg/m3.










Table 3.7. Corrections to log Re' as a function of log{(R'/pu~)Re*} for
non-spherical particles

log{(R'/pu?)Re™2) K =04 k=03 k=02 K =0.1
2 —0.022 —0.002 +0.032 +0.131
1 —0.023 —0.003 +0.030 +0.131
0 —0.025 —0.005 +0.026 +0.129
1 —0.027 —0.010 +0.021 +0.122
2 —0.031 —0.016 +0.012 +0.111
25 —0.033 —0.020 0.000 +0.080
3 —0.038 —0.032 —0.022 +0.025
35 —0.051 —0.052 —0.056 —0.040
4 —0.068 —0.074 —0.089 —0.098
45 —0.083 —0.093 —0.114 —0.146
5 —0.097 —0.110 —0.135 —0.186
55 —0.109 —0.125 —0.154 —0.224
6 —0.120 —0.134 —0.172 —0.255




