Dynamic Behavior

In analyzing process dynamic and process control systems, it is important to know how the process responds to changes in the process inputs.

A number of standard types of input changes are widely used for two reasons:

- 1. They are representative of the types of changes that occur in plants.
- 2. They are easy to analyze mathematically.

1. Step Input

A sudden change in a process variable can be approximated by a step change of magnitude, M:

$$U_s \square \begin{cases} 0 & t < 0 \\ M & t \ge 0 \end{cases} \tag{5-4}$$

The step change occurs at an arbitrary time denoted as t = 0.

• Special Case: If M = 1, we have a "unit step change". We give it the symbol, S(t).

• Example of a step change: A reactor feedstock is suddenly switched from one supply to another, causing sudden changes in feed concentration, flow, etc.

Example:

The heat input to the stirred-tank heating system in Chapter 2 is suddenly changed from 8000 to 10,000 kcal/hr by changing the electrical signal to the heater. Thus,

and
$$Q(t) = 8000 + 2000S(t), \qquad S(t) \square \text{ unit step}$$
$$Q'(t) = Q - \overline{Q} = 2000S(t), \qquad \overline{Q} = 8000 \text{ kcal/hr}$$

2. Ramp Input

- Industrial processes often experience "drifting disturbances", that is, relatively slow changes up or down for some period of time.
- The rate of change is approximately constant.

We can approximate a drifting disturbance by a ramp input:

$$U_R(t) \square \begin{cases} 0 & t < 0 \\ \text{at} & t \ge 0 \end{cases}$$
 (5-7)

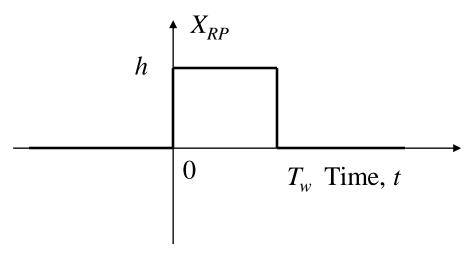
Examples of ramp changes:

- 1. Ramp a setpoint to a new value. (Why not make a step change?)
- 2. Feed composition, heat exchanger fouling, catalyst activity, ambient temperature.

3. Rectangular Pulse

It represents a brief, sudden change in a process variable:

$$U_{RP}(t) \square \begin{cases} 0 & \text{for } t < 0 \\ h & \text{for } 0 \le t < t_w \\ 0 & \text{for } t \ge t_w \end{cases}$$
 (5-9)



Examples:

- 1. Reactor feed is shut off for one hour.
- 2. The fuel gas supply to a furnace is briefly interrupted.

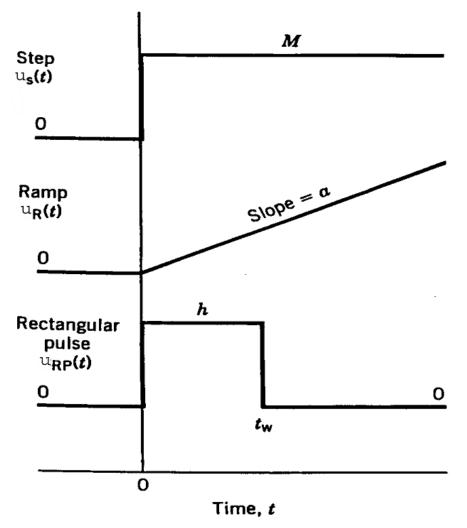


Figure 5.2. Three important examples of deterministic inputs.

4. Sinusoidal Input

Processes are also subject to periodic, or cyclic, disturbances. They can be approximated by a sinusoidal disturbance:

$$U_{\sin}(t) \square \begin{cases} 0 & \text{for } t < 0 \\ A\sin(\omega t) & \text{for } t \ge 0 \end{cases}$$
 (5-14)

where: A = amplitude, $\omega = angular frequency$

Examples:

- 1. 24 hour variations in cooling water temperature.
- 2. 60-Hz electrical noise (in the USA)

5. Impulse Input

- Here, $U_I(t) = \delta(t)$.
- It represents a short, transient disturbance.

Examples:

- 1. Electrical noise spike in a thermo-couple reading.
- 2. Injection of a tracer dye.
- Useful for analysis since the response to an impulse input is the inverse of the TF. Thus,

$$U(s) \longrightarrow G(s) \longrightarrow Y(s)$$

Here,

$$Y(s) = G(s)U(s) \tag{1}$$

The corresponding time domain express is:

$$y(t) = \int_0^t g(t - \tau)u(\tau)d\tau \tag{2}$$

where:

$$g(t) \square \mathsf{L}^{-1} \lceil G(s) \rceil \tag{3}$$

Suppose $u(t) = \delta(t)$. Then it can be shown that:

$$y(t) = g(t) \tag{4}$$

Consequently, g(t) is called the "impulse response function".

First-Order System

The standard form for a first-order TF is:

$$\frac{Y(s)}{U(s)} = \frac{K}{\tau s + 1} \tag{5-16}$$

where:

 $K \square$ steady-state gain

 $\tau \square$ time constant

Consider the response of this system to a step of magnitude, *M*:

$$U(t) = M \text{ for } t \ge 0 \qquad \Rightarrow U(s) = \frac{M}{s}$$

Substitute into (5-16) and rearrange,

$$Y(s) = \frac{KM}{s(\tau s + 1)} \tag{5-17}$$

Take L^{-1} (cf. Table 3.1),

$$y(t) = KM \left(1 - e^{-t/\tau}\right)$$
 (5-18)

Let y_{∞} \square steady-state value of y(t). From (5-18), $y_{\infty} = KM$.



Note: Large **T**means a slow response.

Integrating Process

Not all processes have a steady-state gain. For example, an "integrating process" or "integrator" has the transfer function:

$$\frac{Y(s)}{U(s)} = \frac{K}{s}$$
 (K = constant)

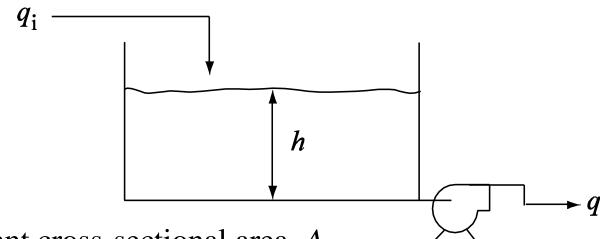
Consider a step change of magnitude M. Then U(s) = M/s and,

$$Y(s) = \frac{KM}{s^2} \stackrel{\mathsf{L}^{-1}}{\Rightarrow} y(t) = KMt$$

Thus, y(t) is unbounded and a new steady-state value does *not* exist.

Common Physical Example:

Consider a liquid storage tank with a pump on the exit line:



- Assume:
 - 1. Constant cross-sectional area, A.
 - 2. $q \neq f(h)$
- Mass balance: $A \frac{dh}{dt} = q_i q(1) \implies 0 = \overline{q}_i \overline{q}(2)$
- Eq. (1) Eq. (2), take L, assume steady state initially,

$$H'(s) = \frac{1}{As} \left[Q_i'(s) - Q'(s) \right]$$

- For Q'(s) = 0 (constant q),

$$\frac{H'(s)}{Q_i'(s)} = \frac{1}{As}$$

Second-Order Systems

• Standard form:

$$\frac{Y(s)}{U(s)} = \frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1} \tag{5-40}$$

which has three model parameters:

 $K \square$ steady-state gain

 $\tau \square$ "time constant" [=] time

 $\zeta \square$ damping coefficient (dimensionless)

• Equivalent form: $\left(\omega_n \square \text{ natural frequency} = \frac{1}{\tau}\right)$

$$\frac{Y(s)}{U(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Chapter 5

• The type of behavior that occurs depends on the numerical value of damping coefficient, ζ :

It is convenient to consider three types of behavior:

Damping	Type of Response	Roots of Charact.
Coefficient		Polynomial
$\zeta > 1$	Overdamped	Real and \neq
$\zeta = 1$	Critically damped	Real and =
$0 \le \zeta < 1$	Underdamped	Complex conjugates

• Note: The characteristic polynomial is the denominator of the transfer function:

$$\tau^2 s^2 + 2\zeta \tau s + 1$$

• What about ζ < 0? It results in an unstable system

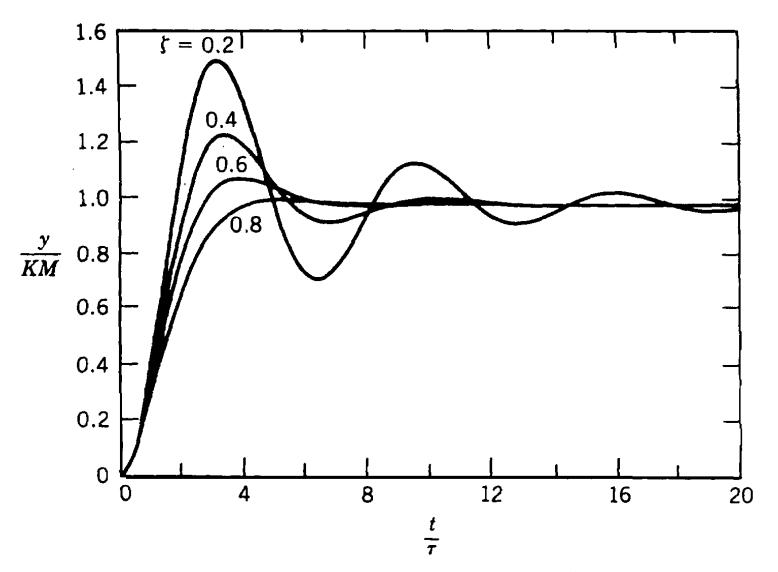


Figure 5.8. Step response of underdamped second-order processes.

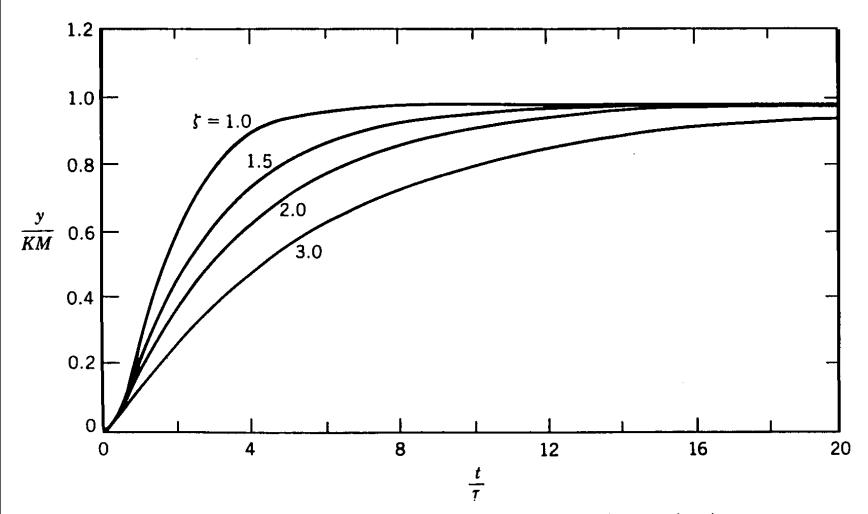


Figure 5.9. Step response of critically-damped and overdamped second-order processes.

Several general remarks can be made concerning the responses show in Figs. 5.8 and 5.9:

- 1. Responses exhibiting oscillation and overshoot (y/KM > 1) are obtained only for values of ζ less than one.
- 2. Large values of ζ yield a sluggish (slow) response.
- 3. The fastest response without overshoot is obtained for the critically damped case $(\zeta = 1)$.

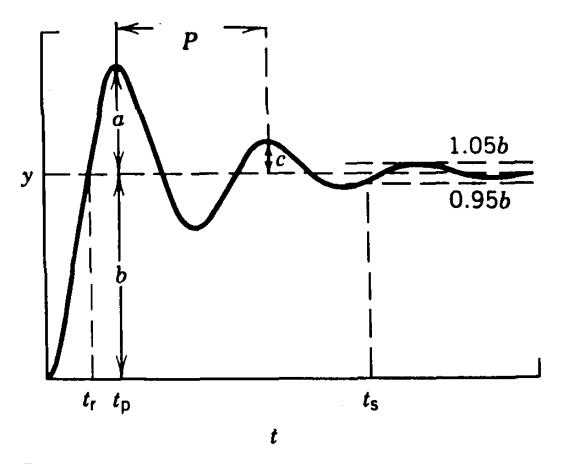


Figure 5.10. Performance characteristics for the step response of an underdamped process.

- 1. Rise Time: t_r is the time the process output takes to first reach the new steady-state value.
- 2. Time to First Peak: t_p is the time required for the output to reach its first maximum value.
- 3. Settling Time: t_s is defined as the time required for the process output to reach and remain inside a band whose width is equal to $\pm 5\%$ of the total change in y. The term 95% response time sometimes is used to refer to this case. Also, values of $\pm 1\%$ sometimes are used.
- **4.** Overshoot: OS = a/b (% overshoot is 100a/b).
- **5. Decay Ratio**: DR = c/a (where *c* is the height of the second peak).
- **6. Period of Oscillation**: *P* is the time between two successive peaks or two successive valleys of the response.