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• Poles and Zeros:

• The dynamic behavior of a transfer function model can be 

characterized by the numerical value of its poles and zeros.

• General Representation of ATF:

There are two equivalent representations:
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where {zi} are the “zeros” and {pi} are the “poles”.

 
    
    

1 2

1 2

(6-7)
m m

n n

b s z s z s z
G s

a s p s p s p

  


  

• We will assume that there are no “pole-zero” calculations. That 

is, that no pole has the same numerical value as a zero.

• Review: in order to have a physically realizable system.n m
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Example 6.2

For the case of a single zero in an overdamped second-order 

transfer function,

 
 

  1 2

τ 1
(6-14)

τ 1 τ 1

aK s
G s

s s




 

calculate the response to the step input of magnitude M and plot 

the results qualitatively.

Solution

The response of this system to a step change in input is

  1 2
τ τ τ τ/ τ / τ1 21 (6-15)
τ τ τ τ1 2 2 1

t ta ay t KM e e
      

  
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Note that                              as expected; hence, the effect of 

including the single zero does not change the final value nor does 

it change the number or location of the response modes. But the 

zero does affect how the response modes (exponential terms) are 

weighted in the solution, Eq. 6-15.

 y t KM  

A certain amount of mathematical analysis (see Exercises 6.4, 6.5, 

and 6.6) will show that there are three types of responses involved 

here:

Case a:

Case b:

Case c:

1τ τa 

10 τ τa 

τ 0a 
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Summary: Effects of Pole and Zero Locations

1. Poles

• Pole in “right half plane (RHP)”: results in unstable system 

(i.e., unstable step responses)

 1

p a bj

j

 

 

x

x

x

Real axis

Imaginary axis

x = unstable pole

• Complex pole: results in oscillatory responses

Real axis

Imaginary axis

x

x
x = complex poles
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2. Zeros

• Pole at the origin (1/s term in TF model): results in an 

“integrating process”

Note: Zeros have no effect on system stability.

• Zero in RHP: results in an inverse response to a step change in 

the input

• Zero in left half plane: may result in “overshoot” during a step 

response (see Fig. 6.3).

x  y        0

t

inverse 

response
Real 

axis

Imaginary axis
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Inverse Response Due to Two Competing Effects

An inverse response occurs if:

2 2

1 1

τ
(6-22)

τ

K

K
 
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Time Delays

Time delays occur due to:

1. Fluid flow in a pipe

2. Transport of solid material (e.g., conveyor belt)

3. Chemical analysis

- Sampling line delay

- Time required to do the analysis (e.g., on-line gas 

chromatograph)

Mathematical description:

A time delay,   , between an input u and an output y results in the 

following expression:
θ

 
 

0 for θ
(6-27)

θ for θ

t
y t

u t t


 

 
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Example: Turbulent flow in a pipe

Let,        fluid property (e.g., temperature or composition) at 

point 1

fluid property at point 2

u

y

Assume that the velocity profile is “flat”, that is, the velocity 

is uniform over the cross-sectional area. This situation is 

analyzed in Example 6.5 and Fig. 6.6.

Fluid In Fluid Out

Figure 6.5

Point 1 Point 2
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Example 6.5

(a) relating the mass flow rate of liquid at 2, w2, to the mass flow 

rate of liquid at 1, wt, 

(b) relating the concentration of a chemical species at 2 to the 

concentration at 1. Assume that the liquid is incompressible.

Solution

(a) First we make an overall material balance on the pipe 

segment in question. Since there can be no accumulation 

(incompressible fluid),

material in = material out    1 2w t w t 

For the pipe section illustrated in Fig. 6.5, find the transfer 

functions: 



13

C
h

a
p

te
r 

6 (b) Observing a very small cell of material passing point 1 at time 

t, we note that in contains Vc1(t) units of the chemical species of 

interest where V is the total volume of material in the cell. If, at 

time t +  , the cell passes point 2, it contains                   units of 

the species. If the material moves in plug flow, not mixing at all 

with adjacent material, then the amount of species in the cell is 

constant: 

Putting (6-30) in deviation form and taking Laplace transforms 

yields the transfer function,

 

 
2

1

1
W s

W s






θ  2 θVc t 

   2 1θ (6-30)Vc t Vc t 

or

   2 1θ (6-31)c t c t 



14

C
h

a
p

te
r 

6
An equivalent way of writing (6-31) is

   2 1 θ (6-32)c t c t 

if the flow rate is constant. Putting (6-32) in deviation form and 

taking Laplace transforms yields

 

 
2 θ

1

(6-33)sC s
e

C s






Time Delays (continued)

Transfer Function Representation:

 

 
θ (6-28)sY s

e
U s



Note that     has units of time (e.g., minutes, hours)θ
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Polynomial Approximations to 

For purposes of analysis using analytical solutions to transfer 

functions, polynomial approximations for         are commonly 

used. Example: simulation software such as MATLAB and 

MatrixX.

θ :se

θse

Two widely used approximations are:

1. Taylor Series Expansion:

2 2 3 3 4 4
θ θ θ θ

1 θ (6-34)
2! 3! 4!

s s s s
e s      

The approximation is obtained by truncating after only a few 

terms.
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2. Padé Approximations:

Many are available. For example, the 1/1 approximation is,

θ

θ
1

2 (6-35)
θ

1
2

s
s

e

s








Implications for Control:

Time delays are very bad for control because they involve a 

delay of information.
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• Consider a process with several invariables and several output 

variables. The process is said to be interacting if:

o Each input affects more than one output.

or

o A change in one output affects the other outputs.

Otherwise, the process is called noninteracting.

• As an example, we will consider the two liquid-level storage 

systems shown in Figs. 4.3 and 6.13.

• In general, transfer functions for interacting processes are more 

complicated than those for noninteracting processes.
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Figure 4.3. A noninteracting system:

two surge tanks in series.

Figure 6.13. Two tanks in series whose liquid levels interact.
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1
1 1 (4-48)i

dh
A q q

dt
 

1 1
1

1
(4-49)q h

R


Substituting (4-49) into (4-48) eliminates q1:

1
1 1

1

1
(4-50)i

dh
A q h

dt R
 

Figure 4.3. A noninteracting system:

two surge tanks in series.

Mass Balance:

Valve Relation:
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Putting (4-49) and (4-50) into deviation variable form gives

1
1 1

1

1
(4-51)i

dh
A q h

dt R


  

1 1
1

1
(4-52)q h

R
 

The transfer function relating            to            is found by 

transforming (4-51) and rearranging to obtain

 1H s  1iQ s

 

 
1 1 1

1 1 1

(4-53)
1 τ 1i

H s R K

Q s A R s s


 

  

where              and                  Similarly, the transfer function 

relating           to             is obtained by transforming (4-52).
1 1K R 1 1 1τ .A R

 1Q s  1H s
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 

 
1

1 1 1

1 1
(4-54)

Q s

H s R K


 



The same procedure leads to the corresponding transfer functions 

for Tank 2,

 

 
2 2 2

2 2 2 2

(4-55)
1 τ 1

H s R K

Q s A R s s


 

  

 

 
2

2 2 2

1 1
(4-56)

Q s

H s R K


 



where               and                  Note that the desired transfer 

function relating the outflow from Tank 2 to the inflow to Tank 1 

can be derived by forming the product of (4-53) through (4-56).

2 2K R 2 2 2.τ A R
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 

 

 

 

 

 

 

 

 

 
2 2 2 1 1

2 1 1

(4-57)
i i

Q s Q s H s Q s H s

Q s H s Q s H s Q s

    


    

or

 

 
2 2 1

2 2 1 1

1 1
(4-58)

τ 1 τ 1i

Q s K K

Q s K s K s




  

which can be simplified to yield

 

    
2

1 2

1
(4-59)

τ 1 τ 1i

Q s

Q s s s




  

a second-order transfer function (does unity gain make sense on 

physical grounds?). Figure 4.4 is a block diagram showing 

information flow for this system.
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Block Diagram for Noninteracting 

Surge Tank System

Figure 4.4. Input-output model for two liquid surge tanks in 

series.
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 1 1 2
1

1
(6-70)q h h

R
 

The transfer functions for the interacting system are:

Figure 6.13. Two tanks in series whose liquid levels interact.
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 

 

 

 

 

 

 

 

2 2
2 2

2

2 2

1 1

2 2

1 2 2 1
1 2 1 2 2 1 2

1 2

(6-74)
τ 2ζτ 1

1

τ 2ζτ 1

τ 1
(6-72)

τ 2ζτ 1

where

τ τ
τ= τ τ , ζ , and τ /

2 τ τ

i

i

a

i

a

H s R

Q s s s

Q s

Q s s s

H s K s

Q s s s

R A
R R A R R




  




  

  


  

 


In  Exercise 6.15, the reader can show that ζ>1 by analyzing the 

denominator of (6-71); hence, the transfer function is 

overdamped, second order, and has a negative zero. 
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Model Comparison

• Noninteracting system

 

    

1 1 1 2 2 2

2

1 2

where τ and τ .

1
(4-59)

τ 1 τ 1i

A R A R

Q s

Q s s s




  

• Interacting system

 

 

1 2

2

2 2

where ζ 1 and τ τ τ

1

τ 2ζτ 1i

Q s

Q s s s






  

• General Conclusions

1. The interacting system has a slower response.
(Example: consider the special case where t = t1 t2.

2. Which two-tank system provides the best damping
of inlet flow disturbances?
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Approximation of Higher-Order Transfer 

Functions

0
θ

01 θ (6-57)
s

e s


 

In this section, we present a general approach for 

approximating high-order transfer function models with 

lower-order models that have similar dynamic and steady-state 

characteristics.

In Eq. 6-4 we showed that the transfer function for a time 

delay can be expressed as a Taylor series expansion. For small 

values of s,
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• An alternative first-order approximation consists of the transfer 

function,

0

0

θ

θ
0

1 1
(6-58)

1 θ

s

s
e

se


 



where the time constant has a value of

• Equations 6-57 and 6-58 were derived to approximate time-

delay terms. 

• However, these expressions can also be used to approximate 

the pole or zero term on the right-hand side of the equation by 

the time-delay term on the left side. 

0θ .
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Skogestad’s “half rule”

• Skogestad (2002) has proposed a related approximation method 

for higher-order models that contain multiple time constants. 

• He approximates the largest neglected time constant in the 

following manner. 

• One half of its value is added to the existing time delay (if any) 

and the other half is added to the smallest retained time 

constant. 

• Time constants that are smaller than the “largest neglected time 

constant” are approximated as time delays using (6-58).
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Example 6.4

Consider a transfer function:

 
 

   

0.1 1
(6-59)

5 1 3 1 0.5 1

K s
G s

s s s

 


  

Derive an approximate first-order-plus-time-delay model,

 
θ

(6-60)
τ 1

sKe
G s

s






using two methods:

(a) The Taylor series expansions of Eqs. 6-57 and 6-58.

(b) Skogestad’s half rule
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Compare the normalized responses of G(s) and the approximate 

models for a unit step input.
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Solution

(a) The dominant time constant (5) is retained. Applying

the approximations in (6-57) and (6-58) gives:

0.10.1 1 (6-61)ss e  

and

3 0.51 1
(6-62)

3 1 0.5 1

s se e
s s

  
 

Substitution into (6-59) gives the Taylor series 

approximation,   :TSG s

 
0.1 3 0.5 3.6

(6-63)
5 1 5 1

s s s s

TS

Ke e e Ke
G s

s s

   

 
 
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(b) To use Skogestad’s method, we note that the largest neglected 

time constant in (6-59) has a value of three.  

θ 1.5 0.1 0.5 2.1   

C
h
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6

• According to his “half rule”, half of this value is added to the 

next largest time constant to generate a new time constant

• The other half provides a new time delay of 0.5(3) = 1.5. 

• The approximation of the RHP zero in (6-61) provides an 

additional time delay of 0.1. 

• Approximating the smallest time constant of 0.5 in (6-59) by 

(6-58) produces an additional time delay of 0.5. 

• Thus the total time delay in (6-60) is, 

τ 5 0.5(3) 6.5.  
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and G(s) can be approximated as:

 
2.1

(6-64)
6.5 1

s

Sk

Ke
G s

s






The normalized step responses for G(s) and the two approximate 

models are shown in Fig. 6.10. Skogestad’s method provides 

better agreement with the actual response.
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Figure 6.10 

Comparison of the 

actual and 

approximate models 

for Example 6.4.
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Example 6.5

Consider the following transfer function:

 
 

    

1
(6-65)

12 1 3 1 0.2 1 0.05 1

sK s e
G s

s s s s




   

Use Skogestad’s method to derive two approximate models:

(a) A first-order-plus-time-delay model in the form of (6-60)

(b) A second-order-plus-time-delay model in the form:

 
  

θ

1 2

(6-66)
τ 1 τ 1

sKe
G s

s s




 

Compare the normalized output responses for G(s) and the 

approximate models to a unit step input.
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Solution

(a) For the first-order-plus-time-delay model, the dominant time 

constant (12) is retained. 

3.0
θ 1 0.2 0.05 1 3.75

2

3.0
τ 12 13.5

2

     

  
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• One-half of the largest neglected time constant (3) is allocated to 

the retained time constant and one-half to the approximate time 

delay. 

• Also, the small time constants (0.2 and 0.05) and the zero (1) are 

added to the original time delay. 

• Thus the model parameters in (6-60) are:
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(b)  An analogous derivation for the second-order-plus-time-delay 

model gives:

1 2

0.2
θ 1 0.05 1 2.15

2

τ 12, τ 3 0.1 3.1

    

   

In this case, the half rule is applied to the third largest time 

constant (0.2). The normalized step responses of the original and 

approximate transfer functions are shown in Fig. 6.11.C
h
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p
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Multiple-Input, Multiple Output 

(MIMO) Processes

• Most industrial process control applications involved a number 

of input (manipulated) and output (controlled) variables.

• These applications often are referred to as multiple-input/ 

multiple-output (MIMO) systems to distinguish them from the 

simpler single-input/single-output (SISO) systems that have 

been emphasized so far. 

• Modeling MIMO processes is no different conceptually than 

modeling SISO processes.
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• For example, consider the system illustrated in Fig. 6.14. 

• Here the level h in the stirred tank and the temperature T are to 

be controlled by adjusting the flow rates of the hot and cold 

streams wh and wc, respectively. 

• The temperatures of the inlet streams Th and Tc represent 

potential disturbance variables. 

• Note that the outlet flow rate w is maintained constant and the 

liquid properties are assumed to be constant in the following 

derivation.

(6-88)
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Figure 6.14. A multi-input, multi-output thermal mixing process.
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