Development of Empirical Models
From Process Data

 In some situations it is not feasible to develop a theoretical
(physically-based model) due to:

1. Lack of information
2. Model complexity
3. Engineering effort required.

« An attractive alternative: Develop an empirical dynamic
model from input-output data.
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 Advantage: less effort is required

 Disadvantage: the model is only valid (at best) for the
range of data used in its development.

1.e., empirical models usually don’t extrapolate very
well.




Simple Linear Regression: Steady-State Model

 As an illustrative example, consider a simple linear model
between an output variable y and input variable u,

y =Py +Pou+e
where B, and B, are the unknown model parameters to be
estimated and € is a random error.

 Predictions of y can be made from the regression model,
y =Py +Bou (7-3)

where B, and B, denote the estimated values of B, and B,,
and y denotes the predicted value of y.
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» Let Y denote the measured value of y. Each pair of (u;, Y;)
observations satisfies:

Y =P1+BoU; +&; (7-1)
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The Least Squares Approach

* The least squares method is widely used to calculate the
values of 3, and [3, that minimize the sum of the squares of
the errors S for an arbitrary number of data points, N:

NN ,
S=Der =) (Yi—B—By;) (7-2)
i-1

=1

 Replace the unknown values of 3, and 3, in (7-2) by their
estimates. Then using (7-3), S can be written as:
N

S — Zeiz
=1

where the i-th residual, g;, Is defined as,
& Y-V (7-4)



The Least Squares Approach (continued)

* The least squares solution that minimizes the sum of
squared errors, S, Is given by:

- SwSy —SyS,

N~

w 1 2 (7'5)

Q NS, —(Su)

)

% NS, —S,S5

S By =——— (7-6)
NSy —(Sy)

where:

N N N N
2
Suézui Suuézui SyéZYi SuyézuiYi
i=1 =1 =1 =1




Extensions of the Least Squares Approach

« Least squares estimation can be extended to more general
models with:

1. More than one input or output variable.

2. Functionals of the input variables u, such as poly-
nomials and exponentials, as long as the unknown
parameters appear linearly.

A general nonlinear steady-state model which is linear in the
parameters has the form,

P
y=>BiX;+e (7-7)
=1
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where each Xj IS a nonlinear function of u.




The sum of the squares function analogous to (7-2) is

2
N P
S =Z[Yi —ZBJXuJ (7-8)

i=1 j=1
which can be written as,
N
— T
D S:(Y-X[}) (Y—XB) (7-9)
=)
g__ﬁ where the superscript T denotes the matrix transpose and:
@) L L
Y] Py
Y =| - B —| -

Yn Bp
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W The least squares estimates [ is given by,
= .,

S ﬁ:(xTx) X Ty (7-10)
=
O

providing that matrix XX is nonsingular so that its inverse exists.
Note that the matrix X is comprised of functions of u;; for
example, If:

Y =By +BoU+B3u” +e

This model is in the form of (7-7) if X, =1, X, =u, and
X5 = U2




Fitting First and Second-Order Models
Using Step Tests

« Simple transfer function models can be obtained graphically
from step response data.

A plot of the output response of a process to a step change in
Input is sometimes referred to as a process reaction curve.

« If the process of interest can be approximated by a first- or
second-order linear model, the model parameters can be
obtained by inspection of the process reaction curve.

 The response of a first-order model, Y(s)/U(s)=K/(ts+1), to
a step change of magnitude M is:

y(t)=KM1-e"7) (5-18)




* The Initial slope Is given by:

d ( 4 j 1 (7-15)
N~ dt KM t=0 T
9 « The gain can be calculated from the steady-state changes
o - :
g Inuandy:
O K=Y _AY
Au M

where Ay is the steady-state change in .
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Figure 7.3 Step response of a first-order system and
graphical constructions used to estimate the time constant, t.
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First-Order Plus Time Delay Model

Ke s

G(s) =
TS +1

For this FOPTD model, we note the following charac-
teristics of its step response:

1. The response attains 63.2% of its final response
at time, t = 7+0.

2. The line drawn tangent to the response at
maximum slope (t = 0) intersects the y/KM=1
lineat (t=1t+0).

3. The step response is essentially complete at t=5t.
In other words, the settling time Is t,=5r.
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Figure 7.5 Graphical analysis of the process reaction curve
to obtain parameters of a first-order plus time delay model.
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There are two generally accepted graphical techniques for
determining model parameters t, 6, and K.

Method 1: Slope-intercept method

First, a slope Is drawn through the inflection point of the
process reaction curve in Fig. 7.5. Then t and 6 are
determined by inspection.

Alternatively, Tt can be found from the time that the
normalized response is 63.2% complete or from
determination of the settling time, t.. Then set t=t//5.
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Method 2. Sundaresan and Krishnaswamy s Method

This method avoids use of the point of inflection
construction entirely to estimate the time delay.

13



N
—
)]
e
@R
qv]

L
O

Sundaresan and Krishnaswamy’s Method

 They proposed that two times, t, and t,, be estimated from a
step response curve, corresponding to the 35.3% and 85.3%
response times, respectively.

» The time delay and time constant are then estimated from the
following equations:

0 =1.3t, —0.29t,

1=0.67(t; - ;) (7°19)

» These values of 6 and t approximately minimize the
difference between the measured response and the model,
based on a correlation for many data sets.
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Estimating Second-order Model Parameters
Using Graphical Analysis
* In general, a better approximation to an experimental step

response can be obtained by fitting a second-order model to
the data.

 Figure 7.6 shows the range of shapes that can occur for the
step response model,

G(s):(

* Figure 7.6 includes two limiting cases: t,/t; =0, where the
system becomes first order, and t, /t; =1, the critically
damped case.

K

s 1) (55 11) (5-39)

» The larger of the two time constants, 1., Is called the
dominant time constant.
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Figure 7.6 Step response for several overdamped second-
order systems.
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Smith’s Method

e Assumed model:

Ke—@s

2.2

G(s)=
() 1787 +2Cts +1

e Procedure:

1. Determine t,, and ty, from the step response.
2. Find ¢ and tg,/t from Fig. 7.7.
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3. Find t5 /T from Fig. 7.7 and then calculate t (since

teo 1S known).
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Figure 7.7. Smith's method:
relationship of { and tto ty, and tg,.
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Fitting an Integrator Model
to Step Response Data

In Chapter 5 we considered the response of a first-order process
to a step change in input of magnitude M:

N~ t/
= V1 (t) = KM(1-¢ 7" (5-18)
ra3 For short times, t < t, the exponential term can be approximated
Qv by
c
U e—t/’l? ~ 1_ L
T

so that the approximate response Is:

V1 (t) ~ KM {1—(1—£H = @t (7-22)

T T
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Is virtually indistinguishable from the step response of the
Integrating element

G, (s) =% (7-23)

In the time domain, the step response of an integrator is

N
O Y (t) = KMt (7-24)
=)
"B Hence an approximate way of modeling a first-order process is
6 to find the single parameter

Ky = K (7-25)

that matches the early ramp-like response to a step change in
Input.
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If the original process transfer function contains a time delay
(cf. Eq. 7-16), the approximate short-term response to a step
Input of magnitude M would be

Klv' (t-0)S(t—6)

y(t)=

where S(t-0) denotes a delayed unit step function that starts at
=0.
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Figure 7.10. Comparison of step responses for a FOPTD
model (solid line) and the approximate integrator plus time
delay model (dashed line).
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Development of Discrete-Time
Dynamic Models

« Adigital computer by its very nature deals internally with
discrete-time data or numerical values of functions at equally
spaced intervals determined by the sampling period.

* Thus, discrete-time models such as difference equations are
widely used in computer control applications.

« One way a continuous-time dynamic model can be converted to
discrete-time form is by employing a finite difference
approximation.
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 Consider a nonlinear differential equation,

——=1f(y,u) (7-26)

where y is the output variable and u is the input variable. 23



 This equation can be numerically integrated (though with some

error) by introducing a finite difference approximation for the
derivative.

« For example, the first-order, backward difference
approximation to the derivative at t = kAt 1S

dy . y(k)-y(k-1)
dt At

where At Is the integration interval specified by the user and

y(k) denotes the value of y(t) at t = kAt. Substituting Eq. 7-26
Into (7-27) and evaluating f (y, u) at the previous values of y and
u(i.e., y(k—1) and u(k — 1)) gives:

y(k)‘Ayt(k‘l); f(y(k-1),u(k-1))  (7-28)

y(k)=y(k-1)+Atf (y(k-1),u(k-1))  (7-29)

(7-27)
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Second-Order Difference
Equation Models

« Parameters in a discrete-time model can be estimated directly
from input-output data based on linear regression.

 This approach is an example of system identification (Ljung,
1999).

 As a specific example, consider the second-order difference
equation in (7-36). It can be used to predict y(k) from data
available at time (k — 1)At and (k — 2) At.
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y(k)=ay(k-1)+a,y(k—2)+bu(k-1)+bu(k-2) (7-36)

* In developing a discrete-time model, model parameters a,, a,,
b,, and b, are considered to be unknown.

25



 This model can be expressed in the standard form of Eq. 7-7,
p
j=1

by defining:

pUa, B,Ua,, B;Ub, PB,UDb,
X, Oy(k-1), X,0y(k-2),
X,Ou(k-1), X,0u(k-2)
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» The parameters are estimated by minimizing a least squares
error criterion:

2
N p
S =Z(Yi _ZBJXU’J (7-8)

i=1 j=1
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Equivalently, S can be expressed as,

T
S=(Y-X|3) (Y—XB) (7-9)
where the superscript T denotes the matrix transpose and:
N
S Y B
< Y=|:| p=|:
O Yol B

The least squares solution of (7-9) is:

p=(XTX )_1 xTY (7-10)




