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Figure 8.1 Schematic diagram for a stirred-tank blending 

system.

Feedback Controllers
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Basic Control Modes

Next we consider the three basic control modes starting with the 

simplest mode, proportional control.

Proportional Control

In feedback control, the objective is to reduce the error signal to 

zero where

      (8-1)sp me t y t y t 

and
 

 

 

error signal

set point

measured value of the controlled variable

(or equivalent signal from the sensor/transmitter)

sp

m

e t

y t

y t






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Although Eq. 8-1 indicates that the set point can be time-varying, 

in many process control problems it is kept constant for long 

periods of time.

For proportional control, the controller output is proportional to 

the error signal,

    (8-2)cp t p K e t 

where:

  controller output

bias (steady-state) value

controller gain (usually dimensionless)c

p t

p

K






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The key concepts behind proportional control are the following:

1. The controller gain can be adjusted to make the controller 

output changes as sensitive as desired to deviations between 

set point and controlled variable;

2. the sign of Kc can be chosed to make the controller output 

increase (or decrease) as the error signal increases.

For proportional controllers, bias      can be adjusted, a procedure 

referred to as manual reset.

Some controllers have a proportional band setting instead of a 

controller gain. The proportional band PB (in %) is defined as

p

100%
(8-3)

c

PB
K
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In order to derive the transfer function for an ideal proportional 

controller (without saturation limits), define a deviation variable    

as p t

    (8-4)p t p t p 

Then Eq. 8-2 can be written as

    (8-5)cp t K e t 

The transfer function for proportional-only control: 

 

 
(8-6)c

P s
K

E s




An inherent disadvantage of proportional-only control is that a 

steady-state error occurs after a set-point change or a sustained 

disturbance.
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Integral Control

For integral control action, the controller output depends on the 

integral of the error signal over time,

   
0

1
* * (8-7)

τ

t

I

p t p e t dt  

where     , an adjustable parameter referred to as the integral time 

or reset time, has units of time.

τ I

Integral control action is widely used because it provides an 

important practical advantage, the elimination of offset. 

Consequently, integral control action is normally used in 

conjunction with proportional control as the proportional-integral 

(PI) controller:

     
0

1
* * (8-8)

τ

t

c
I

p t p K e t e t dt
 

   
 


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The corresponding transfer function for the PI controller in 

Eq. 8-8 is given by

 

 
τ 11

1 (8-9)
τ τ

I
c c

I I

P s s
K K

E s s s

    
     

   

Some commercial controllers are calibrated in terms of        

(repeats per minute) rather than      (minutes, or minutes per 

repeat).

1/ τI
τ I

Reset Windup

• An inherent disadvantage of integral control action is a 

phenomenon known as reset windup or integral windup.

• Recall that the integral mode causes the controller output to 

change as long as e(t*) ≠ 0 in Eq. 8-8.
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• When a sustained error occurs, the integral term becomes 

quite large and the controller output eventually saturates.

• Further buildup of the integral term while the controller is 

saturated is referred to as reset windup or integral windup.

Derivative Control

The function of derivative control action is to anticipate the future 

behavior of the error signal by considering its rate of change.

• The anticipatory strategy used by the experienced operator can 

be incorporated in automatic controllers by making the 

controller output proportional to the rate of change of the error 

signal or the controlled variable.
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• Thus, for ideal derivative action,

 
 

τ (8-10)D

de t
p t p

dt
 

where      , the derivative time, has units of time.

For example, an ideal PD controller has the transfer function:

τD

 

 
 1 τ (8-11)c D

P s
K s

E s


 

• By providing anticipatory control action, the derivative mode 

tends to stabilize the controlled process.

• Unfortunately, the ideal proportional-derivative control 

algorithm in Eq. 8-10 is physically unrealizable because it 

cannot be implemented exactly.
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• For analog controllers, the transfer function in (8-11) can be 

approximated by

 

 
τ

1 (8-12)
ατ 1

D
c

D

P s s
K

E s s

  
  

 

where the constant α typically has a value between 0.05 and 

0.2, with 0.1 being a common choice.

• In Eq. 8-12 the derivative term includes a derivative mode 

filter (also called a derivative filter) that reduces the sensitivity 

of the control calculations to high-frequency noise in the 

measurement.
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Proportional-Integral-Derivative (PID) Control

Now we consider the combination of the proportional, integral, 

and derivative control modes as a PID controller.

• Many variations of PID control are used in practice.

• Next, we consider the three most common forms.

Parallel Form of PID Control

The parallel form of the PID control algorithm (without a 

derivative filter) is given by

     
 

0

1
* * τ (8-13)

τ

t

c D
I

de t
p t p K e t e t dt

dt

 
    

 

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The corresponding transfer function is:

 

 
1

1 τ (8-14)
τ

c D
I

P s
K s

E s s

  
   

 

Series Form of PID Control

Historically, it was convenient to construct early analog 

controllers (both electronic and pneumatic) so that a PI element 

and a PD element operated in series.

Commercial versions of the series-form controller have a 

derivative filter that is applied to either the derivative term, as in 

Eq. 8-12, or to the PD term, as in Eq. 8-15:

 

 
τ 1 τ 1

(8-15)
τ ατ 1

I D
c

I D

P s s s
K

E s s s

    
   

  
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Expanded Form of PID Control

In addition to the well-known series and parallel forms, the 

expanded form of PID control in Eq. 8-16 is sometimes used:

     
 

0
* * (8-16)

t

c I D

de t
p t p K e t K e t dt K

dt
   

Features of PID Controllers

Elimination of Derivative and Proportional Kick

• One disadvantage of the previous PID controllers is that a 

sudden change in set point (and hence the error, e) will cause the 

derivative term momentarily to become very large and thus 

provide a derivative kick to the final control element.
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• This sudden change is undesirable and can be avoided by basing 

the derivative action on the measurement, ym, rather than on the 

error signal, e.

• We illustrate the elimination of derivative kick by considering 

the parallel form of PID control in Eq. 8-13. 

• Replacing de/dt by –dym/dt gives

     
 

0

1
* * τ (8-17)

τ

t m
c D

I

dy t
p t p K e t e t dt

dt

 
    

 


Reverse or Direct Action

• The controller gain can be made either negative or positive.
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• For proportional control, when Kc > 0, the controller output p(t) 

increases as its input signal ym(t) decreases, as can be seen by 

combining Eqs. 8-2 and 8-1:

      (8-22)c sp mp t p K y t y t    

• This controller is an example of a reverse-acting controller.

• When Kc < 0, the controller is said to be direct acting because 

the controller output increases as the input increases.

• Equations 8-2 through 8-16 describe how controllers perform 

during the automatic mode of operation.

• However, in certain situations the plant operator may decide to 

override the automatic mode and adjust the controller output 

manually.
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and direct-acting 

proportional 

controllers. (a) reverse 

acting (Kc > 0. (b) 

direct acting (Kc < 0)
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• Example: Flow Control Loop

Assume FT is direct-acting.

1. Air-to-open (fail close) valve  ==>  ?

2. Air-to-close (fail open) valve ==>   ?
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8
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Automatic and Manual Control Modes

• Automatic Mode

Controller output, p(t), depends on e(t), controller 

constants, and type of controller used. 

( PI vs.  PID etc.)

 Manual Mode

Controller output, p(t), is adjusted manually.

 Manual Mode is very useful when unusual 

conditions exist:

plant start-up

plant shut-down

emergencies

• Percentage of controllers "on manual” ?? 

(30% in 2001, Honeywell survey)
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Example: Liquid Level Control

• Control valves are air-to-open

• Level transmitters are direct acting

C
h

a
p

te
r 

8

Questions: 1. Type of controller action?

2. What type of fish?
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On-Off Controllers

• Simple

• Cheap

• Used In residential heating and domestic refrigerators

• Limited use in process control due to continuous 

cycling of controlled variable  excessive wear 

on control valve.C
h

a
p

te
r 

8



22

On-Off Controllers (continued)

Synonyms:

“two-position” or “bang-bang” controllers.

Controller output has two possible values.
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8
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Practical case (dead band)
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










 

t

0I

c td)t(e
1

)t(eKp)t(p

Proportional-Integral (PI) Control

• Response to unit step change in e:
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Figure 8.6. Response of proportional-integral controller to 

unit step change in e(t).
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• Integral action eliminates steady-state error 

(i.e., offset) Why???    e  0  p is changing with 

time until e = 0, where p reaches steady state.















s

1
1K

E(s)

(s)P

I

c
• Transfer function for PI control
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Derivative Control Action

 Ideal derivative action

 Used to improve dynamic response of the 

controlled variable

 Derivative kick (use db/dt )

 Use alone?

 Some controllers are calibrated in 1/I

("repeats per minute") instead of I .

p

dt

de
p)t(p D

C
h

a
p
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r 

8

 For PI controllers, is not adjustable.
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PID Controller

 Ideal controller












 

t

0

D

I

c
dt

de
td)t(e

1
)t(eKp)t(p















s

s

1
1K

E(s)

(s)P
D

I

c
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• Transfer function (ideal)

 Transfer function (actual)

α = small number (0.05 to 0.20)





























1s

1s

s

1s
K

E(s)

(s)P

D

D

I

I
c

lead / lag units
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PID - Most complicated to tune (Kc, I, D) .

- Better performance than PI

- No offset

- Derivative action may be affected by noise

PI - More complicated to tune (Kc, I) .

- Better performance than P

- No offset

- Most popular FB controller

P - Simplest controller to tune  (Kc).

- Offset with sustained disturbance or setpoint

change.

Controller Comparison

C
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8
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Typical Response of Feedback Control Systems

Consider response of a controlled system after a 

sustained disturbance occurs (e.g., step change in 

the disturbance variable)
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Figure 8.12. Typical process responses with feedback control.
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Figure 8.13. 

Proportional control: 

effect of controller 

gain.

Figure 8.15. PID 

control: effect of 

derivative time.
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Figure 8.14. PI control: (a) effect of reset time  (b) effect of 

controller gain.
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Position and Velocity Algorithms for Digital PID 

Control

A straight forward way of deriving a digital version of the parallel 

form of the PID controller (Eq. 8-13) is to replace the integral and 

derivative terms by finite difference approximations,

 
0

1

* (8-24)
k

t

j

j

e t dt e t


 

1 (8-25)k ke ede

dt t






where:

=   the sampling period (the time between successive 

measurements of the controlled variable)

ek =   error at the kth sampling instant for k = 1, 2, …

t
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There are two alternative forms of the digital PID control 

equation, the position form and the velocity form. Substituting (8-

24) and (8-25) into (8-13), gives the position form,

 1
1 1

(8-26)
k

D
k c k j k k

j

t
p p K e e e e

t








 
     

  


Where pk is the controller output at the kth sampling instant. The 

other symbols in Eq. 8-26 have the same meaning as in Eq. 8-13. 

Equation 8-26 is referred to as the position form of the PID 

control algorithm because the actual value of the controller output 

is calculated.   
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 1
1 1

(8-26)
k

D
k c k j k k

j

t
p p K e e e e

t








 
     

  


Note that the summation still begins at j = 1 because it is assumed 

that the process is at the desired steady state for                    

and thus ej = 0 for         . Subtracting (8-27) from (8-26) 

gives the velocity form of the digital PID algorithm:    

In the velocity form, the change in controller output is 

calculated. The velocity form can be derived by writing the 

position form of (8-26) for the (k-1) sampling instant:

0j  0j 

   1 1 1 22

(8-28)

D
k k k c k k k k k k

I

t
p p p K e e e e e e

t




   

 
         

 
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The velocity form has three advantages over the position form:

1. It inherently contains anti-reset windup because the 

summation of errors is not explicitly calculated.

2. This output is expressed in a form,       , that can be utilized 

directly by some final control elements, such as a control 

valve driven by a pulsed stepping motor.

3. For the velocity algorithm, transferring the controller from 

manual to automatic mode does not require any initialization 

of the output (    in Eq. 8-26). However, the control valve (or 

other final control element) should be placed in the 

appropriate position prior to the transfer.

kp

p


