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Dynamic Behavior and Stability of 
Closed-Loop Control Systems

• In this chapter we consider the dynamic behavior of 

processes that are operated using feedback control.

• This combination of the process, the feedback controller, 

and the instrumentation is referred to as a feedback control 

loop or a closed-loop system.

Block Diagram Representation

To illustrate the development of a block diagram, we return to a 

previous example, the stirred-tank blending process considered in 

earlier chapters.
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Figure 11.1 Composition control system for a stirred-tank 

blending process.
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Next, we develop a transfer function for each of the five elements 

in the feedback control loop. For the sake of simplicity, flow rate 

w1 is assumed to be constant, and the system is initially operating 

at the nominal steady rate.

Process

In section 4.3 the approximate dynamic model of a stirred-tank 

blending system was developed:

     1 2
1 2 (11-1)

τ 1 τ 1

K K
X s X s W s

s s

   
      

    

where

1
1 2

ρ 1
, , and (11-2)

wV x
K K

w w w



  
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Figure 11.2 Block diagram of the process.
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Composition Sensor-Transmitter (Analyzer)

We assume that the dynamic behavior of the composition sensor-

transmitter can be approximated by a first-order transfer function:

 

 
(11-3)

τ 1

m m

m

X s K

X s s




 

Controller

Suppose that an electronic proportional plus integral controller is 

used. From Chapter 8, the controller transfer function is

 

 
1

1 (11-4)
τ

c
I

P s
K

E s s

  
  

 

where            and E(s) are the Laplace transforms of the controller 

output           and the error signal e(t). Note that      and e are 

electrical signals that have units of mA, while Kc is dimensionless. 

The error signal is expressed as 

 P s

 p t p
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      (11-5)sp me t x t x t  

or after taking Laplace transforms,

      (11-6)sp mE s X s X s  

The symbol             denotes the internal set-point composition 

expressed as an equivalent electrical current signal. This signal 

is used internally by the controller.            is related to the actual 

composition set point             by the composition sensor-

transmitter gain Km:

 spx t

 spx t

 spx t

    (11-7)sp m spx t K x t 

Thus

 

 
(11-8)

sp
m

sp

X s
K

X s





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Figure 11.3 Block diagram for the composition sensor-

transmitter (analyzer).
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Current-to-Pressure (I/P) Transducer

Because transducers are usually designed to have linear 

characteristics and negligible (fast) dynamics, we assume that the 

transducer transfer function merely consists of a steady-state gain 

KIP:
 

 
(11-9)

t
IP

P s
K

P s






Control Valve

As discussed in Section 9.2, control valves are usually designed so 

that the flow rate through the valve is a nearly linear function of 

the signal to the valve actuator. Therefore, a first-order transfer 

function usually provides an adequate model for operation of an 

installed valve in the vicinity of a nominal steady state. Thus, we 

assume that the control valve can be modeled as

 

 
2

(11-10)
τ 1

v

t v

W s K

P s s




 
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Figure 11.5 Block diagram for the I/P transducer.

Figure 11.6 Block diagram for the control valve.
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Figure 11.7 Block diagram for the entire blending process 

composition control system.
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Closed-Loop Transfer Functions

The block diagrams considered so far have been specifically 

developed for the stirred-tank blending system. The more general 

block diagram in Fig. 11.8 contains the standard notation:

Y = controlled variable

U = manipulated variable

D = disturbance variable (also referred to as load 

variable)

P = controller output

E = error signal

Ym = measured value of Y

Ysp = set point

internal set point (used by the controller)spY 
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Figure 11.8 Standard block diagram of a feedback 

control system.
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Yu = change in Y due to U

Yd = change in Y due to D

Gc = controller transfer function

Gv = transfer function for final control element 

(including KIP, if required)

Gp = process transfer function

Gd = disturbance transfer function

Gm = transfer function for measuring element and 

transmitter

Km = steady-state gain for Gm
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Block Diagram Reduction

In deriving closed-loop transfer functions, it is often convenient to 

combine several blocks into a single block. For example, consider 

the three blocks in series in Fig. 11.10. The block diagram 

indicates the following relations:

1 1

2 2 1

3 3 2

(11-11)

X G U

X G X

X G X







By successive substitution,

3 3 2 1 (11-12)X G G G U

or

3 (11-13)X GU

where 3 2 1.G G G G
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Figure 11.10 Three blocks in series. 

Figure 11.11 Equivalent block diagram. 
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Set-Point Changes

Next we derive the closed-loop transfer function for set-point 

changes. The closed-loop system behavior for set-point changes is 

also referred to as the servomechanism (servo) problem in the 

control literature.

(11-14)

0 (because 0) (11-15)

(11-16)

d u

d d

u p

Y Y Y

Y G D D

Y G U

 

  



Combining gives

(11-17)pY G U
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Figure 11.8 also indicates the following input/output relations for 

the individual blocks:

(11-18)

(11-19)

(11-20)

(11-21)

(11-22)

v

c

sp m

sp m sp

m m

U G P

P G E

E Y Y

Y K Y

Y G Y





 





Combining the above equations gives

 

 

(11-23)

(11-24)

(11-25)

p v p v c

p v c sp m

p v c m sp m

Y G G P G G G E

G G G Y Y

G G G K Y G Y

 

 

 
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Rearranging gives the desired closed-loop transfer function,

(11-26)
1

m c v p

sp c v p m

K G G GY

Y G G G G




Disturbance Changes

Now consider the case of disturbance changes, which is also 

referred to as the regulator problem since the process is to be 

regulated at a constant set point. From Fig. 11.8,

(11-27)d u d pY Y Y G D G U   

Substituting (11-18) through (11-22) gives

  (11-28)d p p v c m sp mY G D G U G G G K Y G Y   
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Because Ysp = 0 we can arrange (11-28) to give the closed-loop 

transfer function for disturbance changes:

A comparison of Eqs. 11-26 and 11-29 indicates that both 

closed-loop transfer functions have the same denominator,         

1 + GcGvGpGm. The denominator is often written as 1 + GOL

where GOL is the open-loop transfer function, 

At different points in the above derivations, we assumed that    

D = 0 or Ysp = 0, that is, that one of the two inputs was constant. 

But suppose that D ≠ 0 and Ysp ≠ 0, as would be the case if a 

disturbance occurs during a set-point change. To analyze this 

situation, we rearrange Eq. 11-28 and substitute the definition of 

GOL to obtain

(11-29)
1

d

c v p m

GY

D G G G G




.OL c v p mG G G G G
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(11-30)
1 1

m c v pd
sp

OL OL

K G G GG
Y D Y

G G
 

 

Thus, the response to simultaneous disturbance variable and set-

point changes is merely the sum of the individual responses, as 

can be seen by comparing Eqs. 11-26, 11-29, and 11-30. 

This result is a consequence of the Superposition Principle for 

linear systems.
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where:

Z is the output variable or any internal variable within the 

control loop

Zi is an input variable (e.g., Ysp or D)

= product of the transfer functions in the forward path from 

Zi to Z

= product of every transfer function in the feedback loop

f

e

General Expression for Feedback Control Systems

Closed-loop transfer functions for more complicated block 

diagrams can be written in the general form:

(11-31)
1

f

i e

Z

Z





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Figure 11.12 Complex control system.

Example 11.1

Find the closed-loop transfer function Y/Ysp for the complex 

control system in Figure 11.12. Notice that this block diagram has 

two feedback loops and two disturbance variables. This 

configuration arises when the cascade control scheme of Chapter 

16 is employed. 
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Figure 11.13 Block diagram for reduced system.
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Figure 11.14 Final block diagrams for Example 11.1.
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Closed-Loop Responses of Simple Control 

Systems

In this section we consider the dynamic behavior of several 

elementary control problems for disturbance variable and set-

point changes. 

Solution

Using the general rule in (11-31), we first reduce the inner loop to 

a single block as shown in Fig. 11.13. To solve the servo problem, 

set D1 = D2 = 0. Because Fig. 11.13 contains a single feedback 

loop, use (11-31) to obtain Fig. 11.14a. The final block diagram is 

shown in Fig. 11.14b with Y/Ysp = Km1G5. Substitution for G4 and 

G5 gives the desired closed-loop transfer function: 

1 1 2 1 2 3

2 1 2 1 2 3 1 2 11

m c c

sp c m c m c

K G G G G GY

Y G G G G G G G G G


 
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Consider the liquid-level control system shown in Fig. 11.15. The 

liquid level is measured and the level transmitter (LT) output is 

sent to a feedback controller (LC) that controls liquid level by 

adjusting volumetric flow rate q2. A second inlet flow rate q1 is the 

disturbance variable. Assume:

1. The liquid density r and the cross-sectional area of the tank A

are constant.

2. The flow-head relation is linear, q3 = h/R.

3. The level transmitter, I/P transducer, and control valve have 

negligible dynamics.

4. An electronic controller with input and output in % is used (full 

scale = 100%).

The transient responses can be determined in a straightforward 

manner if the closed-loop transfer functions are available.



C
h

a
p

te
r 

1
1

27

Figure 11.15 Liquid-level control system.
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Derivation of the process and disturbance transfer functions 

directly follows Example 4.4. Consider the unsteady-state mass 

balance for the tank contents:

1 2 3ρ ρ ρ ρ (11-32)
dh

A q q q
dt

  

Substituting the flow-head relation, q3 = h/R, and introducing 

deviation variables gives

1 2 (11-33)
dh h

A q q
dt R

 
   

Thus, we obtain the transfer functions

 

 
 

2

(11-34)
τ 1

p
p

KH s
G s

Q s s


 

 
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where Kp = R and    = RA. Note that Gp(s) and Gd(s) are identical 

because q1 and q2 are both inlet flow rates and thus have the same 

effect on h.

 

 
 

1

(11-35)
τ 1

p
d

KH s
G s

Q s s


 

 

τ

Proportional Control and Set-Point Changes

If a proportional controller is used, then Gc(s) = Kc. From Fig. 

11.6 and the material in the previous section, it follows that the 

closed-loop transfer function for set-point changes is given by

 

 

 

 

/ τ 1
(11-36)

1 / τ 1

c v p m

sp c v p m

K K K K sH s

H s K K K K s




  
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Figure 11.16 Block diagram for level control system.
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This relation can be rearranged in the standard form for a first-

order transfer function,

 

 
1

1

(11-37)
τ 1sp

H s K

H s s




 

where:

1 (11-38)
1

OL

OL

K
K

K




1

τ
τ (11-39)

1 OLK




and the open-loop gain KOL is given by

(11-40)OL c v p mK K K K K
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From Eq. 11-37 it follows that the closed-loop response to a unit 

step change of magnitude M in set point is given by 

   1
/ τ

1 1 (11-41)th t K M e  

This response is shown in Fig. 11.17. Note that a steady-state 

error or offset exists because the new steady-state value is K1M

rather than the desired value of M. The offset is defined as

   offset (11-42)sph h   

For a step change of magnitude M in set point,                     . 

From (11-41), it is clear that                      . Substituting these 

values and (11-38) into (11-42) gives 

1offset (11-43)
1 OL

M
M K M

K
  



 sph M  

  1h K M  
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Figure 11.17 Step response for proportional control (set-

point change).
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Proportional Control and Disturbance Changes

From Fig. 11.16 and Eq. 11-29 the closed-loop transfer function 

for disturbance changes with proportional control is

 

 

 

 1

/ τ 1
(11-53)

1 / τ 1

p

OL

K sH s

Q s K s




  

Rearranging gives

 

 
2

1 1

(11-54)
τ 1

H s K

Q s s




 

where      is defined in (11-39) and K2 is given by1τ

2 (11-55)
1

p

OL

K
K

K



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• A comparison of (11-54) and (11-37) indicates that both closed-

loop transfer functions are first-order and have the same time 

constant. 

• However, the steady-state gains, K1 and K2, are different.

• From Eq. 11-54 it follows that the closed-loop response to a 

step change in disturbance of magnitude M is given by

   1
/ τ

2 1 (11-56)th t K M e  

The offset can be determined from Eq. 11-56.  Now                   

since we are considering disturbance changes and                  

for a step change of magnitude M. 

Thus,

  0sph  

  2h K M  

  2offset 0 (11-57)
1

p

OL

K M
h K M

K
      


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Figure 11.18 Set-point responses for Example 11.2.



C
h

a
p

te
r 

1
1

37

Figure 11.19 Load responses for Example 11.3.
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PI Control and Disturbance Changes

For PI control,                                     . The closed-loop transfer 

function for disturbance changes can then be derived from Fig. 

11.16:

   1 1/ τc c IG s K s 

 

 

 

   1

/ τ 1
(11-58)

1 1 1/ τ / τ 1

p

OL I

K sH s

Q s K s s




   

Clearing terms in the denominator gives

 

   
τ

1

(11-59)
τ τ 1 τ

I
p s

I OL I

KH s

Q s s s K s




  

Further rearrangement allows the denominator to be placed in the 

standard form for a second-order transfer function:

 

 
3

2 2
1 3 3 3

(11-60)
τ 2ζ τ 1

H s K s

Q s s s




  
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where

3

3

3

τ / (11-61)

1 τ1
ζ (11-62)

2 τ

τ ττ / (11-63)

I c v m

OL I

OL

I OL

K K K K

K

K

K



 
  

 
 



For a unit step change in disturbance,                    , and (11-59) 

becomes
 1 1/Q s s 

  3
2 2
3 3 3

(11-64)
τ 2ζ τ 1

K
H s

s s
 

 

For                  , the response is a damped oscillation that can be 

described by
30 ζ 1 

  3 3
ζ / τ 23

3 3
2

3 3

sin 1 ζ / τ (11-65)
τ 1 ζ

tK
h t e t

    
  
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PI Control of an Integrating Process

Consider the liquid-level control system shown in Fig. 11.22. This 

system differs from the previous example in two ways:

1. the exit line contains a pump and

2. the manipulated variable is the exit flow rate rather than an 

inlet flow rate.

In Section 5.3 we saw that a tank with a pump in the exit stream 

can act as an integrator with respect to flow rate changes because

 

 
 

3

1
(11-66)p

H s
G s

Q s As


  



 

 
 

1

1
(11-67)d

H s
G s

Q s As


 


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Figure 11.22 Liquid-level control system with pump in exit line. 
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If the level transmitter and control valve in Eq. 11.22 have 

negligible dynamics, the Gm(s) = Km and Gv(s) = Kv. For PI 

control,                                      . Substituting these expressions 

into the closed-loop transfer function for disturbance changes

 

 1

(11-68)
1

d

c v p m

H s G

Q s G G G G




 

   1 1/ τc c IG s K s 

and rearranging gives

 

 
4

2 2
1 4 4 4

(11-69)
τ 2ζ τ 1

H s K s

Q s s s




  

where

4

4

4

τ / (11-70)

τ τ / (11-71)

ζ 0.5 τ (11-72)

c v m

I OL

OL I

K K K K

K

K

 





And KOL = KcKvKpKm with Kp = - 1/A. 
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Stability of Closed-Loop Control Systems

Example 11.4

Consider the feedback control system shown in Fig. 11.8 with 

the following transfer functions:

1
(11-73)

2 1
c c vG K G

s
 



1 1
(11-74)

5 1 1
p d mG G G

s s
  

 

Show that the closed-loop system produces unstable responses if 

controller gain Kc is too large.
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Figure 11.23. Effect of controller gains on closed-loop 

response to a unit step change in set point (example 11.1).
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Stability

• Most industrial processes are stable without feedback control. 

Thus, they are said to be open-loop stable or self-regulating. 

• An open-loop stable process will return to the original steady 

state after a transient disturbance (one that is not sustained) 

occurs. 

• By contrast there are a few processes, such as exothermic 

chemical reactors, that can be open-loop unstable. 

Definition of Stability. An unconstrained linear system is 

said to be stable if the output response is bounded for all 

bounded inputs. Otherwise it is said to be unstable.
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Characteristic Equation

As a starting point for the stability analysis, consider the block 

diagram in Fig. 11.8. Using block diagram algebra that was 

developed earlier in this chapter, we obtain

(11-80)
1 1

m c v p d
sp

OL OL

K G G G G
Y Y D

G G
 

 

where GOL is the open-loop transfer function,                        

GOL = GcGvGpGm. For the moment consider set-point changes 

only, in which case Eq. 11-80 reduces to the closed-loop 

transfer function,

(11-81)
1

m c v p

sp OL

K G G GY

Y G



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Comparing Eqs. 11-81 and 11-82 indicates that the poles are also 

the roots of the following equation, which is referred to as the 

characteristic equation of the closed-loop system:

1 0 (11-83)OLG 

General Stability Criterion. The feedback control system in Fig. 

11.8 is stable if and only if all roots of the characteristic equation 

are negative or have negative real parts. Otherwise, the system is 

unstable.

Example 11.8

Consider a process, Gp = 0.2/-s + 1), and thus is open-loop 

unstable. If Gv = Gm = 1, determine whether a proportional 

controller can stabilize the closed-loop system.
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Figure 11.25 

Stability regions 

in the complex 

plane for roots 

of the charact-

eristic equation.
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Figure 11.26 

Contributions of 

characteristic 

equation roots to 

closed-loop 

response.
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The characteristic equation for this system is

0.2 1 0 (11-92)cs K  

Which has the single root, s = -1 + 0.2Kc. Thus, the stability 

requirement is that Kc < 5. This example illustrates the important 

fact that feedback control can be used to stabilize a process that 

is not stable without control. 

Routh Stability Criterion

The Routh stability criterion is based on a characteristic equation 

that has the form

1
1 1 0 0 (11-93)n n

n na s a s a s a
    

Solution
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Routh array:
Row

1 an an-2 an-4

2 an-1 an-3 an-5

3 b1 b2 b3

4 c1 c2

n + 1 z1

1 2 3
1

1

1 4 5
2

1

(11-94)

(11-95)

n n n n

n

n n n n

n

a a a a
b

a

a a a a
b

a

  



  









where:
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1 3 1 2
1

1

1 5 1 3
2

1

(11-96)

(11-97)

n n

n n

b a a b
c

b

b a a b
c

b

 

 







Routh Stability Criterion:

A necessary and sufficient condition for all roots of the 

characteristic equation in Eq. 11-93 to have negative real parts 

is that all of the elements in the left column of the Routh array 

are positive.

and:
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Example 11.9

Determine the stability of a system that has the characteristic 

equation
4 3 25 3 1 0 (11-98)s s s   

Solution

Because the s term is missing, its coefficient is zero. Thus, 

the system is unstable. Recall that a necessary condition for 

stability is that all of the coefficients in the characteristic 

equation must be positive.
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Example 11.10

Find the values of controller gain Kc that make the feedback 

control system of Eq. 11.4 stable.

Solution

From Eq. 11-76, the characteristic equation is

3 210 17 8 1 0 (11-99)cs s s K    

All coefficients are positive provided that 1 + Kc > 0 or Kc < -1. 

The Routh array is 

10 8

17 1 + Kc

b1 b2

c1
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To have a stable system, each element in the left column of the 

Routh array must be positive. Element b1 will be positive if           

Kc < 7.41/0.588 = 12.6. Similarly, c1 will be positive if Kc > -1. 

Thus, we conclude that the system will be stable if

1 12.6 (11-100)cK  

Direct Substitution Method

• The imaginary axis divides the complex plane into stable and 

unstable regions for the roots of characteristic equation, as 

indicated in Fig. 11.26. 

• On the imaginary axis, the real part of s is zero, and thus we can 

write s=jw. Substituting s=jw into the characteristic equation 

allows us to find a stability limit such as the maximum value of 

Kc.

• As the gain Kc is increased, the roots of the characteristic 

equation cross the imaginary axis when Kc = Kcm.
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Example 11.12

Use the direct substitution method to determine Kcm for the system 

with the characteristic equation given by Eq. 11-99.

Solution

Substitute              and Kc = Kcm into Eq. 11-99:ωs j

3 210 ω 17ω 8 ω 1 0cmj j K     

or (11-105)

   2 31 17ω 8ω 10ω 0cmK j    
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Equation 11-105 is satisfied if both the real and imaginary parts 

are identically zero:

21 17ω 0 (11-106a)cmK  

 3 28ω 10ω ω 8 10ω 0 (11-106b)   

Therefore,

2ω 0.8 ω 0.894 (11-107)   

and from (11-106a),

12.6cmK 
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Root Locus Diagrams

Example 11.13

Consider a feedback control system that has the open-loop 

transfer function,

 
   

4
(11-108)

1 2 3

c
OL

K
G s

s s s


  

Plot the root locus diagram for 0 20.cK 

Solution

The characteristic equation is 1 + GOL = 0 or

   1 2 3 4 0 (11-109)cs s s K    
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• The root locus diagram in Fig. 11.27 shows how the three roots 

of this characteristic equation vary with Kc.

• When Kc = 0, the roots are merely the poles of the open-loop 

transfer function, -1, -2, and -3.
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Figure 11.27 Root locus diagram for third-order system. X 

denotes an open-loop pole. Dots denote locations of the closed-

loop poles for different values of Kc. Arrows indicate change of 

pole locations as Kc increases.
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Figure 11.29.  Flowchart 

for performing a stability 

analysis.


