Frequency Response Analysis

Sinusoidal Forcing of a First-Order Process

For a first-order transfer function with gain K and time constant t,

M the response to a general sinusoidal input, X(t) = Asinat is:
| -
Q y(t)= ZK? ((Me_t/T —mtcos ot +sin oot) (5-25)
o o017 +1
©
6 Note that y(t) and x(t) are in deviation form. The long-time
response, y,(t), can be written as:
y,(t)= RA sin( ot +¢)fort — o (13-1)
\/00212 +1

where:
Q= —tan"* ((m:)
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Figure 13.1 Attenuation and time shift between input and output
sine waves (K= 1). The phase angle ¢ of the output signal is given
by ¢ =—Time shift/ Px360°, where At is the (period) shift and P
IS the period of oscillation.




Frequency Response Characteristics of
a First-Order Process

For x(t) = Asinat, y, (t)= Asin(ot+¢)as t — oo where:

o A= KA and ¢=—tan (01)
T \/@21:2 +1
| -
k=8 1. The output signal is a sinusoid that has the same frequency, o,
=3 as the input.signal, x(t) =Asinaot.
6 2. The amplitude of the output signal, A, is a function of the
frequency o and the input amplitude, A:
Ao__KA (13-2)
\/00212 +1

3. The output has a phase shift, o, relative to the input. The
amount of phase shift depends on .
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Dividing both sides of (13-2) by the input signal amplitude A
yields the amplitude ratio (AR)

N

A K

A \/0321:2 +1
which can, in turn, be divided by the process gain to yield the
normalized amplitude ratio (ARy)

1

\/(0212 +1

AR (13-3a)

AR = (13-3Db)




Shortcut Method for Finding
the Frequency Response

The shortcut method consists of the following steps:

Step 1. Set s=jw in G(s) to obtain G( jw).
Step 2. Rationalize G(jo); We want to express it in the form.
G(jo)=R + |l

where R and I are functions of . Simplify G(jo) by
multiplying the numerator and denominator by the
complex conjugate of the denominator.
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Step 3. The amplitude ratio and phase angle of G(s) are given
by:
Memorize =

AR =+R2 +12
o =tan"*(R/1)




Example 13.1

Find the frequency response of a first-order system, with

1
G(s)= 13-16
_ () S+1 ( )
OF,I) Solution
M First, substitutes = jo In the transfer function
2 1 1
o G(jo)= = 13-17
f__ﬁ (i0) fjo+1  jot+l ( )
OB Then multiply both numerator and denominator by the complex
conjugate of the denominator, that is, — jot+1
: — jot+1 _ —Jot+l
G(Jo)=
o) = Gorr ) Cjore1) - o241
1  (—or1) .
+ =R+ |l (13-18)
0’t°+1 0t +1



where: R=—— (13-19a)
ot +1
| = 2‘ s (13-19D)
t+1
ol From Step 3 of the Shortcut Method,
—
— 2 2
B 52 2 1 —T
2 AR =+R2 + | _\/( : 2+1j +( : 2+1]
= Or
O (1-|—(D2T2) 1
AR = > (13-20a)
\( 02 2+1) \/(02': +1
Also, T
¢ = tan —j — tan " (—oor) — —tan " (o)r) (13-20b)

R




Complex Transfer Functions
Consider a complex transfer G(s),

O emeem. 2
Substitute s=jm,
Gy (Jjo)Gy (Jo)G (Jo)- i
CU0)= 5 (0)6, (j0)Gs (jo) = 72

From complex variable theory, we can express the magnitude and
angle of G( jo) as follows:

SN ‘Ga ( J-(D)HGb ( jm)HGc ( j(o)‘- a
U= ol (in)es (o)
£G(jo)=4£G,(jo)+ZLGy(jo)+ LG, (jo)+---

4Gy (jo)+ 28y (o) + £G5 (jo)+++]  (13-24b)
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Bode Diagrams

« A special graph, called the Bode diagram or Bode plot,
provides a convenient display of the frequency response
characteristics of a transfer function model. It consists of
plots of AR and ¢ as a function of .

Q0]

—  Ordinarily, o Is expressed in units of radians/time.

| -

=B Bode Plot of A First-order System

o

© Recall:

= 1 )

O AR\ = and ¢=—tan " (1)
\/0)212 +1

e At low frequencies (m — 0 and otl[] 1):
ARy =1 and ¢=0

e At high frequencies (m — 0 and ot 1):
ARy =1/ot and ¢=-90°
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wp = l/r
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Figure 13.2 Bode diagram for a first-order process.
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 Note that the asymptotes intersect at ® = o, =1/1, known as the
break frequency or corner frequency. Here the value of AR,
from (13-21) is:

1

Vvi+1

« Some books and software defined AR differently, in terms of
decibels. The amplitude ratio in decibels AR, Is defined as

AR, =20 log AR (13-33)

AR\ (0=0y)= =0.707 (13-30)

11
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Integrating Elements

The transfer function for an integrating element was given in

Chapter 5:
_Y()_K _
G(s)_U 5) = (5-34)
AR =|G( jo)| = LA (13-34)
Jo| o
0 =2G(jo)=2K—-~£(0)=-90° (13-35)

Second-Order Process

A general transfer function that describes any underdamped,
critically damped, or overdamped second-order system s

K
G(s)= (13-40)
( ) 1%s? +2Cts +1

12



Substituting s = jo and rearranging yields:

AR = K (13-41a)

\/(1 0)212)2 +(2010)°

(13-41b)
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Figure 13.3 Bode diagrams for second-order processes.
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Time Delay

Its frequency response characteristics can be obtained by
substituting S = o,

G(jo)=e1* (13-53)

which can be written in rational form by substitution of the
Euler identity,

G(jo))ze_j“)e = cos m0 — jsin w0 (13-54)
From (13-54)

AR :‘G(jco)‘ :\/0052 @0 +sin’ w0 =1 (13-55)

ﬂnw@j
COS 0O

¢=2G(jo)=tan" (—

or
¢ =—m0 (13-56)

14
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Figure 13.6 Bode diagram for a time delay, g%
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Figure 13.7 Phase angle plots for e~ and for the 1/1 and 2/2
Pade approximations (G, is 1/1; G, is 2/2).
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Process Zeros

Consider a process zero term,
G(s)=K(st+1)
Substituting s=jm gives
G(jo)=K(jot+l)
Thus:

AR = ‘G(joo)‘ — K\/a)ztz +1
¢=2G(jo)= +tan_1(cor)

Note: In general, a multiplicative constant (e.g., K) changes
the AR by a factor of K without affecting o.

17
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Frequency Response Characteristics of
Feedback Controllers

Proportional Controller. Consider a proportional controller with
positive gain

G, (5) =K, (13-57)

In this case |G, ( jo)| = K, which is independent of w.
Therefore,

AR, =K, (13-58)
and
¢ =0 (13-59)

18



Proportional-Integral Controller. A proportional-integral (PI)
controller has the transfer function (cf. Eq. 8-9),

G, (s) =K, [1+i) - KC[T'SH] (13-60)

T|S T|S

Substitute s=jo:

Gc(j(’)):Kc 1+ 1 =K J(?TI+1 =K 1_ij
T o Jor, T, O

Thus, the amplitude ratio and phase angle are:
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2
AR, =[G, (jo)|=K, [1+ = :KC\/((M') t (13-62)
(o1, )’ o

0, = £G,(jo)=tan " (~1/01, ) =tan (w1, )—-90°  (13-63)

19
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Figure 13.9 Bode plot of a PI controller, G (s) = 2( i j

10s
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Ideal Proportional-Derivative Controller. For the ideal
proportional-derivative (PD) controller (cf. Eq. 8-11)

G.(s)=K;(1+1ps) (13-64)

The frequency response characteristics are similar to those of a
LHP zero:

AR = Ky(01p)? +1 (13-65)

Q= tan_l(oorD) (13-66)
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Proportional-Derivative Controller with Filter. The PD controller
IS most often realized by the transfer function

TDS +1
G, (s)= KC(MDHI] (13-67)

21



103 L] LI Illlll L L] ""ll T L] ITUIIII T 1T 1T 11Ty

[ = Ideal X
[ —=—= Derivative filter g .
102 = Figure 13.10 Bode
T S plots of an ideal PD
- 10l . controller and a PD
— : ] controller with
O 1005 =l s o <, derivative filter.
o
% v T B s i ldea: Gc(s):2(4s +1)
i
O “l , {1 With Derivative
¢ SO0 //"\\\ : Fllter
(deg) 40f- /4 \
sl %4 \ y G _5 4s+1
20} 4 N i C (S) o
i e 4 0.4s+1
0 el vl i - Mt 25000
1072 107! 10° 10! 102
 (rad/s)

22



Q0]
i
| -
D
s
oN
qv]
L
O

PID Controller Forms

Parallel PID Controller. The simplest form in Ch. 8 is

G (s) =K, (1+ 1. rDsj

Tls

Series PID Controller. The simplest version of the series PID
controller is

G.(s)= KC(HSHj(rDsH) (13-73)
TS

Series PID Controller with a Derivative Filter.

GC(S):KC ’l:lS—I—l TDS‘|‘1
1:18 aTDS+1

23
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Nyquist Diagrams

Consider the transfer function

1
G p—
(S) 2s+1
with
. 1
AR:‘G(J(’D)‘:\/(Z )2 1
™) +
and

o=2LG ( joo) = —tan_1(2oo)

(13-76)

(13-77a)

(13-77b)
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Figure 13.12 The Nyquist diagram for G(s) = 1/(2s + 1)
plotting Re(G( jw))and Im(G( jo)).
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Real part

Figure 13.13 The Nyquist diagram for the transfer
function in Example 13.5:

G(s) = 5(8s +1)e S
(20s+1)(4s+1)
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