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Control System Design Based on 
Frequency Response Analysis

Frequency response concepts and techniques play an important 

role in control system design and analysis. 

Closed-Loop Behavior

In general, a feedback control system should satisfy the following 

design objectives:

1. Closed-loop stability

2. Good disturbance rejection (without excessive control action) 

3. Fast set-point tracking (without excessive control action)

4. A satisfactory degree of robustness to process variations and 

model uncertainty

5. Low sensitivity to measurement noise
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• The block diagram of a general feedback control system is 

shown in Fig. 14.1.

• It contains three external input signals: set point Ysp, disturbance 

D, and additive measurement noise, N.

(14-1)
1 1 1

m c v pd c
sp

c c c

K G G GG G G
Y D N Y

G G G G G G
  

  

(14-2)
1 1 1

d m m m
sp

c c c

G G G K
E D N Y

G G G G G G
   

  

(14-3)
1 1 1

d m c v m c v m c v
sp

c c c

G G G G G G G K G G
U D N Y

G G G G G G
   

  

where  G    GvGpGm.
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Figure 14.1 Block diagram with a disturbance D and 

measurement noise N.
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Example 14.1

Consider the feedback system in Fig. 14.1 and the following 

transfer functions:

0.5
, 1

1 2
p d v mG G G G

s
   



Suppose that controller Gc is designed to cancel the unstable 

pole in Gp:

3 (1 2 )

1
c

s
G

s


 



Evaluate closed-loop stability and characterize the output 

response for a sustained disturbance. 
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Solution

The characteristic equation, 1 + GcG = 0, becomes:

or

2.5 0s  

In view of the single root at s = -2.5, it appears that the closed-

loop system is stable. However, if we consider Eq. 14-1 for    

N = Ysp = 0,

3 (1 2 ) 0.5
1 0

1 1 2

s

s s


 

 

 0.5 1

1 (1 2 )( 2.5)

d

c

sG
Y D D

G G s s

 
 

  
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• This transfer function has an unstable pole at s = +0.5. Thus, 

the output response to a disturbance is unstable. 

• Furthermore, other transfer functions in (14-1) to (14-3) also 

have unstable poles. 

• This apparent contradiction occurs because the characteristic 

equation does not include all of the information, namely, the 

unstable pole-zero cancellation.

Example 14.2

Suppose that Gd = Gp, Gm = Km and that Gc is designed so that the 

closed-loop system is stable and  |GGc | >> 1 over the frequency 

range of interest. Evaluate this control system design strategy for 

set-point changes, disturbances, and measurement noise. Also 

consider the behavior of the manipulated variable, U.
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Solution

Because  |GGc | >> 1,

1
0 and 1

1 1

c

c c

G G

G G G G
 

 

The first expression and (14-1) suggest that the output response 

to disturbances will be very good because Y/D ≈ 0. Next, we 

consider set-point responses. From Eq. 14-1,

1

m c v p

sp c

K G G GY

Y G G




Because Gm = Km, G = GvGpKm and the above equation can be 

written as, 

1

c

sp c

G GY

Y G G



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For |GGc | >> 1,

1
sp

Y

Y


Thus, ideal (instantaneous) set-point tracking would occur. 

Choosing Gc so that |GGc| >> 1 also has an undesirable 

consequence. The output Y becomes sensitive to noise because 

Y ≈ - N (see the noise term in Eq. 14-1). Thus, a design tradeoff 

is required. 

Bode Stability Criterion

The Bode stability criterion has two important advantages in 

comparison with the Routh stability criterion of Chapter 11:

1. It provides exact results for processes with time delays, while 

the Routh stability criterion provides only approximate results 

due to the polynomial approximation that must be substituted 

for the time delay.
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Before considering the basis for the Bode stability criterion, it is 

useful to review the General Stability Criterion of Section 11.1:

A feedback control system is stable if and only if all roots of the 

characteristic equation lie to the left of the imaginary axis in the 

complex plane.

Before stating the Bode stability criterion, we need to introduce 

two important definitions:

2. The Bode stability criterion provides a measure of the relative 

stability rather than merely a yes or no answer to the question, 

“Is the closed-loop system stable?”

1. A critical frequency is defined to be a value of for 

which                           . This frequency is also referred to as 

a phase crossover frequency.

2. A gain crossover frequency       is defined to be a value of    

for which . 

ωc ω

 φ ω 180OL  

ωg ω

 ω 1OLAR 
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For many control problems, there is only a single      and a 

single     . But multiple values can occur, as shown in Fig. 14.3 

for      .

ωc
ωg

ωc

Figure 14.3 Bode plot exhibiting multiple critical frequencies.
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Bode Stability Criterion. Consider an open-loop transfer function 

GOL=GcGvGpGm that is strictly proper (more poles than zeros) and 

has no poles located on or to the right of the imaginary axis, with 

the possible exception of a single pole at the origin. Assume that 

the open-loop frequency response has only a single critical 

frequency       and a single gain crossover frequency      . Then the 

closed-loop system is stable if AROL(     ) < 1. Otherwise it is 

unstable.

ωc ωg

ωc

Some of the important properties of the Bode stability criterion 

are:

1. It provides a necessary and sufficient condition for closed-

loop stability based on the properties of the open-loop transfer 

function.

2. Unlike the Routh stability criterion of Chapter 11, the Bode 

stability criterion is applicable to systems that contain time 

delays.
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• In order to gain physical insight into why a sustained oscillation 

occurs at the stability limit, consider the analogy of an adult 

pushing a child on a swing. 

• The child swings in the same arc as long as the adult pushes at 

the right time, and with the right amount of force. 

• Thus the desired “sustained oscillation” places requirements on 

both timing (that is, phase) and applied force (that is, 

amplitude). 

3. The Bode stability criterion is very useful for a wide range of 

process control problems. However, for any GOL(s) that does 

not satisfy the required conditions, the Nyquist stability 

criterion of Section 14.3 can be applied.

4. For systems with multiple      or       , the Bode stability 

criterion has been modified by Hahn et al. (2001) to provide a 

sufficient condition for stability.

ωc ωg
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• By contrast, if either the force or the timing is not correct, the 

desired swinging motion ceases, as the child will quickly 

exclaim. 

• A similar requirement occurs when a person bounces a ball.

• To further illustrate why feedback control can produce 

sustained oscillations, consider the following “thought 

experiment” for the feedback control system in Figure 14.4. 

Assume that the open-loop system is stable and that no 

disturbances occur (D = 0). 

• Suppose that the set point is varied sinusoidally at the critical 

frequency, ysp(t) = A sin(ωct), for a long period of time.

• Assume that during this period the measured output, ym, is 

disconnected so that the feedback loop is broken before the 

comparator. 
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Figure 14.4 Sustained oscillation in a feedback control system.
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• After the initial transient dies out, ym will oscillate at the 

excitation frequency ωc because the response of a linear system 

to a sinusoidal input is a sinusoidal output at the same frequency 

(see Section 13.2). 

• Suppose that two events occur simultaneously: (i) the set point 

is set to zero and, (ii) ym is reconnected. If the feedback control 

system is marginally stable, the controlled variable y will then 

exhibit a sustained sinusoidal oscillation with amplitude A and 

frequency ωc.

• To analyze why this special type of oscillation occurs only when 

ω = ωc, note that the sinusoidal signal E in Fig. 14.4 passes 

through transfer functions Gc, Gv, Gp, and Gm before returning to 

the comparator. 

• In order to have a sustained oscillation after the feedback loop is 

reconnected, signal Ym must have the same amplitude as E and a 

-180° phase shift relative to E. 
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• Note that the comparator also provides a -180° phase shift due 

to its negative sign.

• Consequently, after Ym passes through the comparator, it is in 

phase with E and has the same amplitude, A. 

• Thus, the closed-loop system oscillates indefinitely after the 

feedback loop is closed because the conditions in Eqs. 14-7 

and 14-8 are satisfied. 

• But what happens if Kc is increased by a small amount? 

• Then, AROL(ωc) is greater than one and the closed-loop system 

becomes unstable. 

• In contrast, if Kc is reduced by a small amount, the oscillation 

is “damped” and eventually dies out. 
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Example 14.3

A process has the third-order transfer function (time constant in 

minutes),

3

2
( )

(0.5 1)
p sG

s




Also, Gv = 0.1 and Gm = 10. For a proportional controller, evaluate 

the stability of the closed-loop control system using the Bode 

stability criterion and three values of Kc: 1, 4, and 20. 

Solution

For this example,

3 3

2 2
( )(0.1) (10)

(0.5 1) (0.5 1)

c
cOL c v p m

K
G G G G G K

s s
  

 
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Figure 14.5 shows a Bode plot of GOL for three values of Kc. 

Note that all three cases have the same phase angle plot because 

the phase lag of a proportional controller is zero for Kc > 0. 

Next, we consider the amplitude ratio AROL for each value of Kc. 

Based on Fig. 14.5, we make the following classifications: 

Kc Classification

1 0.25 Stable

4 1 Marginally stable

20 5 Unstable

 for ω ωOL cAR 
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Figure 14.5 Bode plots for GOL = 2Kc/(0.5s+1)3.
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In Section 12.5.1 the concept of the ultimate gain was introduced. 

For proportional-only control, the ultimate gain Kcu was defined to 

be the largest value of Kc that results in a stable closed-loop 

system. The value of Kcu can be determined graphically from a 

Bode plot for transfer function G = GvGpGm. For proportional-

only control, GOL= KcG. Because a proportional controller has 

zero phase lag if Kc > 0, ωc is determined solely by G. Also, 

AROL(ω)=Kc ARG(ω)                          (14-9)

where ARG denotes the amplitude ratio of G. At the stability limit, 

ω = ωc, AROL(ωc) = 1 and Kc= Kcu. Substituting these expressions 

into (14-9) and solving for Kcu gives an important result:

1
(14-10)

(ω )
cu

G c

K
AR



The stability limit for Kc can also be calculated for PI and PID 

controllers, as demonstrated by Example 14.4. 
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Nyquist Stability Criterion

• The Nyquist stability criterion is similar to the Bode criterion 

in that it determines closed-loop stability from the open-loop 

frequency response characteristics. 

• The Nyquist stability criterion is based on two concepts from 

complex variable theory, contour mapping and the Principle 

of the Argument. 

Nyquist Stability Criterion. Consider an open-loop transfer 

function GOL(s) that is proper and has no unstable pole-zero 

cancellations. Let N be the number of times that the Nyquist plot 

for GOL(s) encircles the -1 point in the clockwise direction. Also 

let P denote the number of poles of GOL(s) that lie to the right of 

the imaginary axis. Then, Z = N + P where Z is the number of 

roots of the characteristic equation that lie to the right of the 

imaginary axis (that is, its number of “zeros”). The closed-loop 

system is stable if and only if Z = 0.
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Some important properties of the Nyquist stability criterion are:

1. It provides a necessary and sufficient condition for closed-

loop stability based on the open-loop transfer function.

2. The reason the -1 point is so important can be deduced from 

the characteristic equation, 1 + GOL(s) = 0. This equation can 

also be written as GOL(s) = -1, which implies that AROL = 1 

and                     , as noted earlier. The -1 point is referred to 

as the critical point.

3. Most process control problems are open-loop stable. For 

these situations, P = 0 and thus Z = N. Consequently, the 

closed-loop system is unstable if the Nyquist plot for GOL(s) 

encircles the -1 point, one or more times.

4. A negative value of N indicates that the -1 point is encircled 

in the opposite direction (counter-clockwise). This situation 

implies that each countercurrent encirclement can stabilize 

one unstable pole of the open-loop system.

φ 180OL  
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5. Unlike the Bode stability criterion, the Nyquist stability 

criterion is applicable to open-loop unstable processes.

6. Unlike the Bode stability criterion, the Nyquist stability 

criterion can be applied when multiple values of       or     

occur (cf. Fig. 14.3).

ωc ωg

Example 14.6

Evaluate the stability of the closed-loop system in Fig. 14.1 for:

4
( )

5 1

s

p
e

sG
s






(the time constants and delay have units of minutes)

Gv = 2,    Gm = 0.25,     Gc = Kc

Obtain ωc and Kcu from a Bode plot. Let Kc =1.5Kcu and draw 

the Nyquist plot for the resulting open-loop system. 
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Solution

The Bode plot for GOL and Kc = 1 is shown in Figure 14.7. For 

ωc = 1.69 rad/min, OL = -180° and AROL = 0.235. For Kc = 1, 

AROL = ARG and Kcu can be calculated from Eq. 14-10. Thus,   

Kcu = 1/0.235 = 4.25. Setting Kc = 1.5Kcu gives Kc = 6.38. 

Figure 14.7 

Bode plot for 

Example 14.6, 

Kc = 1.



C
h

a
p

te
r 

1
4

25

Figure 14.8 Nyquist 

plot for Example 14.6, 

Kc = 1.5Kcu = 6.38.
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Gain and Phase Margins

Let ARc be the value of the open-loop amplitude ratio at the 

critical frequency     . Gain margin GM is defined as:ωc

1
(14-11)

c

GM
AR

Phase margin PM is defined as

• The phase margin also provides a measure of relative stability. 

• In particular, it indicates how much additional time delay can be 

included in the feedback loop before instability will occur. 

• Denote the additional time delay as           . 

• For a time delay of            , the phase angle is                  . 

180 φ (14-12)gPM 

maxθ

maxθ maxθ ω
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Figure 14.9 Gain 

and phase margins 

in Bode plot.
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max c
180

= θ ω (14-13)PM


 
   

 
or

max
c

PM
θ = (14-14)

ω 180

  
   

  

where the                 factor converts PM from degrees to radians. /180

• The specification of phase and gain margins requires a 

compromise between performance and robustness. 

• In general, large values of GM and PM correspond to sluggish 

closed-loop responses, while smaller values result in less 

sluggish, more oscillatory responses.

Guideline. In general, a well-tuned controller should have a gain 

margin between 1.7 and 4.0 and a phase margin between 30° and 

45°.



C
h

a
p

te
r 

1
4

29

Figure 14.10 Gain and phase margins on a Nyquist plot.
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Recognize that these ranges are approximate and that it may not 

be possible to choose PI or PID controller settings that result in 

specified GM and PM values.

Example 14.7

For the FOPTD model of Example 14.6, calculate the PID 

controller settings for the two tuning relations in Table 12.6:

1. Ziegler-Nichols

2. Tyreus-Luyben

Assume that the two PID controllers are implemented in the 

parallel form with a derivative filter (α = 0.1). Plot the open-loop 

Bode diagram and determine the gain and phase margins for each 

controller.



C
h

a
p

te
r 

1
4

31

Figure 14.11 

Comparison of GOL

Bode plots for 

Example 14.7.



C
h

a
p

te
r 

1
4

32

For the Tyreus-Luyben settings, determine the maximum 

increase in the time delay            that can occur while still 

maintaining closed-loop stability.

Solution

From Example 14.6, the ultimate gain is Kcu = 4.25 and the 

ultimate period is Pu =                                 . Therefore, the PID 

controllers have the following settings:

maxθ

2 /1.69 3.72 min 

Controller

Settings Kc (min) (min)

Ziegler-

Nichols

2.55 1.86 0.46

Tyreus-

Luyben

1.91 8.27 0.59

τ I τD
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The open-loop transfer function is:

2

5 1

se
G G G G G GOL c v p m c

s


 



Figure 14.11 shows the frequency response of GOL for the two 

controllers. The gain and phase margins can be determined by 

inspection of the Bode diagram or by using the MATLAB 

command, margin.

Controller GM PM wc (rad/min)

Ziegler-

Nichols

1.6 40° 1.02

Tyreus-Luyben 1.8 76° 0.79
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The Tyreus-Luyben controller settings are more conservative 

owing to the larger gain and phase margins. The value of            

is calculated from Eq. (14-14) and the information in the above 

table:

Thus, time delay    can increase by as much as 70% and still 

maintain closed-loop stability.

maxθ

max

(76°)(π rad)
θ  =  = 1.7min

(0.79 rad/min)(180°)


θ
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Figure 14.12 Nyquist plot where the gain and phase margins are 

misleading.
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Closed-Loop Frequency Response and 

Sensitivity Functions

Sensitivity Functions

The following analysis is based on the block diagram in Fig. 

14.1. We define G as                       and assume that Gm=Km and 

Gd = 1. Two important concepts are now defined:
v p mG G G G

1
sensitivity function (14-15a)

1

complementary sensitivity function (14-15b)
1

c

c

c

S
G G

G G
T

G G




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Comparing Fig. 14.1 and Eq. 14-15 indicates that S is the 

closed-loop transfer function for disturbances (Y/D), while T is 

the closed-loop transfer function for set-point changes (Y/Ysp). It 

is easy to show that: 

1 (14-16)S T 

As will be shown in Section 14.6, S and T provide measures of 

how sensitive the closed-loop system is to changes in the 

process. 

• Let |S(j   )| and |T(j   )| denote the amplitude ratios of S and T, 

respectively. 

• The maximum values of the amplitude ratios provide useful 

measures of robustness. 

• They also serve as control system design criteria, as discussed 

below. 

ω ω
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• Define MS to be the maximum value of |S(j   )| for all 

frequencies: 

ω

ω
max | ( ω) | (14-17)SM S j

The second robustness measure is MT, the maximum value of  

|T(j   )|:ω

ω
max | ( ω) | (14-18)TM T j

MT is also referred to as the resonant peak. Typical amplitude 

ratio plots for S and T are shown in Fig. 14.13.

It is easy to prove that MS and MT are related to the gain and 

phase margins of Section 14.4 (Morari and Zafiriou, 1989):

1 1
GM , PM 2sin (14-19)

1 2

S

S S

M

M M

  
   

  
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Figure 14.13 Typical S and T magnitude plots. (Modified from 

Maciejowski (1998)).

Guideline. For a satisfactory control system, MT should be in the 

range 1.0 – 1.5 and MS should be in the range of 1.2 – 2.0.
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It is easy to prove that MS and MT are related to the gain and 

phase margins of Section 14.4 (Morari and Zafiriou, 1989):

1 1
GM , PM 2sin (14-19)

1 2

S

S S

M

M M

  
   

  

11 1
GM 1 , PM 2sin (14-20)

2T TM M

  
    

 
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Bandwidth

• In this section we introduce an important concept, the 

bandwidth. A typical amplitude ratio plot for T and the 

corresponding set-point response are shown in Fig. 14.14. 

• The definition, the bandwidth ωBW is defined as the frequency at 

which |T(jω)| = 0.707. 

• The bandwidth indicates the frequency range for which 

satisfactory set-point tracking occurs. In particular, ωBW is the 

maximum frequency for a sinusoidal set point to be attenuated 

by no more than a factor of 0.707. 

• The bandwidth is also related to speed of response. 

• In general, the bandwidth is (approximately) inversely 

proportional to the closed-loop settling time. 
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Figure 14.14 Typical closed-loop amplitude ratio |T(jω)| and 

set-point response.
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Closed-loop Performance Criteria

Ideally, a feedback controller should satisfy the following 

criteria.

1. In order to eliminate offset,  |T(jω)| 1 as ω  0. 

2. |T(jω)| should be maintained at unity up to as high as 

frequency as possible. This condition ensures a rapid 

approach to the new steady state during a set-point change.

3. As indicated in the Guideline, MT should be selected so that 

1.0 < MT < 1.5.

4. The bandwidth ωBW and the frequency ωT at which MT

occurs, should be as large as possible. Large values result in 

the fast closed-loop responses.

Nichols Chart

The closed-loop frequency response can be calculated analytically 

from the open-loop frequency response.
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Figure 14.15 A Nichols chart. [The closed-loop amplitude ratio 

ARCL (           ) and phase angle                   are shown in families 

of curves.]

 φCL   
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Example 14.8

Consider a fourth-order process with a wide range of time 

constants that have units of minutes (Åström et al., 1998):

1
(14-22)

( 1)(0.2 1)(0.04 1)(0.008 1)
v p mG G G G

s s s s
 

   

Calculate PID controller settings based on following tuning 

relations in Chapter 12

a. Ziegler-Nichols tuning (Table 12.6)

b. Tyreus-Luyben tuning (Table 12.6)

c. IMC Tuning with                        (Table 12.1)

d. Simplified IMC (SIMC) tuning (Table 12.5) and a second-

order plus time-delay model derived using Skogestad’s model 

approximation method (Section 6.3).

τ 0.25 minc 
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Determine sensitivity peaks MS and MT for each controller. 

Compare the closed-loop responses to step changes in the set-

point and the disturbance using the parallel form of the PID 

controller without a derivative filter:

( ) 1
1 τ (14-23)

( ) τ
c D

I

P s
K s

E s s

 
   

 

Assume that Gd(s) = G(s).
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Controller Kc MS MT

Ziegler-

Nichols

18.1 0.28 0.070 2.38 2.41

Tyreus-

Luyben

13.6 1.25 0.089 1.45 1.23

IMC 4.3 1.20 0.167 1.12 1.00

Simplified

IMC

21.8 1.22 0.180 1.58 1.16

τ (min)I τ (min)D

Controller Settings for Example 14.8
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Figure 14.16 Closed-loop responses for Example 14.8. (A set-

point change occurs at t = 0 and a step disturbance at t = 4 min.)
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Robustness Analysis

• In order for a control system to function properly, it should 

not be unduly sensitive to small changes in the process or to 

inaccuracies in the process model, if a model is used to design 

the control system. 

• A control system that satisfies this requirement is said to be 

robust or insensitive.

• It is very important to consider robustness as well as 

performance in control system design. 

• First, we explain why the S and T transfer functions in        

Eq. 14-15 are referred to as “sensitivity functions”.
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Sensitivity Analysis

• In general, the term sensitivity refers to the effect that a 

change in one transfer function (or variable) has on another 

transfer function (or variable). 

• Suppose that G changes from a nominal value Gp0 to an 

arbitrary new value, Gp0 + dG. 

• This differential change dG causes T to change from its 

nominal value T0 to a new value, T0 + dT. 

• Thus, we are interested in the ratio of these changes, dT/dG, 

and also the ratio of the relative changes: 

/
sensitivity (14-25)

/

dT T

dG G
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We can write the relative sensitivity in an equivalent form:

/
(14-26)

/

dT T dT G

dG G dG T

 
  
 

The derivative in (14-26) can be evaluated after substituting the 

definition of T in (14-15b):

2 (14-27)c
dT

G S
dG



Substitute (14-27) into (14-26). Then substituting the definition of 

S in (14-15a) and rearranging gives the desired result:

/ 1
(14-28)

/ 1 c

dT T
S

dG G G G
 


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• Equation 14-28 indicates that the relative sensitivity is equal to 

S. 

• For this reason, S is referred to as the sensitivity function. 

• In view of the important relationship in (14-16), T is called the 

complementary sensitivity function.

Effect of Feedback Control on Relative Sensitivity

• Next, we show that feedback reduces sensitivity by comparing 

the relative sensitivities for open-loop control and closed-loop 

control. 

• By definition, open-loop control occurs when the feedback 

control loop in Fig. 14.1 is disconnected from the comparator. 

• For this condition:

(14-29)OL c
sp OL

Y
T G G

Y

 
 

 
 
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Substituting TOL for T in Eq. 14-25 and noting that dTOL/dG = Gc

gives:

• Thus, the relative sensitivity is unity for open-loop control and

is equal to S for closed-loop control, as indicated by (14-28).

• Equation 14-15a indicates that |S| <1 if |GcGp| > 1, which

usually occurs over the frequency range of interest.

• Thus, we have identified one of the most important properties

of feedback control:

• Feedback control makes process performance less sensitive to

changes in the process.

/
1 (14-30)

/

OL OL OL
c

OL c

dT T dT G G
G

dG G dG T G G

 
   
 


