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Methodology 

• Specify appropriate form of the heat equation. 

• Solve for the temperature distribution. 

• Apply Fourier’s law to determine the heat flux. 

 

Simplest Case:  One-Dimensional, Steady-State Conduction with No Thermal Energy 

Generation. 

 

• Common Geometries: 

– The Plane Wall: Described in rectangular (x) coordinate.  Area  

     perpendicular to direction of heat transfer is constant (independent of x). 

– The Tube Wall:  Radial conduction through tube wall. 

– The Spherical Shell:  Radial conduction through shell wall. 

Methodology of a Conduction Analysis 



Plane Wall 

• Consider a plane wall between two fluids of different temperature: 

The Plane Wall 

• Implications: 
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• Heat Equation: 

 Heat flux  is independent of .xq x

 Heat rate  is independent of .xq x

• Boundary Conditions:    ,1 ,20 ,   s sT T T L T 

• Temperature Distribution for Constant    : 
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Plane Wall (cont.) 

• Heat Flux and Heat Rate: 
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• Thermal Resistances                      and Thermal Circuits: t
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Conduction in a plane wall: ,condt
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Convection:  ,conv
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Thermal circuit for plane wall with adjoining fluids: 
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Plane Wall (cont.) 

• Thermal Resistance for Unit Surface Area: 
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• Contact Resistance: 
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 Values depend on:  Materials A and B, surface finishes, interstitial conditions, and 

contact pressure (Tables 3.1 and 3.2) 



Plane Wall (cont.) • Composite Wall with Negligible  

 Contact Resistance: 
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• Overall Heat Transfer Coefficient (U) : 

A modified form of Newton’s law of cooling to encompass multiple resistances  

to heat transfer. 

overallxq UA T  (3.17) 
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For the temperature distribution 

shown, kA > kB < kC. 



• Series – Parallel Composite Wall: 

Plane Wall (cont.) 

• Note departure from one-dimensional conditions for                . F Gk k

• Circuits based on assumption of isothermal surfaces normal to x direction or 

adiabatic surfaces parallel to x direction provide approximations for      . xq



• Porous Media 

Porous Media 

• The value of keff may be estimated by  

• The effective thermal conductivity of a saturated medium depends on the solid (s) 

material, its porosity , its morphology, as well as the interstitial fluid (f)  (Fig.a). 
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  (3.21) 

• The value of keff  may be bracketed by describing the medium with a series 

resistance analysis (Fig. b) and a parallel resistance analysis (Fig.c). 

• Saturated media  

      consist of a solid 

      phase and a single 

      fluid phase. 

 

• Unsaturated media 

       consist of solid, liquid, 

       and gas phases. 
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Tube Wall 

• Heat Equation: 

The Tube Wall 
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 Is the foregoing conclusion consistent with the energy conservation requirement? 

 How does     vary with   ? rq r

 What does the form of the heat equation tell us about the variation of      with 

       r in the wall?   

rq

• Temperature Distribution for Constant    : k
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Tube Wall (cont.) 

• Heat Flux and Heat Rate: 
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• Conduction Resistance: 
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Why doesn’t a surface area appear in the expressions for the thermal 

resistance? 
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Tube Wall (cont.) 

• Composite Wall with  

 Negligible Contact  

      Resistance 
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Note that 

is a constant independent of radius,
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 but U itself is tied to specification of an interface. 
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For the temperature distribution 

shown, kA > kB > kC. 



Spherical Shell 

• Heat Equation 

Spherical Shell 
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What does the form of the heat equation tell us about the variation of 

      with    ?  Is this result consistent with conservation of energy? rq r

How does       vary with     ?   rq r

• Temperature Distribution for Constant    : k
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Spherical Shell (cont.) 

• Heat flux, Heat Rate and Thermal Resistance: 
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• Composite Shell: 
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Problem: Thermal Barrier Coating 

Problem 3.30: Assessment of thermal barrier coating (TBC) for protection 

                       of turbine blades.  Determine maximum blade temperature 

                       with and without TBC. 

Schematic: 

ASSUMPTIONS:  (1) One-dimensional, steady-state conduction in a composite plane wall,  

(2) Constant properties, (3) Negligible radiation. 



Problem: Thermal Barrier Coating (cont..) 

 -3 -4 -4 -4 -3 2 -3 2
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With a heat flux of  

the inner and outer surface temperatures of the Inconel are  
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ANALYSIS:  For a unit area, the total thermal resistance with the TBC is 

   1 1
tot Zr In
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Problem: Thermal Barrier Coating (cont..)  

 1 1 3 2
tot wo In

3 20 10 m K W
- -

, o iR = h + L k + h .
   

The inner and outer surface temperatures of the Inconel are then 

 (wo) 1212Ks,i ,i wo iT T q h   

    (wo) In
1 1293Ks,o ,i i woT T h L k q
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Use of the TBC facilitates operation of the Inconel below Tmax = 1250 K. 

COMMENTS:  Since the durability of the TBC decreases with increasing 

temperature, which increases with increasing thickness, limits to its thickness are 

associated with reliability considerations. 

 wo tot,wo,o ,iq T T R 
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5
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Without the TBC, 
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Problem: Radioactive Waste Decay 

SCHEMATIC:   

 

 

Problem 3.72:  Suitability of a composite spherical shell for storing 

 radioactive wastes in oceanic waters.  

ASSUMPTIONS:  (1) One-dimensional conduction, (2) Steady-state conditions, 

(3) Constant properties at 300K, (4) Negligible contact resistance. 

ANALYSIS:  From the thermal circuit, it follows that 
 

 1

tot

4
 

3

31T -T
q = q r

R
  

  
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PROPERTIES: Table A-1, Lead: k = 35.3 W/m∙K, MP = 601 K; St.St.: k = 15.1 W/m∙K. 



Problem:  Radioactive Waste Decay (cont..) 

The thermal resistances are: 
 

  Pb
1 1

1/ 4 35.3 W/m K  0.00150 K/W
0.25m 0.30m

R 
 
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  St.St.
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1/ 4 15.1 W/m K  0.000567 K/W
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 2 2 2
conv 1/ 4 0.31 m 500 W/m K 0.00166 K/WR      

  

tot 0.00372 K/WR 

The heat rate is then 

            35 35 10  W/m 4 / 3 0.25m 32,725 Wq =    

and the inner surface temperature is 
 

 
 tot1 283 K 0.00372 K/W 32,725 W

   405 K MP 601 K

T T R q   

  
  

Hence, from the thermal standpoint, the proposal is adequate. 

COMMENTS:  In fabrication, attention should be given to maintaining a good 

thermal contact.  A protective outer coating should be applied to prevent long 

term corrosion of the stainless steel. 

< 



One-Dimensional, Steady-State 

Conduction with  

Thermal Energy Generation 

Chapter Three 

Section 3.5, Appendix C 



Implications 

Implications of Energy Generation 

•  Involves a local (volumetric) source of thermal energy due to conversion 

   from another form of energy in a conducting medium. 

•  The source may be uniformly distributed, as in the conversion from 

    electrical to thermal energy (Ohmic heating): 

2

g e
E I R

q  
 

(3.43) 

or it may be non-uniformly distributed, as in the absorption of radiation 

passing through a semi-transparent medium.   

  xq e 

•  Generation affects the temperature distribution in the medium and causes 

   the heat rate to vary with location, thereby precluding inclusion of  

   the medium in a thermal circuit. 

For a plane wall, 



The Plane Wall 

The Plane Wall 

•  Consider one-dimensional, steady-state conduction 

    in a plane wall of constant k, uniform generation, 

    and asymmetric surface conditions: 

•  Heat Equation: 
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d dT d T q
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Is the heat flux     independent of x?  q

•  General Solution: 

    2

1 2
/ 2T x q k x C x C   

What is the form of the temperature distribution for  

0?q   > 0?q  < 0?q

How does the temperature distribution change with increasing    ?  q

(3.45) 



Plane wall (cont.) 

Symmetric Surface Conditions or One Surface Insulated: 

•  What is the temperature gradient 

   at the centerline or the insulated 

   surface? 

•  Why does the magnitude of the temperature 

   gradient increase with increasing x? 

•  Temperature Distribution: 
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Overall energy balance on the wall → 
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•  How do we determine the heat rate at x = L? 

•  How do we determine    ?  
sT



Radial Systems 

Radial Systems 

•  Heat Equations: 

Cylindrical 
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Spherical 
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    Cylindrical (Tube) Wall Spherical Wall (Shell) 

Solid Cylinder (Circular Rod) Solid Sphere 



Radial systems (cont.) 

Temperature Distribution 
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Surface Temperature 

Overall energy balance: 

Or from a surface energy balance: 

in out 0   E E   cond convoq r q 
3
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s

q r
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h

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•  Solution for Uniform Generation in a Solid Sphere of Constant k 
    with Convection Cooling: 

•  A summary of temperature distributions is provided in Appendix C 

   for plane, cylindrical and spherical walls, as well as for solid  

   cylinders and spheres.  Note how boundary conditions are specified 

   and how they are used to obtain surface temperatures. 
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Problem: Nuclear Fuel Rod  

Problem 3.100    Thermal conditions in a gas-cooled nuclear reactor 

 with a tubular thorium fuel rod and a concentric  

 graphite sheath:  (a) Assessment of thermal integrity 

 for a generation rate of                   . (b) Evaluation of 

 temperature distributions in the thorium and graphite 

 for generation rates in the range                      . 
8 310 W/mq 

8 810 5x10q 

Assumptions: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant 

properties, (4) Negligible contact resistance, (5) Negligible radiation. 

Properties: Table A.1, Thorium: 2000K; Table A.2, Graphite: 2300K.mp mpT T 

Schematic: 



Analysis: (a) The outer surface temperature of the fuel, T2 , may be determined from the rate equation 
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The heat rate may be determined by applying an energy balance to a control surface about the fuel 

element, 

Since the interior surface of the element is essentially adiabatic, it follows that 

 2 2

2 1
17,907 W/mq q r r   

•

Hence, 

 2 tot 17,907 W/m 0.0185 m K/W 600K 931KT q R T     

With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields 
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• •

out g
E E

or, per unit length, 

out gE E 
• •

Problem: Nuclear fuel rod (cont.)  



Since  T1 and T2 are well below the melting points of thorium and graphite, the prescribed 

operating condition is acceptable. 

(b) The solution for the temperature distribution in a cylindrical wall with generation is 
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Boundary conditions at r1 and r2 are used to determine  T1 and  T 2  . 
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Problem: Nuclear fuel rod  (cont.) 



The following results are obtained for temperature distributions in the graphite. 

Operation at                             is clearly unacceptable since the melting point of 

thorium would be exceeded.  To prevent softening of the material, which would occur 

below the melting point, the reactor should not be operated much above                          .                    

The small radial temperature gradients are attributable to the large value of      . 
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Problem: Nuclear fuel rod  (cont.) 

2000KmpT 



the temperature distribution in the graphite is  
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Using the value of  T2  from the foregoing solution and computing T3 from the surface condition, 
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Problem: Nuclear fuel rod  (cont.) 

2300KmpT 



Comments: (i) What effect would a contact resistance at the thorium/graphite interface have on  

temperatures in the fuel element and on the maximum allowable value of     ?   q

Operation at                                is problematic for the graphite.  Larger temperature gradients 

are due to the small value of       .  

8 35 10 W/mq  

gk

                                                                                                     What would be the influence of such 

effect on temperatures in the fuel element and the maximum allowable value of    ? 

  

q

                                                                                                                               (ii)  Referring 

to the schematic, where might radiation effects be significant?   

Problem: Nuclear fuel rod (cont.) 



Extended Surfaces 

Chapter Three 

Section 3.6 



Nature and Rationale 

Nature and Rationale of Extended Surfaces 
•  An extended surface (also know as a combined conduction-convection system 

   or a fin) is a solid within which heat transfer by conduction is assumed to be  

   one dimensional, while heat is also transferred by convection (and/or 

   radiation) from the surface in a direction transverse to that of conduction. 

–  Why is heat transfer by conduction in the x-direction not, in fact, one- 

    dimensional? 

–  If heat is transferred from the surface to the fluid by convection, what  

    surface condition is dictated by the conservation of energy requirement? 



Nature and Rationale (cont.) 

–  What is the actual functional dependence of the temperature distribution in 

    the solid? 

–  If the temperature distribution is assumed to be one-dimensional, that is, 

    T=T(x) , how should the value of  T  be interpreted for any x location? 

–  How does                               vary with x ? 
cond,xq

–  When may the assumption of one-dimensional conduction be viewed as an 

    excellent approximation? 
The thin-fin approximation. 

•  Extended surfaces may exist in many situations but are commonly used as   fins to enhance heat transfer by 

 increasing the surface area  available for  convection (and/or radiation). 

They are particularly beneficial when        is small, as for a gas and natural convection.    h

•  Some typical  fin configurations: 

Straight fins of (a) uniform and (b) non-uniform cross sections; (c) annular 

fin, and (d) pin fin of non-uniform cross section. 



Fin Equation 

The Fin Equation 

•  Assuming one-dimensional, steady-state conduction in an extended 

    

surface of constant conductivity           and uniform cross-sectional area             ,  

    

with negligible generation                     and radiation                      , the fin equation  

   is of the form: 

 k  cA

 0q   rad 0q 

 
2

2
0

c

d T hP
T T

kAdx
   (3.67) 

or, with                                               and the reduced temperature                          ,  2 / cm hP kA T T  

2
2

2
0

d
m

dx
 


 (3.69) 

How is the fin equation derived? 



Fin Equation (cont.) 

•  Solutions (Table 3.4): 

Base (x = 0) condition 

 0 b bT T   

Tip ( x = L) conditions 

 A. :  Conv ect /i n  |o x Lkd dx h L  

B. :    / |Adiabati 0c x Ld dx  

 Fixed temperC. :   atu re LL 

 D. (Infinite fin 2. 6  5):   0mL L 

•  Fin Heat Rate: 

 0|
f

f c x s
A

d
q kA h x dA

dx


   



Performance Parameters 

Fin Performance Parameters 
•  Fin Efficiency: 

, max

f f

f

f f b

q q

q hA



  (3.91) 

How is the efficiency affected by the thermal conductivity of the fin? 

Expressions for         are provided in Table 3.5 for common geometries. f

 
1/ 2

222 / 2fA w L t  
 

 / 2pA t L

 

 
1

0

21

2
f

I mL

mL I mL
 

•  Fin Effectiveness: 

Consider a triangular fin: 

,

f

f

c b b

q

hA





•  Fin Resistance: 

 with ,  and /f ch k A P    

(3.86) 

,

1b
t f

f f f

R
q hA




  (3.97) 

where  0 1f 



Arrays 

Fin Arrays 
•  Representative arrays of 

   (a) rectangular and 

   (b) annular fins. 

–  Total surface area: 

t f bA NA A  (3.104) 

Number of fins Area of exposed base (prime surface) 

–  Total heat rate: 

,

b
t f f b b b o t b

t o

q N hA hA hA
R


        (3.105) 

–  Overall surface efficiency and resistance: 

,

1b
t o

t o t

R
q hA




 

(3.108) 

 1 1
f

o f

t

NA

A
    (3.107) 



Arrays (Cont.) 

•  Equivalent Thermal Circuit: 

•  Effect of Surface Contact Resistance: 

 
 ,

b
t t bo c

t o c

q hA
R


  

 
1

1 1
f f

o c

t

NA

A C




 
   

 

(3.110a) 

 1 , ,1 /f f t c c bC hA R A   (3.110b) 

 
 

,

1
t o c

to c

R
hA


(3.109) 



Problem: Turbine Blade Cooling 

Problem 3.126:   Assessment of cooling scheme for gas turbine blade. 

 Determination of whether blade temperatures are less 

 than the maximum allowable value (1050°C) for  

 prescribed operating conditions and evaluation of blade 

 cooling rate. 

Assumptions:  (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3) 

Adiabatic blade tip, (4) Negligible radiation. 

Analysis:  Conditions in the blade are determined by Case B of Table 3.4. 

(a) With the maximum temperature existing at x = L, Eq. 3.80 yields 

Schematic: 

  1

coshb

T L - T

T - T mL






   
1/2

2 4 2250 W/m K 0.11m/20W/m K 6 10 m
1/ 2

cm hP/kA        = 47.87 m
-1
     

mL = 47.87 m-1  0.05 m = 2.39 



From Table B.1 (or by calculation),                                 Hence,   cosh 5.51.mL 

and, subject to the assumption of an adiabatic tip, the operating conditions are acceptable. 

Eq. 3.81 and Table B.1 yield 

Hence,  

Comments:  Radiation losses from the blade surface contribute to reducing the blade   

temperatures, but what is the effect of assuming an adiabatic tip condition?  Calculate 

the tip temperature allowing for convection from the gas. 

  o o o1200 C (300 1200) C/5.51 1037 CT L    

(b) With      
1/2

2 4 2 o1/2
250W/m K 0.11m 20W/m K 6 10 m 900 C 517Wc bM hPkA  

          ,  

 tanh 517W 0.983 508Wfq M mL    

508Wb fq q  

Problem: Turbine Blade Cooling (cont.) 

< 



Problem 3.144:   Determination of maximum allowable power     for a 20 mm     20 mm electronic chip 

whose temperature is not to exceed 

                             when the chip is attached to an air-cooled heat sink  with N = 11 fins of 

prescribed dimensions.         

 

cq

85 C,cT 

T   = 20 C o
ooAir

k = 180 W/m-K

T  = 85 Cc
o

t,cR”  = 2x10  m -K/W-6 2

h = 100 W/m -K 2

L = 15 mm f 

L = 3 mm  b

W = 20 mm 

S  = 1.8 mm

t T  c

q  c
R  t,c

R  t,b

R  t,o

T   oo

Schematic: 

Assumptions: (1) Steady-state, (2) One-dimensional heat transfer, (3) Isothermal chip, (4) 

Negligible heat transfer from top surface of chip, (5) Negligible temperature rise for air flow, 

(6) Uniform convection coefficient associated with air flow through channels and over outer 

surface of heat sink, (7) Negligible radiation, (8) Adiabatic fin tips. 

Problem: Chip Heat Sink 





Analysis:  (a) From the thermal circuit, 

tot

c c
c

t,c t,b t,o

T -T T -T
q = =

R R + R + R

 

 22 6 2
m K/W, / W 2 10 / 0.02m 0.005 K/Wt,c t cR R

   

 2
/ Wt,b bR L k  2W/m K0.003m /180 0.02m 0.042 K/W 

From Eqs. (3.108), (3.107), and (3.104) 

 
1

, 1 1 ,
f

t,o o f t f b
o t t

NA
R A NA A

h A A
 


     

Af  = 2WLf  = 2  0.02m  0.015m = 6  10
-4

 m
2
  

Ab = W
2
 – N(tW) = (0.02m)

2
 – 11(0.182  10

-3
 m  0.02m) = 3.6  10

-4
 m

2
 

With mLf = (2h/kt)
1/2

 Lf = (200 W/m
2
K/180 W/mK  0.182  10

-3
m)

1/2
 (0.015m) =  

1.17, tanh mLf = 0.824 and Eq. (3.94) yields 

tanh 0.824
0.704

1.17

f
f

f

mL

mL
   

At = 6.96  10
-3

 m
2
  

o = 0.719,  

Rt,o = 2.00 K/W, and 
 

 

 

85 20 °C
31.8 W

0.005 0.042 2.00 K/W
cq


 

 

Problem: Chip Heat Sink (cont.) 

< 



Comments:  The heat sink significantly increases the allowable heat dissipation.  If it  

were not used and heat was simply transferred by convection from the surface of the chip with 

                                                           from Part (a) would be replaced by  2
tot100 W/m K, 2.05 K/W  h R

2
conv 1/  25 K/W, yielding  2.60 W.cR hW q  

Problem: Chip Heat Sink (cont.) 



Problem: Thermoelectric power generation with radiation cooling (cont.)  

2 21 2
1 1 2 - ,eff 1 ,eff 1

,cond,mod

( )1
( ) 0.1435 V/K   4 

1.736 K/W
p n e

t

T T
q T T IS T I R I T I

R


          

2 21 2
2 1 2 - ,eff 2 ,eff 2

,cond,mod

( )1
( ) 0.1435 V/K   4 

1.736 K/W
p n e

t

T T
q T T IS T I R I T I

R


          

2 2

2 2 sur 2( ) (0.054 m) ( 4 K)r rq h W T T h T     

2 2 8 2 2 2

2 sur 2 sur 2 2( )( ) 0.93 5.67 10  W/m K ( 4 K) ( (4 K) )rh T T T T T T           

   

For heat transfer by radiation to deep space, 
 

From Equations 3.125 and 3.126,  

(2) 

(3) 

(4) 

   

where, 
 

(5) 

   

The electric power produced by all M = 80 modules, Ptot, is related to the power 

generated in each module, PN, and the load resistance, Re,load 
 

2 2

tot - ,eff 1 2 ,eff ,load ( ) 2N p n e eP MP M IS T T I R I R      

2 2

1 280 0.1435 V/K ( ) 2 4 250 I T T I I          

    

   

or, 
 

(6) 



Problem: Thermoelectric power generation with radiation cooling (cont.)  

gEUpon specification of        Equation (1) may be solved for q1. Equations (2) 

through (6) may then be solved simultaneously for T1, T2, I, q2, and hr. 

 

 
    

gEgE

   

 
tot 2 1 (kW)         (A)         (W)       (K)        = /g NE I P T P q

 

1                 0.10          2.63          534             0.0026 

10                 0.67          114               947          0.011  

100                  3.99          3990            1671            0.04 

< 

COMMENTS: (1) The temperature for the highest thermal energy generation rate is unacceptably 

high. (2) The electric power generated is relatively high, but the conversion efficiency, , is low. The 

efficiency increases with generation rate because of larger temperature differences across the modules, 

which are T = 8, 52, and 310 K for the low, medium, and high generation rates, respectively. (3) What 

steps might be taken to increase T and, in turn, increase the conversion efficiency?  

 

 



Problem: Conduction through thin gas layers (cont.) 

If the molecule-surface interaction and corresponding resistance is neglected, the conduction heat rate 

is determined from  

 ,1 ,2x s s

kA
q T T

L
  ( 1) 

The actual conduction heat transfer rates and conduction heat transfer rates calculated from Equation 1 

are compared below.  

L  L/lmfp  qx (actual) qx (Equation 1) 

 

1 mm 15,000 0.0263 W 0.0263 W 

 

1 mm 15 21.09 W 26.3 W 

 

10 nm 0.15 102.3 W 2632 W    

 

 

COMMENTS: For relatively large plate spacing, molecule-solid resistances may be safely neglected. 

However, as L/lmfp becomes smaller, such resistances may become important (L = 1 mm) or 

dominant (L = 10 nm). 


