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Ficure 3.13  Schematic of typical finned-tube heat exchangers.




(a) (b) (c) (d)

Fieure 3. 11 Fin configurations. (a) Straight fin of uniform cross section. (b) Straight fin of
nonuniform cross section. (c) Annular fin. (d) Pin fin.



Ficure 3.15  Energy balance for an extended surface.



General Energy equation for fin

Applying the conservation of energy requirement, Equation 1.11c, to the
differential element of Figure 3.15, we obtain

qy = G+ dy T qufunv (3 56)

From Fourier's law we know that

q,= —kA, 0 (3.57)

where A, is the cross-sectional area, which may vary with x, Since the conduction
heat rate at x + dx may be expressed as

dg,

Qrvgy = + E\_ d«r (358)




it follows that

— 4 9L _pd |y df
Gevar = KA, dx de (A ch)d

The convection heat transfer rate may be expressed as
dqconv = h dA\(T o T.r)

where dA, is the surface area of the differential element. Substituting the foregoing
rate equations into the energy balance, Equation 3.56, we obtain

d Ad_T h(
dx \"¢ dx l\d

1 dA\dr i
A, dx)dx (Akfir)(T fe) =




Ficure 3,16 Straight fins of uniform cross section. (a) Rectangular fin. (b) Pin fin.



Fins of Uniform Cross-Sectional Area

To solve Equation 3.61 it is necessary to be more specific about the geometry. We
begin with the simplest case of straight rectangular and pin fins of uniform cross
section (Figure 3.16). Each fin is attached to a base surface of temperature 7(0) =
T, and extends into a fluid of temperature 7.

For the prescribed fins, A, is a constant and A, = Px, where A, is the surface
area measured from the base to x and P is the fin perimeter. Accordingly, with
dA,/dx = 0 and dA, /dx = P, Equation 3.61 reduces to

d’T _ hP
(11'2 kA(

(=T, =0 (3.62)

To simplify the form of this equation, we transform the dependent variable by
defining an excess temperature 6 as




where, since T, is a constant, df/dx = dT/dx. Substituting Equation 3.63 into
Equation 3.62, we then obtain

db? -m* =0 (3.64)
dx*

Equation 3.64 is a linear, homogeneous, second-order differential equation
with constant coefficients. Its general solution is of the form

9(3) — C,e""‘ + C2€ S (‘()())




To evaluate the constants C, and C; of Equation 3.66, it is necessary to specify
appropriate boundary conditions, One such condition may be specified in terms of
the temperature at the base of the fin (x = 0)

00)=T,- T, =6, (3.67)

The second condition, specified at the fin tip (x = L), may correspond to one of fouf
different physical situations.

The first condition, Case A, considers convection heat transfer 1mm the fin tip. Ap
plying an energy balance to a control surface about this tip ( b5

Pt s sotably
2

We obtain dl
hA[T(L) = T,) = —KA

—>hA[TL)-T_]

ho(L) = - k92

dx




Substituting Equation 3.66 into Equations 3.67 and 3.68, we obtain,
respectively,

=C,+GC (3.69)
and

h(Cie™ + Ce™) = km(Cye ™ - C\e™)

Solving for C, and C,, it may be shown, after some manipulation, that
Temp.

Distribution Ui coshm(L — x) + (h/mk) sinh m(L j
See also fig 3.17 9(, cosh mL + (h/ﬂ‘lk) sinh mL

Heat rate; applying éZ
Fourier’s Law at 9= 4= —KA, dx |y
the base

Hence, knowing the temperature distribution, 6(x), q; may be evaluated, giving

(3.71)

A Sioi, SinhmL + (himk) cosh mL
4= VA, cosh mL + (h/mk) sinh mL £l




Fluid, 7.,

q CONY

T;, / urface balance at

L the tip; Case A
9 = 9 I\Acd—r 753 > “ » hA [T(L) -T,]
i 1)
By Temp distribution
/ . .
~ Along x direction
= Eq. 3.70
0
0 L
X

Ficture 3.17  Conduction and convection in a fin of uniform cross section.



Other cases of tip conditions

Tasee 3.1 Temperature distribution and heat loss for fins of uniform cross section

Tip Condition Temperature Fin Heat
Case (x=1L) Distribution 6/6, Transfer Rate ¢,

A Convection heat cosh m(L = x) + (h/mk) sinh m(L — x) sinh mL + (h/mk) cosh mL
transfer: V

> ! =
HO(L) = —kde) de:L cosh mL + (h/mk) sinh mL - cosh mL + (h/imk) Sllﬂ(\ ;)171; )

M tanh mL
(3.75) (3.76)

Adiabatic cosh m(L — x)
dfldx;—;, = 0 cosh mL

Prescribed temperature:
(L) =6, (6;/8;) sinh mx + sinh m(L — x) (cosh mL — 6,/6;)
: M .
sinh mL sinh mL
(3.77) (3.78)

Infinite fin (L — ®):
(3.79) 1 (3.80)

0=T-T, m* = hP/KA,
,=6000)=T,— T, M=\hPKkASH,




Fin Performance

> FIn effectiveness, ¢

It is defined as the ratio of the fine heat
transfer rate to the heat transfer rate that would
exist without the fin.

(3.81)

Where A 1 is the fine cross-sectional area at the base.



> Assume Infinite fin L — 90, ¢ =l/=(12/4,)">

_(WPKA Y7 0, kP s

E

NA, 40, NA,

Notes: 1. effectivenessT by the choice of the materials 'k’

2. effectivenessT by increasing the ratio of perimeter to cross-
sectional area

3. max heat rate could be achieved by using very long fins.
However, it IS not reasonable to use very long fins to achieve near

max. heat transfer.




How to obtain a reasonable
length?

Since there Is no heat transfer from the tip of
an infinitely long fin, it more appropriate to
compare It with adiabatic tip fin (also no heat
loss). Therefore, assume adiabatic tip fin

q,; =+ hPkA.&, tanhmL

Assume 98% of the max possible heat
transfer ¢, .., =M=(117/%4,)"* O

.. 0. 98qf,max_qf .adiabatic

DISIIRAADEEE S [hPkA 6, tanhmL




> Hence,

mL=2.3 or L=2.3/m

Conclusions

It IS more suitable to use fin with L=2.3/m
which yield 98% heat transfer rather than
to use L >2.3/m or infinite length.



Effectiveness and thermal
resistance




O Py = hA, ,6,

'~ lwithoutfin

R, Conduction
R ; Convection




Conclusion
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Problem: Turbine Blade Cooling

Assessment of cooling scheme for gas turbine blade.
Determination of whether blade temperatures are less
than the maximum allowable value (1050 °C) for
prescribed operating conditions and evaluation of blade

cooling rate.
Turbine blade, »
- . k= 20W/mKA =6x10% m?,
Schematic: T.= 1200 oc P=0.11m

h = 250 W/m2K L=0.05m

£ —Tj=300°C

Assumptions: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3)
Adiabatic blade tip, (4) Negligible radiation.
Analysis: Conditions in the blade are determined by Case B of Table 3.4.
(@) With the maximum temperature existing at x=L, Eq. 3.75 yields
T(L)-Ty 1
Tp—Tw  coshmL
1/2 4, 2\l/2
= (nPrkA )2 = (250Wim? - K x 0. Lm/20Wim- K x 6x10~ m?)" "= 47.87 m

mL =47.87 m* x 0.05m=2.39



Problem: Turbine Blade Cooling

From Table B.1, coshmL=5.51. Hence,

T(L) =1200°C+(300-1200)°C/5.51=1037°C
and, subject to the assumption of an adiabatic tip, the operating conditions are acceptable.
- 1/2 2 4 _2\l/2 o
(b) With M = (hPkA, )™ “ 6, = (250W/m K x0.11m x 20W/m - K x 6x10™ "' m ) (—900 c) = -517W,

Eq. 3.76 and Table B.1 yield

df = MtanhmL = -517W(0.983) = -508W

Hence,
dp =-0f =508W

Comments: Radiation losses from the blade surface contribute to reducing the blade
temperatures, but what is the effect of assuming an adiabatic tip condition? Calculate
the tip temperature allowing for convection from the gas.



Efficiency of Fins, n;

 Definition: op F
Ny =——

qmax ) hAf 6’b

where A; Is the surface area of the fin.

Look! Max heat transfer takes place when the
surface temp. of the fin equals the base
temperature.

Assume adiabatic tip fin, the previous eq. becomes

_ MtanhmL /hPkA & tanhmL tanhmL

T ThPLg, hPL 6, mL
n—>max asL—>0 jns—>minaslL —»




Approximation for heat transfer

from a convection tip fin

* The heat transfer, g;, of a convection tip fin; eq.
3.72, can be calculated via using adiabatic tip
eq.3.76 by making a correction for the length;
L.=L+(t/2) for a rectangular fin and L.=L+(D/4) for
a pin fin.

* Therefore, with tip convection, the fin heat transfer
rate may be approximated as

q; = M tanhmL,
where M =,/hPkA, 6,
and 7, = tanh mL,

mL,



Notes

1. Errors associated with the approximation are
negligible if (nt/k) or (hD/2k) <0.0625

2. Ifw>>tforrectangular fin

P~ 2w
hp \1/2 h2w, ), 2h, .,
mL =(—)""L.=(——)""L.=(—)"°L
L, (kAt) =G!Tk
Introducing a corrected fin profile area, A =Lt
: _ 2_h1/2 51/2 _ 2_h1/z 32 _ 2_h1/2 3/2
: mL°_(kt) (Lc) L. (ktLC) L, (kpb) L.

See Figure 3.18 and figure 3.19



L.=L+1t2
A, =Lt

1.0

L2(hikA )2

Ficure 3.18  Efficiency of straight fins (rectangular, triangular, and parabolic profiles).




1.5
L2 (hlkA,) Y

I'icure 3.19  Efficiency of annular fins of rectangular profile.




summary.

n: IS obtained from charts or equations
A: : fin surface area
For example: Pin fin~A=PL_.=xn D Lc

See next table



Tavre 3.5 Efficiency of common fin shapes

Straight Fins

Rectangular®

Ay = 2wl _ tanhmlI,
L.= L+ (t/2) 2 = T L,
A, =1L

Triangular®

> 2110 I,(2mL)
Ay = 2w[IZ + (172)%]"2 = — L

—_—— (3.93)
mL I(2mL)

Ap, = (H/2)L

Parabolic®
Ay = w[C\L + B 2
(L2/0)n (/L + Cy)] E = [AmLye + 112 + 1
C, = [1 + (/LY'?
A, = (t/3)L

(3.94)

Circular Fin

Rectangular® - "
ECIATEay K\(mrpI(mry) —Ii(mr ) K ((mrs.)

2 In(mr K (mry.) + Ko(mr))I(mr;,.)

(2ry/m)

Ay = 2w (r3. — 1) N =
rae = r; + (1/2)

V= 3—rin C, =

(3.91)

—
(rze — ry

Pin Fins

Re’vrcmgu{urb

Ay = DL,

L.= L + (D/4) N =
V = (wD%4)L

tanh mi,
mil,

Triangular®
2 I(2mL)
mL I, (2mL)

A, =2 12 4 (D2 =

V = (w/12)D*L




TapLk 3.5 Continued

Parabolic®
L3
A= L {C C, - e 2
8LD AL+ 1 | '
S5 [eDC/L) + Gl

C;= 1+ 2ADILY
C,=[1+ (DILY]"
V= (mR0)D°L

m = (2/kt)'2.
bm = (4KD)™



