Transient Conduction

The lumped capacitance Method

Spatial Effects and the Role of
Analytical Solutions
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This term accounts the
variation of temperature
with time for unsteady state
problems




Examples

Ficure 5.1 Cooling of a hot metal fagging.

Could be
a small

copper
ball



Examples and comparison

T=f(t) , Tf(dis)

(a) Copper ball

(b) Roast beef



Analysis and general formulation

¢ Basic assumption:

The lumped capacitance method assumes
that the temperature of solid is spatially. uniform
at any instant of time. This means negligible

temp gradients within the solid. E.u=Ycon
Energy balance: -E,,=E
ontrol volume




and recognizing that (df/df) = (dT/dt) if T.. is constant, it follows that

s RN
hA, dt

Separating variables and integrating from the initial condition, for which ¢ = 0 and
I(0) = T,, we then obtain

pVe (“dp
hAJ, 6

where

P—— 0T TV VEANNL AL A A R S 1 ey S 40§
qtl-ll‘.l"'“'w‘.‘.q’«u“w.l.
FUERI40 L a0 S g 4 ane 14 AR awt g Ity St e Y Y] .,‘N‘.
e At o S e LI SR LT PP S le ISR ppans o .

R e AR SR LT

. e e — T T B AN S §
B S e i gy s e P | AL CSSE LA LTS S T T b gy Sy b
" o - PPN .. et A sy
Wesada s st metge iy srngt 144 Mtetetd e " “tada Dttt SN WP o-..:::v“ﬂ"*““r:nl
“
T0daing rra tavadl P Rr s sty by brgun

Saa s L EL R R R P

R e ‘
- > - v‘n-v'o'.ﬂ'lumglqlnto-wolloﬂllr' hAr P pa it pyy P
. -~ ORIt 4 PRl v . P st ; " A o, A
B L o A L LY Py o —— s S e - T T sy 5 8 S e
VNS e 00 p =y w Savena b b ey et Sty bonaan L e e -
Bhanbi -t Laaai s ded oot h L e SOShagt e |
R4 wut

e - -chcm—c...uﬁnuwu.¢ [ Y

e L N L LI T I




Evaluating the integrals, it follows that
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Thermal time constant,

Where R, is the resistance to convection heat transfer
and C, is the lumped thermal capacitance of the solid.
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Note:

The temp. of a
lumped system
approaches the
environment temp.
as time gets larger.

F1GURE 5.2 Transient temperature response of lumped capacitance solids for different

thermal time constants Te



Total energy transfer O

¢ The Total energy transfer Q occurring up to
some time t can be obtained from:

f 4
0= _th=!n43jﬂdz
0 il




Substituting for 6 from Equation 5.6 and integrating, we obtain

The quantity Q is, of course, related to the change in the internal energy of the solid,
and from Equation 1.11b Energy balance

For quenchmg Q 1s positive and the solid experiences a decrease in energy. Equa-
tions 3.5, 5.6, and 5.8a also apply to situations where the solid is heated (§ < 0), in
which case () is negative and the internal energy of the solid increases.




Maximum heat guantity.

t — oo

Q = Qmax — me (Tl _ Too)



Validity of the Lumped Capacitance Method

To develop a suitable criterion consider steady-state conduction through the
plane wall of area A (Figure 5.3). Although we are assuming steady-state condi-
tions, this criterion is readily extended to transient processes. One surface is main-
tained at a temperature T ; and the other surface is exposed to a fluid of temperature
I, <T.,. The temperature of this surface will be some intermediate value, I, for
which T <T, <T,,. Hence under steady-state conditions the surface energy bal-
ance, Equation 1.12, reduces to LA
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The Biot number can be viewed as the ratio of the
convection at the surface to conduction within the
0]0]0)Y

Convection

Y

Bi = heat convection
jeimnampn Py
heat conduction




-L
Bi< | Bi=1 Bi> |
T=T1) T=T,1) T=T,1

Ficure 5.1  Transient temperature distributions for different Biot numbers in a plane wall

symmetrica]ly cooled by convection,




Conclusion

¢ If the following condition is satisfied

the error associated with using the lumped
capacitance method is small.

Where L. Is the characteristic length. It s
defined as the ratio of the solid’s velume to
Ssurface area,
L =\V/AL
Note

EOR symmetricaltheated o covled plane wWall of;
Chickness) 2IL B =15

FerarlongreyilindEE =T/ 28anaNion a sphere), L.=r,/3




Example: small bodies with high thermal conductivities and low
convection coefficients are most likely to satisfy the criterion
for lumped system analysis

h=15W/m2-°C

(= hLe _15x0.02 _ 50075 < 0.1
401




¢ Using L.=V/A,, the exponent of eq. 5.6
may be written as

-

is termed the Fourier number. It is a dimensionless time, which, with the Biot num-
ber, characterizes transient conduction problems. Substituting Equation 5.11 into
5.6, we obtain

= exp(—Bi * Fo) (5.13)




Transient Conduction:
Spatial Effects and the Role of
Analytical Solutions



Solution to the Heat Equation for a Plane
Wall with
Symmetrical Convection Conditions

« If the lumped capacitance approximation can not be made, consideration must
be given to spatial, as well as temporal, variations in temperature during the
transient process.

 For a plane wall with symmetrical
convection conditions and constant properties,
the heat equation and initial/boundary
conditions are:

o1 _1a

o a ot
T(x,0)=T,

oar
OX

=0

x=0




(5.29)

Existence of seven independent variables:

(5.30)

How may the functional dependence be
simplified?

of Heat Equation and Initial/Boundary
Conditions:

Dimensionless temperature difference:



=
t*EitE 0
|_2
Fo — the
i — L
ksolid

0* = f(x*,Fo,Bi)



0’0" 86"

(5.34)

ox?  oFo

and theinitial and boundary conditions become
0 (x,0) =1 (5.35)
8‘9* =0 (5.36)
OX | ~_,

and

0 | __Big"@t) (5.37)
OX |~




« Exact Solution:

9*=>C, exp(—¢ 2Fo)cos( ,x*)
=l

4sing

Cn = 2¢, +sin(2¢ )




Approximate Solution

It was shown that for Fo > 0.2 the infinite

series solution eq. 5.39a can be

approximated by the 1st term of the series
0* = C,exp (—{iFo) cos ({;x¥) (5.40a)

or
6* = 67 cos ({,x*) (5.40b)

where 0% = (T, — T.,)/(T, — T..) represents the midplane (x* = 0) temperature

0* = C,exp (—{iFo) (5.41)

C, and ¢, are given in Table 5.1 for a range of Biot
numbers.



Bi=hL/k
for Plane
wall

and hr/k
for the
Infinite
cylinder
and
sphere

TaBLE 5.1

series solutions for transient one-dimensional conduction
-

Bi

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
0.25
0.30
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
20.0
30.0
40.0
50.0
100.0

w

“Bi = hL/& for the plane wall and fir,/k for the infinite cylinder and sphere. See Figure 5.6,

Plane Wall

&y

(rad)

0.0998
0.1410
0.1723
0.1987
0.2218
0.2425
0.2615
0.2791
0.2956
0.3111
0.3779
0.4328
0.4801
0.5218
0.5932
0.6533
0.7051
0.7506
0.7910
0.8274
0.8603
1.0769
1.1925
2646
3138
3496
3766
3978
4149
4289
4961
5202
5325
5400
5552
5708

B T T R e T

(II
1.0017
1.0033
1.0049
1.0066
1.0082
1.0098
1.0114
1.0130
1.0145
1.0161
1.0237
1.0311
1.0382
1.0450
1.0580
1.0701
1.0814
1.0919
1.1016
1.1107
1.1191
1.1785
1.2102
1.2287
1.2402
1.2479
1.2532
1.2570
1.2598
1.2620
1.2699
1.2717
1.2723
1.2727
1.2731
1.2733

Infinite Cvlinder

&

(rad)

0.1412
0.1995
0.2440
0.2814
0.3143
0.3438
0.3709
0.3960
0.4195
0.4417
0.5376
0.6170
0.6856
0.7465
0.8516
0.9408
1.0184
1.0873
1.1490
2048
2558
5904
7887
L0081
0898
0490
0937
1286
1566
1795
2881
3261
3455
3572
3809
2.4050

[ 3 -

[ S SV S R 55 R S SS T S S )

1
1
1
1
1
I
I
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1

C,

0025
0050
0075
0099
0124
0148
0173
0197
0222
0246
0365
0483
0598
0712
0932
143
1345
1539
1724
1902
2071
3384
4191
A698
5029
5253
5411
5526
5611
5677
5919
5973
5993
6002
6015
6018

Coellicients used in the one-term approximation to the

Sphere
gy

{rad} C,

0.1730 1.0030
0.2445 1.0060
0.2991 1.0090
0.3450 1.0120
0.3854 1.0149
0.4217 1.0179
0.4551 1.0209
0.4860 1.0239
0.5150 1.0268
0.5423 1.0298
0.6609 1.0445
0.7593 1.0592
0.8447 1.0737
0.9208 1.0880
1.0528 1.1164
1.1656 1.1441
1.2644 1.1713
1.3525 1.1978
1.4320 1.2236
1.5044 1.2488
1.5708 1.2732
2.0288 1.4793
2.2889 1.6227
2.4556 1.7202
2.5704 1.7870
2.6537 1.8338
2.7165 1.8673
1.7654 1.8920
2.8044 1.9106
2.8363 1.9249
2.9857 1.9781
3.0372 1.9898
3.0632 1.9942
3.0738 1.9962
31102 1.9990
3.1415 2.0000
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Infinite Cylinder Or
sphere

’

1-D system with an
Initial uniform temp
subjected to sudden
convection condition



Total Energy transfer Q left or entered the
wall up to any time t in transient process

« Energy equation cab be applied over a time interval t=0
to any time t>0

I;( E Sou =AE (5.42) |
Zero —Q Look! R )
AE_=E(t)-E(0) M R
Eq. 5.42 becomes e
Q=-[E()-E(0)] - L
Or
= -[pC [T(x,t)-T,] AV (5.43)
It is convenient to nondimensionalize the result of integration
by adopting this quantity
Qy=pCV (T;-T,) (5.44)

nx,0) =T,




which may be interpreted as the initial internal energy of the wall relative to the
fluid temperature. It is also the maximum amount of energy transfer that could occur
if the process were continued to time ¢ = %«. Hence, assuming constant properties,

the ratio of the total energy transferred from the wall over the time interval ¢ to the
maximum possible transfer is

0 ”J‘ ‘[forf)_ﬂ]dv..lf o

0. T - T, kY (1-67)dV (5.45)
Employing the approximate form of the temperature distribution for the plane wall,
Equation 5.40b, the integration prescribed by Equation 5.45 can be performed to
obtain

g sin

= =1-

Qn gl

where 6 can be determined from Equation 5.41, using Table 5.1 for values of the
coefficients C, and ¢,.

0, (5.46)



Approximate Solution
infinite cylinder

Infinite Cylinder The one-term approximation to Equation 5.47a is

0% = C,exp (—{Fo)Jy( (¢ ™) (5.49a)
or
*= 0% ) (5.49b)
where 67 represents the centerline temperature and is of the form
65 = C, exp (—{3Fo) (5.49)

Values of the coefficients C, and ¢, have been determined and are listed in Table
J.1 for a range of Biot numbers.



Approximate Solution
Sphere

Sphere  From Equation 5.48a, the one-term approximation is

0* = C,exp (—{3Fo) g—]; sin ({,r™) (5.50a)
ir

or
0* = 6% —L_sin (¢,r*) (5.50b)
O\
where 67 represents the center temperature and is of the form
0¥ = C, exp (- Fo) (5.50¢)

Values of the coefficients C, and £, have been determined and are listed in Table 5.1
for a range of Biot numbers.



Total Heat transfer

As in Section 5.5.3, an energy balance may be performed to determine the total
energy transfer from the infinite cylinder or sphere over the time interval At = 1.
Substituting from the approximate solutions, Equations 5.49b and 5.50b, and intro-
ducing Q, from Equation 5.44, the results are as follows.

Infinite Cylinder

0 20% |
= =1~ 51
Qn {l jl(g’l) (55 )

Sphere

367 .
e ] —F[sm({l)—K.COS({I)] (5.52)



