## Transient Conduction

- The lumped capacitance Method
  - Spatial Effects and the Role of Analytical Solutions

## Introduction

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

This term accounts the variation of temperature with time for unsteady state problems

# Examples





# Examples and comparison



T=f(t),  $T\neq f(dis)$ 

(a) Copper ball



T=f(t, dis)

(b) Roast beef

## Analysis and general formulation

### Basic assumption:

The lumped capacitance method assumes that the temperature of solid is spatially uniform at any instant of time. This means negligible temp gradients within the solid.  $E_{out} = q_{con}$ 

E<sub>in</sub>-E<sub>out</sub>=E<sub>st</sub>

**Energy balance:** 

Control volume
$$-\dot{E}_{\text{out}} = \dot{E}_{\text{st}}$$
(5.1)

Est

or

$$-hA_s(T-T_\infty) = \rho Vc \frac{dT}{dt}$$
 (5.2)

Introducing the temperature difference

$$\theta \equiv T - T_{\infty} \tag{5.3}$$

and recognizing that  $(d\theta/dt) = (dT/dt)$  if  $T_{\infty}$  is constant, it follows that

$$\frac{\rho Vc}{hA_s} \frac{d\theta}{dt} = -\theta$$

Separating variables and integrating from the initial condition, for which t = 0 and  $T(0) = T_i$ , we then obtain

$$\frac{\rho Vc}{hA_s} \int_{\theta_i}^{\theta} \frac{d\theta}{\theta} = -\int_0^t dt$$

where

$$\theta_i \equiv T_i - T_{\infty} \tag{5.4}$$

## Evaluating the integrals, it follows that

$$\frac{\rho Vc}{hA_s} \ln \frac{\theta_i}{\theta} = i$$

5.5

or

$$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$$

5.6

## Thermal time constant,

$$\tau_{t} = \rho V c / h A_{s}$$

$$\tau_i = \left(\frac{1}{hA_s}\right)(\rho Vc) = R_i C_i \tag{5.7}$$

Where  $R_t$  is the resistance to convection heat transfer and  $C_t$  is the lumped thermal capacitance of the solid.



### Note:

The temp. of a lumped system approaches the environment temp. as time gets larger.

FIGURE 5.2 Transient temperature response of lumped capacitance solids for different thermal time constants  $\tau_t$ .

# Total energy transfer Q

The Total energy transfer Q occurring up to some time t can be obtained from:

$$Q = \int_0^t q \, dt = h A_s \int_0^t \theta \, dt$$

Substituting for  $\theta$  from Equation 5.6 and integrating, we obtain

$$Q = (\rho V c)\theta_i \left[ 1 - \exp\left(-\frac{t}{\tau_i}\right) \right]$$
 (5.8a)

The quantity Q is, of course, related to the change in the internal energy of the solid, and from Equation 1.11b

Energy balance

$$-Q = \Delta E_{\rm st} \tag{5.8b}$$

For quenching Q is positive and the solid experiences a decrease in energy. Equations 5.5, 5.6, and 5.8a also apply to situations where the solid is heated ( $\theta < 0$ ), in which case Q is negative and the internal energy of the solid increases.

# Maximum heat quantity

$$t = 0 \qquad \qquad h \qquad \qquad t \to \infty$$

$$T_i \qquad T_i \qquad T_i \qquad T_i \qquad T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty$$

### Validity of the Lumped Capacitance Method

To develop a suitable criterion consider steady-state conduction through the plane wall of area A (Figure 5.3). Although we are assuming steady-state conditions, this criterion is readily extended to transient processes. One surface is maintained at a temperature  $T_{s,1}$  and the other surface is exposed to a fluid of temperature  $T_{\infty} < T_{s,1}$ . The temperature of this surface will be some intermediate value,  $T_{s,2}$ , for which  $T_{\infty} < T_{s,2} < T_{s,1}$ . Hence under steady-state conditions the surface energy balance, Equation 1.12, reduces to

T  $q_{cond}$   $Bi \ll 1$   $T_{s, 2}$   $T_{s, 2}$   $T_{s, 2}$   $T_{s, 2}$ 

$$\frac{kA}{L}(T_{s,1} - T_{s,2}) = hA(T_{s,2} - T_{\infty})$$

$$\frac{T_{s,1} - T_{s,2}}{T_{s,2} - T_{\infty}} = \frac{(L/kA)}{(1/hA)} = \frac{R_{\text{cond}}}{R_{\text{conv}}} = \frac{hL}{k} \equiv Bi$$

Effect of Biot number on steady-state temperature distribution in a plane wall with surface convection.

# The Biot number can be viewed as the ratio of the convection at the surface to conduction within the body





FIGURE 5.4 Transient temperature distributions for different Biot numbers in a plane wall symmetrically cooled by convection.

### Conclusion

If the <u>following condition is satisfied</u>

$$Bi = \frac{hL_c}{k} < 0.1$$
 5.10

the error associated with using the lumped capacitance method is small.

Where  $L_c$  is the characteristic length. It is defined as the ratio of the solid's volume to surface area,

$$L_c = V/A_s$$

### <u>Note</u>

For symmetrical heated or cooled plane wall of thickness 2L, L<sub>c</sub>=L.

For a long cylinder  $L_c = r_o/2$  and for a sphere,  $L_c = r_o/3$ 

Example: small bodies with high thermal conductivities and low convection coefficients are most likely to satisfy the criterion for lumped system analysis

Spherical copper ball 
$$k = 401 \text{ W/m}^{\circ}\text{C}$$

$$D = 12 \text{ cm}$$

$$L_c = \frac{V}{A_s} = \frac{\frac{1}{6} \pi D^3}{\pi D^2} = \frac{1}{6} D = 0.02 \text{ m}$$

Bi = 
$$\frac{hL_c}{k}$$
 =  $\frac{15 \times 0.02}{401}$  = 0.00075 < 0.1

# • Using $L_c=V/A_s$ , the exponent of eq. 5.6 may be written as

$$\frac{hA_s t}{\rho V c} = \frac{ht}{\rho c L_c} = \frac{hL_c}{k} \frac{k}{\rho c} \frac{t}{L_c^2} = \frac{hL_c}{k} \frac{\alpha t}{L_c^2}$$

or

$$\frac{hA_s t}{\rho V c} = Bi \cdot Fo \tag{5.11}$$

where

$$Fo = \frac{\alpha t}{L_c^2} \tag{5.12}$$

is termed the Fourier number. It is a *dimensionless time*, which, with the Biot number, characterizes transient conduction problems. Substituting Equation 5.11 into 5.6, we obtain

$$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp(-Bi \cdot Fo) \tag{5.13}$$

# Transient Conduction: Spatial Effects and the Role of Analytical Solutions

# Solution to the Heat Equation for a Plane Wall with Symmetrical Convection Conditions

- If the lumped capacitance approximation can not be made, consideration must be given to spatial, as well as temporal, variations in temperature during the transient process.
  - For a plane wall with symmetrical convection conditions and constant properties, the heat equation and initial/boundary conditions are:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

(5.26)

$$T(x,0) = T_i$$

(5.27)

$$\left. \frac{\partial T}{\partial x} \right|_{x=0} = 0$$

(5.28)



$$-k \frac{\partial T}{\partial x} \bigg|_{x=L} = h \Big[ T(L,t) - T_{\infty} \Big] \tag{5.29}$$

Existence of seven independent variables:

$$T = T(x, t, T_i, T_\infty, k, \alpha, h)$$
(5.30)

How may the functional dependence be simplified?

Non-dimensionalization of Heat Equation and Initial/Boundary Conditions:

Dimensionless temperature difference:  $\theta^* = \frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}}$ 

Dimensionless coordinate:

$$x^* \equiv \frac{x}{L}$$

Dimensionless time:

$$t^* \equiv \frac{\alpha t}{L^2} \equiv Fo$$

### $Fo \rightarrow$ the Fourier Number

The Biot Number:

$$Bi \equiv \frac{hL}{k_{solid}}$$

$$\theta^* = f(x^*, Fo, Bi)$$

# Substituting the definition of Eq.<sup>s</sup> 5.31 through 5.33 into Eq.<sup>s</sup> 5.26 through 5.29 the heat equation becomes

$$\frac{\partial^2 \theta^*}{\partial x^{*2}} = \frac{\partial \theta^*}{\partial F \alpha} \tag{5.34}$$

and the initial and boundary conditions become

$$\theta^*(x^*,0) = 1 \tag{5.35}$$

$$\left. \frac{\partial \theta^*}{\partial x^*} \right|_{x^* = 0} = 0 \tag{5.36}$$

and

$$\left. \frac{\partial \theta^*}{\partial x^*} \right|_{x^*=1} = -Bi \theta^* (1, t^*) \tag{5.37}$$

### • Exact Solution:

$$\theta^* = \sum_{n=1}^{\infty} C_n \exp(-\zeta_n^2 F_0) \cos(\zeta_n x^*)$$
(5.39a)

$$C_n = \frac{4\sin\zeta_n}{2\zeta_n + \sin(2\zeta_n)} \qquad \zeta_n \tan\zeta_n = Bi$$
 (5.39b,c)

See Appendix B.3 for first four roots (eigenvalues  $\zeta_1,...,\zeta_4$ ) of Eq. (5.39c)

# **Approximate Solution**

It was shown that for Fo > 0.2 the infinite series solution eq. 5.39a can be approximated by the 1st term of the series

$$\theta^* = C_1 \exp(-\zeta_1^2 F_0) \cos(\zeta_1 x^*)$$
 (5.40a)

or

$$\theta^* = \theta_o^* \cos(\zeta_1 x^*) \tag{5.40b}$$

where  $\theta_o^* \equiv (T_o - T_\infty)/(T_i - T_\infty)$  represents the midplane  $(x^* = 0)$  temperature

$$\theta_o^* = C_1 \exp(-\zeta_1^2 F_0) \tag{5.41}$$

 $C_1$  and  $\xi_1$  are given in Table 5.1 for a range of Biot numbers.

Bi=hL/k for Plane wall and hr<sub>o</sub>/k for the infinite cylinder

and

sphere

Table 5.1 Coefficients used in the one-term approximation to the series solutions for transient one-dimensional conduction

|        | Plane Wall                                     |        | Infinite Cylinder       |        | Sphere                  |        |
|--------|------------------------------------------------|--------|-------------------------|--------|-------------------------|--------|
| $Bi^a$ | $\begin{matrix} \zeta_1 \\ (rad) \end{matrix}$ | $C_1$  | $\frac{\zeta_1}{(rad)}$ | $C_1$  | $\frac{\zeta_1}{(rad)}$ | $C_1$  |
| 0.01   | 0.0998                                         | 1.0017 | 0.1412                  | 1.0025 | 0.1730                  | 1.0030 |
| 0.02   | 0.1410                                         | 1.0033 | 0.1995                  | 1.0050 | 0.2445                  | 1.0060 |
| 0.03   | 0.1723                                         | 1.0049 | 0.2440                  | 1.0075 | 0.2991                  | 1.0090 |
| 0.04   | 0.1987                                         | 1.0066 | 0.2814                  | 1.0099 | 0.3450                  | 1.0120 |
| 0.05   | 0.2218                                         | 1.0082 | 0.3143                  | 1.0124 | 0.3854                  | 1.0149 |
| 0.06   | 0.2425                                         | 1.0098 | 0.3438                  | 1.0148 | 0.4217                  | 1.0179 |
| 0.07   | 0.2615                                         | 1.0114 | 0.3709                  | 1.0173 | 0.4551                  | 1.0209 |
| 0.08   | 0.2791                                         | 1.0130 | 0.3960                  | 1.0197 | 0.4860                  | 1.0239 |
| 0.09   | 0.2956                                         | 1.0145 | 0.4195                  | 1.0222 | 0.5150                  | 1.0268 |
| 0.10   | 0.3111                                         | 1.0161 | 0.4417                  | 1.0246 | 0.5423                  | 1.0298 |
| 0.15   | 0.3779                                         | 1.0237 | 0.5376                  | 1.0365 | 0.6609                  | 1.0445 |
| 0.20   | 0.4328                                         | 1.0311 | 0.6170                  | 1.0483 | 0.7593                  | 1.0592 |
| 0.25   | 0.4801                                         | 1.0382 | 0.6856                  | 1.0598 | 0.8447                  | 1.0737 |
| 0.30   | 0.5218                                         | 1.0450 | 0.7465                  | 1.0712 | 0.9208                  | 1.0880 |
| 0.4    | 0.5932                                         | 1.0580 | 0.8516                  | 1.0932 | 1.0528                  | 1.1164 |
| 0.5    | 0.6533                                         | 1.0701 | 0.9408                  | 1.1143 | 1.1656                  | 1.1441 |
| 0.6    | 0.7051                                         | 1.0814 | 1.0184                  | 1.1345 | 1.2644                  | 1.1713 |
| 0.7    | 0.7506                                         | 1.0919 | 1.0873                  | 1.1539 | 1.3525                  | 1.1978 |
| 0.8    | 0.7910                                         | 1.1016 | 1.1490                  | 1.1724 | 1.4320                  | 1.2236 |
| 0.9    | 0.8274                                         | 1.1107 | 1.2048                  | 1.1902 | 1.5044                  | 1.2488 |
| 1.0    | 0.8603                                         | 1.1191 | 1.2558                  | 1.2071 | 1.5708                  | 1.2732 |
| 2.0    | 1.0769                                         | 1.1785 | 1.5994                  | 1.3384 | 2.0288                  | 1.4793 |
| 3.0    | 1.1925                                         | 1.2102 | 1.7887                  | 1.4191 | 2.2889                  | 1.6227 |
| 4.0    | 1.2646                                         | 1.2287 | 1.9081                  | 1.4698 | 2.4556                  | 1.7202 |
| 5.0    | 1.3138                                         | 1.2402 | 1.9898                  | 1.5029 | 2.5704                  | 1.7870 |
| 6.0    | 1.3496                                         | 1.2479 | 2.0490                  | 1.5253 | 2.6537                  | 1.8338 |
| 7.0    | 1.3766                                         | 1.2532 | 2.0937                  | 1.5411 | 2.7165                  | 1.8673 |
| 8.0    | 1.3978                                         | 1.2570 | 2.1286                  | 1.5526 | 1.7654                  | 1.8920 |
| 9.0    | 1.4149                                         | 1.2598 | 2.1566                  | 1.5611 | 2.8044                  | 1.9106 |
| 10.0   | 1.4289                                         | 1.2620 | 2.1795                  | 1.5677 | 2.8363                  | 1.9249 |
| 20.0   | 1.4961                                         | 1.2699 | 2.2881                  | 1.5919 | 2.9857                  | 1.9781 |
| 30.0   | 1.5202                                         | 1.2717 | 2.3261                  | 1.5973 | 3.0372                  | 1.9898 |
| 40.0   | 1.5325                                         | 1.2723 | 2.3455                  | 1.5993 | 3.0632                  | 1.9942 |
| 50.0   | 1.5400                                         | 1.2727 | 2.3572                  | 1.6002 | 3.0788                  | 1.9962 |
| 100.0  | 1.5552                                         | 1.2731 | 2.3809                  | 1.6015 | 3.1102                  | 1.9990 |
| ∞      | 1.5708                                         | 1.2733 | 2.4050                  | 1.6018 | 3.1415                  | 2.0000 |

 $T_{\infty}, h$   $\uparrow \uparrow \uparrow \uparrow$   $\downarrow L$   $\downarrow$ 

#### Plane wall



# Infinite Cylinder Or sphere

1-D system with an initial uniform temp subjected to sudden convection condition

 $<sup>{}^{</sup>a}Bi = hL/k$  for the plane wall and  $hr_{o}/k$  for the infinite cylinder and sphere. See Figure 5.6.

# Total Energy transfer Q left or entered the wall up to any time t in transient process

 Energy equation cab be applied over a time interval t=0 to any time t>0

$$Q = -\int \rho C \left[ T(x,t) - T_i \right] dV \qquad (5.43)$$

It is convenient to nondimensionalize the result of integration by adopting this quantity

$$Q_0 = \rho C V (T_i - T_\infty)$$
 (5.44)

which may be interpreted as the initial internal energy of the wall relative to the fluid temperature. It is also the *maximum* amount of energy transfer that could occur if the process were continued to time  $t = \infty$ . Hence, assuming constant properties, the ratio of the total energy transferred from the wall over the time interval t to the maximum possible transfer is

$$\frac{Q}{Q_o} = \int \frac{-[T(x,t) - T_i]}{T_i - T_\infty} \frac{dV}{V} = \frac{1}{V} \int (1 - \theta^*) dV$$
 (5.45)

Employing the approximate form of the temperature distribution for the plane wall, Equation 5.40b, the integration prescribed by Equation 5.45 can be performed to obtain

$$\frac{Q}{Q_o} = 1 - \frac{\sin \zeta_1}{\zeta_1} \theta_o^* \tag{5.46}$$

where  $\theta_o^*$  can be determined from Equation 5.41, using Table 5.1 for values of the coefficients  $C_1$  and  $\zeta_1$ .

# Approximate Solution infinite cylinder

Infinite Cylinder The one-term approximation to Equation 5.47a is

$$\theta^* = C_1 \exp(-\zeta_1^2 F_0) J_0(\zeta_1 r^*)$$
 (5.49a)

or

$$\theta^* = \theta_o^* J_0(\zeta_1 r^*) \tag{5.49b}$$

where  $\theta_o^*$  represents the centerline temperature and is of the form

$$\theta_o^* = C_1 \exp(-\zeta_1^2 F_0)$$
 (5.49c)

Values of the coefficients  $C_1$  and  $\zeta_1$  have been determined and are listed in Table 5.1 for a range of Biot numbers.

# Approximate Solution Sphere

Sphere From Equation 5.48a, the one-term approximation is

$$\theta^* = C_1 \exp(-\zeta_1^2 F_0) \frac{1}{\zeta_1 r^*} \sin(\zeta_1 r^*)$$
 (5.50a)

or

$$\theta^* = \theta_o^* \frac{1}{\zeta_1 r^*} \sin(\zeta_1 r^*)$$
 (5.50b)

where  $\theta_o^*$  represents the center temperature and is of the form

$$\theta_o^* = C_1 \exp(-\zeta_1^2 F_0)$$
 (5.50c)

Values of the coefficients  $C_1$  and  $\zeta_1$  have been determined and are listed in Table 5.1 for a range of Biot numbers.

## Total Heat transfer

As in Section 5.5.3, an energy balance may be performed to determine the total energy transfer from the infinite cylinder or sphere over the time interval  $\Delta t = t$ . Substituting from the approximate solutions, Equations 5.49b and 5.50b, and introducing  $Q_o$  from Equation 5.44, the results are as follows.

### Infinite Cylinder

$$\frac{Q}{Q_o} = 1 - \frac{2\theta_o^*}{\zeta_1} J_1(\zeta_1)$$
 (5.51)

### Sphere

$$\frac{Q}{Q_o} = 1 - \frac{3\theta_o^*}{\zeta_1^3} \left[ \sin(\zeta_1) - \zeta_1 \cos(\zeta_1) \right]$$
 (5.52)