Convection Heat Transfer

Chapter 6



- ~1 Convection Heat

Transfer
= Y
| \ / I - |
Bulk fluid motion | . Random motion of |-
| (advection) Fluid molecules
(diffusion)

y |9 P




The velocity boundary layer
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The Thermal Boundary Layer
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The local heat flux at any distance x from the
leading edge is obtained by applying Fourier’s
law to the fluid at y=0.
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We can also apply Newton’s law of cooling
q; = h(TS = Too)
combing the previous twoequations
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The relation between local and average convection
coefficients

q = (Ts b Too)

Defining an average convection coefficient h for the entire surface. the total heat
transfer rate may also be expressed

Equating Equations 6.11 and 6.12, it follows that the average and local convoection
coefficients are related by an expression of the form
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Note that for the speciél caSé of flow over a flat plate (FigureA6.4b), h varies only
with the distance x from the leading edge and Equation 6.13 reduces to
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Summary of the Boundary layers

Velocity B.L Thermal B.L
O(X) 5,(x)
Characterized | velocity temperature
0)Y, gradients and |gradients and
shear stress |heat transfer
Engineering |Surface Convection heat
applications | friction transfer
Key Friction coeff. | Convection heat
parameter 0% transfer coeff. ‘n’




Laminar and turbulent Flow
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FIGURE 6.6 Velocity boundary layer development on a flat plate.




Summary of the turbulent layer

Regions Transport by Velocity profile

1. Laminar diffusion Nearly linear

sublayer

2. Buffer layer | diffusion + Not linear
turbulent mixing

3. Turbulent Turbulent Not linear

zone mixing




Comparison of Laminar and turbulent velocity B.L.
profiles for the same free stream velocity

The turbulent velocity profile is relatively flat due
to mixing that occurs within the buffer and
turbulent layers giving rise to large velocity
gradients within the viscous sublayer.
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Nusselt Number
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The larger the Nusselt number, the more effective

the convection. A Nusselt number of Nu 1 for a

fluid layer represents heat transfer across the layer
1 by pure conduction.



Boundary layer — temperature
& Prandtl Number

Typical ranges of Prandtl numbers
for common fluids

Fluid Pr

T.+099(T,.-T,) Liquid metals 0.004-0.030
Gases 0.7-1.0
Molecular diffusivity of momentum , pC, @ Water — —  1.7-13.7
—_—— - — — = — Light organic fluids 5-50
Molecular diffusivity of heat Ok Oils 50-100,000
Glycerin 2000-100,000




Boundary Layer
Similarity

The normalized Boundary Layer
Equations



With the foregoing simplification and approximations, the
overall continuity equation and the x-momentum equation
reduce to
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Boundary Layer Similarity Parameter

> Define the following dimensionless variables:

Where L Is the characteristic length of the surface,
and V Is the velocity upstream of the surface.

> Using the above definitions, the velocity and
lemperature eguations become as shown in the
next table.



Similarity Parameters and the dimensionless
form of the B.L. Equations

TaBLE 6.1 The boundary layer equations and their y-divection houndary conditions in nondimensional form

Boundary Conditions
Boundary Similarity

Layer Conservation Equation Wall Free Stream Parameter(s)
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> The following dimensionless parameters are
given in table 6.1

Re, Reynolds
NO.

Pr Prandtl No.

Sc Schmidt
N}

> These parameters allow us to apply results
obtained for a surface experiencing one set of
convective conditions to geometrically similar
surfaces experiencing entirely different
conditions.



Functional form of the Solution

> The velocity eq. suggest the following functional forms of

solution




> The thermal eg. suggests the following
functional forms of solution

> Where the dependence on ap?/ax*originates
from the effect of the geometry on the fluid
motion (u* and 1*),which, hence, affects the
thermal conditions.



Equation (iif) shows that Nu is a function of x*, Re,, and Pr. If
this function is known, hence Nu can be computed for various
fluids and for various values of V and L. Consequently, the
coefficient h can be found from the computed value of Nu.



Average Nusselt number

> As given before the average value for heat
transfer coefficient h is evaluated by
Integrating over the entire surface.

> Therefore, the average coefficient Is
Independent of the spatial variable x*.

> The functional dependence of the average
Nusselt numberis_




Physical interpretation of
Prandtal number

Since Pr=c wk=va
—momentum /thermal diffusivity
This number gives a measure of the relative
effectiveness of momentum in the velocity

B.L. and energy transport by diffusion in the
thermal B.L.

For gases Pr = 1.0, this means momentum
transfer=energy transfer



> For liguid metal Pr <<1 ; this means
energy diffusion rate exceeds the
momentum diffusion rate

> For oll Pr >>1; this means momentum
diffusion rate exceeds the energy diffusion
rate.

> In sum, the value of Pr number influences
the relative growth rate of the velocity and
thermal boundary layers.



conclusion

> For Laminar flow (transport by diffusion) It Is
reasonable to assume that

where n Is a positiveexponent.for a gas 6, =6

for a liquid metal 8, >> &, for an oil 6, << &




Boundary Layer analogies
Heat and Mass transter Analogy

> Definition;

If two or more processes are governed by
dimensionless equations of the same
form, the processes are said to be
analogous'.

> The next table (6.3) shows the analogies
between Heat and Mass transfer via eq.°
(6.47/&6.51), (6.48&6.52), (6.49&6.53) and
(6.50&6.54)



Summary of the functional relations
and B.L. analogies

TaBLE 6.3 Functional relations pertinent to the boundary layer analogies

Fluid Flow

Heat Transfer
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Conclusion

> If one has performed a set of heat
experiments to find the functional form of
eguation 6.49, for example, the results
may be used for the convective mass
transfer involving the same geometry. This
could be obtained by replacing Nu with Sh
and Pr with Sc.

> In general, Nu and Sh are proportional to
Priand Sc , respectively.



> Use the following analogy eguations:
Nu= /i(x*Re, ) Pr",  Sh= 7i(x* Re,)Sc"
In which case, with eguivalent functions,
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Reynolds Analogy

> This analogy assumes the following:
dp*/dx*=0 and Pr = Sc =1.
and for a flat surface u,,=V

> Hence, the velocity, the thermal and the
concentration Equations and boundary
conditions become analogous and the
functional form of the solutions for u*, T,
and C*, egs. 6.44, 6.47, and 6.51 are
equivalent.



> From eqgs. 6.45, 6.48 and 6.52 it follows that (see
table 6.3)

> Replacing Nu and Sh by the Stanton number, St,
and the mass transfer Stanton number, St
respectively,

TABLE 6.3 Functional relations pertinent to the boundary layer analogies

Fluid Flow Heat Transfer Mass Transfer
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> Eg. 6.66 may be expressed as

> The modified Reynolds, or Chilton-
Colburn, analogies




TABLE 6.2
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Group

Definition

Interpretation

Biot number
(Bi)

Mass transfter
Biot number
(Bi,,)

Bond number
(Bo)
Coelficient
of friction
(Cy)

Eckert number
(Ec)

Fourier number

(Fo)

Mass transfer
Fourier number
(Fo,,)

Friction factor

(@)

Grashol number
(Gry)

Colburn j factor
CJer)

Colburn j factor
()

Jakob number
(Ja)

Lewis number
(Le)

MNusselt number
(Nuyg)

Peclet number
(Pe;__}

Prandtl number
(Pr)
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Ratio of the internal thermal resistance of a solid
to the boundary layer thermal resistance.

Ratio of the internal species transfer resistance to
the boundary layer species transler resistance.

Ratio of gravitational and surface
tension forces.
Dimensionless surface shear stress.

Kinetic energy of the flow relative to the
boundary layer enthalpy difference.

Ratio of the heat conduction rate to the rate of
thermal energy storage in a solid. Dimensionless
time.

Ratio of the species diffusion rate to the rate of
species storage. Dimensionless time.

Dimensionless pressure drop for internal flow.

Measure of the ratio of buoyancy lorces Lo
viscous forces.

Dimensionless heat transfer coefticient.
Dimensionless mass transfer coefficient.
Ratio of sensible to latent energy absorbed

during liquid—vapor phase change.

Ratio of the thermal and mass diffusivities.

Ratio of convection to pure conduction heat
transfer.

Ratio of advection to conduction heat transfer
rates.

Ratio of the momentum and thermal diffusivities.




TABLE 6.2 Continued

Group Definition Interpretation

Reynolds number Ratio of the inertia and viscous forces.
(Rey)

Schmidt number Ratio of the momentum and mass diffusivities.
(S¢)

Sherwood number Dimensionless concentration gradient at

(Shy) ‘ the surface.

Stanton number Modified Nusselt number,
(1)

Mass transfer Modified Sherwood number.
Stanton number
(51,

Weber number Ratio of inertia to surface tension forces.
(We)




