
Convection Heat Transfer 

Chapter 6 
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The Thermal Boundary Layer 

• Thermal B.L is created  

   as a temperature  

   difference is found  

    between surface 

    and a fluid.  

• The region of the fluid 

in which temperature 

gradients develop is 

the thermal B.L.   

Isothermal plate 

Fluid of 

Uniform 

temp 

Thermal B.L. thickness δt  is the value 

y for the ratio [(Ts-T)/(Ts-T∞)]=0.99 



 

   The local heat flux at any distance x from the 

leading edge is obtained by applying Fourier’s 

law to the fluid at y=0. 
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We can also apply Newton’s law of cooling 
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The relation between local and average convection 

coefficients 
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Summary of the Boundary layers 

Thermal B.L 

δt(x) 

Velocity B.L 

δ(x) 

 

temperature 

gradients and 

heat transfer 

velocity 

gradients and 

shear stress 

Characterized 

by 

Convection heat 

transfer 

Surface 

friction 

Engineering 

applications 

Convection heat 

transfer coeff. ‘h’ 

Friction coeff. 

‘Cf’ 

Key 

parameter 



Laminar and turbulent Flow 

 
Highly 

irregular and 

velocity 

fluctuations 



Summary of the turbulent layer 

Velocity profile Transport by Regions 

Nearly linear diffusion 1. Laminar 

sublayer 

Not linear  diffusion + 

turbulent mixing 

2. Buffer layer 

Not linear Turbulent 

mixing 

3. Turbulent 

zone  



Comparison of Laminar and turbulent velocity B.L. 

profiles for the same free stream velocity 
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The turbulent velocity profile is relatively flat due 

to mixing that occurs within the buffer and 

turbulent  layers giving rise to large velocity 

gradients within the viscous sublayer.  
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Nusselt Number 

The larger the Nusselt number, the more effective 

the convection. A Nusselt number of Nu  1 for a 

fluid layer represents heat transfer across the layer 

by pure conduction. 
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Boundary layer – temperature 

& Prandtl Number 

The flow region over the surface 

in which the temperature 

variation in the direction normal 

to the surface is significant is the 

thermal boundary layer. 

μ=ρν,  



Boundary Layer 

Similarity 

The normalized Boundary Layer  

Equations 



With the foregoing simplification and approximations, the 

overall continuity equation and the x-momentum equation 

reduce to 

Also, the energy equation reduces to 

And the species continuity equation becomes 





Boundary Layer Similarity Parameter 

 Define the following dimensionless variables: 

    

 

 

 

 

 

Where L is the characteristic length of the surface, 
and V is the velocity upstream of the surface.  

 Using the above definitions, the velocity and 
temperature equations become as shown in the 
next table. Neglect viscous dissipation term.  
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Similarity Parameters and the dimensionless 

form of the B.L. Equations 



 The following dimensionless parameters are 
given in table 6.1 

 

 

 

 

 

 

 These parameters allow us to apply results 
obtained for a surface experiencing one set of 
convective conditions to geometrically similar 
surfaces experiencing entirely different 
conditions.  

Reynolds 

No. 

ReL 

Prandtl No.  Pr 

Schmidt 

No. 

Sc 



Functional form of the Solution 
 The velocity eq. suggest the following functional forms of 

solution ( )
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 The thermal eq. suggests the following 

functional forms of solution 

 

 

 Where the dependence on dp*/dx* originates 

from the effect of the geometry on the fluid 

motion (u* and v*),which, hence, affects the 

thermal conditions. 
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(iii)Pr),Re*,(
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Equation (iii) shows that Nu is a function of x*, ReL, and Pr. If 

this function is known, hence Nu can be computed for various 

fluids and for various values of V and L. Consequently, the 

coefficient h can be found from the computed value of Nu.  



Average Nusselt number 

 As given before the average value for heat 

transfer coefficient h is evaluated by 

integrating over the entire surface. 

 Therefore, the average coefficient is 

independent of the spatial variable x*.  

 The functional dependence of the average 

Nusselt number is  

Pr),(ReL

f

f
k

Lh
uN ==



Physical interpretation of 

Prandtal number 

  Since  Pr = cpµ/k = ν/α  

                  =momentum /thermal diffusivity 

   This number gives a measure of the relative 
effectiveness of momentum in the velocity 
B.L. and energy transport by diffusion in the 
thermal B.L. 

   For gases Pr ≈ 1.0 , this means momentum 
transfer=energy transfer 



 For liquid metal Pr <<1 ; this means 

energy diffusion rate exceeds the 

momentum diffusion rate 

 For oil Pr >>1; this means momentum 

diffusion rate exceeds the energy diffusion 

rate. 

 In sum, the value of Pr number influences 

the relative growth rate of the velocity and 

thermal boundary layers.   



conclusion 
 For Laminar flow (transport by diffusion) it is 

reasonable to assume that 
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Boundary Layer analogies 

Heat and Mass transfer Analogy 

Definition:  

    ‘If two or more processes are governed by 
dimensionless equations of the same 
form, the processes are said to be 
analogous’. 

 The next table (6.3) shows the analogies 
between Heat and Mass transfer via eq.s  
(6.47&6.51), (6.48&6.52), (6.49&6.53) and 
(6.50&6.54) 

 



Summary of the functional relations 

and B.L. analogies 



Conclusion 

 If one has performed a set of heat 
experiments to find the functional form of 
equation 6.49, for example, the results 
may be used for the convective mass 
transfer involving the same geometry. This 
could be obtained by replacing Nu with Sh 
and Pr with Sc.  

 In general, Nu and Sh are proportional to 
Prn and Scn , respectively.  



Use the following analogy equations: 

    Nu= f(x*,ReL) Prn,      Sh= f(x*,ReL) Scn 

   in which case, with equivalent functions, 

f(x*,ReL) , 
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Reynolds Analogy 

 This analogy assumes the following: 

    dp*/dx*=0 and Pr = Sc =1.  

    and for a flat surface u∞=V  

Hence, the velocity, the thermal and the 
concentration Equations and boundary 
conditions become analogous and the 
functional form of the solutions for u*, T*, 
and C*, eqs. 6.44, 6.47, and 6.51 are 
equivalent.   

 



 From eqs. 6.45, 6.48 and 6.52 it follows that (see 

table 6.3) 

 

 

 Replacing Nu and Sh by the Stanton number, St, 

and the mass transfer Stanton number, Stm, 

respectively, 

  

   

(6.66)
2

Re
ShNuC L

f ==

Sc

Sh

V

h
St

Nu

cV

h
St

m
m

p

Re

PrRe

==

==
ρ



 Eq. 6.66 may be expressed as 

 

 

 

 

 The modified Reynolds, or Chilton-

Colburn, analogies 
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