Condensation Heat Transfer

- Condensation occurs when the temperature of the vapor is reduced below its saturation temperature.
- The solid surface whose temperature is below the saturation temperature of the vapor
- Two distinct forms of condensation:
 - Filmwise condensation
 - Dropwise condensation

Filmwise Condensation

- When liquid formed by condensation wets the surface. It is a more common type of condensation to occur.
- In filmwise condensation liquid condensate forms a continuous film over the surface, this film flows down the surface under the action of gravity, shear force due to vapor flow, or other forces.
- The layer of liquid condensate acts as a barrier to heat flow due to its very low thermal conductivity and hence low heat transfer rate.

Dropwise condensation

- Dropwise condensation takes place when the liquid condensate does not wet the solid surface.
- The condensate does not spread, but forms separate drops.
- These drops in turn coalesce to form large drops and sweeping clean a portion of the surface, where again new droplets are generated.
- The average heat transfer coefficient for dropwise condensation is much higher than filmwise condensation.

Condensation

- Dropwise condensation:
 - Promoted by making poorly wetted surface:
 - h could be an order of magnitude higher than in the filmwise case
 - Mechanism not well understood
- Film condensation
 - Liquid film covers entire surface
 - May flow due to gravity
 - Charactersitic of clean surfaces

Dropwise condensation

Filmwise and dropwise Condensation

Filmwise Condensation: Nusselt Analysis

Idealizations:

- Laminar flow
- Constant properties
- Negligible subcooling of liquid
- Inertia effects negligible in momentum balance
- Vapor stationary, no drag
- Smooth liq-vap interface
- Heat transfer across film by conduction only

Smooth Film Analysis

- The first attempt to analyze the film-wise condensation problem was done by Nusselt in 1916.
- By making certain assumptions;
 - The flow of condensate in the film is laminar,
 - Fluid properties are constant,
 - Sub cooling of the condensate may be neglected,
 - Momentum changes through the film are negligible,
 - The vapor is stationary and exerts no drag on the condensate,
 - Heat transfer is by conduction only, and
 - Surface is isothermal.

Laminar Film Condensation

Vertical Flat surface

Definitions

- Film thickness = δ at any z location Width of the plate = W
- Vol of element = $(\delta \dot{y})$ W dz Types of forces acting on element
 - 1. gravity force "+ve downward"
 - 2. buoyancy force "-ve"
 - 3. friction due to viscosity "-ve"

Force Balance on Element Gravity Force = Buoyancy + Friction

$$\rho_f \frac{g}{g_c} (\delta - y) W dz = \rho_v \frac{g}{g_c} (\delta - y) W dz + \tau_{yz} (W dz)$$
 (1)

 T_g is the sat. temp. may be < ambient temp " T_{∞} " or = ambient temp " T_{∞} "

Since
$$\tau_{yz} = \mu \frac{dV_z}{dy}$$
. Substitute in eq. 1

and rearranging

$$\frac{dV_z}{dy} = \frac{g}{\mu g_e} (\delta - y)(\rho_f - \rho_v)$$

Integrating gives

$$V_{z} = \frac{g}{\mu g_{c}} (\rho_{f} - \rho_{v}) (\delta y - y^{2}/2) + C_{1}$$

$$B.C \quad y = 0 \quad , \quad V_{z} = 0 \quad \therefore C_{1} = 0$$

: velocity Profile
$$V_z = \frac{\delta^2 g}{v_f} (1 - \rho_{v/\rho_f}) (\frac{y}{\delta} - \frac{y^2}{2\delta^2})$$
 (2)

Eq. 2 can be integrated over the cross section 'normal to the direction of the Z-directed velocity Vz' to get the mass flow rate of condensate, in f

$$= \frac{3 x^{3}}{\sqrt{3} (1 - \frac{1}{3})} (1 - \frac{1}{3}) (84 - \frac{1}{3}) dy dx$$

$$= \frac{3 x^{3}}{\sqrt{3} (1 - \frac{1}{3})} (84 - \frac{1}{3}) dy dx$$

Heat transfer equation

The heat flow at the wall within the area WdZ is given by 9=- 1 (Wdz) dT | y=0 Assume a linear temp profile Within the film varies from Tw at the wall to Tq, the saturation temp. at the liqvap interface'. 9y=-Ry W dz Tw-T3

The amount of condensate bet.

Z and z+dz is given by Added Condensate = ing | dms. ds= ws. 839 (1-P%) ds

Multiplying eq.4 by hfg gives fy

Wfs 89 (1-Pg)hd8=RgWdz To-Th

OR 36 5° d8 = Reg 7/6 (To-Tw) dz

Integrating

B.C at Z=0, S=0 :: C,=0

- - - - (5)

Express H. transfer in terms of Local conv. Coeff. "hz" OR h wdz (Tw-Tg)=-R, wdz Ta-Tw $h_z = k_s/8$ Substituting in eq. (5) $h_2 = k_f \left[\frac{R_g h_{fg} (1 - P_r/P_f)}{4 k_f V_f Z (T_g - T_w)} \right]^{1/4}$ (6) The Local Nusself No is $Nu_{2} = \frac{h_{2}Z}{k_{2}} = \left[\frac{f_{2}gZ^{3}h_{3}g(1-k_{1}g)}{4k_{2}\chi_{2}(T_{9}-T_{W})}\right]^{4}....(3)$

Average Coeff. over the entire surface h = Lw Shz dz dx = \frac{1}{L} \int \R_{\mathcal{g}} \left[\frac{\frac Solving, we get h = 4 ks [- 39 hs (1-30/3)] = 4 h(8) = 0.943 [- 29 ks hs (1-50/3)] 1/4 ...(8) ** L (Tg-Tw) Nu based on the average coeff. Nu= 15L = 4 [39hfg(1-R/R) 12]/4

Ref 1/2 (Tg-Tu)] (9)

for Laminar flow Re < 1800

$$= \frac{m_k}{r_A} \cdot \frac{48}{r_A} = \frac{4m_1}{r_A} \frac{8}{r_A} = \frac{4m_1}{r_A} \frac{$$

(a) Vertical plate

(b) Vertical cylinder

(c) Horizontal cylinder

The wetted perimeter p, the condensate cross-sectional area A_c , and the hydraulic diameter D_h for some geometries

Note 1

Rec	an be writt	en in te	rms of Conv. a	Æ
· 9.	h, As CTg.	-Tw)		
WY	As: Surfa	ce area c	of plate in the film	
4	= wt utd			
Subs	ituting heg	to ea.	(10))
Re	= 4 hr As Who	CTg-Tw	<u>)</u>	り

Note 2

 Experimental values of the convective coefficient can be as much as 20 % higher than those predicted by eq. (8) for laminar flow;

$$\overline{h} = 1.13 \left[\frac{\rho_f k_f^3 h_{fg} g (1 - \rho_v / \rho_f)}{v_f L (T_g - T_w)} \right]^{1/4}$$

Turbulent Film Condensation on a Vertical Flat surface

$$h = 0.0077 k_f \left[\frac{9(1-R/P_f)}{V_f^2} \right] Res$$
 $Res = \frac{4 m_f}{W f_f Y_f} > 1800$
 $Q = h As (Tg - Tw)$
 $m_f = \frac{9}{h_f g}$
 Res
 Res

Laminar Film Condensation on an Inclined Flat Surface

use the vertical-plate eqs; but replace 9 with 9 sin 8. where 0 is the angle of inclination of the plate with horizontal.

Film Condensation on a Vertical Tube

Correlations of vertical plate can be used for Vertical tube if the film thickness < outside diam. Res = 4mg TTO is the wetted perimeter

Notes

- 1. Tube Loading 91 = mt Condensele
 TTD per unit tube
- 2. Plate loading, I = inf w o. Res (tube) = 41 Me
- 3. for a tube bundel, M= M#D

Film Condensation on a horizontal tube and a horizontal tube bank

film flow pattern for Single tube 'horizontal'

for one tube

Acomparison of Eq (8) & (15) for a condensation on a vertical tube of Length L and a horizontal tube of diam D, gives

The two coeffs become equal when L=2.87D? vertical tube of length tube?

when L= 100D => Marz = 2.44 hert

Therefore, horizontal tube arrangements are preferred to vertical tube arrangements in condenser design. for J tubes vertically above each $F = 0.728 \left[\frac{9 f_{1} (1 - f_{1} f_{2}) k_{3}^{2} h_{4} 9}{7 (T_{3} - T_{4}) j D} \right]$ $F = F \cdot 5^{4}$ $F = F \cdot 5^{4}$ In practice, it is better use index 1/6 in stead of = h.j-1/6 bundle

Comparison

Average Heat transfer Coefficient

For a vertical flat plate:

$$h_{vert} = 0.943 \left(\frac{g\rho_{l}(\rho_{l} - \rho_{v})h_{fg}k_{l}^{3}}{\mu_{l}(T_{sat} - T_{s})L} \right)^{\frac{1}{4}}$$

· For a horizontal tube:

$$h_{horiz} = 0.729 \left(\frac{g\rho_{l}(\rho_{l} - \rho_{v})h_{fg}k_{l}^{3}}{\mu_{l}(T_{sat} - T_{s})D} \right)^{\frac{1}{4}}$$

Film condensation within Horizontal Tubes

 For low vapor velocities, the following expression for condensation of refrigerants can be used

$$Re_D = \frac{V_v ID_t}{v_v} < 35\,000$$

Condensation in a tube conveying a two-phase mixture at a low flow rate

the Chato Equation has been derived:

$$\bar{h}_{D} = 0.555 \left[\frac{g \rho_{f} (1 - \rho_{v}/\rho_{f}) k_{f}^{3} h_{fg}'}{v_{f} (T_{g} - T_{w}) ID_{t}} \right]^{1/4}$$

where V_v is the average velocity of the vapor, ID_t is the inside diameter of the tube, and

$$h'_{fg} = h_{fg} + \frac{3}{8}c_{pf}(T_g - T_w)$$

Reynolds number evaluated at the inlet temperature

Liquid properties at $(T_q + T_w)/2$

For higher flow rates, the flow becomes quite complicated. Correlations are available in the literature, however.