Cross Flow Exchanger and Exchanger Effectiveness

Cross flow mixed-unmixed flow

Cross flow exchanger both fluids unmixed

FIGURE 11.2 Cross-flow heat exchangers. (*a*) Finned with both fluids unmixed. (*b*) Unfinned with one fluid mixed and the other unmixed.

Applications _ Economizer

Temperature profiles in a cross-flow heat exchanger

Cross flow exchanger with both streams unmixed

Cross flow 'mixed-unmixed streams'

Heat Exchanger analysis: The effectiveness-NTU Method

- This method is preferable when only inlet temperatures are known.
- Max. Possible heat transfer rate, q_{max} can be achieved in case of counter current flow exchanger of infinite length. But infinite length is !!!
- If $C_c < C_h$, $C_c \Delta T_c = C_h \Delta T_h$ $\therefore \Delta T_c > \Delta T_h$
- The cold fluid would be heated to inlet temperature of the hot fluid. Hence

$$q_{max} = C_c(T_{h,i} - T_{c,i})$$

• If $C_h < C_c$, $C_c \Delta T_c = C_h \Delta T_h$ $\therefore \Delta T_h > \Delta T_c$

or

 The hot fluid would be cooled to the inlet temperature of the cold fluid. Hence

$$q_{max} = C_h(T_{h,i} - T_{c,i})$$

- In general, $q_{max} = C_{min}(T_{h,i} T_{c,i})$ where C_{min} is equal to C_h or C_c whichever is smaller.
- Effectiveness, ε , is defined as the ratio of the actual heat transfer for exchanger to the maximum possible heat transfer rate:

$$\varepsilon = q_{act}/q_{max}$$

$$\varepsilon = C_h(T_{h,i}-T_{h,o}) / C_{min}(T_{h,i}-T_{c,i})$$

$$\varepsilon = C_c(T_{c,o}-T_{c,i}) / C_{min}(T_{h,i}-T_{c,i})$$

• Assume a parallel-flow for which $C_{min} = C_h$, hence $\varepsilon = (T_{h,i} - T_{h,o}) / (T_{h,i} - T_{c,i})$

• If ε , $T_{h,i}$, and $T_{c,i}$ are known, the actual heat transfer:

$$q_{act} = \varepsilon q_{max}$$

 $q_{act} = \varepsilon C_{min} (T_{h,i} - T_{c,i})$

For any exchanger it can be shown that

$$\varepsilon = f(NTU, C_{min}/C_{max})$$

Where C_{min}/C_{max} is equal to C_c/C_h or C_h/C_c , depending on the relative values of heat capacity rates.

• The number of transfer unit, NTU, is defined as

• ε and NTU can be obtained from equations or charts.

TABLE 11.3	Heat Exchanger Effectiveness Relations [5]

Flow Arrangement

Relation

Concentric tube

Parallel flow
$$\varepsilon = \frac{1 - \exp\left[-NTU(1 + C_r)\right]}{1 + C_r}$$
 (11.28a)

Counterflow
$$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 - C_r)\right]}{1 - C_r \exp\left[-\text{NTU}(1 - C_r)\right]} \qquad (C_r < 1) \qquad \text{Where } C_r = C_{\min} / C_{\max}$$

$$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}} \qquad (C_r = 1) \tag{11.29a}$$

Shell-and-tube

$$\varepsilon_1 = 2 \left\{ 1 + C_r + (1 + C_r^2)^{1/2} \right\}$$

$$\times \frac{1 + \exp\left[-(\text{NTU})_1(1 + C_r^2)^{1/2}\right]}{1 - \exp\left[-(\text{NTU})_1(1 + C_r^2)^{1/2}\right]} \right\}^{-1}$$
(11.30a)

$$n$$
 Shell passes $(2n, 4n, \dots$ tube passes)

$$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$$
(11.31a)

Cross-flow (single pass)

$$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right) (\text{NTU})^{0.22} \left\{ \exp\left[-C_r(\text{NTU})^{0.78}\right] - 1 \right\} \right]$$
 (11.32)

$$C_{\max}$$
 (mixed),
 C_{\min} (unmixed)

$$\varepsilon = \left(\frac{1}{C_r}\right) (1 - \exp\left\{-C_r[1 - \exp\left(-\text{NTU}\right)]\right\})$$
 (11.33a)

$$C_{\min}$$
 (mixed),
 C_{\max} (unmixed)

$$\varepsilon = 1 - \exp(-C_r^{-1} \{1 - \exp[-C_r(NTU)]\})$$
 (11.34a)

All exchangers
$$(C_r = 0)$$

$$\varepsilon = 1 - \exp(-NTU)$$

(11.35a)

TABLE 11.4	Heat Exchanger	NTU Relations
-------------------	----------------	---------------

Flow A	rrangement
--------	------------

Relation

Concentric tube

$$NTU = -\frac{\ln[1 - \varepsilon(1 + C_r)]}{1 + C_r}$$
 (11.28b)

$$NTU = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \quad (C_r < 1)$$

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1) \qquad (11.29b)$$

Shell-and-tube

Where $C_r = C_{min} / C_{ma}$

$$(NTU)_1 = -(1 + C_r^2)^{-1/2} \ln\left(\frac{E - 1}{E + 1}\right)$$
 (11.30b)

$$E = \frac{2/\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$$
(11.30c)

n Shell passes

 $(2n, 4n, \dots \text{tube passes})$

Use Equations 11.30b and 11.30c with

$$\varepsilon_1 = \frac{F-1}{F-C_r}$$
 $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$ NTU = $n(\text{NTU})_1$ (11.31b, c, d)

Cross-flow (single pass)

$$C_{\text{max}}$$
 (mixed), C_{min} (unmixed)

$$NTU = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$$
 (11.33b)

$$C_{\min}$$
 (mixed), C_{\max} (unmixed)

$$NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$$
 (11.34b)

All exchangers
$$(C_r = 0)$$

$$NTU = -\ln(1 - \varepsilon)$$

(11.35b)

FIGURE 11.10 Effectiveness of a parallel-flow heat exchanger (Equation 11.28).

FIGURE 11.11 Effectiveness of a counterflow heat exchanger (Equation 11.29).

FIGURE 11.12 Effectiveness of a shell-and-tube heat exchanger with one shell and any multiple of two tube passes (two, four, etc. tube passes) (Equation 11.30).

FIGURE 11.13 Effectiveness of a shell-and-tube heat exchanger with two shell passes and any multiple of four tube passes (four, eight, etc. tube passes) (Equation 11.31 with n = 2).

Effectiveness of a single pass, cross-flow heat exchanger with both fluids unmixed (Equation 11.32).

Effectiveness of a single pass, crossflow heat exchanger with one fluid mixed and the other unmixed (Equations 11.33, 11.34).

problem

Hot exhaust gases, which enter a finned-tube, cross-flow heat exchanger at 300°C and leave at 100°C, are used to heat pressurized water at a flow rate of 1 kg/s from 35 to 125°C. The overall heat transfer coefficient based on the gas-side surface area is $U_h = 100 \text{ W/m}^2 \cdot \text{K}$. Determine the required gas-side surface area A_h using the NTU method.

Schematic

Try to solve the problem