
Boiling Heat transfer

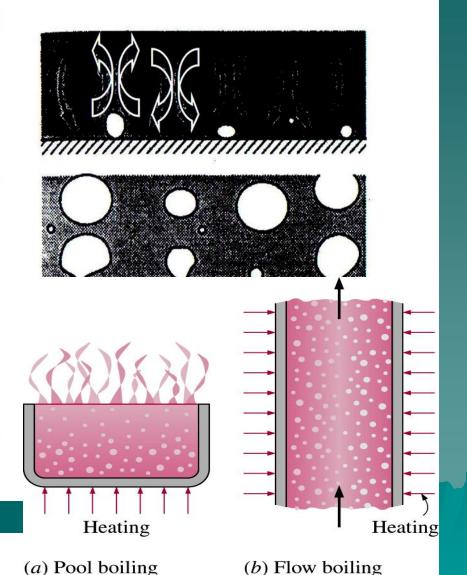
Introduction

- Phase change + convective fluid motion
- Important features:
 - Large heat transfer rates with small temperature differences (nearly isothermal)
 - High heat transfer coefficients
 - Excellent for high heat fluxes (compact)
- Applications:
 - Refrigeration, boilers, heat exchangers
 - Petroleum refining, chemical processing, cryogenics, physical separation of gases (N₂, etc.)
 - Atmospheric precipitation
 - Maintaining constant temperature (e.g. electronics, computers)
 - Nuclear heat transfer normal and accident scenarios

Boiling

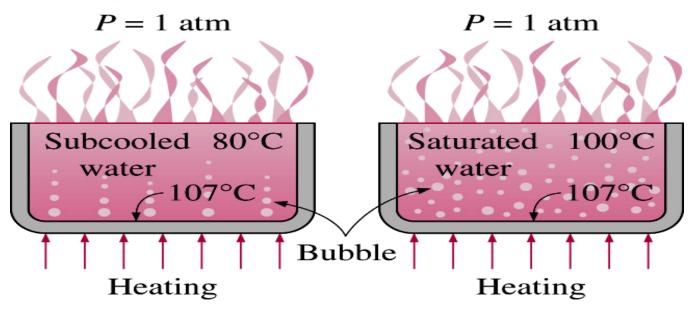
•Boiling is evaporation at a solid-liquid interface, and occurs when $T_s > T_{sat}$ where T_{sat} is the temperature for liquid-to-gas phase change, and is a function of pressure.

e.g., for water at 1 atm, T_{sat} = 100°C & h_{fg} = 2257 kJ/kg


•In boiling, the rate equation (Newton's law of cooling) is:

$$q_s'' = h (T_s - T_{sat}) = h \Delta T_e$$

where ΔT_e is the "excess" temperature


Modes of Boiling

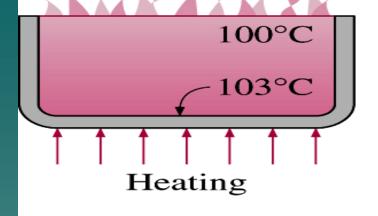
- Boiling can be classified as
 - Pool Boiling
 - quiescent liquid, motion near the surface is due to free convection and mixing due to bubble growth and detachment
 - Forced ConvectionBoiling (Flow boiling)
 - external means drive fluid motion

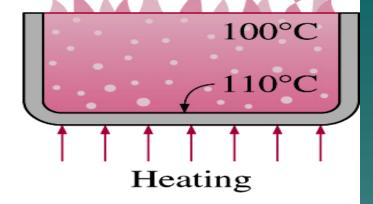
Modes of Boiling

- Boiling can also be classified, alternatively, as:
 - Subcooled (local) boiling
 - T_{liq} is below T_{sat}
 - bubbles formed at the solid surface condense in the liquid
 - Saturated boiling
 - T_{lia} is slightly > T_{sat}
 - bubbles can rise and escape

(a) Subcooled boiling (b) Saturated boiling

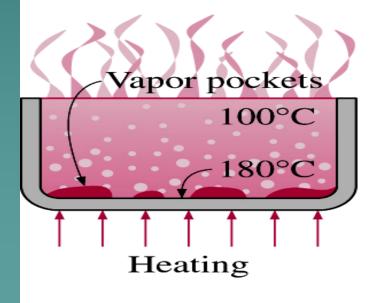
Dimensionless Parameters

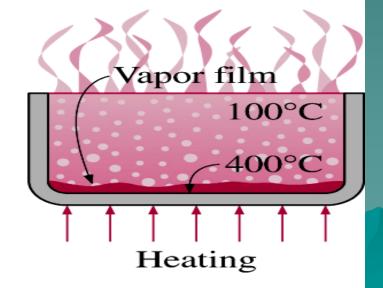

The dimensionless parameters relevant in boiling heat transfer


- Nusselt number, hL/k
- Prandtl number, μC_p/k
- Jakob number, Ja = $(C_p \Delta T)/h_{fg}$ where $\Delta T = (T_s T_{sat})$ (ratio of sensible to latent heat)
- Bond number, Bo = $[g(\rho_l \rho_v) L^2] / \sigma$ (ratio of gravitational to surface tension forces)
- Grashof-like number, [ρ g (ρ_I ρ_V) L^3] / μ^2 (quantifies buoyancy-induced fluid motion and its effect on heat transfer) {Ratio of Buoyancy forces to viscous forces}

Pool Boiling

- Pool boiling is boiling at the surface of a body in an extensive pool of a motionless liquid
- Examples:
 - quenching, flooded evaporators, immersion cooling of electronic components
- Variables:
 - heat flux
 - thermophysical properties (liquid and vapor)
 - surface material and finish
 - size of the heated surface
- Two possibilities:
 - Temperature control
 - Heat flux control


Different boiling regimes in pool boiling



(a) Natural convection boiling

(b) Nucleate boiling



(c) Transition boiling

(d) Film boiling

Typical boiling curve for water at 1 atm pressure

Pool Boiling Correlations

2. Critical heat flux
$$q = \frac{\pi}{24} h_{fg} \mathcal{R} \left[\frac{\sigma_g (Pe-R)}{R^2} \right] \left(\frac{Pe+R}{Pe} \right)^2$$

3. Minimum heat flux

4. Film Boiling

Nu = how.D = C [9 (fz-fc)his D] 4

Ru [Vo Ru (Tz-Tsat)]

c:0.62 horz cylinder c:0.67 sphere higg = higg + 0.8 Cp, ~ (Ts - Tsat)

honr: average boiling H.T.C. in absence
of Rudiation

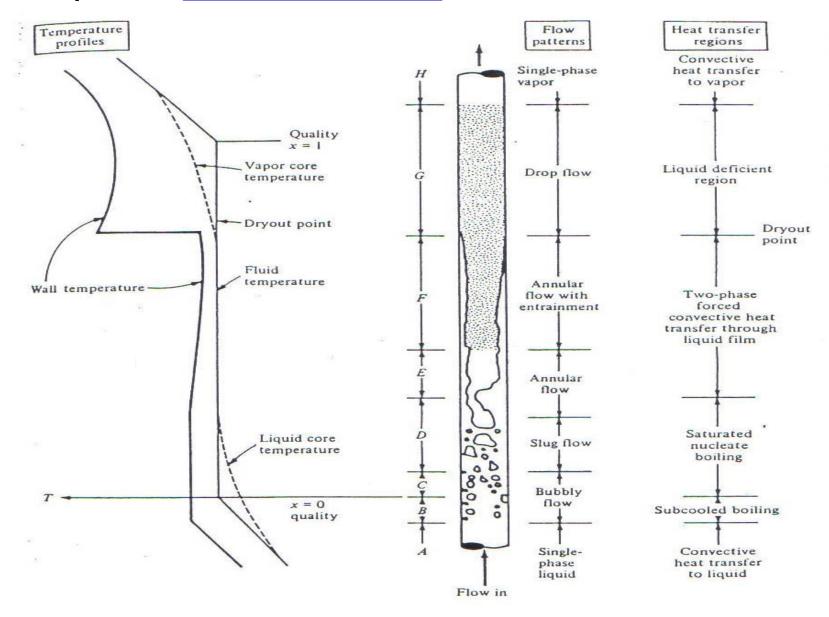
At high Temp. Ts \geq 300°C; radiation mode
affect the process: Total H.T.C is
his honr + had his

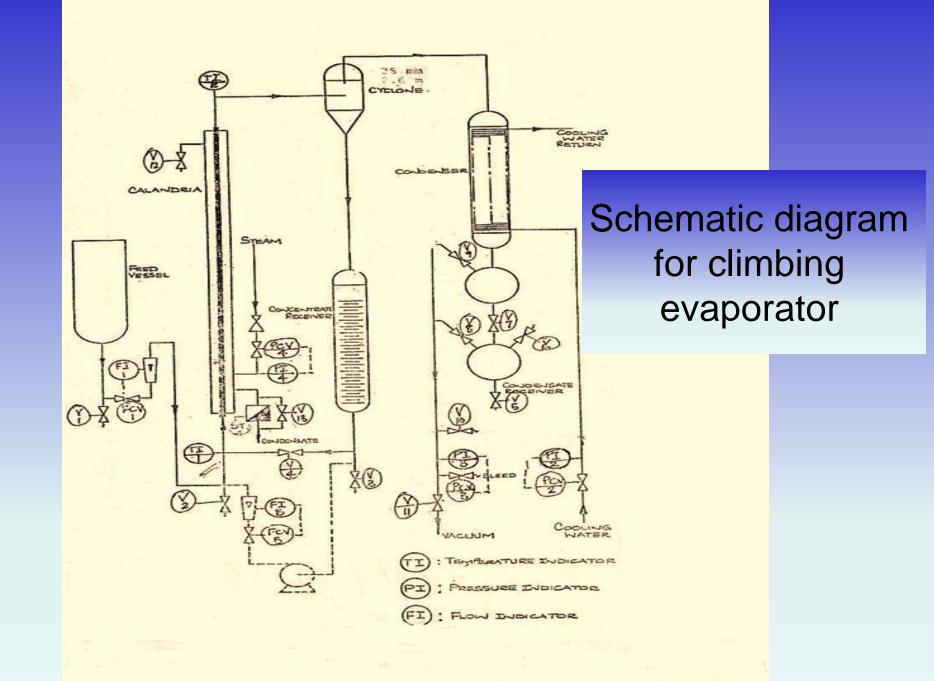
If hood < hooms =>

K = Kont & Krad

The effective rad. coeff, had is obtained from

hrad = EG (Ts-Tsat)
(Ts - Tsat)


where &: Stefan-Boltzman Cons. E: Emissivity of the solid


Note

It is recommended to operate near or below the temp. excess that corresponds to critical flux " peak point".

SurfaceFluid Combination			$C_{s,f}$	n
Water-copper				
Scored		(0.0068	1.0
Polished	{soft su	urface} (0.0128	1.0
Water-stainless	s steel			
Chemically of	etched	(0.0133	1.0
Mechanicall	y polished	(0.0132	1.0
Ground and	polished	(0.0080	1.0
Water-brass			0.0060	1.0
Water-nickel			0.006	1.0
Water-platinum			0.0130	1.0
n-Pentane-copy	per			
Polished		(0.0154	1.7
Lapped	(Coarse surface)	(0.0049	1.7
Benzene-chromium			0.0101	1.7
Ethyl alcohol-chromium			0.0027	1.7

 Flow patterns and heat transfer regions in forced convection inside a vertical tube subjected to <u>uniform heat flux</u>.

Forced Convection Boiling

 Region A ~ Forced convection heat transfer (only liquid; no change of phases)
 for turbulent

$$\overline{N}u = \frac{\overline{h}D}{k} = 0.023 \,\text{Re}^{0.8} \,\text{Pr}^{0.4}$$
 $L/D > 60$, Re > 10,000
 $q'' = \overline{h} (T_w - T_l)$

Region B ~ Subcooling boiling

$$\frac{c_{p,l}\Delta T}{h_{fg} \operatorname{Pr}^{n}} = C_{sf} \left[\frac{q''}{\mu_{l} h_{fg}} \sqrt{\frac{g_{c}\sigma}{g(\rho_{l} - \rho_{v})}} \right]^{0.33}$$

Where n=1 for water , n=1.7 for other liquid

Geometry	Liquid-surface combination	C_{sf}
Horizontal tube	Water- stainless steel	0.015
(14.9mm ID)		
Vertical tube	Water-copper	0.013
(27.1mmID)		

Regions C, D, E and F

$$h_{TP} = h_{NB} + h_{C}$$

Two-Phase H.T.C Nucleate boiling H.T.C.

Forced conv H.T.C.

$$h_c = 0.023(\frac{k_l}{D}) \operatorname{Re}_l^{0.8} \operatorname{Pr}_l^{0.4} F$$
Where $\operatorname{Re}_l = \frac{G(1-x)D}{\mu_l}$

G: mass flow rate through tube /area of tube

D: tube diam

F: conv boiling factor (see chart)

x: vapor mass quality

$$h_{NB} = 0.00122 \left(\frac{k_l^{0.79} c_{pl}^{0.45} \rho_l^{0.49}}{\sigma^{0.5} \mu_l^{0.29} h_{fg}^{0.24} \rho_v^{0.24}}\right) \Delta T_{sat}^{0.24} \Delta P_{sat}^{0.75} S$$

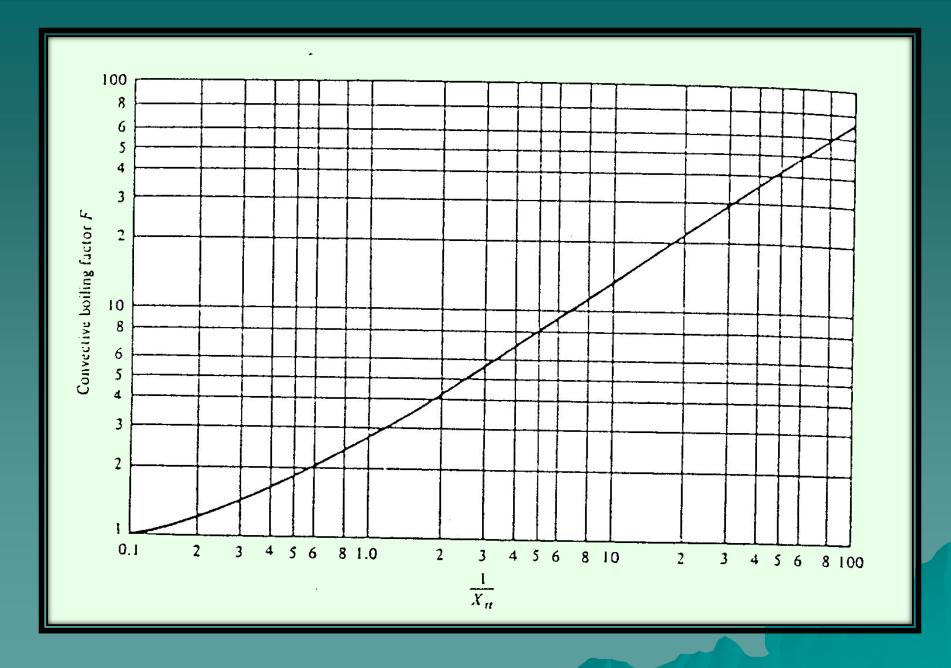
Where
$$\Delta T_{sat} = T_s - T_{sat}$$
, $^{\circ}C$

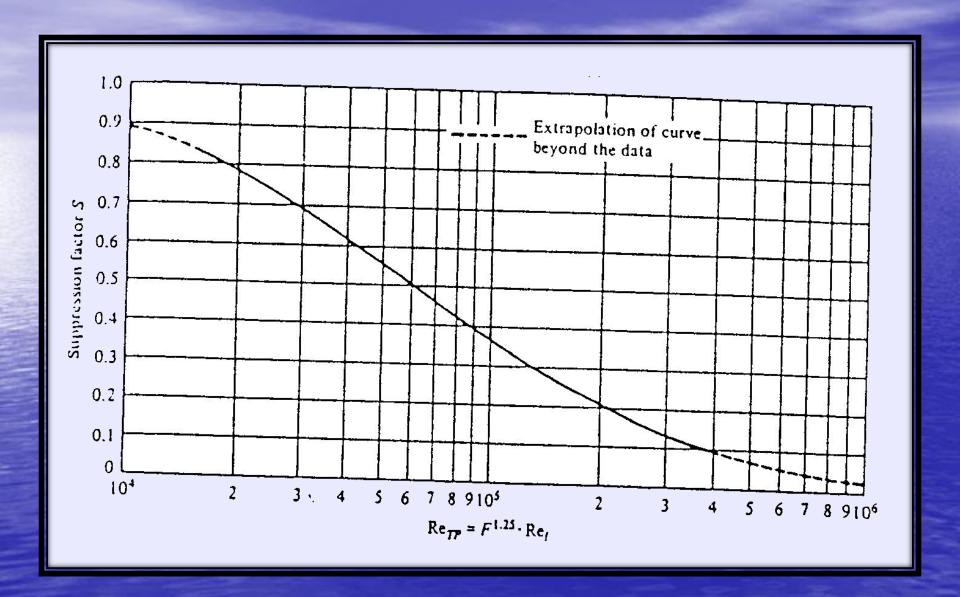
$$\Delta P_{sat} = P_{sat \ at T_s} - P_{sat \ at T_{sat}}, \ N/m^2$$

 σ = surface tension, N/m

S =suppression factor

Note


In order to obtain S, you need to define the following parameters and to use the charts below:


Two - phase Reynolds number, Re_{TP} is

$$Re_{TP} = F^{1.25} Re_l = F^{1.25} \left[\frac{G(1-x)D}{\mu_l} \right]$$

The Martinelli parameter X_n is defined as

$$X_{tt} = \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_{v}}{\rho_{l}}\right)^{0.5} \left(\frac{\mu_{l}}{\mu_{v}}\right)^{0.1}$$

Finally

The heat flux is:

$$q'' = h_{TP} \Delta T_{sat} = h_{TP} (T_s - T_{sat})$$