Interpolation
Chapter 18

e Estimation of intermediate values between
precise data points. The most common method

e

e Although there is one and only one nth- order
polynomial that fits n+1 points, there are a variety
of mathematical formats in which this polynomial
can be expressed:

— The Newton polynomial
— The Lagrange polynomial
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Newton's Divided- Difference
Interpolating Polynomials

Linear Interpolation/

e |s the simplest form of interpolation, connecting two
data points with a straight line.

Slope and a

finite divided

difference

approximation

to 1° derivative

Linear-
interpolation

formula
e f1(x) designates that this is a first- order interpolating

polynomial.
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Quadratic Interpolation/

e If three data points are available, the estimate is
improved by introducing some curvature into the
line connecting the points.

e A simple procedure can be used to determine the
values of the coefficients.
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General Form of Newton's Interpolating
Polynomials/

Q Bracketed function
evaluations are

finite divided
ditferences
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Errors of Newton's Interpolating Polynomials/

e Structure of interpolating polynomials is similar to the
Taylor series expansion in the sense that finite divided
differences are added sequentially to capture the higher
order derivatives.

h . . .
e For an n"- order interpolating polynomial, an analogous

' X |s somewhere

containing the
unknown and he data

e For non differentiable functions, if an additional point

f(x+1) is available, an alternative formula can be used
that does not reaiiire nrior knowledae of the fiinction:
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Lagrange Interpolating Polynomials

e The Lagrange interpolating polynomial is
simply a reformulation of the Newton'’s

polynomial that avoids the computation of
diuiAnA AiffAranAnnan:
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e As with Newton's method, the Lagrange version
has an estimated error of:
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Figure 18.10
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Coefficients of an Interpolating
Polynomial

e Although both the Newton and Lagrange
polynomials are well suited for determining
intermediate values between points, they do not
provide a polynomial in conventional form:

e Since n+1 data points are required to determine
n+1 coefficients, simultaneous linear systems of
equations can be used to calculate “a’s.
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Where “x"s are the knowns and “a”s are the
unknowns.
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Figure 18.13
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Spline Interpolation

e There are cases where polynomials can
lead to erroneous results because of round
off error and overshoot.

e Alternative approach is to apply lower-
order polynomials to subsets of data
points. Such connecting polynomials are
called spline functions.
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Figure 18.14
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Figure 18.16
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Figure 18.17
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