Numerical Differentiation and

Integration
Part 6

e Calculus is the mathematics of change. Because
engineers must continuously deal with systems and
processes that change, calculus is an essential tool of
engineering.

e Standing in the heart of calculus are the mathematical
Crrnnnntn ~f diffarantinticn ~nd jntegration:

Copyright © 2006 The McGraw- Hill Companies, Inc. Permission required for reproduction or display.



Figure PT6.1

yi A Y
flx; + Ax) .
b ﬂn.
T flx + Ax)
flx) A ’ Flx)
X X+ Ax T
Ax
(a)
by Lale Yurttas, Texas Chapter 21

A&M University

Copyright © 2006 The McGraw- Hill Companies, Inc. Permission required for reproduction or display.



Figure PT6.2

S(x)

|

%

by Lale Yurttas, Texas Chapter 21
A&M University

Copyright © 2006 The McGraw- Hill Companies, Inc. Permission required for reproduction or display.

Y



Noncomputer Methods for
Differentiation and Integration

e The function to be differentiated or
integrated will typically be in one of the
following three forms:

— A simple continuous function such as
polynomial, an exponential, or a trigonometric
function.

— A complicated continuous function that is
difficult or impossible to differentiate or
integrate directly.

— A tabulated function where values of x and
f(x) are given at a number of discrete points,
by Lae e [epften the casewwith experimental or field®
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Newton- Cotes Integration
Formulas

Chapter 21

e The Newton- Cotes formulas are the most
common numerical integration schemes.

e They are based on the strategy of replacing a
complicated function or tabulated data with an
approximating function that is easy to integrate:
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The Trapezoidal Rule

e The Trapezoidal rule is the first of the Newton-
Cotes closed integration formulas,

corresponding to the case where the polynomial
is first order:

e The area under this first order polynomial is

an estimate of the integral of f(x) between
tho limite Af 2 anA h-

}Trapezoidal rule
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Error of the Trapezoidal Rule/

e When we employ the integral under a straight line
segment to approximate the integral under a
curve, error may be substantial.

where x lies somewhere in the interval from a to b.
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The Multiple Application Trapezoidal Rule/

e One way to improve the accuracy of the trapezoidal rule
is to divide the integration interval from ato b into a
number of segments and apply the method to each
segment.

e The areas of individual segments can then be added to
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e An error for multiple- application trapezoidal rule
can be obtained by summing the individual
errors for each segment:

Thus, if the number of segments is doubled, the
truncation error will be quartered.
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Simpsons Rules

e More accurate estimate of an integral is
obtained if a high- order polynomial is
used to connect the points. The formulas
that result from taking the integrals under
such polynomials are called Simpson's
rules.

Simpson’s 1/3 Rule/

e Results when a second- order interpolating
byLBeQuIryanOmial IS used
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Single segment application of Simpson's 1/3 rule has a
truncation error of

Simpson’s 1/3 rule is more accurate than trapezoidal 20
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The Multiple- Application Simpson’s 1/3 Rule/

e Just as the trapezoidal rule, Sim

oson’s rule can

be improved by dividing the integration interval
into a number of segments of equal width.

e Yields accurate results and considered superior
to trapezoidal rule for most applications.

e However, it is limited to cases where values are

equispaced.

e Further, it is limited to situations

where there are

an even number of segments and odd number of
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Simpson’s 3/8 Rule/

e An odd- segment- even- point formula used in
conjunction with the 1/3 rule to permit
evaluation of both even and odd numbers of
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