# Numerical Differentiation and Integration

#### Part 6

- Calculus is the mathematics of change. Because engineers must continuously deal with systems and processes that change, calculus is an essential tool of engineering.
- Standing in the heart of calculus are the mathematical cancerts of differentiation and integration:





# Noncomputer Methods for Differentiation and Integration

- The function to be differentiated or integrated will typically be in one of the following three forms:
  - A simple continuous function such as polynomial, an exponential, or a trigonometric function.
  - A complicated continuous function that is difficult or impossible to differentiate or integrate directly.
- A tabulated function where values of x and
  f(x) are given at a number of discrete points,
  by Lale Yuras is often the case with experimental or field<sup>4</sup>

Hill Companies, Inc. Permission required for reproduction or display







by Lale Yurttas, Texas A&M University Chapter 21

# Newton- Cotes Integration Formulas Chapter 21

- The Newton- Cotes formulas are the most common numerical integration schemes.
- They are based on the strategy of replacing a complicated function or tabulated data with an approximating function that is easy to integrate:





### The Trapezoidal Rule

 The Trapezoidal rule is the first of the Newton-Cotes closed integration formulas, corresponding to the case where the polynomial is first order:

 The area under this first order polynomial is an estimate of the integral of f(x) between the limits of a and by

Trapezoidal rule



#### Error of the Trapezoidal Rule/

 When we employ the integral under a straight line segment to approximate the integral under a curve, error may be substantial:

where x lies somewhere in the interval from a to b.



#### The Multiple Application Trapezoidal Rule/

- One way to improve the accuracy of the trapezoidal rule is to divide the integration interval from a to b into a number of segments and apply the method to each segment.
- The areas of individual segments can then be added to yield the interval.

Substituting the transzoidal rule for each integral violds:



 An error for multiple- application trapezoidal rule can be obtained by summing the individual errors for each segment:

Thus, if the number of segments is doubled, the truncation error will be quartered.

## Simpson's Rules

 More accurate estimate of an integral is obtained if a high- order polynomial is used to connect the points. The formulas that result from taking the integrals under such polynomials are called Simpson's rules.

#### Simpson's 1/3 Rule/

 Results when a second- order interpolating polynomial is used. Chapter 21





Simpson's 1/3 rule is more accurate than trapezoidal

#### The Multiple- Application Simpson's 1/3 Rule/

- Just as the trapezoidal rule, Simpson's rule can be improved by dividing the integration interval into a number of segments of equal width.
- Yields accurate results and considered superior to trapezoidal rule for most applications.
- However, it is limited to cases where values are equispaced.
- Further, it is limited to situations where there are an even number of segments and odd number of

by perputas Texas
A&M University



#### Simpson's 3/8 Rule/

 An odd- segment- even- point formula used in conjunction with the 1/3 rule to permit evaluation of both even and odd numbers of



