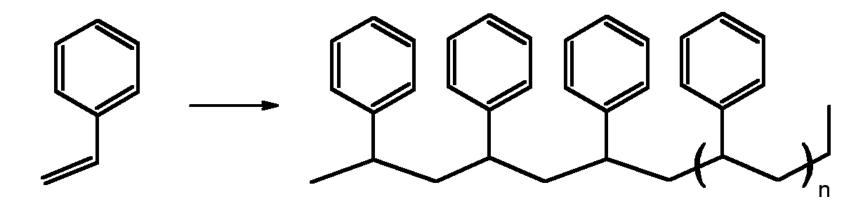


From little molecules to big molecules

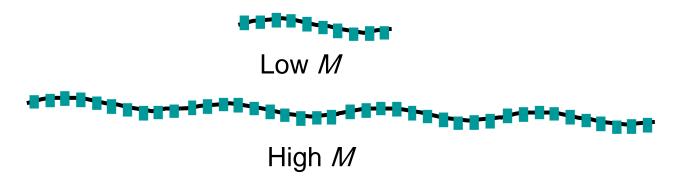
$$H - (CH2)n - H$$

Number of Carbons in Chain	State and Properties of Material	Applications
1–4	Simple gas	Bottled gas for cooking
5–11	Simple liquid	Gasoline
9–16	Medium-viscosity liquid	Kerosene
16-25	High-viscosity liquid	Oil and grease
25-50	Crystalline solid	Paraffin wax candles
50-1000	Semicrystalline solid	Milk carton adhesives and coatings
1000-5000	Tough plastic solid	Polyethylene bottles and containers
$3-6 \times 10^5$	Fibers	Surgical gloves, bullet-proof vests

L. H. Sperling, Introduction to Physical Polymer Science, Wiley, 2006



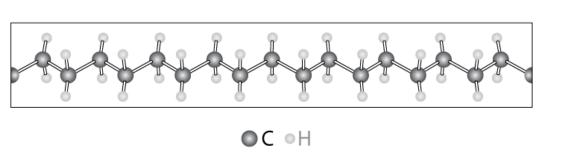
increase in molecular weight

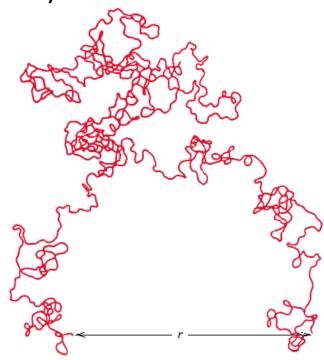

Introduction

- The molecular weight of a polymer is a way of describing how long the polymer chains are
- Each monomer has a molecular weight (often called the formula weight)
- Adding the monomers together to make polymers increases the molecular weight
- The longer the chains, the higher the molecular weight
- In polymer science it is the molecular weight distribution that is important

Introduction

Molecular weight, M: Mass of a mole of chains

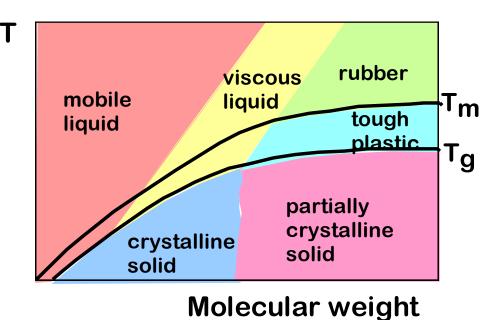


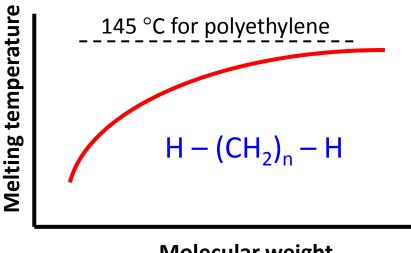

- Polymers can have various lengths depending on the number of repeat units.
- During the polymerization process not all chains in a polymer grow to the same length, so there is a distribution of molecular weights.
- The molecular weight distribution in a polymer describes the relationship between the number of moles of each polymer species and the molar mass of that species.

Polymer = Macromolecule

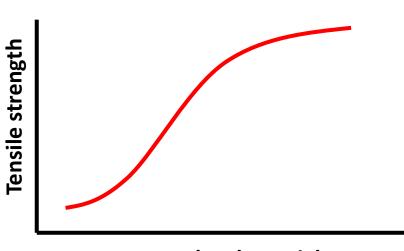
The high molecular weight is the principal characteristic, which

- 1. distinguishes polymers from other chemical substances, and
- 2. provides unique and diverse properties to polymeric materials finding infinite applications in various areas of human society





From little molecules to big molecules


Effect on:

- melting point
- the degree of polymer entanglement
- the degree of intermolecular interactions
- physical and mechanical properties
- tensile strength
- melt-processing conditions
- application

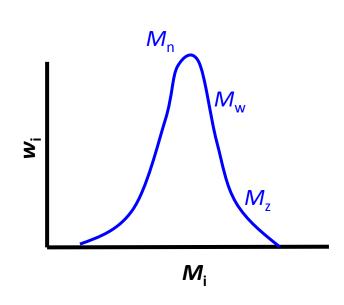
Molecular weight

For example, let's look at hydrocarbons

- Very short chain hydrocarbons are the predominant component of petrol liquid at room temperature
- Longer chain hydrocarbons are present in various waxes such as candle wax soft, pliable and easy to melt
- Polythene is a very long chain hydrocarbon tough, strong and very resistant to heat and solvents

Distribution of molecular weights

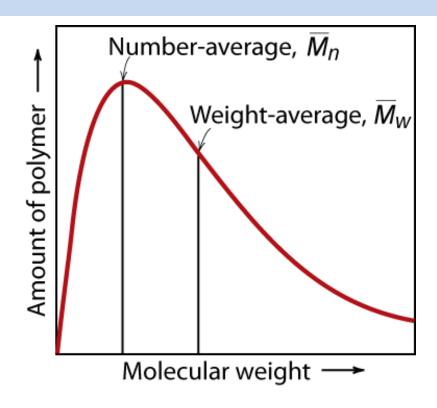
 M_i molecular weight of the *i*th polymer chain N_i number of polymer chains with molecular weight M_i weight fraction of polymer chains with molecular weight M_i


$$W_i = \frac{N_i M_i}{\sum N_i M_i}$$

Number average molecular weight (M_n)

$$\overline{M}_n = \frac{\sum N_i \overline{M}_i}{\sum N_i}$$

Weight average molecular weight (M_w)


$$\overline{M}_{w} = \frac{\sum W_{i} \overline{M}_{i}}{\sum W_{i}}$$

$$D = M_w/M_n$$

dispersity $(1 - 10)$

$$\overline{M}_{n} = \sum x_{i} M_{i}$$

$$\overline{M}_{w} = \sum w_{i} M_{i}$$

 M_n = the number average molecular weight (mass) M_i = mean (middle) molecular weight of size range i x_i = number fraction of chains in size range i w_i = weight fraction of chains in size range i

Molecular Weight Averages

Number average	Mn =	<u>ΣNi Mi</u>
		Σ Ni

Mn can be correlative with polymer colligative properties, e.g. freezing point depression

Weight average Mw	= Σ <u>Ni Mi</u> ²
	Σ Ni Mi

Mw may be correlated with properties such as melt viscosity

Z average	Mz =	Σ <u>Ni Mi</u> 3
		Σ Ni Mi 2

Mz may be correlated with properties such as toughness

Polydispersity, d = <u>Mw</u> Mn

Polydispersity characterizes the shape of the distribution

Number-average molecular weight (Mn)

- based on methods of counting the number of molecules in a given weight of polymer
 - \succ the total weight of a polymer sample, w, is the sum of the weights of each molecular species present

$$w = \sum_{i=1}^{\infty} w_i = \sum_{i=1}^{\infty} N_i M_i$$

$$W = \sum_{i=1}^{\infty} N_i M_i = \frac{\sum_{i=1}^{\infty} M_i N_i}{\sum_{i=1}^{\infty} N_i} = \frac{\sum_{i=1}^{\infty} M_i N_i}{\sum_{i=1}^{\infty} N_i}$$

$$W = \sum_{i=1}^{\infty} N_i M_i$$

$$W = \sum_{i=1}^{\infty} N_i M_i$$

$$W = \sum_{i=1}^{\infty} N_i M_i$$

N = number of molecules M = molecular weight

Example - a polymer sample consists of 9 molecules of mw 30,000 and 5 molecules of mw 50,000

$$\overline{M}_{n} = \frac{\sum_{i=1}^{\infty} M_{i} N_{i}}{\sum_{i=1}^{\infty} N_{i}} = \frac{(9 \times 30,000) + (5 \times 50,000)}{(9+5)} = 37,000$$

Weight-average molecular weight (Mw)

- determination of molecular weight based on size rather than the number of molecules
 - > the greater the mass, the greater the contribution to the measurement

$$\overline{M}_{w} = \frac{\sum_{i=1}^{\infty} w_{i} M_{i}}{\sum_{i=1}^{\infty} w_{i}} = \frac{\sum_{i=1}^{\infty} N_{i} M_{i}^{2}}{\sum_{i=1}^{\infty} N_{i} M_{i}}$$

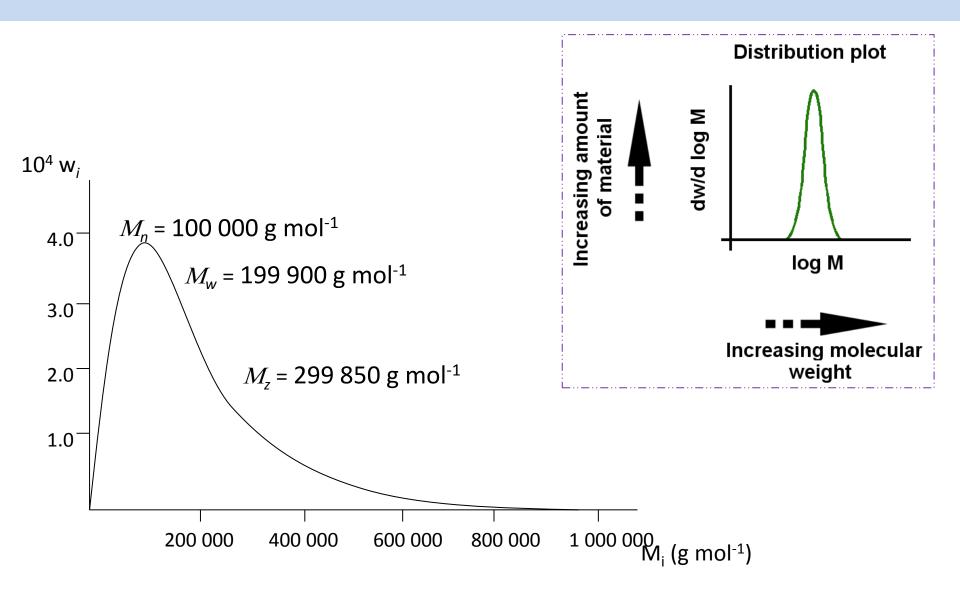
w = weight fractionM = molecular weightN = number of molecules

Consider the previous example - 9 molecules of molecular weight 30,000 and 5 molecules of molecular weight 50,000

$$\overline{M}_{w} = \frac{9(30,000)^{2} + 5(50,000)^{2}}{9(30,000) + 5(50,000)} = 40,000$$

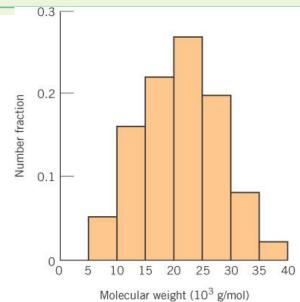
Z-average molecular weight (Mz)

some molecular weight determination methods (e.g. sedimentation equilibrium) yield higher molecular weight averages - M_{\star}

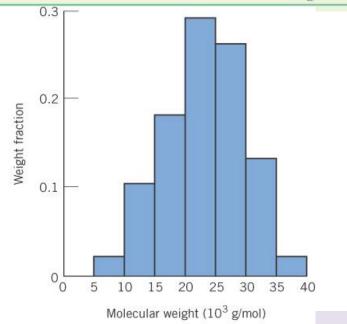

$$\overline{M}_{z} = \frac{\sum_{i=1}^{\infty} N_{i} M_{i}^{3}}{\sum_{i=1}^{\infty} N_{i} M_{i}^{2}} = \frac{\sum_{i=1}^{\infty} w_{i} M_{i}^{2}}{\sum_{i=1}^{\infty} w_{i} M_{i}}$$

w = weight fractionM = molecular weightN = number of molecules

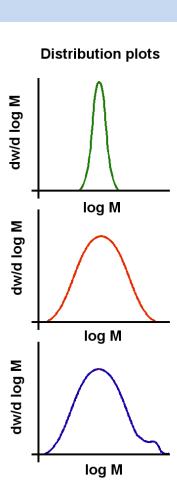
Consider the previous example - 9 molecules of molecular weight 30,000 and 5 molecules of molecular weight 50,000


$$\overline{M}_z = \frac{9(30,000)^3 + 5(50,000)^3}{9(30,000)^2 + 5(50,000)^2} = 42,136$$

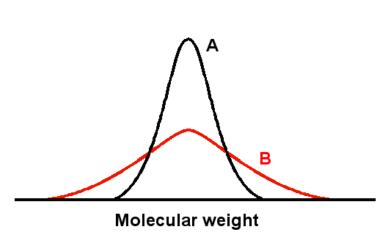
A Typical Molecular Weight Distribution Curve


Example 1

Molecular Weight Range (g/mol)	$Mean\ M_i$ (g/mol)	x_i	x_iM_i
5,000-10,000	7,500	0.05	375
10,000–15,000	12,500	0.16	2000
15,000-20,000	17,500	0.22	3850
20,000-25,000	22,500	0.27	6075
25,000-30,000	27,500	0.20	5500
30,000-35,000	32,500	0.08	2600
35,000-40,000	37,500	0.02	750
			$\overline{M}_n = \overline{21,150}$


Example 2

Molecular Weight Range (g/mol)	Mean M _i	1941	M
Range (g/mot)	(g/mol)	w_i	w_iM_i
5,000-10,000	7,500	0.02	150
10,000-15,000	12,500	0.10	1250
15,000-20,000	17,500	0.18	3150
20,000-25,000	22,500	0.29	6525
25,000-30,000	27,500	0.26	7150
30,000-35,000	32,500	0.13	4225
35,000-40,000	37,500	0.02	750
			$\bar{M}_w = 23,200$



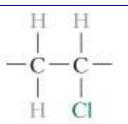
MWT Distribution Shape

- Even for the same type of polymer, each of these distributions will describe a polymer that behaves differently
- The red and green plots are for low and high polydisperity materials
- The blue plot shows a high polydispersity material with a additional high molecular weight component
- The narrower the molecular weight range, the closer are the values of M_w and M_n , and the ratio M_w / M_n may thus be used as an indication of the breadth of the molecular weight range in a polymer sample.
- The ratio is called the **polydispersity index**, and any system having a range of molecular weights is said to be **polydispersed**
- In general, a narrow molecular weight distribution leads to more uniform property values, a narrower softening/ melting temperature range, a lower stress cracking sensitivity, and better chemical resistance.
- A broad molecular weight distribution has advantages for processing because the low molecular weight fractions behave like lubricants. The polymer is less brittle because the low molecular weight fractions can act as plasticizers.

Effect of Polydispersity on a Polymer

- As the broadness of the distribution decreases the strength and toughness of the polymer increases
- However as the broadness of the distribution decreases the polymer becomes more difficult to process
- GPC provides key information to predict the processability and material properties of a polymer

	Strength	Toughness	Brittleness	Melt viscosity	Chemical resistance	Solubility
Increasing Mw	+	+	+	+	+	-
Decreasing distribution	+	+	-	+	+	+


Degree of Polymerization, DP

DP = average number of repeat units per chain

$$DP = \frac{M_n}{m}$$

where m = repeat unit molecular weight

Poly(vinyl chloride) (PVC)


```
for PVC: m = 2(carbon) + 3(hydrogen) + 1(Clorine)
= 2(12.011) + 3(1.008) + 1(35.45)
= 62.496 g/mol
DP = 21,150 / 62.496 = 338.42
```

Viscosity-Molecular Weight Relations

Intrinsic viscosity [h] can be related to molecular weight by the Mark-Houwink-Sakurada Equation

Applicable for a given polymer-solvent system at a given temperature

$$[\eta] = K\overline{M}_{v}^{a}$$

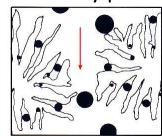
Log $[\eta]$ vs $\log M$ (M_w or M_n) for a series of fractionated polymers produces $\log K$ (intercept) and a (slope)

$$\log[\eta] = \log K + a \log \overline{M}_{v}$$

A wide range of values have been published

- a ~ 0.5 (randomly coiled polymers)
 ~ 0.8 (rod-like, extended chain polymers)
- K between 10^{-3} and 0.5

Typical Mark-Houwink-Sakurada Equation Constants for Several Polysaccharides

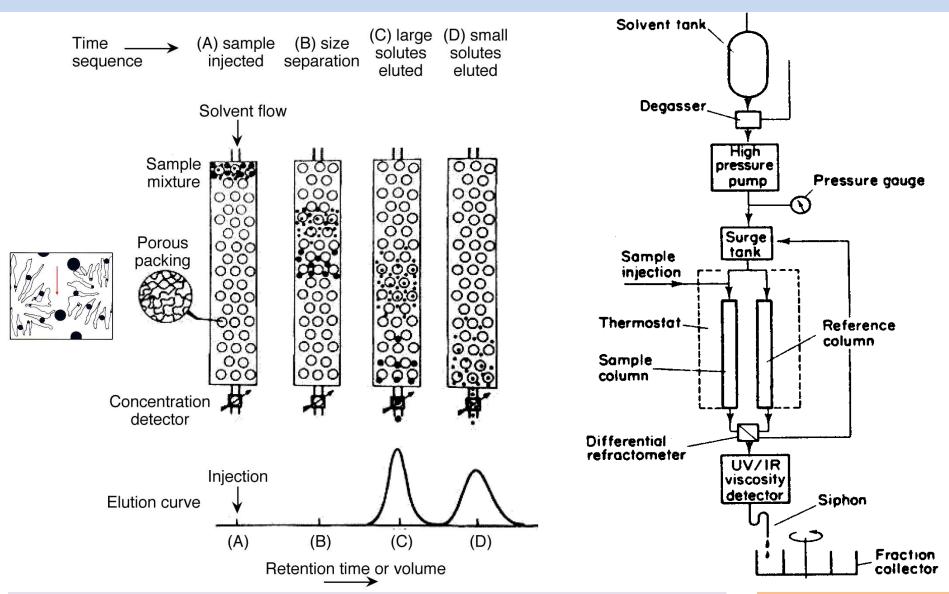

	Solvent	Temp	$K(x10^{-3})$	a	MW	Method
		$^{\mathrm{o}}\mathrm{C}$	ml g ⁻¹		$(x10^{-3})$	
Cellulose						
	Cadoxen	25	33.8	0.77	20-100	SD
	Cuprammonium	25	8.5	0.81	10-100	OS
Amylose						
	DMSO	25	1.25	0.87	20-300	LS
	Water	20	13.2	0.68	30-220	LS
Dextran						
Linear	Water	25	97.8	0.50	2-10	LS
Branched	Water	34	10.3	0.25	80	LS
	Solvent	Temp	[n]	\overline{a}	K (x10 ⁻³)	MW

	Solvent	Temp °C	[η] dl g ⁻¹	а	K (x10 ⁻³) ml g ⁻¹	MW
Kraft Lignin	Dioxane	25	0.06	0.12	1638	50,000
Celluose	CED	25	1.81	0.75	54.0	50,000
xylan	CED	25	2.16	1.15	0.85	50,000

21

Gel Permeation Chromatography: GPC

- Gel permeation chromatography is used to analyze the molecular weight distribution of organic-soluble polymers
- GPC is a method in which molecules in solution are separated by their size, and in some cases molecular weight
- The advantages of this method include good separation of large molecules from the small molecules with a minimal volume of eluate.
- Gels are used as stationary phase for GPC.



The eluent (mobile phase) should be a good solvent for the polymer.

Gel Permeation Chromatography: GPC

Analytical techniques for measuring molecular weights of various ranges

Technique	Measures	Range, g/mol
End Group	M _n	up to 2500
Osmometry	M _n	15000 - 750000
Ebulliometry	M _n	up to 100000
Light scattering	M _w	20000 to 10 ⁷
Ultra centrifuge	M _w M _x MWD	2000 to 10 ⁷
solution viscosity	M, M,	15000 –106
apour-phase osmometry	M _n	up to 25000
el-permiation chromatography	M,, M,, M, My MWD	up to 106