Simpson's 1/3rd Rule of Integration

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

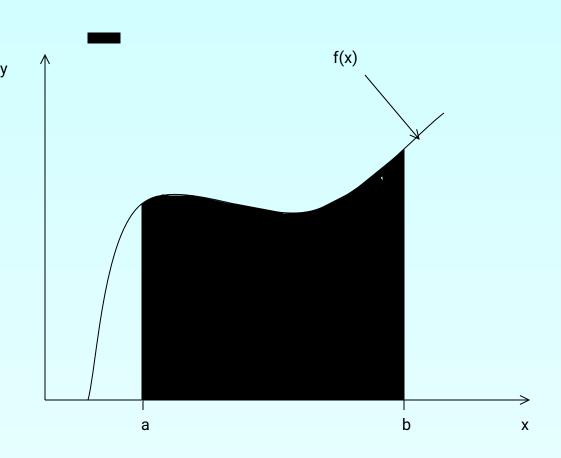
Transforming Numerical Methods Education for STEM Undergraduates

Simpson's 1/3rd Rule of Integration

http://numericalmethods.eng.usf.edu

What is Integration?

Integration


The process of measuring the area under a curve.

Where:

f(x) is the integrand

a= lower limit of integration

b= upper limit of integration

Simpson's 1/3rd Rule

Trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial in the interval of integration. Simpson's 1/3rd rule is an extension of Trapezoidal rule where the integrand is approximated by a second order polynomial.

Hence

Where

is a second order polynomial.

Choose

and

as the three points of the function to evaluate a₀, a₁ and a₂.

Solving the previous equations for a₀, a₁ and a₂ give

Then

Substituting values of a₀, a₁, a₂ give

Since for Simpson's 1/3rd Rule, the interval [a, b] is broken into 2 segments, the segment width

Hence

Because the above form has 1/3 in its formula, it is called Simpson's 1/3rd Rule.

Example 1

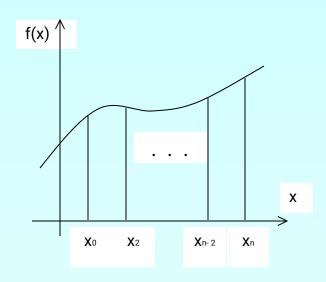
The distance covered by a rocket from t=8 to t=30 is given by

- a) Use Simpson's 1/3rd Rule to find the approximate value of x
- b) Find the true error,
- c) Find the absolute relative true error,

Solution

a)

b) The exact value of the above integral is


True Error

• c) Absolute relative true error,

Multiple Segment Simpson's 1/3rd Rule

Just like in multiple segment Trapezoidal Rule, one can subdivide the interval [a, b] into n segments and apply Simpson's 1/3rd Rule repeatedly over every two segments. Note that n needs to be even. Divide interval [a, b] into equal segments, hence the segment width

where

Apply Simpson's 1/3rd Rule over each interval,

Since

Then

Example 2

Use 4- segment Simpson's 1/3rd Rule to approximate the distance

covered by a rocket from t= 8 to t=30 as given by

- Use four segment Simpson's 1/3rd Rule to find the approximate value of x.
- Find the true error, for part (a).
- Find the absolute relative true error, for part (a).

Solution

a) Using n segment Simpson's 1/3rd Rule,

So

cont.

b) In this case, the true error is

c) The absolute relative true error

Table 1: Values of Simpson's 1/3rd Rule for Example 2 with multiple segments

n	Approximate Value	E _t	Et
2	11065.72	4.38	0.0396%
4	11061.64	0.30	0.0027%
6	11061.40	0.06	0.0005%
8	11061.35	0.01	0.0001%
10	11061.34	0.00	0.0000%

The true error in a single application of Simpson's 1/3rd Rule is given as

In Multiple Segment Simpson's 1/3rd Rule, the error is the sum of the errors in each application of Simpson's 1/3rd Rule. The error in n segment Simpson's 1/3rd Rule is given by

Hence, the total error in Multiple Segment Simpson's 1/3rd Rule is

The term

is an approximate average value of

Hence

where

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple- choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/simpsons_13rd_rule.html

THE END

http://numericalmethods.eng.usf.edu