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Tensile strength, tensile modulus, elongation.  
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  Important and useful mechanical property.  

    

    1)  Tensile stress :   

    

     

    2)  Tensile strain :   

    

    3)  Tensile modulus :    

  

  Units of tensile strength :  

   

    1) CGS : dyne / cm2  

    

    2) SI : N / m2 (Pa)  

    

    3) pounds per square inch (psi)  
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Unit of modulus  

   same unit of tensile strength.  
  

Unit of elongation : No dimension.  



Tensile stress-strain behavior 
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General tensile stress-strain curve for a typical thermoplastic 

     M. Saidan 4 

. 

Elongation at break 

Elongation 

at yield 

Stress 

   () 

Yield 

stress 

Strain () 

Ultimate 

strength 



Effect of temperature on tensile modulus of an amorphous thermoplastic 
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                        log E, modulus scale; Tg, glass transition temperature. 
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Effect of temperature on tensile modulus (log E scale) of various polymers 
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     Micro-deformation behaviors 
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©2003 Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning™ is a trademark used 

herein under license. 

(a) When the elastomer contains no cross-links, the application of a force causes both 
elastic and plastic deformation; after the load is removed, the elastomer is permanently 
deformed.  

(b) When cross-linking occurs, the elastomer still may undergo large elastic deformation; 
however, when the load is removed, the elastomer returns to its original shape. 
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The stress-strain curve for an elastomer. Virtually all of the deformation is 
elastic; therefore, the modulus of elasticity varies as the strain changes. 



     Deformation illustration 
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Polymers – Stress-Strain Behavior 
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Mechanisms of Deformation—Brittle Crosslinked and Network Polymers  
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Mechanisms of Deformation — Semicrystalline (Plastic) Polymers  
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Stress-strain curves adapted 

from Fig. 15.1, Callister & 
Rethwisch 8e.  Inset figures 

along plastic response curve 

adapted from Figs. 15.12 & 

15.13, Callister & Rethwisch 
8e.  (15.12 & 15.13 are from 

J.M. Schultz, Polymer 
Materials Science, Prentice-

Hall, Inc., 1974, pp. 500-501.) 

 
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•  Compare elastic behavior of elastomers with the: 
    -- brittle behavior (of aligned, crosslinked & network polymers), and  
    -- plastic behavior (of semicrystalline polymers) 

        (as shown on previous slides)  

Stress-strain curves 

adapted from Fig. 15.1, 

Callister & Rethwisch 8e. 
Inset figures along 

elastomer curve (green) 

adapted from Fig. 15.15, 

Callister & Rethwisch 8e.  

(Fig. 15.15 is from Z.D. 

Jastrzebski, The Nature 
and Properties of 
Engineering Materials, 

3rd ed., John Wiley and 

Sons, 1987.) 

Mechanisms of Deformation—Elastomers 
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•  Decreasing T... 
    -- increases E 
    -- increases TS 
    -- decreases %EL 
 

•  Increasing 

      strain rate... 
    -- same effects 

        as decreasing T. 

Adapted from Fig. 15.3, Callister & Rethwisch 8e.  (Fig. 15.3 is from T.S. 

Carswell and J.K. Nason, 'Effect of Environmental Conditions on the 

Mechanical Properties of Organic Plastics", Symposium on Plastics, 

American Society for Testing and Materials, Philadelphia, PA, 1944.) 

Influence of T and Strain Rate on Thermoplastics  

20 

4 0 

6 0 

8 0 

0 
0 0.1 0.2 0.3 

4ºC 

20ºC 

40ºC 

60ºC 
to 1.3 

 (MPa) 

 

Plots for 

semicrystalline  

PMMA (Plexiglas)  



     Rubberlike-materials 
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