

Tensile strength, tensile modulus, elongation.

Important and useful mechanical property.

1) Tensile stress:

$$\sigma = \frac{F}{A}$$

2) Tensile strain:

$$\varepsilon = \frac{\Delta I}{I}$$

3) Tensile modulus:

$$E = \frac{\sigma}{\varepsilon}$$

Units of tensile strength:

1) CGS: dyne/cm2

2) SI: N/m2 (Pa)

3) pounds per square inch (psi)

Unit of modulus

same unit of tensile strength.

Unit of elongation: No dimension.

Tensile stress-strain behavior

M. Saidan

3

General tensile stress-strain curve for a typical thermoplastic

Effect of temperature on tensile modulus of an amorphous thermoplastic

Effect of temperature on tensile modulus (log E scale) of various polymers

Micro-deformation behaviors

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

- (a) When the elastomer contains no cross-links, the application of a force causes both elastic and plastic deformation; after the load is removed, the elastomer is permanently deformed.
- (b) When cross-linking occurs, the elastomer still may undergo large elastic deformation; however, when the load is removed, the elastomer returns to its original shape.

The stress-strain curve for an elastomer. Virtually all of the deformation is elastic; therefore, the modulus of elasticity varies as the strain changes.

Deformation illustration

M. Saidan

q

Polymers – Stress-Strain Behavior

M. Saidan

10

Mechanisms of Deformation—Brittle Crosslinked and Network Polymers

Mechanisms of Deformation — Semicrystalline (Plastic) Polymers

Mechanisms of Deformation—Elastomers

Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 8e. Inset figures along elastomer curve (green) adapted from Fig. 15.15, Callister & Rethwisch 8e. (Fig. 15.15 is from Z.D. Jastrzebski, The Nature and Properties of Engineering Materials, 3rd ed., John Wiley and Sons, 1987.)

- Compare elastic behavior of elastomers with the:
 - -- brittle behavior (of aligned, crosslinked & network polymers), and
 - -- plastic behavior (of semicrystalline polymers)(as shown on previous slides)

13

Influence of T and Strain Rate on Thermoplastics

- Decreasing T...
 - -- increases *E*
 - -- increases *TS*
 - -- decreases %*EL*
- Increasing strain rate...
 - -- same effects as decreasing *T*.

Adapted from Fig. 15.3, *Callister & Rethwisch 8e.* (Fig. 15.3 is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", *Symposium on Plastics*, American Society for Testing and Materials, Philadelphia, PA, 1944.)

Rubberlike-materials

15

@ 21