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Force:
1 Ibf = 4.4482 N = 32.21bm" (1) s* = 32.2 poundal = 0A536 kgl
1N = 0.2248 Ibf = kg-m/s? = 10 dyne = kgf 19.41

Volume:
116 = 002831 m’ =2831L = 748 U.S, gal = 6.23 Imperial g2l

= acre-ft /43,560
' { US. gallon = 231 in’ = barrel (petro
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Energy:
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=1393-107*hp-h
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J=1055kW s= 2931074 kWh = 252 cal = 777.97 fu- Ibf

C = 948107 Bw = 0239 cal = 107 erg
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#Thesc values are mostly rounded. These 2/€ several definitions for some of these quantities, e.g , the Bra
and the calorie; these differ from each other by vp 10 02 P‘ﬂ‘“‘-_f’ﬂ' the most accurate valm;

ASTM Meiric Praciice Guide, ASTM publication No. E 380-97, Philadelphia, 1997. see the
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Power:

Thp = 0746 kW = 550 ft- Ibf /g = 33 .000 ft - Ibf / min = 2545 Btuih /
IW=134-10"hp = J/5 = N. m/s=V - A=0239el/s f //,
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Pressure: ' 7

il

hatm = 101.3kPa = 1.013 bar = 14,696 I/ in” = 33 89/fi 1° water

= 29.92 in of mercury = 1,033 kgf /érn o I033 m oQatcr
= 760 mm of mercury = 76010% P
1 psi = atm/ 14.696 “'689kPg= 27.7in H{0 = 51.7torr
1Pa=N/m’=kg/m-: s/ 10~% bar- 1.450 - 10~ Ibf / in?
= 0.0075 torr = JJO{MO in H,0 = IO dyne /cm
Viscosity: | o
: 1P = 0.01 poise = 0.01 g/cm s = 0001 kg/m-s = 0.001 N- s/ m?
l = 0.001 Pa" s = 0.01 dyne * 5 / cm?
= 672107 1bm/ft-s = 2.421bm/ft-h = 2.09- 10~ Ibf- s / fi?

T

Kinematic viscosity:
’ 1 ¢St = 0.01 Stoke = 0.01 cm®/s = 107" m?/s = | cP/(g/cm?)
= 1.08-107° f*/5s = cP/(62.4 Ibm / ft})

‘-' Temperature:
: =°C+273.15="R/18=°C+273 °C=(F-32)/18
r °R = °F + 459.67 = °F + 460 = 1.8 K °F = 1.8°C + 32

Psia, psig:

Psia means pounds per square inch, absolute. Psig means pounds per square
inch, gauge, i.e., above or below the local atmospheric pressure.
Force-mass conversion factor, g,

This factor is equal to dimensionless 1.00. Any dimensioned quantity may be
multiplied or divided by g. without changing the value of that quantity.

Ibm-ft _ slug-ft bm-ft  kg-m
Ibf-s*  Ibf-s? poundal - s? N-s?

g = 1.0 =322

kgmass " m

= 8] B
? kgforce - 5~

1
|
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CHAPTER

1

INTRODUCTION

. 11 WHAT IS FLUID MECHANICS?

Mechanics is the study of forces and motions. Therefore, fluid mechanics is the study
of forces and motions in fluids. But what is a fluid? We all can think of some things
that obviously are fluids: air, water, gasoline, lubricating oil, and milk. We also can
think of some things that obviously are not fluids: steel, diamonds, rubber bands, and
paper. These we call solids. But there are some very interesting intermediate types of
matter: gelatin, peanut butter, cold cream, mayonnaise, toothpaste, roofing tar, library
paste, bread dough, and auto grease.

To decide what we mean by the word “fluid,” we first have to consider the idea
of shear stress. It is easiest to discuss shear stress in comparison with tensile stress
and compressive stress; see Fig. 1.1.

In Fig. 1.1(a) a rope is holding up a weight. The weight exerts a force that tends
to pull the rope apart. A stress is the ratio of the applied force to the area over which
it is exerted (force/area). Thus, the stress in the rope is the force exerted by the weight
divided by the cross-sectional area of the rope. The force that tries to pull things apart
is called a tensile force, and the stress it causes is called a tensile stress.

In Fig. 1.1(b) a steel column is holding up a weight. The weight exerts a force
that tends to crush the column. This kind of force is called a compressive force, and

the stress in the column, the force divided by the cross-sectional area of the column.
is called a compressive stress.

In Fig. 1.1(c) some glue is holding up a weight. The weight exerts a force that
tends to pull the weight down the walls and thus to shear the glue. This force, which
tends to make one surface slide parallel to an adjacent surface, is called a shear force,
and the stress in the glue, the force divided by the area of the glue joint, is called a
shear stress.

A more detailed examination of these examples would show that all three kinds
of stress are present in each case, but those we have identified are the main ones. (For
more information on this topic, see any text on strength of materials.)
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CHAPTER 1 INTRODUCTION

problems in mechanics or th
f X ] ermodynamic
lr!vol'\xlng the flow of fluids (or the mgvcmems-o :-l:.:?ver. for many of the problems
Sinstion of i problem-solving methons 1t ) les_lhrough fluids), we use a com-
thermore, the methods that work for hyd;'aalicmCCh::rl‘tcs s o Ty T
flow, etc.) are appli _ : s problems (dams, canals, locks, ri
lanes, rockets lzvpi]rﬁlat:':;:; with shghl modifications, to aerodynamics probier:; r(l:?-
o Bt il a‘;suon ;ﬂdges. elc.). and to problems of special interest to
Sl s el e flow in chemical reactors, in distillation columns, or
o G TEiae . ;Jne Cdl'?sfcﬂ_l‘t’i.. it ma]‘:cs sense to combine the study of this class
: ipline, which we call fluid hani
Contide : Scip| ! uid mechanics.
et ; ot:;: :”mportant fluids in our lives: the air we breathe, the water we drink,
o vehiidler, andth ¢ consume, r'noslt of the fuels for heating our houses or propelling
o Wimo‘u ; somec.:lanois ‘l:luads In our bodies that make up our internal environ-
- ; 1dea of the behavior of fluids, we can have onl imi
understanding of how the world works nly & very fimied
Some of the subdivisions and applications of fluid mechanics are:

i)’dfauhcsr'the flow of water in rivers, pipes, canals, pumps, turbines.
erodynamics: the flow of air around airplanes, rockets, projectiles, structures.
Meteorology: the flow of the atmosphere.

Parllcle_ dyrfamics: the ﬂ?w of fluids around particles, the interaction of particles
and fluids .(l.e., dust settling, slurries, pneumatic transport, fluidized beds, air pol-
lutant particles, corpuscles in our blood).

Hydrology: the flow of water and water-borne pollutants in the ground.

Reservoir mechanics: the flow of oil, gas, and water in petroleum reservoirs.
Multiphase flow: coffee percolators, oil wells, carburetors, fuel injectors, combus-
tion chambers, sprays.

Combinations of fluid flow: with chemical reactions in combustion, with electro-
magnetic phenomena in magnetohydrodynamics, with mass transport in distillation

ol ol

o

N oo,

or drying.
9. Viscosity-domina
continental drift.

ted flows: lubrication, injection molding, wire coating, lava, and

1.3 BASIC IDEAS IN FLUID MECHANICS

Fluid mechanics is based largely on working out the detailed consequences of four

basic ideas:
1. The principle of the conservation
2. The first law of thermodynamics (th

3. The second law of thermodynamics. o
4. Newton's second law of motion, which may be summarized in the form

Each of these four ideas is a generalization of experir_ne:?tal data. None of them
can be deduced from the others or from any other prilor pf:pClple. Nopc of them can
be “proven” mathematically. Rather, they stand on their ability to predict correctly the

results of any experiment ever run to test them.

of mass.
e principle of the conservation of energy).

F = ma.
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with these four ideas and the Meg,

may Start directly to solve mathematicauy

. we
anics roCeCd . i
gible only in the cage of

g . 3 h

etimes 10 fluid mec ; an

g rties of the Auid(s) 2 is generally PO .
fluid flows is t00 comple,

sured physical prope .
. d forces, velocities, , great man :
for the desired fo e tjt}es 50 must resort 0 €Xperimeny)
ur principies alysis (Chap. 9), we oftey

very simple flows. The O
: these 0 : al an
1o be solved directly from tes called dimension diff
h the use of techniques . results of 2 much di erent exper.
tests. Throug redict the in fluid mechanics. Wi,

can use the results of one experiment to p o ‘mportan :
| experimental cal solutions 0 problems which would
¢ for doing that are outlined

4 FLUD MECHANIC

iment. Thus, carefu | num
modern computers we can ﬁnd' useful n The metho ds ;
reviously have required expcnmental tests. » faster and cheaper, we will see addi-
k. As computers becor™ ters. Ultimately, though,

in part IV of this boo
tional complex fluid mech
the computer solutions must

These four ideas are app
ductory chapter launches our study an
the book, Chaps. 24, deals with preliJ:ninaries. We il n .
ing fluids, and they provide direct solutions and/or 1n51gl1.t into
terns. Parts I and III, Chaps. 5-14, deal with the flow of fuids that are on
or can be treated as if they were. Part IV, Chaps. 15-20, deals with two- an
dimensional fluid mechanics. Each of these sections will be described as we begin

Students using this book should have previously completed a course in elemen-
tary thermodynamics. Chapters 3 and 4 should serve as a review of matter previously
covered; they are included because the principles involved are central to fluid mechan-
ics. It is assumed that the student is familiar with the second law of thermodynamics,
which is used occasionally. Remember that this entire book is devoted to the applica-
tion of the four basic ideas and the results of experimental
tests to fluid-flow problems. Although the details can

r[ Piston | become quite involved, the basic ideas are few.

anics problems SO 1l
be tested expenmctlt Y- as follows. This intro-

; : : roblems
lied to fluid mechanical P \orms. Then Part I of

d defines someé important €
will need these 1n our study of mov-
many practical prob-

e-dimensionali
and three-
them.

1.4 LIQUIDS AND GASES

Fluid
Fluids are of two types, liqui
» liquids an,

ular level these are quite different. Ic:liases On the molec-
Cylinder are close together and are held g quids the molecules
forces of attraction; in gases the m Oglz::her by significant
FIGURE 1.2 far apart and have very weak forces of ules are relatively
Piston and cylinder. If the the specific volumes of gases are =~ loogttr_acuon. As a ryle
fluid is a gas, we can move uids, which means that the average ; times thoge of li '
the piston up and down a5 (center to center of the 8¢ intermolecylar gic,,
much as we like, and the gas ¢ el _molecules) is rqy, I ar distance
will expand or contract to ar In a typical gas as In a typica| Ii'i]llidg Y 10 times as

fill the volume available. If and pressure increase, these differences & § temper,
the fluid is a liquid, we can less, until the liquid and gas become ©S become le ature
move the piston down very cal temperature and pressure. The diflfdentical at ¢ S8 a.nd
little without producing behavior of liquids and gases is mgg; "¢ bety, © criti-
m ked €en the

extreme pressures; if we fluids ded. S
move it up, the liquid must uids are expanded. SUppose that sqp,, When
fills the space below the piston in Fjg | fluj o these

2 Whey, “Pletely

partly evaporate to produce
the piston, the volume occupied by th,

a gas to fill the space. q .
Uid s i € raise

Crease¢
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CHAPTER | INTRODUCTION 5

1 If the fluid is a gas, n will expand readily, filling all the space vacated by the piston;
gases can.cxPand without limit 10 occupy space made available to them. But if the
fluid is a I.Iqtlld. then as the piston is raised, the liquid can expand only a small amount,
ar.idqthcn it can cftpa_nd no more. What fills the space between the piston and the lig-
uid? Part of the l!Qllld must turn into a gas by boiling, and this gas expands to fill the
vacapt spacc.. This can be explained on the molecular level by saying that there is a
} maximum distance pclwcen molecules over which the attractive forces hold them
together to form a liquid and that, when the molecules separate more than this dis-
tance, they cease behaving as a liquid and behave as a gas.
: . Bccaerc of their closer molecular spacing, liquids normally have higher densi-
ties, viscosities, refractive indices, etc., than gases (see Prob. 1.2). In engineering this
frequently leads to quite different behaviors of liquids and gases, as we will see.

T AP P

; 1.5 PROPERTIES OF FLUIDS

The pbysicSﬂ properties of fluids that will enter our calculations most often are den-
sity, viscosity, and surface tension.

1.5.1 Density
The density p is defined the mass per unit volume:

] m
=Y (1L.1)

We are all aware of the differences in density between various materials, such as that
between lead and wood. How can we measure the density of a material? If we want
to know the density of a liquid, we can weigh a bottle of known volume (determine
its mass), fill it with the liquid, weigh it again, and compute the density with the aid
of Eq. 1.1. (This is one of the standard laboratory methods of determining liquid den-
sity: the special weighing bottles designed for this purpose are called pyncnometers,
] Prob. 1.5) If we want to know the density of a cubical solid block, we can measure
the length of its sides, compute its volume, weigh it, and apply these results to Eq. 1.1.

Now suppose we are asked to determine the density of a piece of Swiss cheese.
If we have a large block of the cheese, we can cut off a cube, measure its sides,
compute its volume, weigh it, and then calculate its density. This is an average den-
sity, one that includes the density of the air in the holes in the cheese. As long as we
are dealing with large pieces of cheese, it is a satisfactory density. Suppose, however,
we are asked to find the density at some point inside a large block of the cheese. If
we can cut the cheese open, and if we find that the point in question is in the solid
cheese and not in one of its holes, we can find the density easily enough or, if the
point in question is in a hole, we find the density of the air in the hole. But if the
: point is on the surface of 2 hole, the problem is more difficult. Then the density is
! discontinuous; see Fig. 1.3. There is no meaningful single value of the density at x.
: Why this long discussion about the density of Swiss cheese? Because the world
§ is full of holes! Atomic physics tells us that even in a solid bar of steel the space
occupied by the electrons, protons, and neutrons is a very small fraction of the total
] space; the rest presumably is empty. Furthermore, even at the molecular level there
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o Density of
N
mmmmm === Average densit
r of cheese and holes
Density of
air in holes
I
. Distance
e e point to point, but

iss cheese is not uniform from
has local point densities and an average density.
are holes; in a typical gas the space actually occupied by th'e mdmc:::::ln g::swm;::::%;
at any instant is a small fraction of the total space. ’I’hus'. in any at phws43 o
density at a given point we are in the same trouble as with the Swiss ¢ . ..
f density to samples large enough to average om

fore, we must restrict the definition 0 : '
the holes. This causes no problem in fluid mechanics, because of the size of ’lhc sam-
ples normally used, but it indicates that the concept of density does not readily apply

to samples of molecular and subatomic sizes. ' _
In addition, we must be careful in defining the densities of composite materials.

For example, a piece of reinforced concrete consists of several parts with different den-
sities. In discussing such materials we must distinguish between the particle densities
of the individual pebbles or steel-reinforcing bars and the bulk density of the mixed
mass. When we refer to bulk density, our sample must be large compared with the
dimensions of one particle. Some examples of composite solid materials are cast iron,
fiberglass-reinforced plastics, and wood. Some examples of composite liquids are
slgnies. such as muds, milkshakes, and toothpaste, and emulsions, such as homogenized
milk, mayonnaise, and cold cream. Smokes and clouds behave as composite gases.

Examp{e Ll. A typic‘jd mud is 70 wt. % sand and 30 wt. % water. What is
its density? The sand is practically pure quartz (SiO,), for which Prang =

165 Ibm / £ (2.65 g / cm®). See the inside b
; . ack .
used in all examples and problems. cover for the properties of water

sand + Vigayer (m/ p)

Waler

and + (/)

ther ways '
rin specific
letter combmanons, such as b

binations, such ag (L.1).) !
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. of density of water at some specified temperature and pressure
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CHAPTER 1 INTRODUCTION

We could simplify

Eq. LA " — ;
to choose &5 our dasis 11 q algebraically, but a more intuitive approach is

X Ibm of mud, and substitute into Eq. LA, finding
p oo g ¥ My 70 Ibm + 30 Ibm

("‘l) + (ff{) i ( 70 1bm ) i ( 30 Ibm
[ -rla Y — 1651bm / ' /g \62.3 1bm / £ /warer
him k
= 1104 —¢ = 1769 X8
n m' Ee

| |
The M indicates the end of an example,

1.5.2  Specific Gravity

Apecific graviry of liquids and solids (SG) is defined as

density

SG = 1.2)
ok . This definition has the merit o!‘ being a ratio m.‘:d. hcnf.:e. a pure numb-;r, which is

independent of the system of units chosen. Occasionally it leads to confusion, because
m- some specific gravities are referred to water at 60°F, some to water at 70°F, and some
to water at 39°F = 4°C (all at a pressure of 1 atm). The differences are small but
great enough to cause trouble,

If the temperature of the waler is specified as 39°F = 4°C, then the density of
4 water is 1.000 g/ cm?. (The gram was defined to make this number come out 1.000).
Thus. if this basis of measurement is chosen, then specific gravities become numeri-
] cally identical with densities expressed in g/cm® or kg /L or metric tons / m>. The
mud in Example 1.1 has SG = 1.769.

Many process industries use special scales of fluid density, which are usually
referred to as gravities. Some of them are the API gravity (American Petroleum
Institute) for oil and petroleum products (Prob. 1.6), Brix gravity for the sugar indus-
try, and Baumé gravity for sulfuric acid. Each scale is directly convertible to density;
conversion tables and formulae are available in handbooks.

Specific gravities of gases are normally defined as

( SG of) 3 ( density of the gas

a gas density of air )Bolh at the snme temperature and pressure

(1.3)

For ideal gases the specific gravity of any gas = (Mgus / Myy). N
Throughout this text we use liquid and solid specific gravities referred to water

at 4°C. Thus a liquid with a specific gravity of 0.8 is a liquid with a density of
0.8g/cm’.

1.5.3 Viscosity

Viscosiry is a measure of internal, frictional resistance to flow. If we tip over a glaa_ss
of water on the dinner table, the water will spill out before we can stop it. If we tip
over a jar of honey, we probably can set it upright again before much honey flows
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cs FOR MICAL ENGINE . (his is possible bct:'auge "
HANI :::::;ey has much more resistance
A v flow, more wzczs;i??ort? Ell: \::: &
ing with velocity Vo more precise ¢ " e Osit
L ' oossible in terms Of 1€ follgy,
x .lS pconccpmal expeniment.
ing ider two 1ong, soljq-

Cons :
Yo plates separated by 2 thin film o

y=¥ T .
fluid (se€ Fig. 1.4). This apparaty,

y=0~_ Fluid < easy to 8rasp conceptually apq
;namcmatically put difficult to use,

i ate, V=0 the fluid leaks out at the

Stationary pl because
edges and gravity pulls the two
2 plates together. Other devices that

o use are actually used to measure vis.

. ier t s
matically but easie 3). If we slide the upper plate steadily

Chaps. 6 and 1 :
pa force will be required to overcome the internal

The sliding-plate experiment.

are more complex mathe
cosities (see Example 1.2 and :
in the x direction with velocity Vo, : . 2
friction in the fiuid between the plates. ‘Ihis torce will be different for different veloc-
ities, different plate sizes, different fluids, and different distances between the plates.
We can eliminate the effect of different plate sizes, however, by measuring the force

per unit area of the plate, which we define as the shear stress T.
It has been demonstrated experimentally that at low values of V, the velocity

profile in the fluid between the plates is linear, i.e.,

_ Yoy |
V= Yo (LC)

so that

o= (shear rate, rectangular dav V,
coordinates =g, =

the same thing
" all of which mean exactly
Example 1,3
Fi ure ]
(“cup anq bob” 8 3 shows
) Viscom A Cltaway phq
t(hﬂ;ebb:;) ) rotates jngjqe ete;nalso Called a cope t:%l:aph of a concentric-cylinder
4 l i
torque T;: u:::[-?meme re':)?é Ot:l o Ylinder (th;c:;n *'¢% An inner cylinder
Cup ki = € angy) P). The shaf that dri
10 2= 2762 i =25.15 Sular VEIOCity rives
pm, 'lhc Obserye to and jg longe thanan =927 s Tall-lld the applied
. = = e b .

€ surrounding

s m : €n the bob i .
'S form y o 1s dri
orm, the | aka the deyjce in Fiﬂt atl'e Tand gy / s ven at

-at-the, % .4'
edges pmblem Wl’:f:pe; around &
¢ difficulty of
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“ FIGURE 1.5
Cutaway photograph of a concentric-
cylinder viscometer. This is simply the
sliding-plate arrangement in Fig. 1.4,
wrapped around a cylinder, thus
eliminating the leaky edges in Fig. 1.4,
The drive mechanism at the top holds the
outer cylinder fixed and rotates the inner
closed cylindrical bob. It provides a
measured, controllable rotation rate and
simultancously measures the torque
required to produce that rotation. The
two flexible hoses circulate constant-
temperature water or other fluid, to hold
the whole apparatus at a constant
temperature. Example 1.2 shows the
dimensions of this device. (Courtesy of
Brookfield Engineering Company.)

CHAPTER | INTRODUCTION 9

1::.[2:25 the distance between the two surfaces
Sy t are s-olved. (Fluid forces hold the rotat-

& nner cylinder properly centered inside the
Pulcr cylinder.) Here we must replace the ys
in Eq. 1.5 with rs, because the velocity is

changing in the radial directi i
ion. Ay =
replaced by TR

Ar = 0.5(D, - D,) = 0.5(27.62 — 25.15)
= 1.235mm

(1.E)
and
Vo = — 10
o=aD, pm = 7-2515mm-—
min
= 790.1 m = 13_17@ (1F
min S
Thus,
dvV _ Vo _1317mm/s 1
dar Ar~ 1285mm ey GO

This is a linearized approximation of a cylin-
drical problem that understates the correct
value, which is 12.26 (1 / s), (see Prob. 1.10), a
difference of 15%. We will use the correct
(cylindrical) value in the rest of this chapter.

The shear stress at the surface of the
inner cylinder is

_F_T/r, _0.005Nm/(05-25.15 mm)
T=AT DL m-2515mm-92.37mm
- N
=545 x 107® —-N—z =00545— (1H)
mm m
|

This example ignores the stress on the bottom surface of the bob, a small effect,
for which a correction is made in real viscosity measurements. The whole device 1s
shown immersed in a constant-temperature bath, because the results are very temper-

ature dependent.

The experiment in Example 1.2

shown in Fig. 1.6. .
the results plotted as All four of these results are observed in nature. The most

imental results in the figure.

common behavior is that represented b)-f the straight line
This line is called Newtonian because it

dVv
7=”§;
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can be repeated at different rotational speeds and

Four different kinds of curve are shown as exper-

through the origin in the figure.
is described by Newton's law of viscosity:

[Newtonian fluids] (1.4)
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p=gv/dy
the viscosity or
cot, ient of w‘s:casuy. [%
the €~ lly s€e this equation
occasion®’s . minus sign in
of the - This is done SO
t : :
fron the equation will have }hc
o form a5 the heﬂt—COl’ldUCt]o“
c . »
San; mass-diffuston equations .
C e shear

Since
[Z]v P- 12)' £ 1
FIGURE 1. of the shiding-PIate experiment at constant gn—BSS acts in oné dlrectl?ﬂ l;:ﬂ !
sure. the rotating CYli"der and in 1% -
troduce this

minus Sign and
[t is always

]
a
(]
[
_—
‘_
LA
S
=¥

SRR

Here ¥ I c
C

Shear foavce
Avea

T

oving PIAIE _ Yo
Tween plates Yo

velocity of
= = Distance ¢

: in
o1, we can thﬁ same as in

adjacent L
the resu

on of 7 5O that
alculate

. ion on the fluid
f the directi
ple 1.2, we would ¢
_ 000545N/m’ _ 0.004424_‘;5 (1.
—— m>

_ —— =
K= v/ dy 12.26/s
w is very low: therefore, their observed behavior
is represented in Fig. 1.6 by a straight line through the origin, very close to the dV /’dy
axis. For fluids such as corn Syrup the value of p is very large, and the straight liné
through the origin is close to the T axis.

Fluids that exhibit this behavior in the sliding-plate experiment OF its cylin-
drical e'quwa]enl (i.e., fluids that obey Newton’s law of viscosity) are called
:emaman éﬂmds. All the others are called non-Newtonian fluids Which fluids are

ewtonian? All i g . )
gases are Newtonian. All liquids for which we can write a simple

oppo .
reverse our idea 0
Eq. (1.5).] For Exam

e

For fluids such as air the value of

chemical formula are Newtonian
such as w
tetrachloride, and hexane. Most c;ilute solutioz:: ) fbe?Zﬂ;e. -
it e . of simple molecules i
water, or bcnziﬁeaii’hr;':: EOI{lan_ such as solutions of inorganic salts lC'-'n comar ?r
ids are compl i uids are non-Newtonian? Generall i Fi
plex mixtures: slurries, pastes, gels B - e ity
» gels, polymer solutions, etc. (some

authors refer to th
‘ em as com fex y
with constituents plex fluids). Most non- .
of very differe on-Newtonian flui -
nt uids are mixt
ures

sizes. For
example, toothpaste consists of solid

e

= e
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T = const, C

Slope = &
ope = y = pparent viscosity”

0
WV T
FIGURE 1.7
The “apparent viscosity*
s fa s e
shesr tate incrasee ¥~ ol a pseudoplastic fluid decreases as the

be considered a constant independent of gV / dy
considered a function of 4v/ dy. y
OA, OB, and OC have slope u,
(Viscosities defined as the slo
Using this definition, we can
tonian fluid (Fig. 1.6):

ot for a given temperature, but must be
This is shown in Fig. 1.7. Here each of the lines
so the viscosity is decreasing with increasing dV/ dy.
pes in Fig. 1.7 are often called apparent visca.rin‘es'.)
observe that there are three common types of non-New-

1. Pseudoplastic fluids show an apparent viscosity that decreases with increasing
velocity gradient. Examples are most slurries, muds, polymer solutions, solutions
of natural gums, and blood. These fluids are referred to as shear thinning fiuids.
This is the most common type of non-Newtonian behavior.

2. Bingham fluids, sometimes called Bingham plastics, resist a small shear stress
indefinitely but flow easily under larger shear stresses. One may say that at low
stresses the viscosity is infinite and at higher stresses the viscosity decreases with
increasing velocity gradient. Examples are bread dough, toothpaste, applesauce,
some paints, jellies, and some slurries. . ' . .

3. Dilatant fluids show a viscosity that incrcas-cs'wnh increasing velocity gradient.
This behavior is called shear thickening; it is uncommon, but smfch'susp;r}-
sions and some muds behave this way. For these ml.uenal:r. thehl:qund Ju l:'
cates the passage of one solid partl'cle over another; at high s elfar rate as1:l
lubrication breaks down, and the particles have more resistance to slipping p

each other.

rve of 7 versus dV/dyis not a function .of
a constant speed, we will always require
but not of all. A more complete picture

So far, we have assumed that the cu
time: i.e., if we move the sliding pla't::: .z:lt
the same force. This is true of most fluids,

woualditieu Lly el ovaliiivi
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¢t of time of shearing or €an increase or decrease with time as

FIGURE 18 _
The viscosity of fuids can be independen
the Bmd 15 sheared

. Fie 18. In Fig. 1.8 we see a constant dV/dy slice out of the solid |

is given ey
: - versus 4V / dy versus time. We see three possibilities:

constructed of

1. The viscosity can remain constant with time, in which case the fluid is called rime r

independent. i
2. The viscosity can decrease with time, in which case the fluid is called thixotropic.
3. The viscosity can increase with time, in which case the fluid is called rheopectic.

z most all of which are slurm .
Pﬂlrm;nn;dadx;z ;n few Cn;l!)é? of rheopectic fluids are known umes or solutions of
‘ . Some m N Q‘ﬂ:ﬂ ‘-is‘:oe!as = E .
dmbdnm vier represented in Figs. 1.6 anq | 3 bECﬁmds’ ¢an show not only the kinds
7 10 “spring back”™ when a !

am_i the rubber tem
. crlies can be
with a q\uck_jq-t of the S Th(he bottle and then ita

ent sold at sta-
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CHAPTER | INTRODUCTION 13

. m, but when it is stirred, it will become less
: ed onto a surface. iti i :
temporanly reduce the Viscosity so that the ‘l'm:c .ln addllfun. g
ence of surface tension; see belo

™ ’ : , they are discussed in Chap. 13.
viscosity of simple gases, such as helium, can be calculated for all tem-

Pe;:;l;rcs and t;ﬂ:n:ss‘.u'es from the kinetic theory of gases using only one experimental
measurement lor each gas [2]. For the viscosities of most gases and all liquids sev-

eral cxpm"imemal t:lal.a points are required, although ways of predicting viscosity
change with changing temperat

: . _ ure and pressure are available [3]. As a general rule,
the viscosity of gases increases slowly with increasing temperature, and the viscosity
of llq-md_s decreases rapidly with increasing temperature. The viscosity of both gases
and liquids is practically independent of pressure at low and moderate pressures.
The basic unit of viscosity is the poise, where P=1g/(cm-s)=0.1Pa's =
6.72 X 10"2 Ibm / (ft-s) [See the inside front cover for conversion factors.] The
poise is widely used for materials like high-polymer solutions and molten poly-

mers. However, it 100 large a unit for most common fluids. By sheer coincidence
the viscosity of pure water at about 68°F = 20°C is 0.01 poise; for that reason the
common unit of viscosity in the United States is the centipoise, cP = 001 P =
0.01g/(cm-s5) =0.001 N*s/m* = 0.001Pa-s = 6.72 X 10 *Ibm / (ft - 5). Hence,
the viscosity of a fluid expressed in centipoise is the same as the ratio of its viscos-
ity to that of water at room temperature. The viscosities of some common liquids

and gases are shown in App. A.l. The computed viscosity of the fluid in Example 1.2
is 4.4 cP.

1.5.4 Kinematic Viscosity

In many engineering problems, viscosity appears only in the relation (viscosity/density).
Therefore, to save writing we define

Kinematic viscosity = v = u/p

(1.6)
The most common unit of Kinematic viscosity is the centistoke (cSt):
5 _s ft?
leSt=—F =102 = 108 x 1075 ()
lg/cm s

at 68°F = 20°C, water has a kinematic viscosity of 1.004 = 1 cSt. To avoid confusion
over which viscosity is being used, some writers refer to the viscosity u as the absolute
viscosiry, The kinematic viscosity has the same dimension (length? / time) as the ther-
mal dif}usivity and the molecular diffusivity; in many problems it acts the same way
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as them. In Chap. 6 we wijj
examples of the practical conveyi, .
the kinematic viscosity.

1.5.5 Surface Tension

3 Liquids behave as if they wep,
rounded by a skin that tends to ghy
contract, like a sheet of stretched
a phenomenon known as surface “’“lol

e It is seen in many everyday events N
\ E z most disheartening of which is the tey,
dency of water, when poured slowly

FIGURE 1.9 a glass, to dribble down the edge of y,
Disheartening effect of surface tension. The water glass (see Fig. 1.9).

dribbles down the surface of the container.

Surface tension is caused by g,
attractive forces in liquids. All of ¢,
molecules attract each other; those in the center arc attracted equally in all dire.

tions, but those at the surface are drawn toward the center because there are no lig.
uid molecules in the other direction to pull them outward (see Fig. 1.10). The “efforn”
of each molecule to reach the center causes the fluid to try to take a shape that wil)
have the greatest number of molecules nearest the center, a sphere (Prob. 1.11). Any
other shape has more surface per unit volume; therefore, regardless of the shape of
a liquid the attractive forces tend to pull the liquid into a sphere. Other forces, such
as gravity often oppose surface tension forces, so the spherical shape is only seen
for small systems, such as small water drops on a water-repellent surface. The fluid
thus tries to decrease its surface area to a minimum. (An analogous situation in
two dimensions is observable in the behavior of some army ants. They travel in

large groups, and, viewed -

Liquid G from above, the swamm

b . . £ often looks like a circle. |
Oorces o

* ittt A The reason appears to be

other molecules

scent is strongest, the cen-

* ter. The ants all stay in
Y one plane, so the result |
is the plane figure with :
Molecule in the Molecule at the the smallest possible ratio -
center is pulled surface is pulled of perimeter to area—3i
cguall_y inall toward the center circle [4].)
directions

that the ants are attracted .

/ by the scent of other ants "
} d, h 1 k |
- o _ o and, hence all try to ge

Surface [0 the place where the .

The tendency of &8
FIGURE 1.10 surface to contract can be
Surface tension is caused by the attractive forces between molecules. measured with the device *

Scanned by CamScanner

4

FIC

see

si



A very simple way to measure surface lension;
see Example 1.3.

i )
Film of liquid
-.' ™ Sliding part
- of frame
Weight
"~ FIGURE 111
5

.+ is then defined as

CHAPTER | INTRODUCTION

shown in Fig. 1.11. A wire frame with
one movable side is dipped into a lig-
uid and carefully removed with a film
of liquid in the space formed by the
frame. The film tries to assume a spher-
ical shape, but since it adheres to the
wire, it draws the movable part of the
frame inward, The force necessary to
resist this motion is measured by 2
weight. It is found experimentally that
the ratio of the force to the length of the
sliding part of the wire is always the
same for a given liquid at a given lem-
perature, regardless of the size of the
apparatus. The liquid film in the frame
has two surfaces (front and back), so
the force-to-length ratio of one of the

surfaces is exactly one-half of the total measurement. The surface tension of the liquid

Surface tension =

Example 1.3.

From Eq. 1.7,

force of one film " E
length r |

b Fone film) _ 0.00589 N /2 N Ibf

a7

U:

g The device in Fig. 1.10 has a sliding part 10 cm long. The mass
F needed to resist the inward pull of the fluid is 0.6 g, which exerts a force of
/ 0.00589 N. What is the surface tension of the fluid?

(1.K)

U:—'

! 0.1m

Surface tension is Very §

| exposed to air are shown in Table

surface tension (=25 dyne/cm
that of mercury is 20 times higher.
We indicated that the liquid
Fig. 1.11. Liquids adhere
water adheres strongly to
plicates the whole subject of
occurs much more often with
or Teflon cups.
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= 0.0294 — = 0.000168 —
m in
|

The device shown in Fig. 1.11 is easy to understand but not very practical as a mea-

suring device; more practical ones are discussed in Chap. 14.

lightly influenced by what the surrounding gas is—air
or water vapor or someé other gas. Typical values of the surface tension of liquids
1.1. The traditional unit of surface tension is the

dyne / cm = 0.001 N /m. At 68°F = 20°C, most organic liquids have about the same
) whereas that of water is about 3 times higher, and

adheres to the solid in the apparatus shown in
strongly to some solids and not to others. For example,
glass but very weakly to polyethylene. This grcall)f com-
surface tension; the phenomenon shown in Fig. 1.9
glass, ceramic, or metal cups than with polyethylene

15
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and muluphase flow through porous mediz (oil fields). We will discuss the effects =
Chap. 14; see also references [5. 6].

1.6 PRESSURE

Pressure is defined as a compressive stress, or compressive foroe per untt zrez o 2 52
dmayﬂddﬂiquidagas}dwmtfmpamhmhmem'xzﬂm-
tions. In a solid or in 2 moving fluid, the compressive force per unit arez 2 wome pont
is not necessarily the same in all direchons. We can visualize why by squeszing 2 no-
ber eraser between our fingers; see Fig. 1.12. As we squeeze the eraser, 2 beoormes oo

ner and longer, zs shown. i we analyze e wreues

y in the eraser, we find that in the y Grection the erzaer
is in compression, whereas in the x Grecuoe 25 =
f‘:ﬁm stretched in the x direction, 2nd 1s elastc forces il
xI
e
Eraser in
compressed stale

pull it back when we ket go; hence the wension ) The
conraction in one directon and expamice X
another in an elastic sobid s described = terms of

Poisscn’s ratio, discussed i any w1 on sreng of
FIGURE L12 matenals. Becanse the temsile and compressse
The response of an elastic sobid 1o forces are 2t nght angles w each other, tere s #50
compression i oo direcnon

a strong shear stress at 45° © the 1 2x3s
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. C
What would happen jf We held o HAPTER
the water between our fingers? Obvioy r] fingers in g
fingers, and our fingers wo SY: the e

P of W
uld come Water woul T ang tried 4,

g , ik logether d rup out © SqQueeze
water, it be_ha\cs like the eraser, selting o Why2 g fr ™ between =
same directions as the eraser. Ho °temna) ghe, and (e Squeeze the

Nsile

W

forces, so the water begins to ﬂo:'e;lgr:l:.—:? Auids cane ermane, forces in the
untl it had taken Up a new shape, in whyig, g1 O BWay. The crase apen, Shea
were enough to hold our fingers apart. Water mn::mal tensile ap, 50 Aoweq,
simply flows away. ]

If we really wanted to squeeze the water, w
that would prevent its flowing out to the side. If
we compressed it from the top, it would
also does water.

The foregoing is a description of why the Pressure at a poin ; -
is the same in all directions. It is not a proof of that fact: for 5 prom:‘ 2 fluid at regy

Wehmkie mean by pressure is‘ Dot so clear for a solid as it is foic; ﬁggldao:
gas. The compressive stresses at a g1ven point in a solid are not the same in a) d.lre:‘_
tions. The usual definition of pressure in a solid is as follows: Pressure at a point is

. the average of the compressive stresses measured in three perpendicular directiops.

i NTRODUCT .

€ would pyt §
| .
We did this wigp 1 O CONtainer

lig- Since, as we have seen, these thrce. stresses are all the same in a fluid at rest, the two
 or definitions are the same. For a fluid in mouop, tye three perpen.'cular compressive
uid stresses may not be the same. However, -for this difference to be significant, the shear
" in stresses must be very large, well outside the range of normal problems in fluid
: mechanics. Therefore, we normally extend the notion that pressure in a fiuid at rest
b is the same in all directions to fluids in motion, with the reservation that at very high
lt.s) shear stresses (such as in the flow of metals or polymer melts through forming dies)
in

this is not necessarily true. For polymer solutions and polymer melts the differences
between the compressive stresses in directions at right angles to one another can be
very significant and can lead to behavior quite different from the behavior of simple
ﬂulds.hfett;1 f:[?s](;lution of many problems, particularly thosc‘ involving gases, it is most
convenient to deal with pressures in an absolute sense, 1.., pressures r_dam': va
compressive stress of zero; these are called absglu{f JREANGTEN, In th:f" sohmong a?a:r);
other problems, particularly those involving liquids wu.h .frce surfaces, suc o
encountered in rivers, lakes, and open or vented tanks, it 1s'rnore convenient oS .y
with pressures above an arbitrary datum, the local atmospheric pressure. Pressure
ative to the local atmospheric pressure are called gauge pressures. ecessary 10
Because both systems of measurement are in common. use, 1t 1 I;IS I /in®”
make clear which kind of pressure we mean when we write :lapressure 0 g 2
(This unit is also called psi (pounds per square inch)]. It is usHaJ to "yfor o
absolute” or 15 psia” for absolute pressure and “15 psi 83“§° or *15 pmgnm seem 10
Pressure. The SI unit of pressure is the pascal, Pa = N/m". There e these must
:c @ common set of abbreviations for Pascal absolute and Pascal gauge. s0
€ Written oyt . t
Another two-datum situation familiar to the reader is found in the “:;:se‘ll:iac?o
o elevation, Mountaip tops, road routes, and rivers are normally surveye
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Cotl‘lpﬂsscd /_—]
air system
Roof of
puilding ’/rj/‘ 20
Street
, 0ft ___,L,—‘
B :::: Amposghecs 5 psi
ase
of building Yo 15 psi
system
5000 ft 49':{0 R 10 psi
{ T - %
Sea level pressure Pressure
Elevation ()
(a)
FIGURE 1.13

The relation between gauge

and absolute pressure, and a comparison with elevation measurements.

mean sea level, which serves as an “absolute” datum, but most buildings are designed
and constructed relative to some local elevation (usually a marker in the street); see
Fig. 1.13. In both cases the most common measuring method gives answers in terms of
the local datum. Most pressure gauges read the difference between the measured pres-
sure and the local atmospheric pressure. For instance, the pressure gauge on the com-
pressed air system in the figure would read 20 psig = 137.9 kPa gauge; the building
height (by tape measure or transits) might be given as 100 ft = 30.5 m elevation. Botil
;uch measurements u‘sually m\tolve negaﬁve values, based on the local datum; the
asement has a negative elevation relative to the street, —30 ft = —9.15 m, and the
vacuum system has a negative pressure relative to the atmos : :
—34.5 kPa gauge.
~ Negative elevations relative to sea level can exist;
is about 1200 feet (366 m) below sea level, Can

phere, —35 psig =

the Dead Sea, for instance,
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.7 FORCE. MASS, AND WEIGHT Mgy, "
Ia fand mechanics we are often concernad with torces

Loy of

Massey

aits of force and mass as discussed in the nexi and
MChon \
Al

makes things change speed or direction. Most fugees m
wite forces (a buikding exerts a force on the ¢ _ alan..

oppos . haild _ ground; the gron Anced |y,

~nasite force on the thiing: neither moves " exe ;

i“}j 0‘: ‘\ 3 14+ . 11N \e\\\ Tt‘l n‘ake A n-‘ an Nu‘“

 stop MOVING. WE MUst exert an unbalanced force Mg star

o >3L% = 1

Nass IS an indcatton of how much matter is present The

macs. (We ma) think of matter in any size, as bricks mole More matgey. the maye

ma . S <

' . p ules at
is. elc v 1S AISO an imhcator ¢ ) YA S atomyg,
Quarks, etk ) Mass s alsc dicator of how hard 118 to Ret so ;

Weighg wn
\ Uibalinceg oo

the wuj o forge

L‘ arg

lls‘l(\'\n‘\.
rer moving Of how hard 1115 10 SWop it once it is moving. We Can":;| Amount of may.
moving SOt/ s (152 m/s) with httle more damage than a possible s:‘\m a basehy))
sep in front of an automobile moving at the same speed, we will m"‘;:“h“"d If we
The suto has much more massgatas much harder 1o stop. ¥ be Killed

Weight 1s a force—the force that a body exerts due to the accele
iv. When there 1s nO gravity, there 18 no weight (e.g., in earth

spparent gravity: this state is referred to as weightlessness).

raton of gray.
satellites there s no

1.8 UNITS AND CONVERSION FACTORS

Engineering is about real physical things, which can be measured and described in terms
of those units of measure. Most engineenng calculations involve these units of mea-
sure. It would be simple if there were only one set of such units that the whole world
agreed upon and used; but that is not the case today. In the United States most mea-
surements use the English system of units, based on the foot, the pound and the °F, but
most of the world uses the metric (or SI) system of units based on the meter, the kg
and the °C. The metric system has been legally accepted in the United States since 1360,
and it has been the declared policy of the U.S. government to convert 1o metric since
1975 [10). Progress has been disappointingly slow.

The situation is similar with languages; it would be easier if we all spoke one
lnguzge. But we do not; the world has many languages. Educated Europeans alll
ek at least two languages well and generally can read one or two mare. Sm“l-af":
L!.S- engineers must be fluent in English and in metric units, be able to “}‘d‘:“fl:“l
Oider literature written in the centimeter-gram-second (cgs) system, and 1n \an

; P 1al units,
English systems that use the poundal or the slug and in specialized industrial un

lik fferences EXPIESe. ¢

::htik ;‘ 2-gal barrel for petroleum products or pressure dlﬁ'-'"m?}.:)ﬁrwmmiw
’ ] ) ; tems. liK

ar polluu:‘“ﬂ- U.S. engineers must even deal with mixed syS€Ms 7% 0 pger.

d'l emissions expressed in grams per mile. Furthermore. ‘h;yST discussed
ifferences between the common-use version of metric and % ‘

th: ; il be be ; derstand WhY
diff + Wil tter able to deal with those differences if they un

Suudlhc

. 8
- , ties, sueh
=3 anics we most often deal with dimcnswned’q::n"bo, We ofte®
0P the units fm !'s). rather than with pure numbers such as 12 ' Sl-ﬂf-s normd!

418 60 m; I‘hor Cl:.xmp[c. “T was driving 60,” which in the Uni is s
* PULin the rest of the world means 60 km /- T

12 f I‘:(ﬂuid mech
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20 FLUID MECHANICS FOR CHEMICAL ENGINEERS

million NASA Mars probe was destroyed becay,
In technical work we always make clear the unig

failed to check their units. : :

is: n;c;f;; any value is expressed! To become compcu:pl i," so!;'u:jgc hﬂz::umr .
blems we must become virtually infallible in the handlmg of suc . a.nd ey
s’y the major sources of difficulties with units 44

conversion factors. For most engineers r
. d the simultaneous appearance of force and my,
conversion factors are carelessness an

in the same equation. , .
A useful “system” for avoiding carelessness and consistently converting t,
dimensions of engineering quantities from one set of units to another has two rujes-

but common. In 1999 [11] a $125

1. Always (repeat, always) include the dimensions with any engineering quantity yo

write down. .
2. Convert the dimensions you have written down to the dimensions you want in your

answer by multiplying or dividing by 1.
Example 1.4. We are required to convert a speed of 327 mi/h to a speed in
ft/s. The first step is to write the equation

Speed = 327 mi/h

This is not the same as 327 km / h or 327. If we omit the dimensions, our equa-
tion is meaningless. We now write, as an equation, the definition of a mile:

f1r
\hady

1 mi = 5280 ft (1.M)
Dividing both sides of this equation by 1 mi, we find
1 mi 5280 ft i
T == : (ILN)
I mi mi1

You may not be used to thinking of 5280 ft/ mi as being the same thing as 1,
but Eq. I.N shows that they are the same. Similarly, we write the definition of

an hour as an equation,

1h =3600s _ (1.0)
and divide both sides by 3600 s to find
3600s _ h
REnnL (1.P)

3600s ' 3600

Again, you may not be used to thinking of 1 h/3600 s as the same thing as 1,
but it is. Now let us return to Eq. 1.L and multiply both sides by 1 twice, choos-
Ing our equivalents of 1 from Egs. 1.N and LP:

327mi 5280ft
mi 3600s
We can now cancel the two 1's on the left side, because they do not change the

value of “Speed,” and we can cancel the units that ar both '
' ) and below
the line on the right side to find e o

327rni_5280fl' h  327-5280 ft ft m
h mi 3600s  3600s =480_$-=l46_5_ .
|

g L) (1Q

Speed =
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an easy example, one you could certainly solve withoy gg;
hown here, but it illustrates the procedure to be used 8OINg into as myep,
N more co ‘
mplicated

This was
detail as §
problcms.

Example 1.5 .Sluppo.sc Timc cgunls 2.6 h. How many seconds i
we begin by wnung Time with its dimension as an equmon_ﬂ 8 15 this? Again

Time = 2.6 h
We want to know its value in seconds, so we divide by | s
_ 3600 s |
Time = 26 h- = 2.6-3600s = 93805
(1T
|

How did we know 1o multiply by 1 h/3600 s in Example 1.4 and to divid
| h/3600sin Example 1.57 In each case we chose the value of 1 that allowc(; e by
cancel the unwanted dimension. Three ideas are involved here: e

1. Dimensions are treated as algebraic quantities and multiplied or divided accordingly
7. Multiplying or dividing any quantity by 1 does not change its value. |
3. Any dimensioned equation can be converted to 1 = 1 by dividing through by either

side.

Using the last procedure, we can write

€0s 12in 7000gr _ mi® _ _Bw _
min ft Ibm 640 acres  252cal VA

=etc, (1.8)

and as many other values of 1 as we like.

The previous examples did not involve the unit conversions that cause difficul-
ties. the ones involving force and mass or thermal and mechanical energies. 1f every-
one always used SI, we would never have those difficulties. In SI there is no diffi-
culty with the units of force and mass; force is measured in newtons (N) and mass
in kilograms (kg), and the only unit of energy is the mechanical-energy unit, the joule.
where ] = N-m.
~ Unfortunately, in the English system (and in the traditional metric system as it
is used by the public in Europe) there is difficulty with force-mass unit conversion-
If we ask a typical European male what he weighs, he might well respond “80 kJ!OS-
meaning 80 kg. If he were speaking in SI he would not use kg as a unit of weight,
because weight is a force and the SI unit of force is the newton. He should rcspopi

dard g]'ﬂVlla'

u? i .
84.6 newtons” because that is the weight of an 80 kg mass in a stan .
h novice engineer’

:;:::n:!f?cld of 9.807 m/s* = 32.17 ft/ s>, It is hard enough 10 teac o

publi]c : rence between weight and mass; it is probably impossible 1© get lthi ke

. 1¢ 10 take the view that a mass of 80 kg does not exert a force of 80 kg. 1° -
']Og]‘ unl15|

18 ¢ ‘

'102:;?:1:::: right, we need to decide that there are really mo

BM exens 4 ; (kgm) and the kilogram-force (kgf). We €21 define he peoplé 1

¢ world orce of one kgf at standard gravity. That is what most © rwo kinds ©
4ctually do. Similarly, in the English system of units We 1¢¢
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22  FLUID MECHANICS FOR CHEMICAL ENGINEERS
i defined these so
2 Ibf). Again we have celil thay

i P f:‘ rgg (one |bf at standard grav:ty.ﬁk
2 Because the kgm and kgf look like the sam
e g, and the Ibm and the |p¢

Why does this cause prot ame thin
thing, so )‘;’e are tempted to believe ey ::r; td;eb;lievc they are the same thing. Thy
look like the same thing, sO we are lcq}% :y are not the same. This leads to serious

is wrong. It is a trap for the. unwary.
errors in engineering calculations.
Newton's second law of motion 1§

F = ma (1.9)

pounds; pound-mass (Ib
one Ibm has a weight 0

pound-force (Ibf) is defined

: tion. The
and a is accelera leration of 32.2 ft/s%.

bm, produces an acce
uation, we find

where F is force, m is mass,
as that force which, acting on a mass of 11
Substituting this definition into the last €q

ft
1 Ibf = Ibm * 32.25—2 (1.U)
Dividing both sides of this by 1 1bf. we find
Ibf Ibm - ft
e 2_2 (l_V)
bf 2> Tof- 52

If we then make the mistake of canceling the Ibm on the top and the Ibf on the
bottom right-hand side, we will conclude that 1 = 32.2 ft/s>. This is clearly wrong,
and if we do it in a problem we will find that the dimensions do not check and
the numerical value of the answer will be wrong by a factor of 32.2 (if we use
English units) or 9.8 (if we use metric units). Similarly, in the traditional metric

system we have
1 kfg = kgm-9.8 m/ s> (1.W)

and if we divide both sides by kgf, we find
kgf 3 kgm ' m

| ==

- kgf ! kgf - 5 (1.X)

If we then cancel kgm and kgf on the right side we will conclud = 2
which is equally absurd. ude that | = 9.8 m/s",
; How can we get out of this difficulty? One way is to always work exclusively
in 'SI‘fIIfI that case kg will always mean kgm, and kgf will never appear. Instead the
At of fopce will wlways be'thie N - (1/9.8) kgf. However, then we will be unable

mass conversion fflclor whenever units of force and of mass oc i
tion. This conversion factor has the following values: cur in the same equa-

kgm - m kem -
l=9.8'—-—-——-—--_-| gm m lbm - ft
kgf-s’ N‘S! - 32.2'&:—{:_? (1 10)

Scanned by CamScanner



we must know some histo

Iy to ung
ore. e
furthe | know that many older textbooks ang anicrfesn the olge, lte
W m_us ce-mass conversion factor, So Whenever S u Tatyra
Flf:-1 or this et recognize it as a reminder that we mu; Seeqq Writtey 1 gt
st ve M fi : Y Use { Nto ap
l',qu:muon. ;[or. Wwe must not con user 5: the force-mass Conversjon ?a - mass con.
ersion 1265 ¢ oravity; they are nof the same. 1% With g, e
srcelff““on \:—:c should 'rccogn.mc that engmeerls using Englis, Unit
Secon ificulty by GVenInE 1HD NEW Whits, the glug (; gy, * MV ied
ade 18 L0 poundal (pdD) (1pdl =1b/322 = 135 _ 0014;(2'21'““‘“
E 6ke) a'? ¢ the following force-mass conversion factors: KR, Using
' .» hav
we
thes® kem - m lbm - ft slug -
. £ - M g-f .
kgm - fR=c 322 Ibf - s2 M e, TR Lgm
] ,95":"}-—?- N-s Ibf- g pdl - &2 (11
= . .g L

| inds litde current use, but aeronautica! engineers use the g, ‘
The pouﬂda 4 the Ibf have been armfnd a long time, in spite of the
The kef an ers to replace them with the newton or the pounda),
nd engm:m atural 10 nonscientific users. Probably they will continue 1o
csie n spite of the efforts of the scientific community to replace them,
gely useds will learn to live with this fact, to use them when it seems appro-
why they came about.
priate, and t0 unjefi?hncilty ywith units concerns mechanical and thermal units of
e secon ly unit of energy is the joule, 1J = 1N m. This is clearly a
rgy. In S1 memc;np};oduct of a force and a distance. If we are transferring thermal
ng our houses or our soup), it seems natural to base the measure-

nergy (8-2- heali 3 required to raise the temperature of some

:ng[]tsyﬁﬂ be quanutg' Osfo;l::ngﬁtecrzzﬁgem?ure interval. In the English system this
refcrencelsubslanc_e' h)' " (Btu), which is the quantity of thrmal energy
ey B Ih:e Blli]l:stempcrature of 1 Ibm of water by 1°F. In the rn'j‘t“: :Ys:l:; llttlli
!‘ :;?:] lirseiteoczlcfﬁe (cal), which is the quan]gwl ':Eig‘; TTO%T}EZET' f;‘::’:: lh: “calorie”
o a = ' .
" wmg e'ra?;:cgfyiiggﬂ?; ;ifgylcocr;t:;tﬂ;; fc::ods). If we want to use the calorie or the
Usea 1n

; - -1bf to Btu:
Bu. then we need to convert from joules to calories Of &

efforts of sci.
They survive

ene . .
mechan lcal UDIL

Btu Btu cal _ kcal 4110;1141 (112)
78 f-bf 10557 4181 1801 4

] —

i1 common usages e BY

The Btu and the cal (or kcal) seem likely to conll:ll:;ﬁ'; (sometimes patural gas
ippears on almost all U.S. heating appliance s fugumf:rﬂus food products |
bils use the rherm = 10° Btu), and keal appears o’ eed never b e :V'S)- If
In summary, if we can do all our work in 8k ¥ erions = )invol¥”
force-mass conversions (N = kg - m/s) or enerey conv L U.S. legdl efinitions Always
f-'-’c e confronted with problems (or literature, OF current ¥ Ouﬂjncd abo\'e-mulﬁply
¢ e kef, Ibf, cal, kcal, or Btu, we must follo¥ tle;uraic quanties: " cing the
llen as needed 1o get the quantities ! and the

Pproy " or
Propriate Values of the force-mass conversion fact
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ENGINEERS - nits (M, KE. 3, A,
24 FLUID MECHANICS roR CHEMICA® y from the basic UM= " K.
if we S ' h
. fa.ctﬂl's suc
qversion fac aversion mV (113
::;%;ocd). we will need P M — lO___O%___,.. )
1= - force of 3.5 jiy
donby 3 '
¢ 10 Ibm (4.5% kgm) ! lac;c,min
Example 16 A ™50 g the acceleraiO”
(15.56 N or 1.59 "32'19 we find (1.14,
Rearranging =4- =~ =F/m
i
Substituting, W€ find 35 Ibf (1Y),
a =70 |bm i
i 4 ltiply o divide by

i in? we must mu
Here we want the acceleration 10 ft/ nuul;lc.usnc;ts:
th::sc equivalents of 1 that will convert . .
sIbf 3221bm-ft 605)2 35323 - 40,570 - s
3 ; f60sY _ 33322 T
= lOIbm- Ibf - s2 (min 10 min

or

(1.AA)

2 ft
1S56 N kg (____) = 1234 — 40,48 e

- —

a= 454 kg N-s?

min

fi
— = 40,540 —5 (1.AB)
min min

2

Y= 1.59kgf 9.8 kgrnzm-(ﬁt)’s) — 1236
454kgm  kfg-s*  \min

The difference between these three answers is due to round-off error in the con-

version factors used. If more figures had been carried (e.g., kgf = 9.80650 N,

the answers would have agreed exactly, but since we know the input data to

only two significant figures, our best answer, in all three cases, should be

40,500 ft / min>. ®

Example 1.6 will be the last example in this book to use th
_ ' e kgf. Clearly the
method of dealing with kgm and kgf is just the same as the method ogffdealingyWith
Ibm and Ibf. For the rest of this book, we will use either Ibm and Ibf, or SI

Example 1.7. An aluminum ce]] (Hall-Héroult process) has a current of

50,000 amp. If we assume it js 100% :
does it produce per hour? efficient, how much metallic aluminum

We first convert the curre
nt to :
essary values of 1, one of which we g::ioﬁ"‘;‘f’ﬂ;:g: Fl’clthour using the nec-

1=500004 -C_ 36005 gequiy .
A's b m”w’og—e—:—'ﬂ (1.AC)
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CHAPTER | INTRODUCTION

For aluminum,

27 =
- 7g = 1mol (1.AD)
1 m = v
therefore, ol = 3 g equiv (1.AE)
] =18708%9%Y _mol  27g ibm fhi "
Igequiv mol 454y 31 === 168 (1.AF)

In solving Ex -
dure is simple ind ::a?;;t}: we multiplied by 1 six times. Nonetheless, the proce-
dimension and brimss o lrWﬂl‘d. Each multiplication by 1 gets rid of an undesired
apparently Complexg roI:l closer to an answer in the desired units. We saw that an
EotiEs Of‘ i 6t dicE andcm was l'eall;,r a simple conversion-of-units problem. In the
quickly and as easil our professional careers we will have to convert units as
o ol y as we now afld and subtract. It will be easiest if we develop the

of following the two rules given at the start of Sec. 1.8, namely:

1. Always include the dimensions with any engineering quantity you write.

5 , . :

2. Convert the dlITlCI‘lFIOI'lS you have written to the dimensions you want in your
answer by multiplying or dividing by 1. ,

A short table of these conversion factors can be found inside the front cover of
this text. The American Society for Testing and Materials (ASTM) [12] has prepared
a much longer and more complete table, which reveals some additional complexity.
For example, there are five different calorie definitions in common usage. The largest
is 1.002 times the smallest. Only in the most careful work is this small a difference
relevant. But if we are doing that kind of work, it is worthwhile to find, study, and

use the ASTM tables.

1.9 PRINCIPLES AND TECHNIQUES

As discussed in Sec. 1.3, there are very few underlying
these few ideas we can solve a great variety of proble
our attention either on the application of principles or
problems. The author recommends attention' to t.he prin¢
lowing his graduation from college, the engineernng busin
the digital computer, the transistor, and the space industry,
of these amounted to much in 1954, and they were not part

ies rigi 's laws an
All these technologies rigidly obey Newton's .
namics. Students who Jearned ucookbook” techniques for solving problems on 1954

' d during the next 10 years,
were not well prepared for the technologies that appeare
but thg e who {Jearl:lcd the basic principles and how to apply them could adapt to any
one of ihcm There seems 10 to believe that the pace of technological

be little reason ; ;
ch .11 become slower in ncentrate on learning techniques,
ange will beco

ideas in fluid mechanics. With
ms. In so doing, we can focus
on the techniques of solving
nciples. In the 10 years fol-
ess was revolutionized by
among other things. None
of undergraduate courses.
d the laws of thermody-

the future. If we €0
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24 FL ¢ we Stray”
in SL if W * cuch
ion factor- EVEM © o factors
cnergy Za:;]ers‘:::ﬂwﬂl need conversio 00 cm M (1.13)
mol, an 10008 _ 1 = v
) by a force of 3.5 Ibf
10t (458 ) 525
Example 1 6159Ak:lfi;ss“‘;hat is the accelerauon in
N or '
(15'56Rcm-angins Eq. 1.9, we find (1.14)
. d
Substituting, we fin 3.5 Ibf (1Y)
2= 70 Ibm

iply or divide b
want the acceleration in ft/ min’, SO We must multiply y
sa convert the units:

those equivalents of 1 that will - .
3.51bf 322 1bm-ft_(@_s)2 _35-322-60° 1 _ = 40,570 mi,;z 12
“10lbm  Ibf-s? 10 min

a min

or

a

. 2 ft
_1556N ke m_(@s) = 1234—— = 40480 —  (1.AA)
454kg N-s* \min min nun

or

_ 1.59Kkgf 9.8kgm-m (605)? m ft

The difference between these three answers is due to round-off error in the con-
:;lersmn factors used. If more figures had been carried (e.g., kgf = 9.80650 N)
€ answers would have agreed exactly, but since we know the input data tf;

only two significant figures ou .
40,500 ft / min?. guires, our best answer, in all three cases, should be
»

Example 1.6 will be the Jagt example in thijs

method of dealing with k :
gm and k. i
Ibm and Ibf, For the rest of this b, gf is just the ]

book to use the kgf. Clearly the

C SAMe as the method of dealine wi
ook, we wil] yge either Ibm and lbfo Of?llmg with

Example 1.7 A )
*/+ An aluminy
50,000 amp. If m cell (Hall-Hgp,
. 2mp. If we assyme jy oult proc
d0¢s it produce per oy ° |00 Cfficient howﬁJ mut::ShS) has a current of
e first cony metallic aluminum

M equivalent :
€ out of Probs. l;e{ 61.10111', using the nec-

=35 C
P000A - = 36005 g equiy. .
* h 96500 c = 1870 ELQuiv (LAD)
h »
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CHAPTER | INTRODUCTION 25

For aluminum,
27 - |

t) und s mol (1.AD)

1 mol = 3 g equi 2

r therefore, g oquiy (1.AE)

g equiv
| igyo 8o, __mol 273 lbm Ibm kg

/ h Igequiv mol 454 g a2 o ‘G'BI (1.AF)
| |

- i:“ﬂ-‘::':l"‘b ‘d-‘f"f'r_ﬂe 1.7 we multiplied by 1 six times. Nonetheless, the proce-

ple and straightforward. Each multiplication by 1 gets rid of an undesired
dimension and brings us closer to an answer in the desired units, We saw that an
ill‘l‘*i'*»“‘ll:\' cumplmf problem was really a simple convcrsion-of—uniis problem. In the
course of our studies and our professional careers we will have to convert units as
quickly and as easily as we now add and subtract. It will be easiest if we develop the
habit of following the two rules given at the start of Sec. 1.8, namely:

e Loy

1. Always include the dimensions with any engineering quantity you write.
2. Convert the dlr}'icnsions you have written to the dimensions you want in your
answer by multiplying or dividing by 1. :

A short table of these conversion factors can be found inside the front cover of
this text. The American Society for Testing and Materials (ASTM) [12] has prepared
a much longer and more complete table, which reveals some additional complexity.
For example, there are five different calorie definitions in common usage. The largest
is 1.002 times the smallest. Only in the most careful work is this small a difference
relevant. But if we are doing that kind of work, it is worthwhile to find, study, and

use the ASTM tables.

1.9 PRINCIPLES AND TECHNIQUES

As discussed in Sec. 1.3, there are very few underlying ideas in fluid mechanics. With

these few ideas we can solve a great variety of problems. In s0 doing, we can focus
our attention either on the application of principles or on the techniques of solving
problems. The author recommends attention to the prinf:iples. In the lOlyca}rs fol-
lowing his graduation from college, the cnginccri.ng business was rcvolut?omzed by
the digital compuler, the transistor, and the space industry, among other things. None
of these amounted t0 much in 1954, and they were not part of undergraduate courses.

All these technologies rigidly obey Ncwton.'n‘s Jaws and t}'lc laws of mem?;ig;
namics. Students who Jearned ucookbook” techniques for solving problems ]%n -
were not well prepared for the technologies that appeared dn:;mg the 1‘:::\ 0 ly:an;
but those who learned the basic p.rinciples and h;::' :\c:ea&;::thec?a ;::\; o hgologica]
s serl:ms lo‘bcul::ﬂfeug::m;f li)we c:mcentratc on leaming techniques,
change will become § ower In -
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2 S ~ = “ cal 0bS lesccm;ﬂ;; b;;;fa:;l‘:a;nel?n
may be faced in 3 felW }.s'eari ‘;:loilld havehzoreall;l lﬂ::i):l':tar.ld Newton'’s law:::;
xllg]wcs of th rmodynam!
1.10 ENG[NEERING PROBL‘:::dS a p;acticiﬂg engineer, most of its reaq.
g s bk 18 S 0 i msf;f:: o phomore years by daiy |

ers will be collcB® o e start out in theif

Engineering swde at, they selec

an d llplqg
they begini
lem to find the fin

be readily reduced to plug-ins Of to pro

ipulations to be ’
-ins an
exposed to problems that cannot be reduce(! to pll.I% lri‘SinS
and error. It is assumed that they can do simple plug
tions) without hegitation. - )
Instructors of third-year students would like to assign
ficult problems but generally cannot because:

1. The time required for them is to0 great—they can
students will devote to one homework problem.

2. The students would probably get intellectual indigestion on them. Therefore, at the
third-year level most of the problems and examples in texts like this one are plug-

ins or can be readily reduced to plug-ins.

_ Wt_len students start a senior laboratory or design course, they find their first real
engineering problems. One of these may require 10 or 20 h of work and consist of 13
or 20 parts, each comparable to the problems and examples in this book. To deal with
these problems, students break them into pieces small enough to handl.e :s plug\::\s

The interesting and exciting ineenno i
= part of engineering is oft -
divide a problem into reasonable pieces and hoi, then ig Ee‘:s:;sk of deciding how to

a recoIgnnizable whole so that they fit together properly
the examples and problems in this book ther.e

precisely what the
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al answer. In their junior ye&4i = ving two Of more equations that
_ Furthermore, they may be

in” the data in the prob.
to find problems that cap

d must be solved by trial
(such as gas-law calcula.

more complicated or dif-

not be done in the time that most

are numerous simple plug-in

§ being asked for. Provlem is;in particular, make sur

mble these pieces into
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sign. In so doing you will

: proba i
law equations. Discarding a lcmbL)’o:lr::c mddlsc
physical nature of the System (e.g th:;lp:nc: lm
By rtai

list of such terms dropped is a lis( of as

ard several terms in the physical-
making an assumption about the
tain velocity is negligible). Thus, a
sumptions made in solving the problem.

6. If the problem is one that you
calculation of a fluid-flow rate
be worthwhile to see whether
for example,

may have to repeat with different data (such as the
from a measured pressure difference), then it might
the answer can be put in a more convenient form,
Some general plot or diagram. Perhaps the problem will occur often

!:nOugh to justify programming its solution on a personal computer or entering it
in a spreadsheet program.

In alJ eng‘incering we must consider the degree of precision needed. Voltaire's
fam.ous dictum “The perfect is the enemy of the good!” describes the situation of the
engineer. We could always spend more engineering effort, and do more testing, and

thereby refine our design or our calculation a little more. But in any real problem the
engineer’s time is one of the limiting resources. We would all like the conditions that
the famous architect Kobori Enshu demanded and received from the Japanese dicta-
tor Hideyoshi for the Katsura Villa: no limit on expense, no limit on time, and no
client visits until the job is done. Many believe the result to be the greatest achieve-
ment of Japanese architecture and garden planning [13]. (If you are ever in Kyoto,
visit it and decide for yourself.) But most engineers (and other professionals) are
always working with limited time and limited budgets as well as clients who want
intermediate progress reports. For us the goal is always to do the best possible, within
the time, budget, and other constraints imposed by the' client For ches anc_l regula-
tions). So engineers must allocate their time well, handling routine things swiftly, and
concentrating on those that are not routine and tl‘la_t may be a source of trouble. Much
of what you learn in this book is routine to practicing engineets. The goal of this book
is that students not only learn to do those routine thmg&:: but also !eam the sclennﬁ_c
basis of the solution of those routine problems. In so doing, you will learn how engi-

neers and scientists have turned yesterday's difficult problems into today's routine

ones. That will help you to develop the habits of mind that will turn today’s difficult

i ' i blems.
roblems into tomorrow’s routiné pro _
. You should consider your degree of confidence in the answer to a problem. If

: than 5%,
the calculation used physical property i ﬂ:al Slsoi:c:::ur::esitgn?;c;?r;gures. If the
- nswer (o
then it makes no sense to report the a

I ionable
solution presented required really speculative calculating approaches, or questiond
input data, the reader should be alerted to that fact.
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two need to be broken
h chapter, one or ' e v s dow,
ms at the end of ;:csolved The practice gained in doing theg, i

well worth the effort.
OM
D]FFERENT FR
L W 1%5[?13%[SCHANICS BOOKS
by mechanical or civil eng;. |

i written
Most undergraduate fluid mechzfmc:es b:iz? villfl'; S hat those books an d vl v
look at one; your 1mp ; s T
:;Z tEL&;IS: different subjects. The reasons they look so different
1. The fluid mechanics problems of greatest interest to mechanical and civil engineery
(aerodynamics, flow around structures

They cannot be understood as or easily reduced to one- : . '
meegluid mechanics problems of greatest interest to chemical engineers are inher-

ently one-dimensional or can be understood and easily reduced to one-dime_:nsional
mechanical engineers start fluid mechanics as a

form. For this reason, civil and
three-dimensional study, and then derive the one-dimensional forms of greatest
interest to chemical engineers from those three-dimensional forms.

2. Mechanical and civil engineers base most of their work on force and momentum.
Those are the basic tools of the mechanical and civil engineer. Chemical engineers
base most of their work on the conservation of mass and energy; the first course
in chemical engineering is about mass and energy balances. Chemical engineers
learn about force and momentum in physics but use them much less in their pro-
fcssional careers than they use mass and energy. The single most useful equation
in fluid mechanics, Bernoulli’s equation, can be found by starting with force and
mqmentum, or with energy. Mechanical and civil engineers start with momentum
This book starts with energy. The energy approach makes much more sense to
chemical engineers than does the momentum approach.

3. * .

s s mberedy an exercte i vecon mnnap 0 il enginers, i mecan
( : r calculus. Their books are full of -
tions. Many take the view that one of the main o O PRCIDE Det

purposes of a fluid mechanics course

matics than x
other fluids books. That does Not mean that j¢ h‘aﬁs A sl e
Sacrifices rigor; complex-

ity is not rigor, or simplici
shown in append; Puclly carelessness. In many .
dices, as .
with only the Practical msu);t sh:\svrl:h ?ncg:n RS derlvatione ME
€ main text.
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CHAPTER | INTRODUCTION

Figure 1.14 ey
14 shows 3 ;

are converted to highel'-priccehf::l1 ‘al processing plant, in which lower-price chemical
P ——— Dl ore useful) icals

1 chemicals for profit and social benefit
construction, and/or operati-):;nMany S ks o

almost entirely insj of

‘ Si1s and reforming reacti
Fifty years ago these were i - -

With the recent :
spectacular ance
such furnaces are now desi p adv $ in computer power,

. gned using the two- and three-dimensional fluid mechan-
ics methods presented in Part TV. Those methods and their computer implementa-
tion were largely developed by aeronautical engineers,

to deal with the inherently

FIGURE 1.14 ex of the Chevron Phillips Chemical

i . Texas, compl e Ch Chemi
. Umi'd!l"ﬂ::sB:;':::’SI all of which are inside pipes, pumps, distillation
f fluid flows,

1s. (Courtesy of the Phillips Petroleum Company.)

The mercaptan manufacturin
Company. This plant is full 0
columns, and associated vesse
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improvement i computationy |
accuracy more ifien Tepays the
_ additional cost a.nd complcxuy_ i
M| pat v only introduces e
* basic ideas underly-mg Such |
i computations, and gives a by -
of their history. *

t
k

']
Ll

'.';_

=T

5 R

1
A

12 SUMMARY

i ¥ 0
Bd - - p
Az

I
’

study of forces and motions
in fluids.

Fluids are substances that
move continually when sub- i
jected to a shear force as |
long as the force is applied. |
Solids are substances that ‘
deform slightly when sub-
jected to a shear force and

Ir 1. Fluid mechanics is the i
i

Emm——__ T
e ——-—

FIGURE 1.15

Cutaway drawing of a modemn industrial furnace. The external
steel frame supports the high-temperature refractory ceramic
walls. There are multiple burners at the bottom, of which only

one is shown. The flame heats the walls and the pipes through
which the fluid being heated flows. Above the combustion
chamber the hot gases pass over another bank of tubes, in
which cooler fluid is warmed by the hot gases before they

pass up the exhaust stacks seen at the top. (Courtesy of John
Zinc Co. LLC))

3. Fluid mechanics is based on th

two laws of thcnnodynamics,
ments.

e principle of the con
Newton's laws of

then stop moving and per-
manently resist the force.
There are, however, inter-
mediate types of substance;
the distinction between
solid and liquid is one of
degree rather than of kind.

servation of matter, the first

motion, and careful experi-

un

- Density is magg pe
of water gt 4°C). s
T and p),
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6. Viscosity is a measure of a fluig’
resenled well by Newton's law
!dsj are generally complex mixlﬁ

5 resj Y

; Vi‘::s::pclc to flow. Most simple fluids are rep-

X -m n::). ;l'hc exceptions (non-Newtonian flu-
4 of which are of great practical signif-

10. Much of fluid ;
SrErEy, This bofg;chfz:)mcshcan. be based either on force and momentum, or on
energy, thus dealine m‘;s‘:ﬂ:T:l.Ct:l el;lgineers. bases most of fluid mechanics on

b 1th scalars i
tors are used where they are needed. instead of vectors. Momentum and vec-

PROBLEMS

e o o Wb i ool it v

App. D. n the problem number indicates that the answer is in

1.1. In ?ec. 1.3 the basic laws on which fluid mechanics rests are listed. How many of the
basic laws of natflre are not included in the list? To answer this question, make a list
of what you c-onsu:!er to be the basic laws of nature. By basic laws, we mean laws that
cannot be derived from other more basic ones; for example, Galileo's “laws of falling
bodies” can be derived form Newton's laws and are not basic.

1.2. At low pressures there is a significant difference between the densities of liquids and of
gases. For example, at 1 atm the densest gas known to the author is uranium hexafluo-
ride. which has M = 352 g / mol: its normal boiling point is 56.2°C. Calculate its den-
sity in the gas phase at 1 atm and 56.2°C, assuming that it obeys the ideal gas law. The
Jeast dense liquid known to the author is liquid hydrogen, which at its normal boiling
point, 20 K, has a density of 0.071 g/cm’. Liquid helium also has a very low density,
about 0.125 g/ cm’ (at 4 K). Excluding these remarkable materials, make a list of lig-
uids which at 1 atm can exist at densities of less than 0.5 g/ cm’. A good source of data

is The Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, annual

editions.
i illi i igh-densi ill; id (called
¥ P ] and gas drilling operations We need a high-density drilling flui
I i), T E for a mud that is 50 wt. % water, 50 wt. % BaSOy

“drilling mud”). Repeat Example 1.1
(barite), SGparie = 4-49. S
1.4. Why are specific gravities most often referred to the density of waler
0°C?
1.5.*%A special
ure liquid densities.
air, When filled with a liq
sity of this liquid? How larg? an e
was in it when we weighed it and

4°C instead of

ncnomeler, is used to meas-
17.24 g when it is full of

ry glassware, called a py
45.00 g. What is the den-

-purpose piece of laborato
ey It has a volume of 25 cc, .and ‘a mass o{

4 of unknown density, its mass =
s rror do we make if we ignore the mass 0
found m = 17.24 g?
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32  FLUID MECHANICS FOR CHEMICAL ENGINEERS

1.6. The American Petroleum Institute (API) gravity (used extensively in the petroleyp, indy,.
.6. The Ameri

try) is defined, in “degrees,” by

e TS 0
DegAFL = specific gravity AG)

Here the specific gravity is the ratio of the density gf lh; :q“i;oﬁft‘:’;;a;;f; both 4
60°F. Sketch the relation between density l.n g/cm al‘l egr ; do-t 2 antage,
of this scale might have led the petroleum industry to invent an' adop I .

L.7. Estimate the specific gravities (gas) for methane and propane. Their molecular weightg 5y,
shown inside the back cover, (Commercial natural gas and cummcrc.:lal propanc.an: mostly
methane and propane, with small amounts of other substances, which may be ignored fo,
this problem.) Which is more dangerous, a natural gas leak or a propane leak? Why?

1.8. What are the dimensions of dV/ dy? What are the dimensions of shear stress? Shear
stress in liquids is often called “momentum flux" [2]. Show that shear stress !}as the same
dimensions as momentum / (area - time). What are the dimensions of viscosity?

L.9. List as many applications as you can of industrial, domestic, or other materials in which
non-Newtonian viscosity behavior is desirable. In each case specify why this behavior is
desirable,

1.10. In Example 1.2 we replaced a cylindrical problem with a linear approximation. The veloe.
ity distribution for this flow, taking the cylindrical character into account (see Prob. 15.22

and also [2], p. 91) is :
_ (/R
o)} (5-) o

where R is the radius of the outer cylinder, r is the local radius, k = cylinder / R, and
@ is the angular velocity of the inner cylinder.
(a) Verify that this distribution shows a zero velocity at the radiug of the outer, nog-

(6) The shear rate in cylindrical coordinates, for 5 fluid whose velocity depends only on
r (equivalent to dV/ dy in rectangular coordinates) is given by

P shear rate cylindrical _ d(V
- (1.AD

coordinates 37 s

Show that for the above velocity distribution, the shear rate at the surface of the inner
cylinder is given by
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LIL Barth may be considernd A sphere w

=58 What s is masy? What iy
LI A cubwe st of water al OR") =

GEOWhAt a8 iy densiy?

mMw L Weig

l“ W hat "‘?“ weigh on the moon ®~6n/s)

() What is its density on the moon? .
LIS *How many US \ o

o W US. gallons are there in o cubic mile? Th

LS. are roughly 30 X 10° i) e total proven oil reserves of the

’ - How many cubic miles is this?
! L18 In electrochemical equations it is ¢ ,
constant) 10 remind the us ~‘tummun 10 write in the symbol % (called Faraday's

just like the force-mas “TI‘“IWIWCH from moles of electrons to coulombs. This is
JW “mass and therm BY-mec ion .
samaly, al energy-mechanical energy conversion factor,

' With o diameter of
S weight? Explain y
20°C weighs

=~B00O mi and an avernge SG of
our answer.

623 10f on earth.

P i 96,500 C
g equiv of CIB_C-I_I‘;;]; A5
I & equiv of electrons = 6.02
L17. Older thermodynamics and flui
remind us to make the fore
to make the conversion fro

1O A

X 107" electrons. How many electrons are there in 1 C?
ds textbooks not only put the symbol g, into equations to
€-mass conversion but also put a J in equations to remind us

. rom mechanical units of energy (e.g., ft - Ibf) to thermal units of
energy (e.8., Btu). Equation 1.11 shows the values of 8. = 1 for a variety of systems of

u_nits. Show the corresponding equation for J. (The use of the symbol g. caused confu-
sion because it is similar to g. Is there o symbol with which the J discussed in this prob-
lem can be confused?)

L.18.*As discussed in the text, the slug and the poundal were invented to make the conversion
factor (mass length) / (force time®) have a coefficient of 1. A new unit of length or a new
unit of ime could just as logically have been invented for this. Let us name those units
the 10of and the dnoces. What are the values of the toof and the dnoces in terms of the
foot and the second?

1.19. In U.S. irrigation practice water is measured in acre-feet, which is the volume of water that
covers an acre of land, one foot deep. What is the miass of an acre-foot of water (1 mi’ =
640 acres)? What is the mass of a hectare-meter (ha - m) of water (km? = 100 ha)? Why
would the acre-foot be a practical measure of irrigation water? ‘

1.20. Einstein's equation E = mc® indicates that the speed of light squared must be exprcssyblc
in units of energy per unit mass. What is the value of th.e square of the .:;peed of light
in Bt / Ibm? In J / kg? The speed of light ¢ = 186.000hnu /s =ﬁ 2.?98 -Ile dmﬁ! s.d o

: i et fuel systems is the specific impulse, defined as
1.21.*A common basis ;Osi?;tgag;g]br:fs of fuely and oxidizer consumed (see Chap. 7). The
of st peodees £ 400 Ibf+s/1bm. We frequently see the specific impulse
' Is 300 s the same thing as 300 Ibf s/ 1bm? European Iengi-
uantity in terms of the equivalent cxh.au:st velo?lty of
fic impulse of 300 Ibf s /1bm, what is its equivalent

common values are 250 to
referred to simply as “300 s.
neers regularly express the same q
the rocket. If a rocket has a spect
exhaust velocity?

i i ft*). In the rocket busi-
1.22. Most U.S. engineers work with heat fluxes with the unit Bt/ (h )

e comm W i %)? The
ness th it i 2) How many Btu/(hft%) is 1 cal/ (s cm”)?

on unit is cal/(scm ). . g%
p:sger SI unit is H(mz s). How many Btu/(h ft°) =1 J/(m*s)?

. : for a pipe 8s
ds number. discussed in Chap. 6, is dcﬁncg rf‘::al; wntcf;()wing
1.23.*The Rcyr:lc-ll 3 [l: dcnsi.ly) / viscosity. What is the Reynolds numbe
(velocity - diameter *

i =
10 ft / s in a pipe with 2 diameter of 6 in? What are 1ts dimensions’
at s in
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FOR CHEMICAL ENGINEERS

34 FLUID MECHANICS
h as oil sands) is often described by Da’t.‘y'
1

ia (suc
1.24. The flow of fuids through porous media (
equation (sce Chap. 11): |
Flow permeability ure gradient
Flow = _————press

Arca  viscosity

the darcy, whic

The unit of permeability is Auid of
pressure gradient of 1 atm/em fOr £ L Gong of the darcy? What i its numeriy

area of 1 cm?. What are the d . ) 2 ) -
through ‘:;: dimension? Give the answer both in English units an'd in SI units,
gyt - ple 1.3 if the liquid had been water)

1.25.#*What mass (weight?) would be needed in Exam
equation,

(‘-AL}

h is defined as that permeability for which
| cP viscosity produces a flow of | em?) |

1.26. Determine the value of X in the
Btu cal a
——==X"TC AM)
k2 Ibm - °F g-°C

the Pascal (Pa). The most widely used deriveq

re is
MPa). What is the relation between the bar and the

1.27. In strict SI, the only unit of pressu
lar choice for a working

unit is the bar (bar = 10° Pa = 0.1 :
pressure of the atmosphere at sea level? Why is the bar a popu
SI derived unit? ' .

s and trucks in the United States are reported in a mixed

1.Z8.*Air poiiutant emissions trom auto Aanib ; -
metric-English unit, g / mi. Suggest reasons why this might be a practical unit.

1.29. Many European pressure gauges give the pressure in kg / cm®. Is this kgm or kgf? Why
would this be a convenient unit of pressure?

1.30. In the third part of Example 1.6, what would have happened if we had taken the force-
mass conversion factor as 32.2 Ibm - ft/ (Ibf - s°) instead of 9.8 kgm - m / (kgf - 5%)?

REFERENCES FOR CHAPTER 1

. Reiner, M. “The Flow of Matter.” Scientific American 201(6), (1959), pp. 122—-138.
Bird, R. B., E. N. Stewart, and W. E. Lightfoot, Transport Phenomena, 2nd ed. New York: Wiley,

2002.

Poling, B. E., J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed.,

New York: McGraw-Hill, 2001.

4. Schneirla, T. C., and G. Piel, “The Army Ant." Scientific American 178(6), (1948), pp. 16-23.

5. Boys, C. V. Soap Bubbles and the Forces Which Mould Them, paperback ed., Garden City, New
York: Doubleday, 1959. First published 1902. This interesting, informative, semitechnical book is
highly recommended. Reading time, about 3 h.

6. Davies, J. T, and E. K. Rideal, Interfacial Phenomena, 2nd ed. New York: Academic Press, 1963.
IioozgznAAcSadf::::;f;flfgrﬁfn Introductory Vector Treatment of Finite-Strain Polymer Rheology.

8. K'aschiev. D. Nucleation; Basic Theory with Applications. Oxford: Butterworth Heinemann, 2000.
Zimmerman, M. H. “How Sap Moves in Trees.” Scientific American 208{3). (1963), pp. 13.3-142.

de Nevers, N. “The Poundal per Square Foot, the Pascal and SI Units." Engineering Education

78(2), (1987), p. 137.
Pollack, A. “Missing What Didn't Add Up, NASA Subtracted an Orbiter." New York Times (Oct. 1,

1999), Section A, p. 1.
12. ASTM, Metric Practice Guide, ASTM Publication # E 380-97¢, Philadelphia, PA: ASTM. 1997.

13. Leavin, R. “Kyoto” in Fodor' :
Modem Guides, Inc., 1982. r's Japan and Korea, 1982, edited by A. Tucker. New York: Fodor's

L.

Scanned by CamScanner



4 T

Scannea ny camascanner

e 5

CHAPTER

2

FLUID STATICS

In this chapter we apply Newton's law of motion, F = ma, to fluids at rest. We will
see that this leads to a remarkably simple equation:

a _ _ 2.1)
dz pé @

This equation and its applications are almost the whole of fluid statics.

In Chap. 7 we will apply Newton's law of motion to moving fluids. This chap-
ter is really only part of the more general application made in Chap. 7. In Chaps. 5,
and 6, however, we will need some of the results from this chapter, and the kinds of
problem we deal with here are different from (and simpler than) those in Chap. 7; for
these reasons a separate chapter on fluid statics is practical at this point. Remember
that all we do in this chapter is apply F = matoa static fluid; the more general appli-
cations, covering both moving and static fluids, are discussed in Chap. 7.

In the most careful work, we would write Eq. 2.1 as a vector equation, because
the acceleration of gravity has both magnitude and direction, as does the gradient of
the pressure. We will see that this chapter can be developed, to give all the correct
and useful results, without using vector calculus. But remember than any application
of Newton's law of motion is a vector application. We will say more about that in the
introduction to Chap. 7, where we consider the classes of problems in which we must
use the vector nature of forces and of momentum, and again in Chap. 15, where we
reintroduce Newton's law in three-dimensional vector calculus form.

37
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CS . same in all directions. This i::lca seen,
¢ the pressure 1S T il spring between YOur fiump o,
ss 4 sm nd forefinger, but in OPposiy

hard for students. 9 e same e rts equal forces in two ¢
forefinger. The spring cxenjrt:and any way, it still etxeThm are no shear stresge, i
directions. If you rotate 3; ressures in fluids at res ifﬂuid statics. Consider a smy
site directions. So also WlI 1:{ o the basic equation © s a gravity BV see s
a fluid at rest. These facts Bfa ass of fluid at rest N he sum of the forces u&
i t is part O tions, an ; . n
block of fluid that 5 P t, there are no acceleratl the z direction, opposit,

. id is at res ) onsider :
21 Sm‘-‘;fﬂtl;eﬂ;;id in any direction is Zero- Lftol::s tr;‘ o all block of fluid in the
:1: ymiaﬁhtcﬁon of gravity. The forces that a::d on the *nd the force of gravity 1,

. i es on the top and © : .
direction ar the presiurs D Their sum (positive upward) 18

. id at res
ea il ﬂmdS?Jpposc you com

i L.
ing on the mass of the elemen _
(Pz=0) Ax Ay — (P:-=Az) Ax Ay — p8 Ax Ay Az=0 (22)
Dividing by Axr Ay Az and rearranging, we find
(23)

Pz=dx - P:=U
= —p8
Az -

If we now let Az approach zero, then
. . AP _dP _ | 2.
i ar d P8 @b
This is the basic equation of fluid statics, also called the barometric equation. It is
correct only if there are no shear stresses on the vertical faces of the cube in Fig. 2.1.
If there are such shear stresses, then they may have a component in the vertical direc-
tion, which must be added into the sum of forces in Eq. 2.2. For simple Newtonian
fluids, shear stresses in the vertical directions can exist only if the fluid has a differ-
ent vertical velocity on one side of the cube from that on the other (see Eq. 1.4). Thus,
Eq: 2.1is correct if the fluid is not moving at all, which is the case in fluid statics;
or if it is moving but only in the x and y directions; or if it has a uniform velocity in
the z direction. In this chapter we will apply it only when a fluid has no motion rel
ative 1o its container or to some set of fixed coordinates. In later chapters we will

=0
Direction
Ay Ofgravil:y

FIGURE 2.1
A small cube of fuid at reg;.



CHAPTER 2 FLUID STATICS 39

apply it to flows in which there is no motion in the z direction or there is a motion
with a uniform z component. We will also describe nonmoving fluids in accelerated
motion in this chapter.

For complicated fluids, such as toothpaste, paints, and jellies, Eq. 2.1 is not cor-
rect, because these fluids can sustain small but finite shear stresses without any
motion. The equation simply is not applicable. To find its equivalent, it is necessary
to make up a sum of forces that includes shear forces on the vertical sides of the cube.

The barometric equation describes the change in pressure with distance upward,
where “upward” is opposite to the direction of gravity, called z. (The minus sign
appears in Eq. 2.1 because gravity points in the minus 2 dlrccnon.) If we want to

know the change of pressure with distance in some other, nonvertical direction, call
it direction a, then we can write

dP dz dP dz _
o .. O ...} 4
da da d" ] da Sl
But, as shown in Fig. 2.2,
d: Az
= e 25
1o - A cos 6 (2.5)

where 6 is the angle between the direction a and the z axis. Substituting this equa-
tion into Eq. 2.4, we have

dz Az dP
e T cos 6 or s —pg cos 6 (2.6)

A particularly interesting direction a is the one at right angles to z, that is, any
direction parallel to the x-y plane. For that direction 8 is 90°, cos 6 is 0, and the pres-
sure does not change with distance. Thus, from Eq. 2.6 we see that for a fluid at rest
any surface that is perpendicular to the direction of gravity is a surface of constant
pressure. The most interesting constant-pressure surface of a body of fluid at rest is
the one with zero gauge pressure, that is, the surface in contact with the atmosphere.
Since this is a constant-pressure surface, it must be everywhere perpendicular to the
direction of gravity. On a global scale this makes the free surface of the oceans prac-
tically a sphere. (The earth is not quite spherical, being slightly flattened at the poles.)
In typical engineering operations it means that the free sur-
face of a liquid exposed to the atmosphere is practically a hor-
F izontal plane (Prob. 2.1).

The product of density and gravity, which appears in
Eq. 2.1, is often called the specific weight, and is given the
symbol y:

pg = v = specific weight (2.7)

At any place where lhe acceleration of gravity is equal to
32.2 ft /s> = 9.81 m/s” (practically any place on the surface of

the earth), the specific weight cxprcssed in Ibf / ft* (or kgf / m’ g
e the densit d in Ibf/ft
Relations between the @~ 15 numencally equal to the cns: y expressed in
and : directions. (or kgf /m’ ) The value in N/ m? is numerically different.
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the 5pecl
Calculate ,
Example 20 - iy is 32 R/ bfs’ _ — 623
accelera 5 —19_2_1- 322 ;5 '32.21bm " ft ft
y=p8~ " ft
(2.4
kef _ 9792 — ’
= 998.2 o m K

h the forces of gravity are dop,

o h . ing the density in all eq,.
If one deals pnncrpﬂill:rp;:y the calculations .bY_ regz.‘:nalgly the case, and lh?su?s

inant, then on¢ oflcr! c'ilnc:gineﬁ ring hydrauliCS this lsostl)’ with flows whose graVity

tions by y/ g In ciVi ther hand, if one gEpleaai ore convenient to w

common practice. On the o i the other terms, then it 1s m avity terms ork

terms a:; smﬂ!lhcor?gar;: ;lcmical engineering problems the gravity are nor-

ith an with Y/ §- g ed.
:L "yﬂsma“. so the specific weight is seldom US

2.2 PRESSURE-DEPTH RELATIONSHIPS
order differential equation that can be separated and

quid flows in Whic

Equation 2.1 is a separable, first-
integrated as follows:
s | f dp = —| pgdz 2.8)

However, to perform the integration, it is necessary to have- some relation between
p, & and z In situations on the surface of the earth g 1s prachcglly consfant (see Sec.
2.8), so we may take it outside the integral sign. Several possible relations between
p and z lead to simple integrations of the equation, as shown in the following material.

2.2.1 Constant-Density Fluids

No real substances have constant density; the density of all substances increases as
the pressure increases. However, for most liquids at temperatures far below their crit-
ical temperatures, the effect of pressure on density is very small. For example, rais-
ing the pressure of water at 100°F from 1 to 1000 psia while holding the temperature
constant causes the density to increase by 0.3%. In most engineering calculations we
can neglect such small changes in density. Then we can take p outside the integral
sign in Eq. 2.8 and find that the pressure change is P g

P, =Py=—pg(zy ~2,) [constant density] 29)

Seawater may be : :
(1024 kg / m’). Th ‘ifs considered Incompress;

o ¥ 5 IBE
Piooor = 14.7 ;5 + 63.9 _ll?:l%n_ 322 ft 1000 ¢ ft2 lbhz
t s! . g
144 in? .
=147 0f | L i 44in* 32.2Ibm - fi
in? T3 =459 — :
" in? @2.B)

Joualiticu lJ_y walilirovalilivcl
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or
k 8
Prsom = 101.3KkPa + 1024 -5 981 23049 m - —— - N
m° g N/m- kg'm
= (101.3 + 3062.8) kPa = 3.164 MPa 20

In hydraulics problems and in all problems involving a free surface exposed o
the atmosphere, we can further simplify Eq. 2.9 by working in gauge pressure. The
gauge pressure is zero at the free surface: Py goge = 0. We now define the depth as
the distance measured downward from the free surface and give it the symbol A,

h = Zfree surface — < (210)
in which case Eq. 2.9 simplifies to
P = pgh [eauge pressure, constant density] (2.11)

In Example 2.2, at h = 1000 ft the gauge pressure is P = 444 psig = 3062.8 kPa,
gauge.

Example 2.3. A cylindrical oil-storage tank is 60 ft deep and contains an oil

of density 55 Ibm / ft’. Its top is open to the atmosphere. What is the gauge-
pressure-depth relation in this tank?

The gauge pressure is zero at the free surface. At the bottom it is

Ibm ft f 1bf - 5 1bf
{ Pponom = 35 —3-°32.2—+ 60 ft- ¥ =229— =158kPa (2
¢ s ft* o 144 in®> 32.2 Jbm - ft A e R &)
From Eq. 2.11 we know that the pressure-depth relation is linear; see Fig. 2.3.

| |
2.2.2 Ideal Gases

1 The density of gases changes significantly with pressure changes, so we must be cau-
tious about taking the density outside the integral sign in Eq. 2.8. At low pressure the
densities of most gases are well approximated by the ideal gas law,

[ideal gas] (2.12)

Surfac . ”
o o Here T is the absolute temperature, in ® Rank-

ine or in Kelvins (T°R = T°F + 459.69,
or TK = T°C + 273.15); R is the universal
gas constant, whose value in various systems
of units is shown on the inside back cover;
M is the molecular weight, normally
expressed in g/mol or lbm/ Ibmol. [This
formulation of the ideal gas law gives the
density in units of Ibm / ft*. In chemistry one
FIGURE 2.3 often sees the ‘ideal gas law writl'en as
Pressure-depth relation in Example 2.3. p= P/RT, which gives the density in

L Botiom of tank
60 ——i

0 229
Gauge pressure, psig

41
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r at a place where
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fi
te the spect
Example 2.1 Cal'cul?s 2.2 875 » o
acceleration of gravity ft Ibf - s = 62.3 -ft?
- pg = 62.3_1%5'!‘. 3223 3221bm - ft
y =
N (2.4
kgf _ 8.0 )
_ 99820 = 919275
[ |
. . forces of gravity are dop,
. . : ws in which the : ey g
If one deals principally ¥ith ﬂmc;lﬂﬂlc:lations by replacing the density in all equy,
lify the caC rmally the case, and this jg

inant, then one often can simp : s this is nO
g hydraulics tly with flows whose grayity

tions by y/ g. In civil engineerin ) mos

commo)r; practice. On the other haﬂd-th'f o;;;i: al;u:n it is more convenient to wor
ared with the other 7= == ity terms ar

::;'rﬂrllspatr;a;mjghczﬂ/ll:; In chemical engineering problems e B = D

mally small, so the specific weight is seldom used.

_DEPTH RELATIONSHIPS

2.2 PRESSURE
al equation that can be separated and

Equation 2.1 is a separable, first-order differenti

integrated as follows:
- f dap = —| pg dz (=8)

However, to perform the integration, it is necessary o, have: some relation between
p, g, and z. In situations on the surface of the earth g is practically constant (see Sec.
2.8), so we may take it outside the integral sign. Several possible relations between
p and z lead to simple integrations of the equation, as shown in the following material.

2.2.1 Constant-Density Fluids

No real substances have constant density; the density of all substances increases as
the pressure increases. However, for most liquids at temperatures far below their crit-
ical temperatures, the effect of pressure on density is very small. For example, rais-
ing the pressure of water at 100°F from 1 to 1000 psia while holding the temperature
constant causes the density to increase by 0.3%. In most engineering calculations we
can neglect such small changes in density. Then we can take p outside the integral

sign in Eq. 2.8 and find that the pressure change is

P, — P, = —pg(z; — z1)  [constant density] (2.9)

Examp!e 2.2. ‘ When the submarine Thresher sank in the Atlantic in 1963, it
was estimated in the newspapers that the accident had occurred at a depth of

1000 ft (304.9 m). What is the pressure of the sea a
: _ t that depth?
Seawater may be considered incompressible, with dcnI;ity 63.9 Ibm/ ft’

(1024 kg / m®). Thus
Ibf 5
P|000n=14.7,-11—2—4-63.9!—'2‘?—'32.22'1000&. ft lbt}z
:bf fi s> 144 in> 322 1bm" ft
= 1bf Ibf :
14.7 — + 444 — ~ 459 0L
in2 4d4 in2 459 inz ‘ (2B)
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or

Pios9m = 101.3 kPa + 10245%-9,813-3049m Pa N-s*
2 . ’ 2’
2 § N/m* kg'm
2.0)
|

= (101.3 + 3062.8) kPa = 3.164 MPa

In hydraulics problems and in al)

the atmosphere, problems involving a free surface exposed to

we can fu impli
e rther simplify Eq. 2.9 by working in gauge pressure. The
at the free surface: P| ;5 = 0. We now define the depth as

the dist
e distance measured downward from the free surface and give it the symbol h,
h =

. . Zfree surface — 2 (210)
in which case Eq. 2.9 simplifies to

P = pgh  [gauge pressure, constant density] (2.11)

In Example 2.2, at h = 100 ) .
gauge. O ft the gauge pressure is P = 444 psig = 3062.8 kPa,

Example 2.3. A cylindrical oil-storage tank is 60 ft deep and contains an oil

of density 55 1bm/ft’. Its top is open to the atmosphere. What is the gauge-
pressure- /eP_tH'relaLioi:l in this tank?

The gauge pressure is zero at the free surface. At the bottom it is
lbm ft ft? Ibf - s Ibf
P =55—7F"322—-60ft- . = — =
bottom f[3 52 144 in2 32.2_“)[11 -t 229 in:_, 158 kPa (2D)

From Eq. 2.11 we know that the pressure-depth relation is linear; see Fig. 2.3.
| |

2.2.2 Ideal Gases

The density of gases changes significantly with pressure changes, so we must be cau-
tious about taking the density outside the integral sign in Eq. 2.8. At low pressure the
densities of most gases are well approximated by the ideal gas law,

[ideal gas]  (2.12)

0 NSurface Here T is the absolute temperature, in ° Rank-

p ine or in Kelvins (T°R = T°F + 459.69,
£ or TK = T°C + 273.15); R is the universal
E gas constant, whose value in various systems
of units is shown on the inside back cover;
M is the molecular weight, normally

% Botomof ank o essed in g/ mol or lbm /Ibmol. [This

0 23 formulation of the ideal gas law gives the

Gauge pressure. psié density in units of Ibm/ ft°. In chemistry one

FIGU often sees the ideal gas law written as

- = i i density in
Pressure-depth relation in Example 23. p= P/ RT, which gives the density
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3 Multiply ;,f,._f.uy. ’hﬁw:—:':;. 2.1, we

/m Vi &
ibmol / ft* ©F l.nc‘lmol) gives the ¢ density !

the
Ibmol of & 12 for .
Ibm /108 sating B4 2 1 M (ideal 825) Qy
— Ty am[cd and ,-mcgrawd as fO“OWs_—
ant, th1 can be 5P
If the te mperature is cons ; {2.14*
2ap _ Z8M | dz
—_— = I
P RL (215,
Py _ _-_*__g,__(zz - 21)
In "’T -~ RT :
| ﬂfj) fisothermal, ideal gas] 216
P, =P CXP( RT

ospheric pressure is 14.7 psia and the ten,.
e atm the temperature doeg ny

Example 2.4. e — §]9°R. Assnming that mpet
s9°F = 15°C 1 umption, but one that simplifies the mathe.

-\ , perature is i ass
ﬁ’“’ ) W (a PO~ d in a few pages), calculate the pressure z

: xamine
matics and that WIuogem;EEfL Forz = 1000 ft, we find

—32.2&!52'291bm!lbmol-lOOOft- i Ibf,sz-)
fg = 0sE ((10.73 7 0/ Tomol -°R)-519°R 144in” 32.21bm-f

P __ P _ 965am )

= P, exp(—0.03616) = 6 03616 1.0368

We can calculate the pressures at the other two elevations and show them, along
with the results from the next example, in Table Z:1: ]

How much error would we have made if we had used the constant-density formulae
instead of taking the change in density into account?

Ex'ample' 2.5. Rework Example 2.4, assuming that air is a constant-density
fiuid, which has the same density at all elevations as it has at 14.7 psia and 59°F.
Here we use Eq. 2.9:

T ﬁ' = ~Piglz2 ~ 2)) = (~P,M/RT)g(z, — 71) 2P
2= Pi[1 = (gM/RT)(z, - D) (2.6)
TABLE 2.1
Calculated atmospheric
Pressures for Exam
ples 2.4
— and 2.5 R
S Elevation, ¢, m P Py, st
EM Az/RT 4. ple 15
o Example 2.4 Example
3048
10,000
100,000 3;'043 gfggféﬁ 0.963 : 9?;
*.Lso-\_i'ﬁlﬁ 2.3297 'gz-;
69 -
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For 1000 feet we find

(1073166 /in® - 1"/ tomol - °R) - $19°R 144 in®  32.2 Tom - ft
w P11 = 0.03616) = 0.964 aun (2.H)

This value, plus the corres - ,
in Table 2.]-[’ orresponding ones for 10,000 and 100,000 ft, are shOw:

2 2
Py = P, '(l 3-._2 ft/s __'__20 ll)nl_{_ll?lnF)] ;‘]‘(_}{]U ft fr2 Ibf - 2 )

PO Tle 2.1 we s hat 0 1000 L he ssumpion of consant density
‘ Tror, 000 ft it makes a 9% error, and at 100,000 ft it gives
absurd results (negative absolute pressure in a gas??). Thus, for ordinary industri
sized equipment (generally less ety ' ISy Ipdauinkls
: _ ¥ y less than 1000 ft high) one can accurately calculate
changes 1n gas pressure with elevation as if the gas had a constant density. On the
other hand, in acronautics and meteorological problems, in which the elevations are
often from 10,000 to 100,000 ft, this simplification leads to disastrous errors.
In Examples 2.4 and 2.5 we made the simplifying assumption that the atmo-
sphere was isothermal. Anyone who has gone (o the mountains in the summer to get
out of the heat did so because the atmosphere is not isothermal. To understand why
the air temperature decreases with elevation, consider a mass of air being lifted from
one elevation to a higher one (by a wind, for example, blowing it over a mountain
range). The air mass expands because the pressure of the surrounding air decreases as
it rises. The air mass is cooled because as it expands it does expansion work on the
surrounding air. Air is a fairly poor conductor of heat, so during this process the ris- (
ing air undergoes an expansion that is close 10 adiabatic and close to reversible. If it
were exactly reversible and adiabatic, then the temperature-pressure-elevation relation
would be exactly the isentropic one. For an isentropic atmosphere one can work out ¥ ,'Pl

the following elevation-temperature and elevation-pressure relationships (Prob. 2.16): <
k=1 gMAz)““‘“" . o
y = -~ . isentropic, ideal gas] 2.17)
Py = F; 1(1 ! RT, [ P g
k=1 gMAZ) . .
= — . [isentropic, ideal gas] (2.18)

Here k is the ratio of specific heats (discussed in Chap. 8); for air its value is practi-
t 1.4.
- ?I?l:: tias:.lolt}?t:rmal atmosphere in Examples 2.4 and 2.5 would_ be obscrv'ed if air
were a perfect conductor of heat, evening out all temperature dlffe:reqces instantly.
The isentropic atmosphere in Egs. 2.17 and 2.1§ would be observed if air were per-
fect insulator against heat conduction, transferring no hgat_ at all. E.xpenmental mea-
surements show that the real behavior of the atmosphere 15 intermediate }:etween these
two extremes. Heat is conducted outward from lht? earth not onl.y by s1mp:‘c conduc-
tion in the air (which is fairly slow) but also by wm_ds, which mix colcll: an a‘rcﬁ:ﬁzl;
layers, and by condensation of water vapor a“f’ by infr areddr;dla:on-“ﬁz;;ard atmo-
purposes meteorologists and aeronautical engincers have defined a  wihls
- I with the average of many obstatnons over the .

sphere,” which agrees We . Fig. 2.4, this standard atmosphere i$
planet and all seasons of the year. As shown 1 FIg- <%
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FIGURE 24

Comparison of standard atmosphere, isentropic atmosphere, and isothermal atmosphere.

indeed intermediate between the isothermal and isentropic atmospheres. It is an aver-
age; most interesting weather phenomena are caused by deviations from it. For a sim-
ple d]scuss;jmnlnf this see ([1], Chap. 5). From the standard-atmosphere temperature
one may calculate a “standard” pressure-height curve (Prob. 2.17). Tables showing al
the properties of the standard atmosphere are found in handboolzs [2].

2.3 PRESSURE FORCES ON SURFACES

e A i




T

Phis dF s veoton UARELY W his im0

nitude, Por w plane surface Al the ‘h"r:amm (

no that we can find the o1, force sy ’;'mlml
"y hy

e
Perpendic ulang e the surfac £) and mag-

Al ve '
- Ve l_un peint in the sarne direction,
megrating (his ELjiation

ik j!':M (2.20)

To calculate pressure lotces on curved sirfy
i

b i ] € H
dF i B 209 0010 itn 1 und Y o bowe notmially resolve the infinitesimal
shown in most ¢ivil and me Han lhlmurnln and integrate those, That calculation is
) ical e ey
ple. Reference 3 (Chap, 2) neineering Nuid mechanics textbooks, for exam-

If the HERKUIE Oy i
I WEr an entyre Il'llllll'! wurface I constant, then Eq 2.20 becomes
"' - PA 2 2
Becaune the stat [ (M . l,
y 1€ slalic pressure in piskes ¢l
1 & Gl . i J [
“tu”' e s g mnges very Ill’lle with Blt\l’ﬂ"flﬂ, this s prac-

tisly S dor rale zed flat surfaces exposed to gases, independent of the
: © surfuce, The same is not true for lhquids

or hort :
b i 'z”_'"”" plane ulurfm.cu exposed 10 static liquids the pressure is constant
over the entire surface, so Eq. 2.21 gives the required force.

lconstant pressure, plane surface)

P;xnmplc 2.6. An oil-storage tank has a fat, horizontal, circular roof 120 ft in
diameter. What force does the atmosphere exert on the roof?

, Ibf = in?
F = PA = 14.75137(120 ft)? - |44%:; = 239107 Ibf = 1065 MN (2.1)

The roof of the storage tank can withstand this startlingly large downward
force because the gas or air inside it exerts an equal upward force, so the net force
due to the pressure of the atmosphere and the pressure of the gas inside the tank is
zero. Since these forces ordinarily cancel out of force calculations, it is customary
1o make such calculation in gauge pressure, whenever both sides of the surface are
subjected to the pressure of the atmosphere in addition to the gauge pressure of
the liquid. Such tanks normally are vented to the .an_'nosphere,'to prevent _havmg a
gauge pressure or a vacuum in the tank (which it is not designed to withstand).
Often the vent will have a vapor conservation valve, which prevents the tank from

“breathing” in and out with small changes of atmospheric pressure or of the tem-
perature of the tank contents; such valves are normally set to open for an internal
pressure of vacuum of less than *0.] psig. !f for_ some reason that vent ;sldoi;d
(e.g., blocked by ice in a storm), then pumping liquid into the ‘a';k ;a“ ﬂ:i g: likf:
tank outward, and pumping liguid out can collapsc‘ the lanlf inward. | or .

. . ionificant air pollution emission (1], which
gasoline this tank breathing can be a S18

must be controlled.

i i llects on the roof of the oil-
er of rain water 8 in deep €O !
ﬁz:::r l;:lg;;f gxlﬁplc 2.6. What net pressure force does it exert on the roof

of the tank?
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4
bl
l'll‘“‘ ’ n “ " l 7 r
lhm 2.2 1 12 122 1bm N
’u - ’l&'h - ﬂ-' l “' N
g II"' » IIUHU kl'n ‘2],
in’

107 IbE = 3.24 MN
(120 (1)} = 470" (2K

Il NN
= ().
- 413
Sy

Il

‘- PA =413 p
I PA i 1 8

he same answer by asking what the weigh Wof
the

We could have found cantIy
the liquid on the roof was that 18, ) .

P
8 s 1.62.3 Ibr 12.2 Ibf -
W= mg = Vpg = 12 ft 4 (120 fv) ) "

l — .
2 32.21bm - fr

21,
= 4.70 - 10 Ibf = 3.24 MN

. - This is typical of fluid-statics problems involvin
l:ﬂ::m:;:iu‘:;;l::f .';‘Ji;étc\vllqll‘lciﬂ;adr?r: lms)ichunti.un of ﬂl.lld. s(:u:.;s ‘::“czns:!eru;g
the weight of the fluid, we could work this kind of prublcm._jl:: w;wId colls; ;'“Ph)‘
considering the weight of the fluid involved. Th'ls large a weig . pse the
roof of an ordinary tank and of some other light-duty structures; proper rainfall
dmnaggrni;r::sg:t :?a:;:e surfaces the pressure is not constant over the whole surface.
Therefore, Eq. 2.20 must be used to find the force, and in general we cannot take the
pressure outside the integral sign.

alﬁple 2.8. The lock gate of a canal (Fig. 2.5) is rectangular, 20 m wide
and 10 m high. One side s exposed to the atmosphere, the other side to water

whose top surface is level with the top of the lock gate. What is the net force
on the lock gate?

= Puym. Thus, the force exerted on the back of the

Pressure of atmosphere on water

1 1 1 JTLockgnte

™~

_ Water
Pressure Idt‘ ﬂiu'd
onfrontofgate / — ™ [*—— | Pressure of
: — atmosphere x
~————of [« | Onbackof gate
"'J'—"‘-————._
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Fovsier = fP = f
ate dA (Pam + pgh)dA = P, A + pgfhW dh

2710
= PumA + pgW I_‘_.] "

2 ), 2.M)
The net force in the x direction is

- L pETom
et water Fmr = Pnth + Pgw_i]n = PymA (2.N)

The two atmospheric pressure terms cancel each other, and

k 27Th=10m
Fncl“_'998.2__%'9.8122'20“1.;1:\ 'N'Sz
m S

h=0 kg ‘m
= 9.80 MN = 2.20- 10° Ibf

(2.0)
L]

In this problem—and in all others in which a liquid, open to the atmosphere,
acts on one side of a surface and the atmosphere acts on the opposite side—the effect
of the atmospheric pressure cancels. Thus, such problems can be worked most easily
by using gauge pressure. If it had been used in this problem, it would have given
exactly the result just shown.

In the next section (and some other problems of practical interest) we want to
know the x or y components of the pressure force on some surface that is curved, or
that is flat but not perpendicular to the x or y axis. The basic procedure is to write

x—component) ; ;
dF, = = sinf-dF = sin 6 PdA 2.22
¥ (of dF e

and

dF. = (y-component) = —cos §dF = —cos6'PdA (2.23)
! of dF

where 6 is the angle between the normal to the surface and the vcnical_. If P is con-
stant, then the x or y components of the pressure force are equal to P times the pro-
jected area of the surface in the x ory direction.

2.4 PRESSURE VESSELS AND PIPING

Figure 2.6 shows part of an oil refinery “tank farm.” Three different types of s.tc:;age
vessels a-re shown. The largest are cylindrical with vern{cal axes and Tf:lat sbc;:;?:l. m;;z
WE UsSC tar llQUldS Sloer . approximmdy ?uﬁosﬂ:;;eirc::g;;mia?lypabove atmo-
a liquids (and rarely gases) at P : : ;

s;; el;issd Tt]:)e 5::;:&8 :l_ shaped tanks (horizontal cyhlnders with hen;;ih::;iacleezgx :er;
also us;ad to store liquids (and rarely gases) at high pressures.

W\

T

\\
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URE 2.6 .
::.l'(l; of an 2oil refinery “tank farm" showing 24 flat-bottomed atmospheric pressure storage tanks, 7

high-pressure spherical storage tanks, and 24 high-pressure sausage-shaped storage tanks. [Courtesy
of Chicago Bridge and Iron Company (CB&I).]

these three types of tank is based on economics, which is mostly .drivcn by the'ueces,
sity to make them strong enough to resist the pressure of the fluid they contain.
Returning to the oil-storage tank in Example 2.3 and Fig. 2.3, we can ask, how
thick do the walls of the tank have to be to contain the fluid inside? Figure 2.7 shows g
atmospheric-pressure, flat-bottomed tank like those shown in Fig. 2.6. Part (a) shows the
whole tank, which is a cylindrical shell with a flat bottom and which rests on a concrete
or gravel foundation. The tank has a lightweight roof (either flat or domed in Fig. 2.6)

Cylindrical
tank

(a) Tensile force = otdz
(b)
FIGURE 2.7
(@) A cylindrical g med y
on half of the hodmnmm:tc:h:h“::vgin; e o slce used

i art (b),
lhelemlefm'ceinthemopi part (b). (b) A force

Pressure force ip the x direcy;
eces ! i oo
of the tank's shell, which resists this pressl::tz‘ﬁc.emd
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i s lm'wsua horizontal slice (like one pancake in a stack) and part (b) shows
that s 1c: €% mFr;:]:a Y, (like a half Pancake). Part (b) shows both the steel shell of the
"“k'a:c 0se Thickness 1s exaggerated for clarity, and the liquid that is within the “half
pancake.

Making a force balance in the x direction on i :
the
see that the pressure force on the liquid surface E-F- piece shown on Fig. 2.7(b), we

; ‘ . G-H acts in the positive x direction,
wm'le tl'.le tensile forges in the EWD cut pieces of the shell of the tank act in the negative
x direction. The liquid shown in the tank section in part (b) exerts a force radially out-
ward over the part of the tank it contacts, but we are only interested in the x compo-
nent of that force, which is equal to the x compo

fuid ihe : nent of the force that the rest of the
uid exerts on this segment of fluid. We do not bother with forces in the y or z directions,

because they do nql concem' us k_lere. If the tank is not in the act of rupturing, then the
sum of the forces in the x direction (or any other) must be zero, so we may write

P-D-Az= 20 ensile " Az t (2.24)
where O tensile is the t'ensile stress in the shell, P is the gauge pressure, also assumed
to be uniform, and ¢ is the thickness of the metal shell. Now we make the thin-walled

assumpn:on tha_t Tensile 1S uniform over the wall thickness (see below). Solving for
the required thickness of the shell, we find

PD
= [cylindrical, thin-walled assumption) (2.25)
T tensile

The tensile stress in Eq. 2.25 is resisted by the external metal hoops in barrels and in
wooden water tanks; it is normally called the hoop stress.

%mple 2.9. If the design tensile stress (normally § of the stress at rupture)
of the tank wall is 20,000 psia, how thick must the shell of the tank in Exam-

ple 2.3 be at the bottom of the tank? The diameter of the tank is 120 ft.
Substituting directly into Eq. 2.25, we write
(22.9 1bf / in?) - 120 ft

> - 20.000 1bf /12 = 0.0688 ft = 0.825 in = 2.10 cm (2.P)
' ¥ 1n

From this example, we see that this large a tank requires a fairly thick wall. We
also see from Fig. 2.3 that the gauge pressure falls to zero at the top, so the thick-
ness required to resist the internal pressure has a triangular shape, thick at the bot-
tom, zero at the top. As a practical matter we cannot have a zero thickness at the
top—that would be impossible to build, would not support the roof of the tank, and
would not resist wind and seismic forces. But such tanks are actually made up by
welding (or bolting) together prefabricated curved plates, the thickness of which
decreases from bottom to top (Prob. 2.28). -

The actual design of this type of tank [4] adds a corrosion allowanr_:e to the
thickness calculated in Eq. 2.25 and uses practically the thickness cox:nputed in Exam-
ple 2.9 (adequate to resist pressure forces). at the bottom, but a thxcknt?ss based on
wind and seismic forces at the top. Equation 2.25 (and the corresponding equation
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in-walled vessel .
akes the ‘hlﬂ Wﬂ[ asSUm
bclowge?uircd wall thicknesses become ]argeh:'l Fo
the comes inaccurate, and one must use thick.,,
(5). If /p > 0.25 one should use sycp, o a
here 19):

2 Is, as are extr
ns, not shown e mlck-wa"ed vesse emely 1.
arms are “omnll,lysz and Table 2.2). Y hig,

ers shown

¢ 3000 psi_a

umption

for spherical contain
pressures above abou 5
that this uniform-stress &

vessel equatio

pressure chemical reactors (sce,mk shown in Fig. 2.6 (spherical and s‘fusagc-shm
The other two types of ¢ fAuids with pressures much higher thag !

: tain
are pressure vessels designed 0 ;ozn 9). They are not vented to the atmospher, Th
and 2. 6 are the standard storage tanks for pro

. 2.3
due to gravity (Examples &2 * % Fig. 2. '
sausage-shaped tanks (0 the right in F18 alysis of the required shell thickgegs fa

ig. The an ) : .
with a design pressure ;fl 2537P5;ﬁ this case the cylinder is horizontal, so the h
them is thebs amina?su;reai;r ihnn the pressure at the top. However, these tang, n
sure at the be 0 t in diameter, and liquid propane has a SG of =05, so e ¢
typically abou from the top to the bottom of the liquid in the tank is

ference in pressure
f Ibf - s? fit?

Ibm it ; .
AP = pgh = 056235 322 " 100t o T

= 2.16 psi = 14.9 kPa 2Q

which is less than 1% of the 250 psig design pressure, and is normally ignored. Thu
we may design such vessels by using Eq. 2.25.

Example 2.10. Estimate the necessary wall thickness for a horizontal cylin-
drical pressure vessel with a diameter of 10 ft, a working pressure of 250 psi,
and a design tensile stress of 20,000 psig. This is similar to Example 29, i
which the pressure was due to gravity,

. (250 Ibf / in?) - 10 ft
2- (20,000 Ibf / in?) =0.0625ft = 0.75in = 1.90cm (2R

ent eqﬁ::iggheFr;czlmprzesssure vessels, [he_ Same calculation procedure leads to 8 differ
- Tigure 2.8 shows a spherical pressure vessel cut in half, with the ¥

4
X
Tensile force = gy ‘
} y

Pressure force = 7
{ ] 4DZP

FIGURE 2.8

Half of a spherical

pressure force in mzr:l:;l:c ‘fe!ael. cut nlong its mid

resists this pressyre force tion angd the tensile rme-liJlﬂne, showing the
- N the shell, which
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cHAPTER
us dircc-
:T;k:;‘:: anl_:i (iameter shown. The internal pressure force, acting 17 1h8£ in Wallcll
in the Plfn:: er:;’:nc of the cut, iy equal and opposite to the tensile st al an
i e cut
opposite, we find Ut which acts in the minus x direction Setting
6
p.T (2.26)
. 4 D" = g iy w01
or
p i : on] 2.27)
40 ensite [spherical vessel, thin-walled assumption

This §hows that for €qual pressure and diameter, the required wall thickness for @
sphencal pressure vesse] is exactly one-half mﬂ{ for a cylindrical pressure VES.SC]‘
Thls suggests that one can store a given volume of high-pressure fluid in @ comamgr
with much less metal in the walls if the container is spherical than if it is cylindn-
cal. Figure ?-6 shows two such spherical containers in an oil refinery, holding high-
pressure fluids. For space travel applications, where weight is critical, high-pressure
ﬂmd:s e _aIWays stored in spherical containers, to minimize container weight. The
hemispherical ends of the sausage containers shown in Fig. 2.6 normally have thick-

nesses about one-half the thickness of the cylindrical section as suggested by Eqgs.
2.25 and 2.27.

~ However, economics often dictate the use of the sausage-shaped containers of
which 24 are shown in Fig. 2.6. These can be mass-produced in factories and shipped
complete, whereas the spherical containers shown in Fig. 2.6 are too large to ship, so
they are prefabricated in factories and then assembled in place. The supports for the
spherical containers are more complex than those for the sausages, and the number
of pieces is greater (look at the number of pieces on a soccer ball!). If a special steel
with a high price per pound is needed (e.g., liquid natural gas shipping or storage),
then the spherical container is often more economical. For most high-pressure liquid
storage applications, the sausage container, in spite of its extra weight of metal, is
often the most economical (see Prob. 2.36).

Ordinary pipes and tubes are thin-walled pressure vessels. The relation between
their dimensions and their safe working pressure is given by Eq. 2.25 (with an added
thickness as a corrosion allowance, and a joint efficiency term for welded pipe). The
distillation towers, reflux drums, and other vessels in Fig. 1.14 are also pressure ves-
sels, whose external shells are designed by the same formulae as are the sausage-
shaped storage tanks in Fig. 2.6. For signiﬁc:.mt internal pressures (like the_?.so psig
in the previous examples) the required wal‘l thickness to contain the pressure is enough
that the resulting vessels are self-supporting and r.leed no external structural support
(other than foundations). Vessels with lower working pressures g6t Ve wallethin
enough that they need external or internal .bracmg “_’ resist gravnty._wmd forces, or

ismi The large trucks that deliver gasoline to local service stations have
seismic forces, [4]. The larg hich the gasoline tank is mounted; the low-pressure
a standard truck chassis, on W The large trucks that deliver propane to regional dis-
gasoline tank is not very Strong- « chassis; the high-pressure propane tank is strong
tribution plants do not have & #E attached directly 10 it.
enough that the wheels and axles ar¢
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2.5 BUOYANCY ted by static lui
rce exe
We c:cn cx:l:u'ﬂ": the fo nt of ﬂ:]ecrilr?::ﬁ“”' called Archimedes’ pn-nq.pzf
e body, Thi the integration OVer the whole surface, :
n

the body. This leads t : :
which is much easier t0 f wood shown in Fig. 2.9- The blt:')ck IS at rey;, %
ock o sero. The only forces acting on it ar, e

Consider the ﬂoating.bl
the sum of forces in any direc d its entire surface; these must be Ny
re force itegrated around the gy,

gravity force and the total pressure
and opposite. The vertical component 0%° wuoyant force. The buoyant f,
surface of a floating or submerged body 15 € Iee

over the entire surface is then given by

Fyectical = F2 = f—Pcosﬂd‘l

ause the pressure forces act directly inward pq.

hereas the vertical component is that pressyp
he direction of the pressure force apy

ds on floating and immerseq bogi
ure force over the entire Surfagy

apply tha
tion on it is
force aroun

of the pressu
alled a

(2.2

The cos 6 appears in this equation bec
mal to all the surfaces they contact, W

force times the cosine of the angle between the d -
the vertical direction, 6. For the block shown in Fig. 2.9, cos 8 is zero for the side

—1 for the bottom, and +1 for the top; so

F, = (Pooswan — Piop) Ax Ay (2.29)
Here
(Psotom — P tup) = Pliquid8h + Paic (1= h) (2.30)
Multiplying by Ax Ay gives
(2.31)

Fe = piggViiq + Pair&Vair

where Vy, i iquid di i
where | :qb :ot;:n :01-!:;-[:: ?: I;g:lcctll displaced, and V,;, is the volume of air displaced.
y equal to tht;: weight of both fluids displaced.
This is Archimedes" principle. In most
Cases the term for the weight of air
in Eq. 231 is negligible compared
with that for the weight of the water
:l:volved (density of water ~800 times
A:cthi;z arrl). For floating bodies
i ﬁ:es bén'mc:i.plt': is often restated:
i whoie dy displaces a volume of
0 e ;;exght is exactly equal
immerseq -i : b-.:»dy ol g
S [e“rzl a ﬂund,_ then there is
i on the right in Egq. 2.31
ant foes tement becomes, “The buoy-
© ©n a completely submerged

body s
displaceg . 10 the weight of fuid

W
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men“T:e preceding  state-
oo ere workcc? oul flm n
Ok with the axis vertical.
Ay Kind of llr:n!s Was convenient, because
i 1€ pressure on the vertical
sides did not contribute to the
buoyant force. However, the
result is true for any kind of
btljdy because, as shown in
Intemnal division iyt Fig. 2.10, any shape at all can
block-shaped elemens be visualized as made up of
such blocks.
i ":::f z'liha e If the blocks are large,
+ like the one in Fig, 2.9 their combined volume will

be a rough approximation to
ever, as the x anc} y c.lirncnsions of the blocks dccreast:et;:lll;llno:ﬂ?sf tig:r:{): };l:;z‘i'r-
improving approximation to the body, becoming identical with it as the x and dirnt:n}i
sions approach zero. Nonetheless, for each block, no matter how small, the f)t;rching
argument holds, and therefore Archimedes’ principle holds for any z;hape of body
Thus, although it would be very diffi :

_ f:ult to perform the indicated pressure integration
over a body shaped like an octopus, if we know its volume (and hence the volume of

fluid it displaces), then we can easily calculate the buoyant force by means of
Archimedes’ principle.

Exafmple 2.11. A helium balloon is at the same pressure and temperature

the surrounding air (1 atm, 20°C) and has a diameter of 3 m. The weight of

the plastic skin of the balloon is negligible. How much payload can the balloon
Lift? FANEEN 0.9
~ The buoyant force is the weight of air displaced:
F buoyant Pair & Vballoon (2.5)
The weight of helium is
thlium = Phelium8 Vballnon (2.T)

Therefore, the payload is

Payload = Fyuoyam ~ Whelium = Vballoon8 (Pair — Phelium)
= Vg ;% (Mgir — Mpeiium)

1 atm
9.81 m
‘Tﬁf' Bm) == (8.2-107° m® - atm / (mol - K)] - 293.15K

]

g g )__‘_‘L_P.‘_.iz.._- 1442 N = 32.41bf 2.U)
.(29 mole _4molc 1000g kg m -

LR
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k of wood is floating at
12. A bloc
ample 2-

line and a layer of
a layer of gaso : Watg,
interface bcln;vec“nfha: ¥racti011 of the wood is bejoy, the

see Fig. 2- —

interface? :

force, which is in turn €

ids displaced:
g = Vwater Pwater8 + Vgasoline Pgasoline 8 (2-Vj

f the wood is etqual to the b“°}'am
qual to the weight of the ty, i,

-~ Viwood Pwood
= (0.96
— wh:re Vuood i8 the volume of the b(;ock, ?Fd :‘.“'ﬂur
Water: Vgasoline are the volumes of water and gasoline displaceq
aeesssssssssssssms  Dividing by £Pwaterr WE find
NGO Viood SCwood = Vwater +'V3asoline S'Ggasoline (Z.W)
A block of wood floating ata 4o oSG js the specific gravity. But since
gasoline-water interface. Viica = Viarer T ngline (Z.X}
we may eliminate Vgqsoline
Viwood SGuwood = Vwater o (Vwood - anlcr) SngsoIine (2Y)
and we then find
Viter _ SGwoos — SGpuoline _ 0.96 = 0.72 _ oo (22)
Vwood I - Ssz]iM I — 0.72
|

face, we see that the pressure difference fro
: m top t m of th .
involve the gasoline in the way shown. R T ni the-blouk does indeed

Rem i ion j i
ember that the basic operation is the integration of the vertical components

;:(i;d the pressure force over the entire surface of the
y. The convenient result of this integration is

A
s T Archimedes’ princip]e:
i : ple: the buoyant force
3{,_._ 2f to the Wweight of the flujd displaced. S

11

Waer TGNometer, described in th

FIGURE .12
A simple manomete i Examph 213, E;
i r, filled wigh 85 Connecteq - Figure 2.12 shows a tank of
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tube Open 16 the atmy,
elevationy shown cale

We want 1o kne
ter proble

ne end and COTaIn

auge pressure in g
e at D The

ulate the "

INg colored water From the
W the prey,

e veste)

wurk step by step 10
jauge presiure z

. _ 19 the atmosphere 41
sure at J3; . theref "4t A The

water 15 prac-
Or ‘e
e, we can use Eq. 2.1)

find the pres-
!’ w D
h ,4 4 p

. watey h = .
To find the pressure ar ¢ g = 0% vz 31t

(2Z.AA)
we need Eq. 2.9
!( - ’Jﬂ —_ f !
ﬂwil:lg =3 n) {2AB
I: h‘nd the prcssgrc at D we use the same U"l'r " J
nsity change of the gas is negligible): SRR g M e T
Py = Pc ~ (p . ) -
) C e ® 31 (2.AC)
Adding these three equations and canceling like terms, we find
P' = Wi ‘( = l - l -
0= (Pumerg) | 3 fi 2") (pmg - 5“)
_ ft Ibm F 3
= 322 ?[(62.3 rE 2.5 ft) & (0.075&?— ‘0.5 ft)] o RO 4
t . ft 3221bm-fi 144 in?
_ 1bf Ibf 1bf
= 1.08 e 0.0003 ot 1.08 — gauge = 7.46 kPa (2.AD)
n

The example illustrates several points.

1. The contribution of the section of the manometer full of gas is only 0.03% of the
answer. It is generally neglected in manometer problems.

2. Manometers that are open to the atmosphere are gauge-pressure devices and should
be calculated in gauge pressure.

3. In reading such a device, we normally read an elevation; lhe actual operational
reading in Example 2.13 was 2.5 ft. For many purposes it is convenient 1o -thmk
of pressures and to report them in terms of such manometer readings as hcnght_s;
the U.S. air conditioning industry, for example, commonly refers to all pressure in
air conditioning ducts as “inches of water,” and most U.S. vacuum-equipment man-
ufacturers refer to vacuums as “inches of mercury. _

4. At no place in our last calculation did the cross-scf:llonsi_l arcado:&ﬂ: ﬁa:cor:::;
wbe enter. Therefore, this tube can be of any convenient SIZ€ &0 ﬁ:: fid den
o constant-diameer wbing, The only PR L etences in clevaion,
sities, which can be looked up ; “ulers. Thus, manometers
which can be read directly-with 12 pewr'nl;ai;r:;;:sd one simply connects them
require neither calibration nor o ¢« that the tubes be vertical, only that
and takes the reading. There is n0 FEQUITEIED

we can read the vertical distance between the horizontal liquid surfaces.
c

e e e e A e USSR
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to 810t ' ation methods than the one gp,, ta

e WE shol‘tﬂr cal [wo-ﬂmd manometers, the sh,
5. It may S€¢ rs us€ tems, SUCT © hown is always reliap My,
true; WO mplicated sy i 18 ethod just S e, ly

However, W1 tep-0Y~
. d the § >

gre confusin eter 18 often used FO make It unncCess

m “]’ e one shown 10 Fig. 2.13 js a"’.lo

Th .
1. What is that pressure dlﬂ.-erencell:ng

d
A o-fl .1
/:d(m prllz.dli;erences in hquul:i1 :3: L
sm : ee :ds have practically ¢
nce betw the fluids P
re differe — P ;:,I by calling Pg known. Then n

the pm‘;':uwant to know ng We b
sity, so we can Use = P = Pp + (Pwaer8 1ft) (Z-AE}
p:: _p, + (821 24p,
p, = Pc— (pan8 "1 ft) (2.4,
Pi=Ps— (Pwatec8 " 2 ft) (2.AR
) .o like terms, we find
Adding these and canceling e 1ft) = i ft- g(pyy — Pu]

PA _'Pg ?pwalﬂl‘g(lf;t lbm l‘bf-s2 &2
=1ﬂ-32.2;5-(1-1‘1-°)‘62'3 f2 3221bm-ft 14412

(241
|

Ibf

=0.043 — = 298 Pa
n

This reading corresponds to a pressure difference of 0.1 ft of water. The acpyy
reading of this two-fluid manometer is 1 ft. If we assume that we can read liquid Jeve|
differences with an accuracy of +0.005 ft (= *0.06 in), then a simple water manome.
ter would have an uncertainty of 5% for this difference; the two-fluid manometer
shown has an uncertainty of 0.5%.

Because a manometer is a device for measuring pressure differences, to use one

to measure absolute pressure we must measure the difference between the pressure in
question and a perfect vac-

uum. In principle this is im-

Water

A—

possible, because there is no
such thing as a perfect vac-

Tank 1

Manometer o
SG =1

Scanned by CamScanner

uum, but in practice we may
produce vacuums of sufficient
quality that the error intro-
duced by calling them perfect
! is negligible. This idea is used
in the mercury barometer
shown in Fig. 2.14. This com-
mon device for measuring the
Pressure of the atmosphere is
found in most laboratories

Tank 2
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D

the cup at the bo
i ttom,
of Mercury opposes it. Calcu-

te—— Glass tube

—|—— Mercury uid ml‘.‘rcury n wel]

the vapor
re
'; about 10-(? 58

: ury, which at 68°F = 7qeC .
: s this i F = 20°C is
't can be neglecteq 1151 80 small compared with 1 atm that
Manometers, measurec -~ 110Ugh the barometer, like al]
with satisfac‘l a::.s Pressure differences. ‘
: ory rac :
this case; see Prob, 2 56y as an absolute-pressure device in
FIGURE 2.14 "
Mercury barometer.

and 1o meag ;
. . . ure the
,'mpracncal but illustrarive way of doin displac

. g this, :
ured presses on the piston, compressing the sgz r
| ccale. If we know the area of the piston, th g

; € sprin
ing for zero pressure, we can calculate the
position.

» Which compresses a spring,
ement. Figure 2.15 shows an
d whose pressure is to be meas-
and moving the pointer along the
E constant, and the pointer read- e
Pressure on the piston from the pointer

Example 2.15. The piston in Fig. 2.15 ha
: <2 $ an area of 100 cm? ]
ns[a‘nt k1s 100 N / cm. We set the pointer so that there is a z 'oand t%le ohen
both sides of the piston are exposed to the

. atmosphere. Now w
to a tank with an unknown pressure, and - € altach the gauge

the pointer m i
e oGt Bt . po oves to 2.5 cm. What is
Here the net force acting on the piston is
Fl'll.'-l = (Pumk - Pntm) A= APlnnk, gauge (2~AK)
i

This must be equal to the force on the spring, which is k Ax, and therefore
kAx (100N/em)-2.5cm

(100 cm)2 25KPa = 3.62 % (2. AL
5 = a —3 ¥l e L
A 100 cm? m 2 GAL)

1
in

Pl.mk. gauge —

: Spring i

! || / From this example we
| : & observe the following:
: Piston —<¢- %

1. This device, like the ma-
; \—l—lﬂ = Y=— Pointe: nomeler, measures pressure
NEENER AR differences. To use it as

e Scale an absolutc-pressprc device,
we must make it compare
Vent pressure with a vacuum. We

can do this by placing it in

" an evacuated chamber.
slon—and-Spring pressure pauge.
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2. This dcvlcc;j "ﬁma “ spriﬂS‘fYPc ano eters 1 16, o

sions or @ 47 jth those 65)

: . reading V' . 2.

e m?:«ral * devices 5 pro™ = ractical = of the problem of ey
ther equ - Fig 2 is i Fs’c 4 type of spring pressure gauge ug,
The gauge fh most W! y “urdgn tube is 2 stiff, ﬂattcnct-i meta] tube
2.1 ure is 10 be mcqsurcd is inside g,
o move inward or outwggy

e plston- P 16.
own if FlB-ﬂu. g4 whose press
r ;
the ointer through a li"kage.'
ection is a flattened

circular, like blOWing

; . fre
ular shape: is
. fixed, a0 a

tube. One end of the is fiX of the free en moves P

The inward or Out¥ moveme™ " 1 ows, the e cross 8

and-gear arrangemen Fig 16 s cctic;rl become closer (O '

cle. Internal pressure makes it crc:,s:irssu ace, thus tending tO straighten the curyey
: : o ' . : :

up a balloon, whic € rube would bccofnc straight with a circyly,

tube. With a i it is made Oflmetal, which jg
cros BECHCT LS : ressures are low enou

stiff and has 2 reasonable spring €° : % enough thy

shown in Fig. 2.16 when the pressure is removed,

¢ the movement as 2 function of the inside and

linear piston-and-Spring gauge of

the tube returns to the cross section
calculation O
than with the
venient shape and causes no

With such a tube the
more difficult
the bourdon rube is a very con

outside pressures is
Fig. 2.15. However,

-,

A
Section AA

Bourdon

\
\\ \\ Flattened tube deflects
v\ outward under pressure

1

Pointer for
dial gauge
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leakage problgms. as does the piston-and-spring gauge. Since ibrated
devices, the difficulty in calculating the perF[‘ortEaEcc gof 1?1‘: Cbo:::l‘gna::b:a:;bnol a
real dnsad\'?mage. Bourdon-tube pressure gauges are simple, rugged, leak-free, rea-
son;‘:hf reliable, and cheap; they are the most widely used type of industrial pressure
gauge.

NBILI?CI’ the manometer nor the bourdon-tube gauge is suited to measuring rap-
'!dly f:hanglng pr’:ssures. Both are unsatisfactory for this purpose because of their high
inertial mass; Lh_ls mass makes them move slowly to accommodate a change in pres-
Fum, and so their readings lag behind a rapidly changing pressure. For rapidly chang-
ing !:lressures (such as pressure fluctuations in rocket motors, or the rapid oscillations
in air pressure that we call sound, which are measured with a microphone), two other
typ.cs o.f pressure gauges respond much more quickly. One is the diaphragm gauge,
which is similar to that of Fig. 2.15 but has, instead of the piston and spring, 2 thin
metal c’uaphragr{l. which acts as both. When the pressure increases, the diaphragm
stnclf:hes very slightly; the stretch is detected by an electric strain gauge (or other elec-
tronic means)'arfd recorded electrically. The advantage of the diaphragm over the
bourdon. tube is its very low mass, which allows it to move quickly in response to a
change in pressure. The other type of rapid-response pressure gauge is the quartz-
crystal piezometer, which uses the change in electrical properties of quartz crystals
with change in pressure. Other electronic pressure gauges are available that take

advantage of the response of fixed or oscillating microstructures to changes in external
pressure or other electronic phenomena.

2.7 MANOMETER-LIKE SITUATIONS

In Sec. 2.6 we discussed manometers as pressure-measuring devices. There are many
other fluid mechanical situations that are most easily understood if we analyze them
just as we analyze manometers. Several examples are shown here.

Figure 2.17 shows a schematic cross section of a percolator-type coffee maker.
In it, the pot is filled to a height z, with water. The basket above the water is filled
with ground coffee. The whole assembly is placed on a stove and heated from below.
When the water has been warmed, it begins to flow in irregular spurts up the central
tube; it is diverted by the cap on the top, falls on the coffee grounds, and percolates
through them, extracting the water-soluble constituents of the ground coffee, to make
the hot drink many of us enjoy.

How can the fluid do this? Here we have a fluid flowing from a low elevation
to a high one, with no mechanical device lifting it. How can that be? To answer the
question, we compute the pressures at B and C. It will be easiest if we do this all in
gauge pressure. In that case, the pressure at B will be

P, = pE2: (2.AM)

and if the fluid in the tube is up to the level where it spills out at D, then the pres-
sure at C will be

Pc = pgt2 AR

Scdrirneu py cdlnoacdarinelr



d
w — Pc = g[(Pz)l - (PZ);_]
(2.A0)

ut the pot on the stove,
when W€ g side and outside the

ity in
the demS1Y 1 'be the same (tha
Coffee grounds  riser n:er and the liquid in the
of walttnr tand at the same leve]

Ps

=

ill s :
z=1 t:sb(:h‘: liqUid outSldC. Z;. There
, . oWw.
e will be 19 t the bottom

As the water a

is heated bY the stove. the 1005;3_
fitting cover prevents 1t from mix-
., with the rest of the fluid in

Cover ing P ol

= t, SO . -
2=0 e 13 heated to its boiling

Cot et ili ini. it boiis, the bubbies
ing flui i hailin vini. When

Coffee percolator, showing fluid flow driven hy bt g gf o o by Ny

do so, the average density of the gas—hguld mix-

there is no net flow under the loose-fitting cover,

the other, (P8 — Pc), must be zero,

keep this pressure difference equal

through the riser tube. While they
ture in the riser tube decreases. If :
then the pressure difference from one side of it to
and the level in the riser tube, Z2, must increase O

to zero. ,
When the generation rate of bubbles becomes high enough that Z becomes

greater than the height of the top of the riser tube, then a mixture of steam a.nd water
will flow out the top of the tube. If the rate of generation of steam bubbles increases
even more, then the average density of the steam-water mixture in the riser tube will
fall low enough that (Pg — P¢) can no longer be zero but must become a positive
number. Then the pressure force due to gravity will force water from the pot under
the loose-fitting cover, and the circulation will be established, with flow downward
under the cover, up the riser tube, and down through the coffee grounds. For that flow,
we can no longer use the simple equations of fluid statics, which we have used so far
in this discussion; the methods of Chaps. 5, 6, 7, and 12 must be used. But this simple
discussion shows how the pressure forces that move the fluids in coffee percolators
arise. The exact same disc_ussion applies to geysers (where the flow is intermittent
oo s o sl ] s B tton sy
GAL DQLEES; propane-fired refrigerators, and in the reboilers of
many distillation columns. In all of these, the formation of bubbles of steam (or the
vapor of some other liquid being boiled) lowers the average density i
“squivaleaE sEsomEtEr™ podacing the ; age density in one leg of the
’ pressure difference that drives the flow.

Such pressure differences can also arise i :
e Mgt R e e In systems that do not involve boiling

i .
: m;::uiél?ﬁat Figure 2.1§ shows a schematic of a home fireplace, with part
surrounds it. The burning logs in the fireplace hea£ the g:SCS
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Rool :%

Chimney, or flue

Living room

_[ Fireplace
A B
CI AT TIr iy sy z=-20ft
FIGURE 2.18
Home fireplace, showing fluid flow driven by temperature
differences.

in the chimney to 300°F. If we treat this as a static situation, what will be the
difference in pressure between the air in the room adjacent to the fireplace and
the air inside the fireplace at the same level?

Here we assume that the house is leaky enough, or has an open window,
so that the pressure inside the house is the same as the pressure in the atmos-
phere outside. (This is true for older houses, but not necessarily true for mod-
emn “tight” energy-conserving houses, which have much less air exchange with
the surroundings!) Here, as shown in the figure, we have taken the elevation
datum, z = 0, at the top of the chimney; this choice makes the solution simple.
Taking the pressure at z = 0 to be atmospheric pressure, and working in gauge
pressures, we can compute that

Py = pair8l (2.AP)
and that
Pg = Pnue gas821 (2.AQ)
The chimney is also called a flue, and the gas in it is normally called flue gas.
Then
P, — P5 = (Puir = Pue pas) 821 (2.AR)

Assuming that both the air and the flue gas are ideal gases, e can express the
density of each in terms of the ideal gas law and wnite

PI(M _(M 2
By =B 58 EK?).” - (r) X V)

In the most careful work we need to take into account the small difference lm
molecular weights of air and flue gas, but here we can assume that the molecular
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62 FLUD MECHANICS FOR CHEMICAL ENGUQEERS
: and divide by (M
Then W€ multiply and di y( /T)"r g

weights are practically equal- he! s
s“b-'*gﬁtute p.if’for its ideal gas equivalen .

Tair —_ | = ——

PMnir[ __._.5.-—-] = gzlp.lr[ T
R b= e fue gas
A = Ps IR;‘." Tim g [1 ;gg_l}_]ﬁ_iz___
=322 720000777 [ 7+ 760°R ] 3221bm-fe g5

Ibf (Z‘AT)

= 0.0032 — = 22 Pa
in
¥

This is a small pressure difference. But as we will see in Chﬂ[:_i- 5, very smal| pressup,
differences can produce significant velocities in gas flows; this small pressure differ.

ence would produce a velocity, in frictionless air flow, D_f abo‘ut 20ft/s ~6my A
In this example the calculation was made for a static fluid. In the real situatiop

the fluid would be set in motion by the pressure difference calculated above, apg we
would need the wethuds developed in later chaprers to compute the velocity. But gy,
calculation shows how pressure differences can arise not only in boiling liquids but
also in gases if one side of an “equivalent manometer” is heated to a temperature
higher than the other. This explains how chimneys work. For all but the largest fyr.
naces the air flow is driven through the furnace by the pressure difference computed
hel‘f-‘ (called “natural draft”). That explains why large furnaces have tall stacks: the
available pressure difference as just shown is proportional to the height of the Siack_
‘Il\dany large furnaces now use powered fans to drive the gases through them (called
ﬂfmz:nd draft”). The choice between natural and forced draft is based on economics:
fo:c e J;ﬁ:ns are expensive, but once installed they require no power to run the
This calculation also explains many meteorological
phenomena. Qce
ll";’l::r T:’:r? tfhi agliriuclfg lse:r;:g o ?1’ th; sun because cnrrents and wayes ma';stha:i‘:
’ e on the . . )

r:otll_s more _rapidly at night because it cinom;:: hmec:te ] o e detime
duction, which is slow compared to the convective yriv: ll[:{ and (!OWH only by con-
during the day the hot ground surface heats th © Mixing in bodies of water. Thus,
ground plays the same role as the hot flue gas j BEﬂlr “oove it, and hot air above the
'the ocean or lake onto the shore, At nightgth 10l Example 2.16, The winds blow from
I, and the direction of the pressyre adi ® ground cools, and cools the air above
recient reverses, causing the wind to blow from

same description applies to f
rest i
forest or urban fire induces smﬂgorwnil:&sll lwhich the ri

are also manometer like sj
. Situatj
examples. tions, but more complex than thege meteorological
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CHAPTER 1 FLUID STaTICE &3
2.8 VARIABLE GRAVITY

So far we have assumed tha

Q 81 m/s” in the minus : §;
(wo different elevations. How not exactly -

quite small. Nkt the sust ever, the change in \ \ruc in any problem involving

Y il 1 the meipeven) ;C;] of the eary 83?\ Iit)‘ with change in elevation is

: of the square of - celeration of gravity is propor

| s of ; Eravity s -

r m.t‘id'luz‘;gf::: 'i:ﬁ'l 1s about 4000 mi =th6:’d1015unce from the center of earth.

I lflmm_vit ' at the : rf\'e the surface is 40002 / 410():‘2:[[-'-m the acceleration of gravity

of gravity & urface. Few engineering problerme < 0.9995 umes the acceleration

jusufy making such corrections. (Deposits Problems include data precise enough o

gravity above them: sensitive gravitom :

e B Y .l

In two types of problem, howev
’ . ‘€VET, nonconstant gravity is i 4
important:

1. Space travel and rocket problems: in th

ot : ’ ese the distances

significant compared with 4000 mi, so the ¢ B of;‘Dm thc earth become
A into account. hangin gravity must be tzken

2. Acceleration and centrifugal force problems.

; Since this is a chapter on fluid statics, it seems a strange place to consider accel-
' eration or centrifugal force problems, in which the fluid is certainly moving. We do
so because, in these problems the fluid is not moving relative 10 its container or rel-
ative to other parts of the fluid. Really, all problems in terrestrial fiuid statics imvolve
moving fluids, because the fluids are on the earth, and the earth is rotating about 18
axis and revolving around the sun, and the sun is moving through space. As long 25
the individual particles of fluid are not moving relative to each other, we can weal
such moving problems by the methods of fluid statics. Such motions of fluids ar=

called rigid-body motions.

" Sy

29 PRESSURE IN ACCELERATED

E RIGID-BODY MOTIONS y
; " S caseinwhichancmiremassofﬂ'
' e vegenl 13 :::e\l’:;ﬁdofi:{g;;:j;o;gi‘;n. Again we will use the small. cubi-{
cal element of fluid shown in Fig. 2.1 and consider 1 “.’? pm::;:dl‘nj:, ::ssg:;n
fluid. In Sec. 2.1 we showed that if the ﬂm.d e not_bcm,c:f:a‘ed‘ then the sum of
of the forces on it must be z€ro- If the fivid was being 2

= 2 13@00. F
the forces acting on it, in the direction of lhﬂc ’i'ﬁemo accelerated in the verncal (+2)
the acceleration. For the cubical element of flm &

direction, we rewrite Eq. 2.2 35 .3

is in some kind of

(P.ag) Ax By — (P:.A;) Ax Ay ~

*

caliieu vy cvaiiouvailiiel



84 Fup MECHANICS FOR CHEMICAL ENGINEERS

. the limit a8 Az approaches zero, we fing
Dividing by Ax Ay Az and miundgp fgﬁ)

: integrated t0
which for constant-density fluids can b€ Er

d’z\,, - ;) [constantdensity]
Py =Py = -p(g + ;;,E)(ZZ :

(2,33]
; i to
and which for gauge pressure simplifies further
2 3
P=- ph( g+ -j-g) [constant density, gauge pressure] (2‘34}
t

ample 2.17. An open tank containing water 5 m deep is sitting on gy e
ator. Calculate the gauge pressure at the bottom of the tank

(a) when the elevator is standing _sﬁll, - ,
(b) when the elevator is accelerating upward at the rate of S m Iy e;nd
(c) when the elevator is accelerating downward at the rate of Sm/s%

From Eq. 2.11, part (a) is simply

kg m N-§? Pa
= =0982—-98]1—--5m-* .
Pyottom = P8h 9982m3 9 2 m W —r—
Ibf
=49.0kPa = 7.11 —
in2 (2.AV)

For parts (b) and (c) we use Eq. 2.34:

d? k ol
dt m SZ

 ——

s2/ kg'm N/m?
= 74.0kPa = 10.73 Plf-
and
_ d’z
Pootom = ph(g * ‘d—r;) = 998.25—%-5,“.(9.81"_11_ _ SE . N-s? . Pa
m sz sz kg ‘m Nlmz
= 24,0 kPa = 345 1of
in (2.AX)
|
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CHAFTER 2 FLUID STATIE S (1]

summation of forces in the a direction and substitute g cos 0 for g in Py 2%

dar
-
\r®

d*a
- pl(g cos ) (7 %)
da '“’

ample 2.18. A rectangular tank of orange juice on a cart is moving in the

x direction with a steady acceleration of 1 fi/s’, see Fig. 2.19. What angle does
its free surface make with the horizontal?

Here we assume that the tank has been under ncceleration so long that the
imual sloshing back and forth of the liquid at the start of acceleration has died
out and that the fluid is truly in rigid-body motion. In the figure the points A
and B are both on the free surface; neglecting the very slight change in atmo-
sphenc pressure over this change in elevation, we may say that the gauge pres:
sure is zero at both points. Then we can calculate the pressure at C from the
pressure at A by using Eq. 2.35. Here we are applying it in the y direction

(@ = v), so we have cos 6 = | and d’:'y/d!2 = (), Hence, the result is the same
as Eq. 2.11:

Pe= —pg Ay (2.AY)
(Here Ax and Ay are both negative moving from the free surface, 80 Pe is pos-

itive.) We may also calculate the gauge pressure at C by using Eq. 2.35 for the
horizontal direction, in which case we have a = x, cos § = 0, and

d*x
Pe= —p Ax— (2.AZ)
‘ P oY
But the pressure at C is the same no matter how we calculate it, s0o we may
eliminate P between these two equations and rearrange to find

i »
Ax g

I. F A
: K B " d? 8
L cle Ax | e [
1 G n -
—
' O O
o 9 FIGURE 2.19

A sysiem in linear acceleration.

TH
Lt
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. 2.19. For this problem

) hown 1 ft/s?
g is the angle $ = 1.76° k
where 8 i M — arc tan m gy
g=arctan™ g :
\
any point in the tank, We may now use g 2

at icall &y,
To calculate the prcusls;u;pm from the free Sll.l'filc‘:'i :jm:he i abOV; the pojp in
bei“g cmful lo mcasure FG, for examplev ls cx . yli 'd I= eYc in.m
question. The force on the W ding still and filled with liquid up to point p

dy the same as it would be if the cart were standing gy -
y

| of H. - - .
lc:; uniform, rectilinear acceleration holds: little -

Example 2.18, a case . ine for a reasonable period of time (eg |
: celeration acting 10! P B lon
interest, because fﬂ‘h';naggf die out) would produce enormous velocmes._ Howevey
enough for the slos interesting case of rigid-body rotation. Congjg,,

introduction to the more Intere ; : fe e
:cnr::i:—sma;;f:ﬂindrical tank of water with a vertical axis. The system is Initially 5

rest; then the tank is set in steady motion, rotating_ about its vertical ams AL first the
fluid in the center will not be affected by the rotation of the walls but will stand g
and only the fluid near the walls will rotate. This sets up motions of parts of the fiyig
relative to each other, so that this is not a fluid-statics problem. Eventually, howeye;
the shear forces due to this relative motion will bring the fluid at the center to the sap,
angular velocity as the tank, and thereafter there is no relative motion within the fluid,
Once the fluid in the center reaches the same angular velocity as the wall of the cqq.
tainer, the whole of the fluid moves as if it were a rigid body; hence the name, “rigid-

body rotation.” Pressures in rigid-body rotation can be calculated by the method of
fluid statics.

force on wall HI is exac
filled with liquid up to the

Examp;; 2.19. : P;ln open-topped can of water 30 ¢m in inside diameter is rotat-

ing at /8 rpm. It has been rotating a long time and is in rigid-bod ]

What is the shape of the free surface? = aan
A cross section of this system is sketched in Fig. 2.20. Here we use

z the same procedure as we did for Fig.

2.19, calculating the pressure at C in
AR two directions. To simplify the calculs-
~ tion, we choose C to be at exactly the

r-——.-—-r

Same elevation as the lowest point 08

A4 the free surface. As in Example 2.18, we

“ = B : “Sﬂn}e that the pressures at A and B are

T f—ar— —1—---z=90 the same, the local atmospheric pres-

82| . | Water sure. Then, from Eq. 2.35 applied for the
I SR ~ direction, we can write

Axisr =0 i Pe guige = —pg Az (2BC)

:! ?y?:zm because the rotational acceleration

m wi i : i : i
lccelmtin:‘"h roiation, leading 1o centrifuga perf:?:;c'i:: t;: -th:hz ax;:rcf:n tll43irl Fig
- » Which is the r direction ;
220

0, the only forces acting on ¥
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element of fluid are the 2 FLUID STATICS 67
magnitude is given by CHAPTER

Ceitiiner celeration
petal accelemtion o ngul ¢ Vhose
ar velocity)2
. S N y) radius
ituting this N Bk . @
Substituting this for d%g / g2 in Eq. 24 (2.BD
radial direction, we find + =35 and noling that cos g —
Cos 8 is zero for the
dP .
dr ~ Pw'r

(No minus sign appears he
direction, whereas the gray Centrify

Te because the
11)’ fOrcg - .
the gauge pressure at C: POINts in the

gal force points in the +r

—

2 direction.) We then find

P fl‘"&r 27A

c = 2 =i 2 r" % 2
reo PWrdr=py ..2..] - pmz(:‘.\:)

The pressure at C is the same no m

inate P¢ between these two equatio

(2.37)

atter hoxf' We calculate it, so we may elim-
ns and divide pg to find )
v

- A =EJ_: 2
b4 23(&:‘)

If we now let the elevation of point B (the lowest point on the free surface) be
z = 0, then the length Az is minus the value of 7 a

’ ; t point A, and Ar is the value
of r at point A; so those points on the free surface are described by

(2.BE)

9

g ey N
2= 5 (2.38)

The free surface is a parabola with vertex at the center of the can. The height
of the free surface at the wall of the can is

(211"78]‘9111)2‘(150!11)2.(mjn)z. m
- 2-9.81m/s’ 60s/ 100cm

s

= 7.65cm = 3.01in (2.BF)

n
H w
To find the pressure at any point in the rotat-

— __ ing system (with the axis of ro}aﬁon vertical) we
| use Eg. 2.11 and measure the distance down .froE'n
4 : the free surface directly upward from the point in
—14in— question. The pressure at any point on lhf: wall of
the can in Fig. 2.20 s exactly the same as if therct;n
were not rotating and were filled to the level of the
rotating free surface at the edge of the can.

Liquid —=

290. An industrial centrifuge h;-n.s
) Bampe 10 s i S
high. Its speed is lOfJO pm; seiifgtg_m_é_c_en—
the liquid layer x{gamst the wa
trifuge is 1 in thick at
it at the boluorn?

FIGURE 2.21
The basket of an industrial centrifuge.
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68  FLUID MECHANICS POR CHEMI
2 10, except that only part of y
|‘I|l“ﬂ'l s [ix. ZI , BRE y he !

'] wo w 4 . J I
- | ﬂlll L] ] : ; L

no

P ally the same | :
This iy really ont. It

surfnce In pres

Wie free
::ui“H on the figure, and we then su ,
w .
ta - " 2." ('3‘ r‘}') [2]‘}}
: e find
The only unknown here i8 #a. Solving for it, w \l
2% 1/2
te = [fi - (e ™ ) )
N 2 i 1/2
' 20in-232.21t/4 (ﬁ_{)“!) .(.'..?_'_'1)]
- [(M in) (2 - 1000/ min)? \min ft
- (196 in? — 1.4in?)"/? = 1395 in = 0.334 m (28q)
|

Thus, the liquid film is 1.05 in (2.67 c¢m) thick at the bottom. One may readily cy.
culate that at the outer side of the centrifuge, the ratio of the centrifugal acceleration

to that of gravity is

=426 (2.BH)

g 3221t/ s?

( Centrifugal nccolcrntion) w’r . (2 + 1000/ 60 s)* * 1.25 ft

Gravity acceleration

This ratio explains why liquids can be separated from solids much more effectively
in such a centrifuge than by simple gravity draining, both in industrial usage and in
home clothes washing machines. We will see in Chap. 10 that a centrifugal pump is
a modified centrifuge; and in studying air pollution control, the widely used cyclone
separators that collect particles are also modified centrifuges.

2.10  MORE PROBLEMS IN FLUID STATICS

Having worked out the basic equation and its simplificati [
f::gac“prtl:(ssurc: disolharmalfnnd isentropic ideal gns.pcencl:ilflggil-fgrcc:g?ladzt S:cns“\:;

ack a wide range of problems. In this t i type
pmblcm§ that have been widely treated claev::ctr:cF‘::iLg uZis(:r:z:xt:gTe ;Y;J e
overturning moments, etc., on dams, retaining walls, flood g.ntes etc c:rc 01‘:;0‘5-
?;I u':rx;s on c.""l or mechanical engineering fluid mechanics, suéh ns“(?\: b n{;hiltz
o(llj.c ; subjecE of the bupynncy and stability of ships (why some turn o):fer and
IS do not) is treated in the same texts. That analysis shows that the paral-

behavior of lighter-than air i
-air craft i
Prandtl and Tietjens (7). ralt 1s covered in books on aeronautics
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SUMMA
2.11 RY CHAPTER 2 FLUID STATICS 69

1. F;)BSi'l:ple lf]uicls at rest, the pre
of Nuid statics, dP / d; SSUrc.demh |
of fluid and the pressy P8, fou relationship g o;
re nd b : P
Chqn ;i p s BlVCl‘I by lhc bﬂ-&‘ic equat.lﬂrl

. ge wj consider;
2. For constant-density fiy; ith depyp, ng the we;
Y fluidg the nl?&:cas,u.y 5 sugg(l::‘o;:tsmi{l;?itmem
weight.

—pg(z2 = 21). This equayj asic
: 2 ation s » €quati
approx:matnon for gases N is an excell 10N can be int
when ent g €grated to p, —
3, For changes in elevation the changt in ':I;mxirnalion for liquids ald =
: me ; €vation j mag
as constant-density flyjds Fa(-:llr.ed in thousang ;On is small, good
- For s i,
Othermg), ist:nlI‘t‘.-IJi‘::t"‘-’c:gnms s e
» Or constant-tem
pérature-

N be easily j
easily integrateq for ideal gases

the weight of the fluid displaced

. Most pressure-measurin .
g devices either ba]
e : an .

of a column of fluid, in which case the hei@tcefut;e pressure against the weight

or let !.he pressure act on some area, com reo. v ﬂuld.cmumn is the reading,

deflection of the spring is the reading EERCE g e e
. The manometer, used for measuri i

. ning fluid pressure differences, i i
g i : ces, 1s a logical
for mr‘;o.meter like ﬁc')ws, mclu.dmg most chimneys and flues, and circﬁZﬁnmf{;gietli
flows, driven by heating one side of the equivalent manometer. ®

. Pr ople::ns involvi-ng accelerated motion can be handled by the methods of fluid
statics if the particles of fluid do not move relative to each other, for example, in

rigid-body rotation.

PROBLEMS

See the Common Units and

this text. An asterisk (*) on the problem num
100 ft in diameter.

Values for Problems and Examples inside the back cover of
ber indicates that the answer is in App. D.

The free surface is really a very

2.1.* A large petroleum storage tank is :
small part of a sphere with radius =4000 mi (the radu.ls of the earth). If one drew an
absolutely straight line from the liquid surface at on¢ side of the tank to the liquid sur-

face directly across the diameter on the other side, how deep into the fluid mdbmm

line go? In most fluid mechanics problems we i ature of the earth. Does
this calculation support that simplification?

22, Calculate the specific weight 0
3221 /s? = 9.81 m/ s> Express YU

specific weight on the moom where &

gnore the curv

jace where the acceleration of gravity .is
denlaiol s and in kgf/ m’°. Calculate its

r answer in Ibf / ft* s
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) ot ich are not buildin
umm"“f‘_*-“ﬁ.wm, world (excluding wgﬂﬁ.-;;c; 1483 fe all. If i‘:&
a7, mmm@smwwﬁn rowcﬁ_mm the top floor (perhaps 1450 fr py,
g G et vl A
ou ia e o8, Bt g
o O mf 10 What 1s
28 mdeq?ﬁ:wmc@g,zmoi;ﬂ ‘bat . Powp
» . LdsofLDm-Slmo- . the h mn%
= igaa;gx:lgﬁoﬂianﬁ”mwlfwm Y
- g of the drilling fuid 10 the WeT :
resair may be 2 biowout, which is dangerous o life s
property. Assuming that you are responsible for selec;
mgdxmgmf“m@wm_m.mm
are expected. what is the minimum density drilling fai¢
Mmmmgammomgrq@
drlling fiuid?
The tank in Fig. 2.22 contains gasoline and water. Wha
is the absolute pressure at the bottom? Sketch the curve
of gange pressure versas-depth for this tank.
Large hydrocarbon storage tanks normally have ;
valve on their vents that allows free flow of air in or ou
when liquid is being pumped in or out but that prevens
airﬂowﬁrsma[lptmmredifferencescausedbywmd
mmgd&mmm,mhamhaicm.mmdwbmm-
fnglamofmhmb%ehytﬁtcarbousasweuasmcamoumofaunosphedcpoﬂuﬁm

for internal pressure and for vacoum.
§ T ®) Whyislhcsetﬁnglargerforintcma]pressure
I Waer Mw_mlﬁbnngyfuuofﬁrd

7.7 SR : ;
' Eg'm'mmg@ﬂrairmysanm:wuhms

T . Normal] )
. Y wWe assume iqui .
I‘!_i ‘ _Af! , . that liquids are constant-density

Figure for Prob. 212 ) Assumc seawater s a constant-density fluid with
Properties shown inside the back cover of this book
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CHAPTER 2 FLUID STATICS 71

&) ?1:;‘;:: 0‘??;1:;" d;“?‘? of water is given by p = p[1 + B(P — Pg)]. The def-
1 mbo : . . :
R A, y S 1n this equation and the value of B for water are given in

2.14. On a very cgld;a)' in Antarctica the temperature of the air s —60°F. Assuming that the
air remains isothermal up to a 10,000-ft elevation and that the pressure at sea level is
1 atm, estimate the pressure at 10,000 fi.

2.15. An airplane takes off from sea level and is climbing at 2000 ft/ min. The plane is not

pfessun‘zed. 5o that the pressure of the cabin is falling as the plane rises. At sea level
(just after takeoff), how fast is the pressure falling (psi / min o kPa / min)?

2.16. Derive Eqgs. 2.17 and 2.18, starting with P/ p* = constant and p = PM/(RT).
2.17. For the “standard atmosphere™ shown in Fig. 24,
(a) derive the pressure-height relation for the troposphere,
(b) calculate the pressure at the troposphere-stratosphere interface, and
(c) derive the pressure-height relation for the stratosphere.
2.18.%(a) At what height does the equation for an isentropic atmosphere, Eq. 2.17, indicate

that the temperature of the air is 0 K? Assume that the surface temperature is
59°F = 15°C.

(b) What is the physical significance of this prediction?
(c) What is the predicted pressure (Eq. 2.16) for this elevation?

2.J9. For most problems we assume that P, = 14.7 psia. This is a reasonable approximation

for sea level but not for other elevations. What is the average atmospheric pressure at
(a) Salt Lake City, whose elevation is 4300 ft;

(b) 10,000 ft, the elevation to which the cabins on commercial airliners are pressurized;
(¢) on the top of Mt. Everest (29,028 ft)?

(For simplicity, use the isothermal atmosphere; but see also Prob. 2.21.)
2.20.*What is the sea-level temperature gradient in °F /ft in
(a) the standard atmosphere (Fig. 2.4) and
(b) the isentropic atmosphere (Eq. 2.17) with a surface temperature of 59°F = 15°C?
(The negative of this gradient, called the lapse rate, is widely used in meteorology.)
2.21. The conditions at sea level are 14.7 psia and 59°F = 15°C. Calculate the pressure and
temperature at 10,000 ft according to
(@) the isothermal atmosphere,
(b) the isentropic atmosphere, and
(c) the standard atmosphere.

2.22.What is the mass of the entire atmosphere of the earth? The earth may be considered
a sphere of radius =~4000 mi. All of the atmosphere is so close to the surf?ce of the
earth that all of it may be considered to be subjected to the same acceleration due to
gravity. |

2.23. The oil-storage tank in Examples 2.6 and 2.7 has a vent 1o the atmosphere to fﬂlow air
to move in or out as the tank is filled or emptied. This vent is plugged by snow in a bliz-
zard while the oil is being pumped out of the tank, and the g:uge pressure in the tank
falls to —1 psig. What is the net force on the roof of the tank’

ift in Fi d piston is 1800 kg. The
» .« 1ift in Fig. 2.24 the total mass of car, rack, and 0 kg. Th
L?{. ::s::; :i:f: l::1:;5:;—st.:s:ti(:mil area of 0.2 m?. What is the pressure in the hydraulic fluid in

———
the cylinder if the car is not moving? . L
2.25, Hoover Dam is approximately 230 m high and 76 m wide at the top. G Vet

a rectangle (only approximatcly true). When the water is up 10 the t;)p. what is the pres-
sure at the bottom? What is the net force tending to move the dam?
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2.26. Example 2.8, leading to
2.M, was simple becaﬁ
the width of the surf
was constant. Suppoge
i_nstead of bﬁil’lg a mcmngl:f
the lock was an isosce)
triangle, apex down, 20 -

Hydraulic wide at the top and 1 &

cylinder deep.

(a) Show that the wjg

instead of being cqp
stant is given by

Reservoir

FIGURE 2.24 5
Hydraulic lift. S e
W=20m (l IOm) (2.B))

(b) Show that replacing the W in Eq 2.M with this value of W and carrying out the inte.
gration leads to

hz -‘Ij Jlﬂ m

0

[ & Vi 2B
F=pg'20mjh(l-mm dh = pg 20m[:2 3-10m (2.B))

(c) Calculate the net force on the triangular lock gate, and compare it to that on the rec-

tangular lock gate in Example 2.8. '
(d) Show that the right-hand integral in Eq. 2.M can be written as

F = pgAh, (2.BK)
where A, is the depth of the centroid of the surface exposed to the fluid, defined as
hdA
Depth of) f
=h =
centroid € A (2.BL)

for any shape.
(e) For a triangle, h. = Ayayimum / 3 measured from the base toward the apex. Repeat

part (c) using this simplification. Are the answers the same?

2.27.'A- dam has an upstream face that 15 vertical and has the shape of a semicircle with a
diameter of 100 m at the top. Water is up to the top of the dam. The atmosphere presses
on the rear of the dam. What is the net horizontal force on the dam? Work this problem
two ways:

(a) by direct integration of the pressure force as shown in part (b) of the preceding
problem.

(b) by usi-ng the cenfrt.:id of depth as in parts (d and ¢ of the preceding problem). The
centroid of a semicircle about its diameter is 2D / 347 Centroids of all common geo-
metric figures are shown in books on strength of materials.

2.28. Example 2.9 shows th}: calculated thickness at the bottom needed for steel plate making
Bp :h; ;hell of a vertical-axis, flat-bottomed, atmospheric-pressure Storage tank. In the
nifed States such tanks are normally made from stee] sh i i
IRE < . ts either 8 or 10 ft wide, so
their heights are normally multiples of 8 o o ;
r 10 ft. The 60-ft-high tank in that example
would be made of 6 bands, one atop the other, each made of steel sheets 10 ft wide, cal:-‘h
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with its own uniform thickness T CHAPTER 2 FLUID STATICS 73
I;““uple 2.9, - The lOWESl bnn
(a) What would the requireg

lhc
() If the calculation in papy Ickness pe for

. \ (a) leg the remajp
jate with 0.25 in thi 495 10 0 thickpese .8 Pand
P 1 ith 1 N thickness Wil be " thickness of Iessnl o e the bottom bands
ap alc‘ with less than 0.25 in thickn sed. Is that the ¢, han about 0.5 in, then a
() The thicknesses calculateq Ahove s €38 will not pe us:ﬁ here? Suggest reasons why
}nsu:ad of one that tapers from boue Wastefy], beca
in the whole wall of the tank, If we om to top, Which
ness al the top of one bap could buy such

d exact]
upper bz.md, how many pounds of zmr:flChed the thickn
really big tanks, the stee] mills wi (SG = 7.9)

savings, but that is uncommop I roll tapereq §

2.29. The largest vertical-axis, flat-bottomeg .
of about 70 ft and diameters of aboyt 463U“osphenc-prcssure storage tanks have heights
80 ft in diameter. The largest sausage-shaped
long. Suggest reasons for these maximuym tanks. are about 11 ft in diameter and 90 ft

o riss al the bottom of the next
11u d we save on that tank? For
uch plates for you, to make this

10,000 psi. How thick must the pipe walls be?

2.3L F}‘ om the Flata given in App. A.2 on the diameter and wall-thickness of schedule 40 pipes
sizes 2.5 in and larger, show that these correspond almost exactly to the formula ‘

t=A+ BD (2.BM)

where 1 is the wall thickness, D is the diameter, A is an arbitrary constant known as the

“corrosion allowance,” and B is the value one would compute from Eq. 2.25. Calculate

‘ the values of A and B in this equation from the best straight line through a plot of thick-
ness versus diameter data for schedule 40 pipes.

2.32. The thin-walled formulae are based on the assumption that the stress is practically uni-
form across the cross section of the vessel wall. It is generally used when D,/D; < 15.
Sketch what the stress distribution would be for a vessel if internal pressure cm.md botp the
inside and outside diameter to increase by the same amount. Estimate h.ow big the differ-
ence in pressure from inside to outside would be for a pipe or vc.ssel .Wlth.D,,/ 1:,- [:e ;OST

2A3. The thin-walled formulae in the text, Egs. 2.25 and 22?1.‘ ?:12 szxr;phﬁcanons 0
mulae in the piping codes [5].' il g repmt;llff:s:mlzla afor a ;:y.l'mder from Table 2.2,
(a) Repeat Example 2.10, using the thin-walle

with E, = 1.00 and C¢ = 0.0. How much differcnc; dcaea'sr i;]m:;k;,‘!
i ick- d formula from 1able &.=. B
(b) Same as part (a), but use the f‘:ksgzllfi, e B L <

(c) For a cylindrical vessel with . nted 1 from Eg. 2.25 and from the
wing the calcuia g 0to
g:'FPafc da tll'ﬂoltc ﬁﬁl:: r:;lslagoilhsofmj Table 2.2. Cover the pressure range from
in- and thick-wa

10,000 psi. sig during firing. This peak

23, An ordinarypriﬂe has a maximum pressure of al:;)m foam'oggr l;ng Jasts about 0.001 s- Far-
the barre] from the € this [8]-

value occurs a short way down the . bstanuﬂnz’stl::: Lha:l:e required thickness of

ther down the barrel, the pé
(@) If the inside diameter O : py the thin-
the barrel wall and the barre
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. [5]
TABLE2? ickness formulae, Ref. 5] Limiting conditions
P <0335
Cylindrical shells oo t=r/2 or SE,
i + c
Thin-walled: ¢ = T~ ¢p ¢>n/2  or  P>03gsg

it |

Spherical shells P-r t < 0.356r; or P= 0‘665351
i + Cc¢
Thin-walled: = 7577
255, + 2P\ _ |, ¢
Thick-walled: ¢ = r|| S-—5 —_—

t>0356r, or P> 066ssg,

ci and C¢ = corrosion allowance
internal radius, § = design stress, £, = joint efficiency, l
Here ¢ = wall thickness, r; = in

in TalLla 99 -_1

by Eq. 2.25. Use 5 = 80,000 psig. Rifies are seamless, so that they
;;‘:.:; ;;n :'.,um aim g. E; = 1.00. Their owners take good care of them, so tn,
(b) "I:';e_cotﬂ;mn practice in design of ordinary prcssuz.‘e vessels is t.o-use a value of §
(in Table 2.2) of 20,000 psig instead of 80,000 psig, thus providing i safety fac.
tor of 4. Does this work for the formulae in Table 2.2?' For Eq. 2.27? Could oge
design rifles using § = 80,000 psi and then apply a suitable safety factor to the
calc:Iated wall thickness? Would that work in the formulae in Table 2.27 For
Eq. 2317
(c) A simple, single-shot target rifle has an inside barrel diameter of 0.22 in. The barre]
tapers from the chamber to the outlet, have a diameter of 0.74 in near the Chamber
and 0.605 in at the muzzle, Using all three of the values calculated in part (a), esti-
mate the safety factor in the diameter at the thick end of the barrel. (Much thinner-
walled barrels can be used opn guns. They work, but they have very small safety
factors and are risky (8], They are also inaccurate, because the thin-walled barre] s
flexible, and flexes during firing. Target rifies often have barrels thicker than the val-
ues shown here, not for safety but for stiffness ang accuracy.)

2.35. Estimate the required wall thickness for the lowest ring of a flat-bottomed atmospheric
pressure tank that wil] store water, with height 64 ft, diameter 200 ft, and o = 30,000

lation method somewhay different from the €quations in Table 2.2 ang Eq. 2.25. Using
does that compare with

250 psi_g, and design stregg jg 20,000 psi. What will be th
(excluding foundau‘ons. valves, manholes, etc.) if the tank is

(a) cylindrical with hemispherica] ends, Ji g ) .
will have length = T, like those ip Fig. 2.6. The Cylindrical section
(b) spherical.
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\ [ 237, Assumung that steel pi
imum internal pms,c,mpe:u:a‘_m an allowable wq
\ j eter of 5563 in and an ; wable for 4 s ; s of 10,000 ps;
N inside diamege fln. schedule 40 pipe th PSlh;:a]culnc A e
T of 5047 in at has an outside diam-

1.38. For a cylindncal vesse] wi
- ” with Spheric

&, ential (hoop) st : al e i
- L - *-\nh‘medep}- ICS; in the Cylindrica) s;l?;:h:! llhs the relation between the circumf:
2 239, FArcim $ 15 said 1o have qd; n & axi : mier-
<, ; prnciple, when he wa:gl.igcgvmd the buoyancy r:;u al stress in the same section?
Y the Kip €5, which are called - :
go ed Archimedes

a crown was pure gold, as (he goldsm;
ical means were knowp for ;s

T&} Archimedes was struck with

f s
' “jd.sgrl‘niusc In Sicily to determine whether
settling the i as an alloy. At that time no chem-
the ideg of o Stuon without destroying the crown.
| g the sln:e:so d?.m :vhilc taking a bath, and he
s\t‘ Toe \ cited that he gig yelling “Eureka™ (“I have found i),
not bother to get dressed before doing

Suppose that in testi
5.0 N and a weight of 4 ?ﬂnsg;ht.: Crown Archimedes found that in air it had a wei £
of silver oc of an slloy c;f“bmh In water, Assuming that the crown was made owfmg:;z
the density of gold—sil‘ver alloy; ;:h:l Pt‘-lzeulage by volume was the gold? Assufnc Lbarl
The densites of gold and silver are .;l;i'i an‘:i‘u;g ; g(;':;‘:o gold) - '(p,im — Paitver) / 100.
2.40.*A helium balloon has a fiexible skin o » Tespectively.
. of negligi : o .
sion, so that the helium is always at the sfmil;l;s::;sh' artjlld infinite capacity for expan-
loon moves up and d 1 as the surrounding air. If the bal-
p own slowly, then the temperature of th i :
ractically th : e gas in the balloon will be
of § p! y esamcasthatofmesurmundeairHmemmofheuummmcbaum
s - - . n
is 10 Ibm, how much payload can it lift under the following conditions:

-2 4

2.£2. Currendy, recreational balloons are not filled with hydrogen or helium but with hot air;
" the pilot has a small propane burner to heat the air in the balloon. If the balloon is a
and if the total weight of balloon, pilot, passenger compart-

ment, propane burner, propan¢ tank, ropes, etc. is 200 kg, what average temperature must
barely lift the balloon? Assume that the air inside and

the air in the balloon have to just :
heric pressure and have equal molecular weights,

outside the balloon both have atmosp .
! 29 gm/ mol. (The latter is slightly inaccurate because of the products of combustion

inside the balloon; this inaccuracy is small.)

i i ights. It weighs 2.500 Ibf.

243 lead is weighed on a pan balance by means of brass weights. I :
e 4 : ghf brass weights, what would the lead weigh if the entire scale

(a) With the same set O
with weights and Jead were at the bottom of a tank of Wnler';G i
(b) If they were in a vacuum chamber? Here SGorass = 8.5 and - i .k.h |
2.44. Rework Example 2.12, not by Archimedes’ principl’:. but by a_mssummg th;;l\:c&n ::eo?o;
vertical and horizontal faces and calculating the difference in pressure
g bonom e Whiskey has SG = 0.92, whereas the drunk-

¢ iskey. S G
2.45. A 150-Ib drunkard falls in & ve! of \:::; :vyants 0 stay alive long enough t0 drink his :ill
ard bas SG = 0.99. 750 o ' kc;ping his head above the whiskey. If his head up to s

of the whiskey, “treads water,

sphere 20 m in diameter,

fx.
.l (a) 1 atm and 70°F,
the () 0.01 atm and 0°F, and
o f () '0'00_1 atm and —100°F? Assume that helium behaves as an ideal gas.
_"__f,ﬂ. Helium is preferred to hydrogen in balloons because it is nonflammable. However, hydro-
o / gen has alf the weight of helium. By how much would the payload of the balloon
N / in Example 2.11 have been increased if hydrogen had been used to fill it instead of
) helium?
j J
v
i
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moudlislS%ofhiibOdY |
water” to koep bis bead O L farwmn‘gzcrgomammcargn_

i build 2 '

2.46.%1t is proposed to bl on
wﬁghmk;:ndnmmbtwmﬂﬁ.ifdr

ofpint]og:muﬂweuscmmakﬂ

ﬂryh:veSG.-:O,SO‘? ‘,-,ons;idcw‘fltl:lI:!IE_aJ.lsteel,‘s(}_‘:?g
247. A sunken batieship weighs ‘Mwmgmma@ﬁ;mmw
. » .
bmkﬂﬁpandmbmingtttwmmandﬂn mw?
them to the mmnungmnmcmnpr&ed-n:mks Mh%*
making them buoy Mmmmiﬁthcbamlﬁhlp.m batieg_
dﬂofdwbanlcshipmmn%pbttlyﬁﬂcdmw
mggcstcduww'ecwmmxdnﬂﬂpbyzmcm%a_c::::zi“:ndm.
(bJll:lsh:::;enlfthcablchaszworkingtcnsﬂcmofwﬂl)psl. ck would

have to be? . ; - i
(c) If the battleship BIMﬁﬁMMd’;ﬁ?;z:ﬁf:ﬁoﬁm bat is e
W@Mﬂbk'ﬂdt‘@ed fwclmninv. The dimensions of the pool an
248 A swimming pool is empu oy e aebe it . .
30 ft- 30 fr - 6 ft (average depth). A rainctonm CZuses i Wailr @oie 1 e BIOWH o
mcpoolwﬁgmmmgmmlevetinthegrwndlswmlﬁbem"bc_mxﬂaf
thcgroundmdthusnpmwimtnoncfootofdaempo_fﬂEPWl-m{lqmdm
cmbymmmmmlﬁmm“fmmwmmw‘
depd:ofSﬁinpmewamr.WhaIismeupward(buoymt)famexﬂmdbymegmnﬁ_
water on the pool?
2.49.*On July 2, 1982, Larry Walters attached 42 helium-filled weather ballooas to a lawn char,
sat in it, and took a balloon ride high over Los Angeles [10]. People who saw him were
amazed; air traffic controllers were dumbfounded. Estimate the diameter of the individ-
ual weather balloons, which are assumed to be spherical and to all have the same
diameter. Assume that Mr. Walters, plus the lawn chair,
T plus the ropes, the empty balloons, and the miscell>
Ay neous things he took along had a weight of 200 Ibf.
Tank full — 250. A rowboat is in a circular swimming pool with diameter
of gas l 10 ft The person in the rowboat throws overboard 2 100
Ibm block of steel, SG = 7.9, which sinks to the bottom.
lalouﬂﬁsacﬂmmd:kwlinmeswimmiugpooln
rise, stay the same, or decline? How much?
FI 2.51. The fluid i
il oS T 12
and h, = 8 in !

(a) What is the gauge pressure in the tank?
T () What is the absolute pressure in the tank?
W Waer 2.52.*The two tanks in Fig. 2.26 are connected
. through a mercury manometer. What is the
B relation between Az and A4?

2.53. Figure 2.27 is a schematic diagram of a
s icncml two-fluid manometer. What is
4~ Pginterms of h, g p,, and p.° If
FGURE 226 We want maximal sensitivity—that s,
e Ah/_(?,. = Pg) as large as possible—what

Mercury manometer. relation of p, to p, should we choose?

-
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and the manom

= p

. eler fluid ; -
wil . 15 colored water,

®) 1 the reading be g B 7 4 'll:f?' :}hm

8 would the readin . in"?

meter with vy 5%

ertical Jegs
diff B
2.55. erence”?

FIGURE 2.27

2.56. The conventional barometer shown in

Fig. 2.14 is filled with mercu:
(a) How h i

oW high must it be to record a pres-
sure of 1 atm?

(b) How high would it have to be if we

used water instead of mercury as the
barometer fluid.

(¢) How large an error in pressure would
FIGURE 2.28 we rrtake with a water barometer by
Draft tube. ignoring the pressure of the water in
space above the liquid?

2.57. Television and newspaper meteorologists regularly show atmospheric high and low pres-
sure regions. Typically, a high will have a sea level pressure of about 1025 millibar and
a low will have a sea level pressure of 995 millibar. (Engineers would state these as 1.025
and 0.995 bars, but meteorologists always use the millibar.) Assuming a static atmos-
phere (impossible, but useful for this problem), estimate the average temperature differ-
ence between ground level and the top of the troposphere between the high and the low
needed to cause this pressure difference. Could these pressure difference be caused by
differences in moisture content?

3

3.58.#A common scheme for measuring the liquid depth in tanks is shown in Fig. 2.29. Com-
] pressed air or nitrogen flows slowly
;

through a “dip tube” into the liquid. The gas-flow
rate is so low that the gas may be considered a static fluid. The pressure gauge is 6 ft
above the end of the dip tube.

(a) If the pressure gauge reads 2 psig
and the dip tube is 6 in from the
Compressed bottom of the tank, what is the
| i Pressure gangs depth of the liquid in theatnnk'c?l
= bm/fi" an
l_..l JJ‘><'Ir r Vent Here Piquae = 60 1bm

Pgus = 0.075 lom / 6.
(b) Customarily, ~engineers read
memed [T 2 these gauges as if pgqy Were 2€10.
et 9 ‘ﬁ st o J'-_'ih age o How much error is made by such
O - s &{” ) a simplification? .
i Sl 259, The system shown in Fig. 2.30 is
| . used to measure the density gf a
FIGURE 2.29 liquid in 8 tank. Compressed air or
Dip-tube depth gauge.
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pitrogen “whl’“ ends are vertically “Hl,:
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" ssed air art.
—_—___t__uﬂ._llf_‘_‘_ lll"" dip tubes 18 I8 1.5 m of
o eter, which reads 1. Witer,
munull:” cute Is 80 slow that the gus j, the
a":]l:!'vcs may be considered o 'm“f fluig
dip T ity of the gus 8 1.21 kg /m’. wy,
The den! the fluid in the tank?

he density ©
i’; mace has 2 stack 100 ft high. The gaye
36054 uI suck have M = 28 g/ mol g
in the essures of the air ypq

o o 100°F, If the pr
T J(X’i" the stack are equal at the top o

the snsk what is the pressure difference 4

¢ stac z
FIGURE 2.30 th bottom of the stack?
ity gauge. the bo i 1 to th
Two dip-tube density g the oil at the bottom is equal (o the pressure
o fields; most of them, at the

; is 10,000 ft deep. The pressure S ! of oil
ol (.:}n af:,f:ﬁ:i';f seawater 10,000 fi decp: (Th:;‘ l: Ly)ﬂ::stmic column of seawater of equa)
time of discovery, have about thiff::?t;u; e oil is 55 1bm / £t>. What i3 the gauge pres.

i The

depth; there are exceptions.) P
i 11 (at the surface

saatscl DeE T which is practicnlly an ideal gas. The pressure g

2.62.*A natural-gas well contains methane,

the surface is 1000 psig.
i th of 10,000 ft? '
o) e e d: by assuming that methane was a constant-density

(b) How much error would be ma E
fluid? Assume the temperature is constant at 70 F.
a distance of 10 mi.

2.63. An oil pipeline was constructed to transport an oil with SG = 0.8 for
The country was hilly, so that the line made many ups and downs. These may be con-

sidered equivalent to 10 rises of 200 ft, followed by descents of 200 ft. When the pipe
was completed it was tested by pumping water through it. The water flowed satisfacto-
rily with an inlet pressure of 150 psi. Then the oil was slowly fed into the pipe. As the
oil flowed the pressure at the inlet end began to rise, and the flow rate hegan to fall.
Finally, the flow stopped altogether, while the pressure at the inlet side remained at

150 psi. Explain what caused this. (Hint: This is a manometer problem.)
2.64. The tank in Fig. 2.31 is completely full of water; there is
no air. Both valves are closed; now we open valve B and
allow the water to drain out, without opening valve A,
What is the minimum pressure that will be reached in the

tank?

2.65.*Bourdon tube pressure gauges and some electronic ones are
mhc‘rently calibrated devices. The standard device for cali-
b.ratlng th.em is the dead-weight tester. This is a laboratory-
s:z:ed equivalent of the hydraulic Jift in Fig. 2.24. Precision
1“:’:;8:!8 are placed on the lift, instead of the automobile.
betweonnecnon for the pressure gauge to be tested is placed
gt T the pump and the cylinder. When the pump has
UGN §a1 ih . :"l:d the piston and the weights on it off the bottom,
A tank that can be collapsed by hl:md F:ols s:::ppca' ‘i cylinder and weights are rotated
Make sure they are not sticking, and the read-

by draining, ing of
& of the pressure gauge is recorded. More weights are

Valve A
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CHAPTER 2 FLUID gTATICS 19

&dded and
ton is 0.50(l]h ?npr::: S;‘repg?md_ If the diameter of the pis-
is 25.00 Ibf, what i u: weight of the piston plus weights
Bauge? Manufact § the pressure exerted on the pressure
to *0.5% of th urers claim that these testers are accurale
2.66. A popular, ] ¢ pressures calculated this way.
level “&'—'s‘g ‘L‘:ﬂ‘;‘:t way of mmmg the tops of fence posts
the hose with arent plastic garden hose. One partly fills
posts, and ad'mv::;r' holds the two ends to two different
raising or o \i ts the liquid level in one end of the hose (by
that is bein Cl'mgl it) until it is level with the top of the post
FIGURE 232 the fluid i g;:se'd for reference. Then one marks the level of
A very simple accelerometer. system w::?rk _:;'_ 3::5; on the next plost'. and s0 on. Will this
2.67. Rework E are trapped air bubbles in the hose?
- ":rl:llplc 2.17 for the elevator falling freely, ie.,
»,68.¢The device in Fig. 2.32 consi H acceleration of 9.81 m/s*.
nected to a Pressurc. gaug: s'l;tlls ﬂf}:WO pieces of pipe of 1 in inside diameter that s So
direction. The pressure gat;ge ;;:soslep?gpmtus is on a elevator, which moves in the Z
(a) How fast is the elevator acce]erating?‘
(b) Which way?
2.69. '\?:a:e;m;? L:rum;i in Fig. 2'33_ Is sitting on a cart. We now slowly accelerate the cart.
m acceleration we can give the cart without having the fluid spill

over the edge of the tank?

_L 270.*A closed tank contains water and heating

_ oil, SG = 0.96, and is completely full of

s s the two liquids, with no air space at the top.
1ft e 90 ft ——— The tank is being steadily accelerated in the
AP x direction at 1 ft / s2. What angle does the

R W . water-oil interface make with the vertical?
2.71. If the fluid in the centrifuge in Example

u 220 is water, what is the gauge pressure at
the outer wall of the centrifuge (under the

layer of water 1 in thick)?

FIGURE 2.33
Figure for Prob. 2.69. 272#In the centrifuge in Example 2.20 a solid
particle of volume 0.01 in> is setuling
Axis of through the fluid.
merry-go-round (a) When it is almost at the wall, where the
e radius is 15 in, what is the buoyant
T : force acting on it?
buoyant force act?

E-S
=

(b) Which way does the
2.73. The tank and manometer shown in Fig. 234

i are mounted on 2 merry-go-round that is
J revolving at 10 rpm. The vessel is filled with

Axis of tank —

a gas of negligible density; the manometer
fiuid is water. What is the pressure in the

——— vessel?

= 2.74. A cylindrical, open-topped can contains a
layer of gasoline 4 in deep on top of & layer

deep. The can is now set on

Manometer on merry-go-round.
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a phonograph wntable and rtsud gy,

/—’-““3\« vertical axis at 78 rpm. Descrine H‘-H:l,
matically the shape of the gasoline =
/ gasoline-water interfaces.

2.75. Figure 2.35 is a sketch of o fou,,
arrangement made Of 1%0 glass jarg Wi
rubber stoppers, several lengthe of 4,
tubing, a funnel, and 2 piece of rubier o5
ing. The level of the jet and the level of 5,
water in the funnel are exacty the s,
The space above the water in each bl
full of air, as is the rubber tube Oty
the two bottles. An inventor has come 1
telling us that with this arrangermens r,

FIG[-]RE 2'35- water will squirt high in the zir, muce

i higher than the water level in the fuane] {4

she right? Explain your answer.
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THE
BALANCE
EQUATION
AND THE
MASS
BALANCE

uch of engineering is simply careful accounting of things other than money.

The accountings are called mass balances, energy balances, component bal-
ances, momentum balances, etc. In this chapter we examine the basic idea of a bal-
ance and then apply it to mass. The result is the mass balance, one of the four basic
ideas listed in Sec. 1.3. Chemical engineers use some form of the balance equation

in almost every problem they encounter.

3.1 THE GENERAL BALANCE EQUATION
ance idea by making a population balance around the

i eneral bal
Let us illustrate the g £ Utas cto CAgE by:

State of Utah. The population 0

1. Births

2. Deaths

3. Immigration

4. Emigration 5

1
r
3
E;
:
.-
:
,
:
:
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yzting themn o Te ;.
algebraic $1E7 and equting T Ny
Adding these with the comect
population, we get ‘ . by + UTUMIgIEIn ~ T At
in oa = birth o athom:
Increase in populat ke g:DCﬂ] balance equalion: i

i g B ke

This equation is a special case o e~ o o "
i = ion — Oc$ :
Accumulation = crealio
We can now make four comments: o
of ume. If we umuiw.uuwj! s -

od ;
aF’l-"l)’u’"‘-’m‘pcrl one month, the balance ! bp P,

in
and the deaths i about one year, thes . b

1. These equations must
lance we are t2lking

the births in one year aI
indeed. If in the population ba

divide Eg. 3.1 by one year to find ,
Annual increase)  fannual ) _ (o0l ), mn%g atic 'f
- emigration ra12, ’

This is a rate equation. If someone promises you 2 million dD?L’.ﬂ: ;.-w' = 5
happy. If he pays you at the rate of $0.01 per year, you will be cnhappy: %2 1 |

all normally interested in rates.
2. If we apply the population balance to the State of Utzh for a2 one-day period. =-

will find misleading rates. The number of births per day fluctuates: the annual e
is practically constant. To get meaningful rates. the period over which mezsim
ments are made must be long enough to average out flucmations. (There ar2 sorme
situations in which we want to study the short-ime fluctuations, e.g.. the st
cal study of turbulence. For such studies it is worthwhile t0 make balances cver
time periods short enough for these fluctuations not to “average outr™)

3. In the example above, the balance was made over an identifiable set of bousc-
aries (the legal boundaries of the state of Utah; see Prob. 3.1). A general primc+
ple of engineering balances is that there can be no meaningful balance withou 2
carefully defined and stated set of boundaries. The set of boundaries need not b
fixed, but they must be identifiable. Suppose a group of people was shipwreckss
in the Antarctic and took refuge on a floating iceberg. We could make a popeix
tion balance around the iceberg, and it would have the same terms in it 2s did oer
population balance around the state of Utah. The boundaries of the icebers arz
perfectly well-defined, but the iceberg is not fixed in place, and its size isamt

stantly changing.
Whatever is inside a set of boundaries is often called system. Everything

some closed container, which does not all i .
tem the balance equation reduces to ow flow into or out of it. For such 2 sy%

Accumulation = creation — destruction [closed system)] (34
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Sueh o xvetem s called a ¢ fogeg
Al

# sealed space caprile waveljy, ' :

equation wonld be g th

var )
,:“T:f; f " example might be the population of
pace, for which the population balance

e
herease in population = bifths — daaihis AA)

he Llored svstem ix
& Widely
seal teaution ix taking l:l::(\ used in chemistry. It is very convenient when a chem-
© 0 a closed container, in which new species may be

\"r“'l‘[l I\\ I'I\' | 1 b
il “I Ty 0 0 ) 5 L] Il"c‘] ‘)UI none

AN open avstem |
svstem is usually some ki
. . Y some kind of g
amd Cul acrosy ik : of container or vess
boundaries at some small number of places 'el'lh::ni:]:ii: ?:u::;

Wore commonly in engine
. ering than i .
sively in this book £ than is the closed system and will be used exten-

We consider lows i ;
Wi of plasen: o nnmp;:, ﬂ“l\:(:::c;:ﬁosl open systems only at some small num-
pipe. one hot water outlet pi c. _ .wm'er heater that has one cold water inlet
et wilie. I oo ME » one drain p1pe,’ and one connection for a pressure
Pl c-mir;‘ : sys:ﬂem some ur@tmry reg'ion of space that can have
. undary, then this system is called a control volume.
ln this book we will treat any control volume as a special kind of open system.
4. The balance equation deals only with changes in the thing being accounted for.
not with the total amount present. The population balance given above tells t.hl;
change in the population of Utah but not the numerical value of the population. If
we want to know the numerical value of the population of that state, we may con-
duct a census. Alternatively, if we could find birth, death, immigration, and emi-

from the time that the first person entered the state to the present, we

gration data
n zero. Mathemat-

could compute the change in population starting with populatio
ically, this is
present
Current population = f _ (rate of change of population) d (time) (3.5)
time at population=0

nd a place in their balances for the total amount

Beginners are often tempted to fi
lue of population; resist this temptation!

contained, such as a numerical va

To what can the balance equation be applied? It can be applied to any count-
able set of units or to any extensive property. An extensive property is one that dou-
bles when the amount of matter present doubles. Some examples are mass, energy,
entropy, mass of any chemical species, momentum, and electric charge. Some exam-
ples of countable units are people, apples, pennies, molecules, home runs, electrons,

and bacteria. .

The balance equation cannot be appllc‘d to
intensive properties. Intensive properties are indep
ent. Some examples are temperature, pressure, f \
electric voltage, beauty, and densi;y. An example of uncoun
eoc?:alion is so important, W€ consider on

uncountable individuals (units) or to
endent of the amount of matter pres-
viscosity, hardness, color, honesty,

able individuals is all the
e more non-

Because the balanc
engineering illustration.
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84 FLUD MECHANICS FOR CHEMICAL ENGINEERS
apply Eq. 3.2 to your banj

:ate terms O
Example 3.1. Write out the appropriat
- inspec ite that
' jon we can wrt¢ |
By tion . t s + deposits ~ withdrawals (3 g,
Increase in bank ) _ interes ) r—
palsstE payments .

e current bank balance does not
urrent value of your account jg
use of the term balance.) In both the

are roughly proportional to

value of th
that the €

enter into this equation. (It i
called a bank balance, which conflicts terms that
population example and this example, thers 218 irth and death rates in any state are
the current value of what is accounted for. The = i st payment in your bank
roughly proportional to the total population, a e ¥ = TFl,:lus the current values
account is proportional to the current amount in e accuuntl; ve no direct entry into
do often enter such balance equations indirectly. But they 1

the accountings.

3.2 THE MASS BALANCE
Our example of a balance equation in the preceding section would be of interest to
demographers but not necessarily to engineers. The most important che:mc_:al engi-
neering balance is the mass balance. Mass obeys the general balance equation: cre-

ation and destruction terms are zero. Thus, the mass balance is

Increase in mass within) B (ﬂow of | _ (flow of ) 3.6
the chosen boundaries mass in mass out ’

The careful application of this equation is necessary to most fluid-mechanics prob-
lems. We can divide by time and find

( Rate of increase of mass ) B ( flow rate flow rate
within the chosen boundaries of mass in of mass out (34

The mass balance cannot be derived from any prior principle. Like all the other
basic “laws of nature,” it rests on its ability to explain observed facts. Every careful
experimental test indicates that it is correct. Mass can exist in a variety of forms, for
example, solid, liquid, gas, and some other bizarre forms, and can convert from 'one
to the other. When liquid water evaporates we see the liquid disappear, but we have
no visual evidence that the mass of the surrounding air increased by ex:;ctly the mass
of the water vapor thus produced. Lavoisier made the first clear statement of the law
[1] and t-iemonstrated that if processes similar to the evaporation of water were car-
r:cd out in a closed glass jar resting on a balance, there was no loss of mass: the vis-
fble water had changed to invisible water vapor, but the mass of the cont 't ef V[LS

Jar did not change. The idea that mass is conserved seems quite obvious t:: flsonowe

public before then.
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; UATION AN :
We will see in Chap_ 4 & D THE MASS BALANCE
other. In most engineerin al magg

s g
mulation in Eq. 3.5 (bug Problems y,

smd energy can
Wwe

b
€ can neglegy this :.a?“““Qd from one to the
There 1y ¢ BEC it in dealing wig . ¢ e simple for-
created except by conversion ho

; Ng wi ;

ot EXperimenta) & With atomic bombs or the
& the } CHErgy €

prospect is the idea of the

vidence on earth .
: that matter is
s v 48§ Just d s

astronomer Fred Hoyle. Accorg teady-state Universe escribed. A more

ing to hi " but f interesting
» Q 's . bi Orward b lh i
cchwhgrc. however, the rate i ver l'-hcones, matter is being CTcalc):l “-.-. th'Sh
cubic mile of space [2]. No inStmmcy slow, about gpe all the time,
a confirmation of this theory i

hydrogen atom per h
OW exist that Per nour per
p on could detect ¢
Hoyle claimed that the experi an earthboung dodle uch an event, so

. : s mental ob : seems impossible at present.
ies support his theories; most other asuizr:“uons of the P
no foreseeable application to mers disagre

; engineer .
on the subject of the absolute gineering problems, ;

tis well to kee ind
nature of P an open min
as we currently understand them. the mass balance or the other laws of nature

Example 3.2. i i

thownpi; 1331: 3('1_'01;5:1dt;,r.the simple pot-bellied stove, burning natural gas,
: - 2.1. Applying Eq. 3.7 to this stove, we choose as our system

boundaries the walls of the stove. Then Eq. 3.7 becomes

Rate of increase of

mass within the chosen | = (mass flow rate) + (mass flow )
n

boundaries of gas in rate of air i

mass flow rate
— | of exhaust [ 7,84
gas out
| |

Here we have two mass-flow-in terms. There is no limit to the number Of. sucp
terms. Recall our population balance around the ;;a;;:a of :J:zlrm:n \\frzrc::;g 2;232“‘;;
| BRES plane, €5 Bl el i et Lcr::: to get the total immigration
*' | term. Similarly here we add the
individual mass-flow-in terms to
get the total mass-flow-in term.

The mass balance has several
other names that aré in wide use.
These are the pn‘nciple. of. co:;;;—

i the continuiry -
Nam“mxga;—’ i s :’g;ontg{ n:'f:tsr‘inuity principle, and
Tt the ;nalerial palance. They all mean

exactly the same thing as mass bal-

ance pamely, that mass obeys the

q] balance equation, with no

ener .
%reation or destruction.
FIGURE 3.1

Pot-bellied stove.

Air
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BAL CES being turned off f d’:ml’
33 STEADY-STATE s first lighted after or a Ig,e L
; ve in Fig 3.1 will change rap‘ldly. After a Ccna“l o, ¢ iﬂ
When the pot-belliec %% ' arious parts 1 1re of the various parts Will not gy, ¥ a0
time, the mmpcratur:nd hereafter the :lcmﬁl:e velocities and' temperatures of the -.Gﬂﬂ o
will bc warmet:! ulJ.Lhc warm-Up period. i1 be changing with u?'ne. A thermumehr o _1;5\ g
with time. DUAnE ‘% fixed point WE © tinually increasing temperature, o, i’
passing through it 2 will register 8 & ister a constant temperature, W, ¢ o g
some fixed point in the ﬂ:;s ihermometer Will PBC L, of it as being at steady gy o
the stove has warmed Up: ' is running stcadl}y we Sl;’l ing; it means that nogﬁ;%' i@ ¥ b
the stove has warmed up a% . mean that nothing iy antgl e:teady PA—— Bis ¢ 00 :
A steady state ocs 0 T Gijer a waterfall WItH 2 % velocity as it ;L e O
changing with respect 10 umf water there is 2 rapid increasc ! ¢ o, ok alls ang g lﬂce5
the viewpoint of a P e at the bottom. From the viewpoln -(:h an observer watch, o
a sudden dEC}'ease " v'e,IOCI:chc the waterfall is always r.h'c Saﬂ}e- erefl: al‘f“?s w?m
ing on; specific P"T:lcl:ncig Mathematically, if the velocity V is some function of tim, y 'ﬂ:
going by at a fixed - LIS
and position, .
o v=5nx7 (33) "
o8
then at steady state e 1
(ﬂ.‘{) =0 [steady state] (3.9
at Jx, yz P
We may similarly write for steady state that (3/ a‘_)x. y.z of any measura.xble property “"' %ﬂ
of the system at any point is zero. Thus, if we write the balance equation for some fs
measurable quantity such as mass and divide by dt to find the rate form, then we see o
that the left-hand side (the time rate of mass increase within the system) must be zero, g
because at every point in the system the mass contained is not changing with time, fore
sho

Entirely analogous arguments indicate that at steady state the accumulation term must
be zero for all possible balances, including the energy and momentum balances, which o

we will discuss in Chaps. 4 and 7.
Returning now to the pot-bellied stove of Example 3.2, we see that, at steady

state, the mass balance simplifies to

Mass fl ate
i ( ; S .ow r ) N (mas:'; f'low rate) _ (flow rate of (3D)
of gas in of air in exhaust gas out

Tl'ﬁs is the famﬂmr “flow in equals flow out” idea, which is true only for steady state,
with no creation or destruction.

Example 3.3. _ For the pot-bellied stove of Example 3.2 we now make a steady-
ztat; ca:dlzinon' dlo_xlde balance. By chemical analysis we find that the amount of

arbon dioxide in the natural gas and in the air is small enough to ignore; 0.
omitting the unnecessary terms from Eq. 3.2, we find

) Cfn:ation rate destruction mass flow rate
:io(;caird:on + | rate of ~ | of carbon dioxide | (3-F)
carbon dioxide out in exhaust gas
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In this case, the destructign term

ete . .
balances. TS are very important in some other

34 THE STEADY-STATE FLOW
ONE-DIMENSIONAL MASS BALANCE

Consider the steady-state flow of some fluid in a p;
a pipe of varying cross section, Fi
If we apply the steady-state mass balance equation to the systegm show:n,c v?: ‘fmlg e

Mass flow rate in at point 1 = mass flow rate out at point 2 (3.F)

In general, velocity is not the same at every point in a cross section of a pipe; it is

faster near the center than at the walls. (One may verify this for the analogous ,:.,pen_

channel flow by dropping bits of wood or leaves on a flow of water in a ditch or
gutter and noting that those in the center go faster than those at the side.) There-
fore, to calculate the total flow rate in across the system boundaries at point 1, we
should break the area across which the flow is coming in into small subareas (A),
over each of which the flow is practically uniform:

Mass flow rate in at point 1 = 2 pAV (3.10)
many subareas
Here the individual elements of area must be taken perpendicular to the local

flow velocity. For flow in a straight pipe or channel ‘this is no problem, because the
flow is all in one direction, and the area we

normally consider is one perpendicular to the
premmemmmme o SySIAm flow. If we then take the limit, as each sub-
boundary area becomes infinitely small, the term on the
right becomes the integral, over the entire sys-

:5 tem boundary at point 1, of pV dA. Therefore,
the steady-state mass balance for the system

in Fig. 3.2 is
'@ shown in Fig

- vda (3.G)
FIGURE 3.2 0=fmandA f““‘p

A system with one flow in and one flow out.
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5 to be any locations 10 (R€ PIPE, S0 for Slegg
could choose points | this ;Quation becomes y
But we ) chann¢ . .
pe of (st eady flow in a pipe or fh&nnel] Q ;
)

21 A o e ol
g . complete . rerage veloct orm ¢
No real flow has 2 te a\rc- ;.ll is the total mass per unit tige p:::,

iy proems v U5 30
the whole cross sectiof -
ing down the pipe of CRARTEY o
kg /s or Ibm/s and given (almost

section of the pipe or channel

.

constant 10 Eq sﬂf’“’ rate. It is normally meas{lmd ;
e mas 2 : if n
the density 1S uniform across the Crog

y true) then we may f“flher

bol m. If :
always praCUCﬂ"

define .
; mass flowrate _ m
ametric _ , - M =
::ir rate ) =i density P | 3.1y
y _ i3 the discharge.) If we now divig
ivi ineerin this quantity 1S called - "
\Ef:l}ucrlz:;lu:: gt']]gw mg E?:e cms?;—sectional area of the pipe or channel, we find
AVeAEE) . ¥, = Q 3
velocity/ oo A (3.13)

ple 3.4. A typical self-service gasoline pump puts 15 gal of fue| jn
ur tank in 2 min. The inside diameter of the nozzle is 1.0 in. What are the vg|.

umetric flow rate, mass flow rate, and average velocity?
The volumetric flow rate is
3

15 al i
ﬂ Bl _ 458 00167 = 000047 (3
2 min min S §

The density of gasoline varies from refiner to refiner and with time of the year
On average, it has an SG of about 0.72, so that

E ft’
m=0p 00167 —-0.72- 62.3 21 _ 075 0m _ 0345% GJ)
§ fe? s s ‘

5 0.0167 f /s 144 in?
(w/4)-(1in)2 g2

and

=2

=306 =093 @)
S S

Scdalineau py cairnoscariner
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—

Pipe wal)

i

~Lumina

0.6 Turbulent

Center of pipe :

0ar

(Unstance fromn one Wil | digmeer
Armerineniess

s S R

8 10 12 14
Velocuty, V, fu/ s

FIGURE 3.3

Velocity distnbutions in a circular pipe with an average velocity of 6 fi / s.
The Biock flow curve (verucal line) corresponds to the simplification that
the whole flow may be represented by its average velocity. The Laminar
fiow curve (discussed in detail in Chap. 6) shows that for this type of flow
the velocity at the center of the pipe is twice the average velocity, and the
velocity distnbution is parabolic. The Turbulent curve is an approximation

of expenmental measurements, represented by “Prandtl's 1/7 power rule”
(see Prob. 3.10 and Chap. 17).

Figure 3.3 compares the velocity distributions in a pipe computed by various
assumpuons. In all three cases the average velocity, Vyyerage = 6 ft / s, a common velocity
in industnal pipe flow. Figure 3.3 shows that for the block flow assumption, the velocity
is constant at 6 ft /s over the entire cross section of the pipe. Turbulent flow, discussed
in Chap. 6, is the most common type of flow in industrial pipes, tubes, and channels.
The curve shown for turbulent flow is an approximation; see Prob. 3.8. It shows that the
velocity goes to zero at each of the pipe walls, as you can observe in flows in a nver or
rain gutter. For the average velocity to be 6 ft / s, the maximum velocity at the center of
the channel must be 7.35 ft / s. Laminar flow, also discussed in Chap. 6, occurs in very
small pipes and channels (e.g., almost all the blood flows in your body) and for high-
viscosity fluids (pouring syrup on your pancakes) but not very frequently in common
industrial flows. We will speak more about it in subsequent chapters. For laminar flow,
as for turbulent flow, the velocity at the pipe walls is zero. To have the average velocity
be 6 ft /5, the maximum velocity at the center must be 12 ft/s.

The average kinetic energy (KE) and average momentum in a pipe flow (dis-
cussed in Chap. 7) are always somewhat larger than those corresponding to the aver-
age velocity, because in calculating them (Probs. 3.10 and 3.11) we see _thal the
velocity appears to the second or third power. Taple ’3.1 shows how much d.lffcrencc
it makes if we assume either of these three distributions. For example, laminar flow
is quite different from block or turbulent flows; we will speak more about that in
Chap. 6. But turbulent flow is not much different from block flow. If we esumate the
Kinetic energy in a turbulent flow by the block flow (average velocity) assumption we

v, %%

A7 ,K(Q/
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and laminar velocity distributions

TABLE 3.1 rbulent T~
Comparisons of block flow, tU Turbulent flow Laminar floy
/// T —

Block flow :
1.22 Vaverage (2)00 V"""l!
Maximum velocity :""m" 0 "
Minimum velocity average va.m.s Y uverage
Lo 106 ol
i it mass ’
S Skl V2 : pA 1.014 " Vfur-.-PA 1.333 Vsmnm
average —

Total momentum in the flow s
If we estimate the momentum in the flow by
the same simplification, we ror of about 1.4%. We r;ufdy have input
data‘ (in industrial situations) accurate enough to WOIT}‘PEbOU; egoafzd IISI 5;12:::1, sgo we
will normally ignore these differences. For the rest of flrts . - » an ; s- ok
we will make the block-flow assumption, that the velocity of flow in a duct, pipe, or

age value. Where we do not make that

channel is adequately represented by its aver
For the most careful work, reconsider

assumption, we will make that clear in the text. . _
that assumption, looking again at Table 3.1. Table 3.1 applies only to flow in a cir-

cular pipe or duct; for other geometries (the atmosphere, the oceans, all two- and

three-dimensional flows), the results are more complex.
With this simplification, and the additional (very good) assumption that the den-

sity of the fluid is constant across the cross section, the integration in Eq. 3.11 can
) be easily performed, giving
prb‘» piA V| = pA,V, = m = constant [steady flow in a pipe or channel] (3.14)
—————— — M )

Q\/< " /f?m,ple 3.5. In a natural-gas pipeline at station 1 the pipe diameter is 2 ft

about 6%.

will make an error of only
will make an €

e : [!le ﬂqw condi'tions are 800 psia, 60°F, and 50 ft /s velocity. At station 2
pipe diameter is 3 ft and the flow conditions are 500 psia, 60°F. What i
the velocity at station 2? What is the mass flow rate? ‘ . e

3 ?Vﬁl Solving Eq. 3.14 for V5, we find
A A =)@y
viPl v, =y 2rd _ ft pr \4
il//__ 2 lpzAz 50';"'—'-——-—..._.____ 3K
P2 (o (3K)
f1 R *  The densi )00
2 ¢ density of natural gas (princi
. pally methan, :
0 P imate)2.58 bm /ft], and at 500 psi €) at 800 psia and 60°F j -
r . S1 O 1p oY 2
eﬁ__i.é. U — 1] Therefore, 2 and 60°F it is approximately| .54 Ibm / ]
” .
m
o8y 2580m ) (50
21y S B — ft
P L54(bm /0) fa\ = 37.2— =113 2 B
| g 2 (3 ft)2 8 s
v m prlAl =7 Ibm f
=258—.59t. 7
P Z (2f)? = 495 lbm k
a 405 —2 = 1g4 -£
\.\ - 6 3 184 - (3.M)
[
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CHAPTER 3 1
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For liquids at temperatures wel| pejow their criti
density with moderate temperature and pressure char:g‘:: phop
are s

perature the changes in
pids we can divide the density out of Eq. 3.14. fing;
« J, 1 ( 1ng

mall. Therefore, for liq-

. T T e

. , _m constant densit

AVi=AV, = — = constant ’
p

§ = Sa

Mass divided by density equals volume; ¢
mass flow rate divided by the density) is ¢

steady flow ina (3.15)
pipe or channel

hh('rcforc. the constant in this equation (the D S 25
¢ volumetric flow rate, (, discussed above.

/ v, ) w~| S
Example 3.6.  Water is flowing in a pipe. A( oo o .
Zand the velocity is 2 m /s, W PIPe. At point 1 the inside diameter is 0.25 m 2 'L
" e S. What are the mass flow rate and the volumetric flow -
raie” What 1s the velocity at point 2 wh - _ volumetric ) ”
Wwhere the inside diameter is 0.125 m? 2 = , ity o
y, ’ - kg m 1 k v.«!’ % - -
= p S92 2= (028 P =i98.0Tg % 216%"—1 (3.N) "
. i ,J \
m m 7 3 3 s Y \ \
Q=—=ViA, =2—-—(025m)* = m _a6fC 2
P s 3 (025m)* = 0.09817 —=346— (.0) _ ool q’.\f’)’(
" _
— 1(0.25 m)?
_— m (4)( m ft 2
Vz--VlA—2=2? = =g?=24.2: (3.P) ’LCJ":‘:
(Z)(O.IZS m)? < e
AN
-j. & L aD “Z
' 35 UNSTRADY-STATE MASS BALANCES R LA
i
: The steady-state behavior of systems, shown in the preceding examples, is very impor- oA
f tant. Most of the examples and problems shown in elementary textbooks concern 'g,:/\’ U [\
¢ steady-state behavior. However, unsteady-state behavior is probably more important. Vi "}pr Lt
f The characteristics of the two are compared in Table 3.2. - 5 3
3 A power plant burns fuel and produces electricity by means of a boiler, tur- aw ! K _
E bine. condenser, generator, etc.; its steady-state behavior is faul'ly easy to galculate. —5\ VW
However, its behavior when the power demand on the generator is suddenly increased » /1
3 or decreased is much more difficult to calculate. The power company would prefer P
3
: R
TABLE 3.2
Comparison of steady-state and unsteady-state processes K
] Steady state Unsteady state
Propert
; T More difficult %_ ‘7‘;; o
E A Calculations Generally easy : ]
M i , No es
: P;:mlly requires calculus? Difficult Easy j> s s &9 \c..‘:(
;- lup in laboratory Desirable Undesirable
3 Large-scale industrial use Generally high Generally lower
i Efficiency o Y226 15
% Capual cost per unit of production Liow High
3 Large-volume product (e.g.. gasoline) High Low - Y= 2 ol
. Small-volume product (e.g.. phannaccuucalsl

oldallliceu vy vaiiiouaitiiel
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en they ¢

v have A steady

yumn effciend

marxin
yeen (€ F

load Jdiaturbat
reducing the "
ters, such as explosions

ation bt dur
Chernoby | nuclear dis .
down Thus we sec that the t

our attention | -
[Insteady -state Mass balances do not ! e o
by the following €xamples,

o far However, as shown

complicated mathematics.
- in Fig. 3.4 '
e microchip diffusion furnace in Fig. 3.4 containg a;r, why,

" "may be considered an_ideal gas. The vacuum pump I8 pumping air out gy,
to heginning the thermal diffusion step. Durfng the pumpout process the bos.
ing coils in the tank hold the temperature in thc. tank constant at 6_31 The
volumetric tlow rate at the inlet of the pump, independent of pretyure,

ce any new ideas beyond .
they generally lead o, r::‘

o~

’Miﬂ’flplc 3.7. Th

1.0 ft' /min. How long does it take the pressure to fall from | gy,
¥ ? L\«é, J>Nem ‘

R
0.0001 atm?
We choose as our system the tank up to the pump inlet. For this Systen
the mass balance gives .
- dm
o’ = =-m
(df )syuem e GQ
o But we know that
,,‘-l"’
L P where Viyyem is the volume of the system, which does not change. Th )
. Thas,
| Q D) dm) dp ystem
— — V 5
dr —_— system
Q\ Ry Furthermore e o =
P a\,\‘ .
(}‘\f Moy = Qol.ll Pout (3-n
;Q' \"“ But 0, is constant and
p =
i i out = Psystem 3.U)
V dpsys
” sys d ~Qouw Psys (3.V)
is is 3 .
— ontroler  equatiop ‘:gflrablc. first-order differential
Evacuat » Which can be rearranged to
on of 5 Micmchi dirm 4
P diffusigp furngce. dp!ys Qm“
b= == (3.W)

psy. Vm
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and integrated from initial 1o fip stat
€s, yielding

P 5Ys. final

In ‘p——--—._.__ - _Qn\,u At
. 5YS, inatial V. 3.16
For low-pressure gas i3 s
€S at constany {
tional to the pressures, so we can solve fo‘;“:lf:r:lclur; lld'u: densities are propor-
v quired time:
At = B il ln leual - 108 1 at
Qout Py 16— In ——_ = j
/ inal lfl f min 00001 atm 92.] min (3X)
= /) .
Example 3.8. In Example 3.7 we con oo

¢ ™ sidered a vacuu ' s
O real vacuum systems are totally leak-free; eng; ecm cysiem with 2e1o leaks:
the leakage rate as low as possible, If » engineers work very hard to keep

00001 1b in of air, what will the pr e SR 3 1y I A

be the final pressure? essure-time plot look like, and what will )y)
Equation 3.Q becomes ConQE® 3 \'>', W
~, i % -' x
i () i) e AT
dr Mout BY} N3 s
system \‘79/ b,,q’
we then follow the preceding problem, retaining m;, as a constant in our equa- . ?

tions. We find V)
dpsys - \
S\} Vsys..i. = —Osi Psys t+ Mip ’Q L‘i (/32')6.

dt

.}{\f . .
[Psys — (Min / Qour)) T Ve dt (3.AA) ”
Psys, final ~ Eg: Qow) QOout o0
. = A _
" Psys, initial — (mm/ Oout) Vmi@ 3.17) >

If we ask how long it takes this system to reach 0.0001 atm, we will find that
it can never get there. To see why, we ask what its steady state pressure is by
setting At = o<, That can only be possible if the numerator of the fraction on

the left becomes zero, or
. : . T 0
— M _ 0.0001:bmf'mm _ 0.0001_};1;1_ (3.AB) D %%\_q\,e
eI Qow 1 ft’ / min ft <yes
5 1bm / ft*, and for ideal gases densi-

At 68°F = 20°C the density of air is 0.07

i i CAE = £
ties are proportional to{freffl‘l"r’;sa?oom - rp_ﬁ P P

1
L =
p W atm - = 0.00133 atm (3.AC)

sicady silte 0.075 lbm/ ft’ {l'ﬂ

Solving Eq. 3.17 for the density at any time, We find |
Psys. any time — \ Psys. initial 0 - Lt .
bm (_OL A;) + 0.000] —= (3.AD)
= (0.075 - 0£901) -f-tg'exp( e P

~ Y
R —’q_ \,\\'@k ’T:v#{ \§{>

out
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94 FLUID MECHANICS PO
1
0.1}
E 001 F
& 3
v ;
=
ﬁ 0.001 F
S E
00001 F
107 50 100
Time, f, min
FIGURE 3.5 . '
behavior of the microchip diffusion furnace
stant 0.0001 1bm / min

Calculated pressure-time
3.7) and with a con

with zero Ieakage (Example
leakage (Example 3.8).

For At = 50 min, we have
Ibm 0.1

= Lsiatiozat ——s . |

0.0749 23 CXP( — 50 mm) + 0.0001 ——;T

Psys, 50 min

= 0.000505 + 0.0001 = 1bm
0.000605 -3 (A

and

0.000605 Ibm / ft>
I'I‘he same calcul 0.075 lbm/f© 0.00806 atm (3.AF)
. calculation is repeated fo ;
ing pressure-tim d for other times, on a s
Fig. 3.5. © curves for this example and the Previpc::: d;::e[. Th; iy
are shown 10
|

P.SOmin

In many unstead
) y-state mass-
<siy5tcm the fluid within some " bi'llance problems it is co i
ecreases, the volu container. Thuy movesiieal b RS " ¢
me of the system wi]| chan S, as the mass of fluid increases o
ge.
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For any fluid we have m

equation and canceling the constant densitf%,esél:;tnuung these into the last

(&)
| dt i -~ Qo (3.18)
The volumetric flow in or out s equal to VA, so

().

2—.3 m
s 2 ©01m)’ - < 2 02my

— [ 3
gm;ﬁ;zc :ff iﬁtﬁ;n the tank is decreasing, and the level is falling. The rate a
of e Jevels 15 equal to the cross-sectional area times the rate of fall b

ikl NV
(d_v.) dzsurface o VJ
di system

[
>
=
Z

dz-surf _ lﬂ _ 1 'm3
dt  Ad  (n/4)@m) (_O'om T)
= —0.0022% = —0.00673% (3.AI)
n

3.6 MASS BALANCES FOR MIXTURES

In the preceding examples, the flowing materials have been uniform single species,
such as air or water. In most of the rest of this book we will deal with such uniform
single species. However, there are many problems of great interest in which two or
more components mix inside the system we are considering. If we make the simplest
possible mixing assumption—perfect mixing of all components—then we can apply
the simple balance equation as we have done before and find useful answers. The per-
fect mixing assumption is obviously a great simplification of what must occur in
nature, but it is often used because the results are so simple and useful. Several exam-
ples illustrate the idea.

Example 3.10. Figure 3.6 is a sketch of a rcctfmgu.lar ci.ty with angﬂx L and
width W. The wind blows over the city in the x direction wul'm velocity V. Atmo-
spheric turbulence mixes the air over the city_up to lt'le height .H. so we maﬂ
assume that the air in the “box” with dirnen'smns L times W times H ;18 we
mixed and has the same pollutant concentration ¢ every.where. T}?jehw c:lm;:)gr
into the upwind side of the city has pollutant concentration ti (W 2 i Stl:;csuniq
background concentration). The city emits pollutants 1nto l; ::\r; d;;m i e
formly over its surface with an emission rate g. {Here g me} L et
like kg / (m? - s). This uniform-emission assumption 15 2 1air

: the
from autos or small industry, which are more Or less uniformly spread over

y or power
city, but a very poor one for emissions from 2 single large factory or po
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FIGUKE 3.0
Idealized city used for Example 3.10.

plant; such emissions are treated a very different way in air pollutant modelip
and regulation. [4]. Chap. 6.) What is the concentration of pollutant jp the ajr
over the city in terms of g, V W, L, and H?

Here we make the steady-state assumption, that the concentration is py
changing with time, so that the algebraic sum of the flows of pollutan g and
out must be zero. Writing that sum, we see

Flow rate of flow rate of
0 = [ pollutant into + | pollutant into
city from upwind city air from city
flow rate of pollutant
~ | outof downwind
edge of city o

The pollutan; flow rateg are expressed ag

umetric flow rageg (eg., m? /s), so concentrationg (e.g., kg / mj) times vol-

VH (3.19)

n the air . polly
- €nlering the City (the t:m €oncentration jn the city is equal to that
W Much ghe I, ground concentration) plus a term (gL/ VH)
the city itsejs This :a"‘ C?ncentratiou has been increased by the
3S playeq , very ; X mode]” or “proportional” or “roll

a
NS in the Us ¥ Importan role in the formulation of
A [4] 8
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Extmple 311, - ; CBALANCY 97
A asalvent In the COury
£ of benzene (@ = & Ol an &

—~Xp /8 ‘
I\I\\It‘\'| the h\‘dli]l ot I.:I-:;*

m the shop awr 1o les
zene [Showhich wyg R

i R . L) my / A : } Mg Vigs Ty
¢ of benzene in the o h..JJI lt‘l 2001 | ! h.\’bii e standhd tor ben-

s benzene
CVaparae § kp (22 h)

L - "
Hon ol benzene

- L Oy be We want 9N\
\ y (R . ’
fow of ventlating 4y must w elow thiy Permted keep the concentration -, o
““.\ pr‘\hlt.ln -l\ \,“ “t“ &“Ppl\"‘ (N1 Lo eny i““."l. ll(\w h“gf i ’
AN ZENE 1k C o YETY sy, : e e \J
benzene s well mixed into the _-\_l.m I“““‘Nt‘ 310, Her ;
wil have the permitted bepgene ™ M€ Shop and I l':T s iyt ‘!
balance on the shop, ¢ he concenyy A the aig leaving the shop

ation, Making o

akj \
DR the inley r flow as @

0 = m

SRS benzene O
. i |

befirene ip tm e
inlet an bﬂ”"“'f c

Ve -
(l\\nl Paam ! ated

n -
1 ll‘rmrnem Qb + q = Qc (3.AK)
Now we observe thag there is o

o neplj g
SO we can solve for Q. l‘mding N benzene in e oG

7o) 4 o

air (b = 0),

: 3
(L= 481.000 1’-;—

hygiene standard. We can also see that

ne this is an impossibly large airflow rate. If
we divide the above flow rate by the cross-sectional area of the shop (4 m X 4 m)
we find |

Velocity =

Q 8000m’/min _ _ m m_,_ft mi
e 6m —SOO-HE—S.BS-;=27;=IST (3.AM)
This very high velocity could hardly be used inside a paint shop. Our practical
alternatives are to choose a less toxic solvent, for which the permitted concentration
is higher, or to devise some kind of ventilation system, like a laboratory fume hood,
that will prevent the mixing of the benzene with the air the workers breathe or to pro-
vide the workers with personal protective devices. We also need to conmder.thc air
pollution consequences of emitting 5 kg / day of benzene 10 the atmosphere; ;ln most
U.S. cities that would require a permit and probably some form of capture or destruc-
tion of the benzene. . ineer is both an
These two examples appear here b-ecausevsca:ri :::Pn;ﬁ::;}bl??or protecting the
environmental engineer and 2 safety eng:pgcr' from harm due to our activities. The
public and the workers under our Su pcmswnfurl for more traditional chemical engi-
completely mixed model used here 1 also use

neering problems.
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nd 3.12
TABLE 33 es 3.7 & 2 tamn
{ ExamP - Example 3.12, tan)
Coml’“rjson o e 3.7, vact washout
Examp!
down
pump PR
Type of variable Tank volume Viyseem SAGIRE. VeI, Viiqua
oul

98 FLUID

Flow-through rate, Q
Salt concentration, i
Initial concentration, .

Capacity vaniable g
Flow 1!"I'l"|-‘lblc Gas dcnsl')'r n:"' init
Cnm.mmﬂmﬂ mlble [m[]ll] g” dcﬂ!l'y- Pays, int Coalt taly, Iniy
: “nahlc
Starting P ow .r—.—"—; Csalt, Initial
Pinit Time, ¢
—

Resulting ratio a1
[ﬂc|
Time vanable
. 3 1 i
s 1000 m” of salt solution, with sajt Concep

contain
f:ﬁ’:gélfﬁﬂ.itﬁc zero, salt-free \fvatcr starts to flow into the tany Mo
of 10 m®/ min. Simultaneously, salt solution flows out of th;: tank at 10 o
50 that the volume of solution in the lank is always. 1000 m®. A mixer ip i

kecps the concentration of sali in the eniue umk .umfuml SO that the concenyry;
in the effluent is the same as the concentration in the tank. What is the ¢, lon
tration in the effluent as a function of time? ncen.
This example is exactly the same as Example 3.7, with the Vatii
renamed, as shown in Table 3.3. The reader may make the substitutions g hm::
there and have the resulting solution to this problem. See also Prob, 3 2] This
et LI

same problem appears in heat transfer and mass transfer, with the varia
es
|

renamed.

3.7 SUMMARY

1. Balances are important in engineering.

2. All balances made
creation — de:t:uucz;n + ﬂogoiﬁl tbj; gencrz;l balance equation (accumulation =

— flow out) by droppi

3. All bal - ) Y dropping the u

by ;l::: ca{l be divided by time to make rate equatiogns ooy e
0 ce 1t T .
It 1 necessary to choose and state the boundaries hich th
over which the
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See the Common Uniys and

Valy
this text. An asterisk (*) on ¢ es for

il

ol ot
:‘; t3

tw
>

0
in

3.7.*A river has a cross section

3.8.

3.9.

3.10.

roble
hf: ro ms and Exam -
In our balance equatio e Problep, Number jpq; Ples inside the back cover of

Cates that the . o
quesuons of definjtiog For e: POpulation of the he answer s in App. D.
ulation of Utah? Are ourisy am

state
, S driyj i Out-of-sta of Utah, We must resolve several
List several other ambiguoyg gru::s {;‘r“ug}, the
Wnite out the balance for th Or which

: € Number of
Wnite out the balance for one-dollar b)) ' tan

th . S in circulat i

producing State). © mass of refined gy Jhon in the United States

225 in the state of Idaho (which is a sugar-

. d 10 ft deep (assume for this problem
that the river has a rectangular cross section), what is the velocity of the river, averaged
over the whole year?

In March 1996 a special release of water, 0 = 45.000 f* / s, was made from the Glen
Canyon Dam, to create an “artificial flood” in the Grand Canyon.

(a) The flow was through 8 pipes, each with an internal diameter of 8 ft. Estimate the
velocity through those pipes.

(b) Estimate the average velocity of the river at some point downstream of the dam
where the width of the river was 200 ft and its average depth was 10 ft.

There is steady flow in a circular pipe. The average velocity is giycn by

V = 2 = f"""" V:2mrr dr/':rri,,n (320)
average A ra0

Calculate the ratio of the average velocity to the ma?&imum velc;city for each of the fol-
lowing cases. Compare your results to those shown in Table 31. .al ociy at any poin
(a) The flow is laminar (to be discussed in Chap. 6), and the local v y

in the pipe is given by

Pan = rl (3.21)
V= Vinax ril'lll

w i 1 adius at
he pipe and ryqy is the r
i i i from the center of t
here r is the radial distance
the wall of the pipe.

99
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HANICS FOR © - the local velocity g
100 PLUID MECHA d in Chap- 6) and Y is giye, b
urbutent (10 P : -\
() The flow 1 , f!’-!‘-‘--—')
i v = VYo rom )
. put not outstanding a ;
or rule, which i 3 fﬁda rcular pipe. Itis the b
(¢) This is Prandil’s I;Ztgab;mﬂ o mrb:-lin'{huzon' see Table 17.1 and Fig, l??m‘
f the velocity 17 on of that istn ¢ . Repeat part (b) usj i
::;:ﬂr:a:hcmant'ﬂ dcwnpilh;n:h/? s replaced by 1/10- Repeat part (&) using 1,
) velocities
higher aver2ge
nstead of 1/7 ‘ - ircul ;
311, See the preceding P“’h.'c':hcm per unit mass in a0 Ry S TS e
(a) The average kinelic
given b) =il
_ (V2/2) V- 2mrdr
Average kinelic r=0 3.
= T fr= e <)
encrgy, Per f V- 2mrdr
unil Mass r=0
quals

but the denominator of this fraction ¢
f".’d v 2mrdr = Q = V“""!‘ A = 7rrl2klll V;vcﬂse

=0

(3.24)

so that Eq. 3.23 simplifies to
f TV3rdr

Average kinetic e

energy, per 2 (3.25)
2 T wall V;v:rl,gc

unit mass

,.;Sbow that substituting Eqs. 3.21 and 3.22 for V in this equation, integrating, and sim-
¥ 2 plifying leads to the values shown in Table 3.1.

9“ ¢
Yo ~ R ;7(b) The total momentum flow in a pipe is gi
- ub ___g:p/f a pipe is given by
f; * -l v ,y’.} Total momentum
- T p = &) - F= Fuan
=7 Ji- {,‘}# qa’? (ﬂow ) sl;haleflowm‘/d’n - .[r=o VepRi2mrdr P}
e 6.4 ;_ v}‘t For block flow this simplifies to
(3.0 4 / ¥
»(3 £\ ? . s (Tmal momentum 5 ./;
i 2 ZOL R flow = Vaverge A [block flow] (3.27)
substitutin,
a YR ing leads to the valuey fqhzwizl:l ?;13'22 for Vin Eq. 3.26, integrating, and simplify-
o instead of 1/7 in Eq, 3.2 e 3.1. Show the corresponding values for 1/ 10
rb® 3.12. An ideal gas is flowine ;
! gas 1s flowing in a constant-diameter p; :
T Pipe at a constant temperature. What 18

velocity to Pressure?

tank j ;
OW rate. mass flow rate, ang w:lm:list):.l ?r: ‘::angmg with time. What are the volume!”
e other outflow line?




‘A compressed-air vessel hay o volume ¢ R
7 & {16 1} W
stant af o8 ::'l Th? prg;,urt NOW in the :’tl\-l:l':i :{"hlu-‘u Colle hsld g Wingme atiion o V” j‘ PN 4
101bm /h How fast is the Pressure increasinon ) pria Alg 4o Berming in o e u; "A <2 ¥
. at Example 3.8 for a |, ing? )
3.16."Repe Ak rate of 0.00) jyyy
; . The tank in Example 3._3 has a Jeay M Sl n. min ': '
1 find that "' takes lz-.m to reach g Pressure of l‘r,u A0 unknerwn st comarant pate ‘Jz';
(a) What is the leakage rate, in 10 i o s Nam p I
{ (b) What will the steady-state Pressure he? e equivalent 0. '
2 e e ! 3%
8. The tank in Example 3.8 hay a Jeak hay BAMIS A ul the rat
e I ale
L 1 f (( ";1 E—mm o ] e -(‘\ .‘,
: ' : min - atm F_"-u?t" P iace ) (3.AN) ;;//;
3 . PR i P
i How long does it take the pump 1o reduce _ . 7P
;e atn? What is the steady-state pressite i ke e ';p;ssurc in the tank from 1 aum v G101 . . '(’_,-
A jﬂ lake has a surface area of 100 k' %
: One river 15 bringing water o the lake R
: al the rate of 10,000 @_’_‘f_;, while et "
is taking water out at 8000 m’ / 5. Evap- 3
A . . .\ e
5 P — oration and seepage are negligible How P~
r ; fast is the level of the lake nsing o o 5 \o P
falling? "
340. The tank in Fig. 3.7 has an inflow Line o _, =<
with a cross-sectional arez of 0.5 fr
' and an outflow line with a cross- o
sectional area of 0.3 ft’. Water is foa-
i FIGURE 3.7 ing in the inflow line at & velociry of
| Tunk with two fluids for Prob. 3.20 12 ft/ s, and gasoline is Bowing out the );’1/,
. sutflow line at a velocity of 16 ft/s. How many Ibm /s of air are flowing thiough the _
: vent? Which way? , § P~
' . When the vacuum pump is runmng. the _
£ 33{.#,& vacuum chamber pas a volume qf 10 f© O shull;ﬁ'- sl the following Poar”
: /  steady-state pressure in the chamber is 0.1 psia. The pump _
5T pressure-time data are observed: VoA
.3
5 . | Je*
v Time after shutoff, min Pressure, psia pe :
0 01 B
N R ~
v 10 ; l
] & 3.
¢ o 30 ip
AR runmng. Air
B2 chamber when the pump 15 :
¢ty . into the vacuum _ ant at 68°F.
o Calculate the rate of air h?ak;geas The air temperature may be; SRS C:I:gnsims. Can v
1 : may be assumed to be an ide gth. resulting pumencal values and their Gir
5 i & ] €
{' 322 Finish Example 3.12. .Shomslgcm" the botiom of the 1ank.
{ i you use Fig. 3.5 in this pro e i layer of solid sa;l:n! min. and the inflowing
1 323 Repeat Prob. 3.22, except N0 10 the solution 3t rate of 3 kg
b . . . . 1
g 1 which is steadlly‘_,dlssol\'lﬂﬂ Ll s1 oo that the total volume of
n.é water contains no salt. the outflow 1S only 9 m” /-
Lol 3 1
& { 324, Repeat Prob. 3.22, excep! Ta: ncreasing by 1 @ /40
b3 liquid contained in the 120k i% " © g 504
o f e ¥
5 BTN o pae Y 43

O

‘.
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FOR tank is now somewhat fie,. i
D MECHANICS . e. The e bl
102 FLUD . following © qugi“g pressure. If ntfns glr:r;t:ed 2t sucp, |
3 the : this rate oL V decr ’
25 Rcwol’k Ex?‘mple wly -by 0.1 f[3 / min, al-ld the pressure to faﬂef::e Ay
s (hat it is being e readily bY long does it take m | 1
lume d ; starts, hO
that its VO il - ¢ .
ter, examineq ;
a5 soon as the V3 1ook up a liter of wa ed it
0 0.0001 atm? e Red Sea. he ation, and rainfall, have been steadily :::
3,.26.#While Moses was Cro ts, evapo assume (for this problem on 1.

. _ The tides. cu . g0 we may . - !
then threw it back e oceans sH;C;;we now been uniformly distributed oye, thi
. or of wate a liter of water from the oceap ang

u pick up ; ;
1d. I YO O at were in the liter which Moses exgy

implifications.

0 times / min and takes in about 1 liter pe;
n perfectly mixed since Julius Ceasar's tim,,
u take in with a single breath that at sop,

who lived 56 yr.

ing the waters i
in

that the molecules e

waters of all the oceans of the

xamine it, how many molecules will 1t c(:los
c -
ined? State clearly your assumptions an
7. The typical human being
’ brcad[:.rp Assuming that the atmosphere has bee
estimate the number of air molecules. that yo
time were breathed in and out by Julius Caesar,
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CHAPTER

BERNOUL] 'S
EQUATION

he energy balance for steady, incompressible fi
s ow, called P e
Tprobably the most useful single equation in fluid mec;mit;moulh s equation, is

51 THE ENERGY BALANCE FOR A
STEADY, INCOMPRESSIBLE FLOW

We begin with Eq. 4.17,

2 dm dm

which applies to the changes from one point to the next along the direction of flow
in any steady flow of a homogeneous fluid. Electrostatic, magnetic, and surface ener-
gies are assumed to be negligible.

Multiplying by minus 1 and regrouping produce

P V) _ dWas ( dQ)
— -~ — = - ——— (5.1)
A(p+g,.+ 2) Foatel L e

Here AP stands for Py, — Pin, etc. This equation is the pr'climinary form of Bexnoulli‘s
equation. To save paper, in the rest of this chapter we will speak of Bernoulli’s equa-

tion as B.E. The original form of B.E. was developed by Daniel Bernoulli (1'?00—1118_12)
in an entirely different way. By considcrix;g/ momc(r;tuﬁ balm;c:s((éza;;. ;I)mf:rwaitho;-t
tionless fluid he found A(P/p + 82 Tzle original equation was not applicable

the two terms to the right of the equal sign.

P v?\ do aw,
du+d (;) +gdz+d (—) === L [steady flow, open system] (4.17)

‘Scanned by CamScanner

133



s in which fluid friction was i
Por.

cs FOR C
U MECHANT ow
e or turbi o lﬁfe is applicable to all the flows 1,
(aining pumps the energY b E’ applies as well as to those g, , °h
(o flows €of 5.1, pased on . ~tionless B ’ fer to Eq. 5.1 as the Mendal hava
ant. QU200 mentum-b " ps. Some Wit e “d form
origindl. I /0
the feant friction and g form of B.E. let us see what each of the termg ”
S of the engine€r's final form s, representin -
of BE O verting it 0 the injcctiOﬂ‘work texys, rep 8 the Work
Before con / p terms | ‘(0 or Out of the system, or botfh. The g, te
i tial energy of a unit masg of ﬂllid

: P
cally- Thc, fluid
sen&;;:jh{;'injcct a unit Mass O:cscnﬁ"g the poten
o otential-energy terms: reP™ ” gince they appear © vZ/
are px itrary datum that datum 1s. The 2 terms show
sbove some arb know or e WA / dm term represents the the
in most problems [0 & s of fluid. The dWar/ € o oy amflum of
kinetic energy per unit o it mass of fluid passing through the system (this doeg
per m:ich was specifically excluded). Most often thjg repre.
rk, W work output in a turbine or €Xpansjop

work done on the fluid
' inj i 0
not include injecuon W o prostit, OF

sents work input from a pump

ar only as Agz, it is Unneceg

engine.
s2 THE FRICTION-HEATING TERM

oo Gt ks i in the smoking brakes and tir,
We are all familiar with friction heating, as seen es of
an auto that has stopped suddenly and in the hlg!’ t.emperat.ure _Of a saw that is cyr.
ting wood. We are less familiar with the idea of fnct.xon hfaatmg in fluids, because the
temperature increases produced by friction heating in fluids are generally much Jess
than those produced by rubbing two solids together. These temperature increases are
less for the following reasons:
1. The amount of frictional work per unit mass in typical fluid-flow problems is gen-

€
""(‘2 b erally less than in the examples cited above. In these examples the friction-heating
energy is concentrated in a small volume; in fluid flows it is s
.@«L’A" volume of fluid. pread over a larger
v 2. The heat capacity of liquids is generall ate; i
oot i e y greater than that of solids. For example,
q 0 raise the temperature of 1 Ibm of water by 1°F will

raise the temperature of 1 lbm of stee] by about 8°F,

Au = —
- J » ke'm N-m
=981 = = 355 , ft-Ibf
kg -l ——
Ibm (5.A)
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CHAPTER 5 BERNOULLI'S EQUATION 135

and the temperature increase g

AT = Bu _ 981 J / kg
) .__-__-_"'_"'—-——-—____ = o
Cv 418437 (kg °C) = 0.23°C = 043°F (5.B)
W

o g hows why we :
This example s y rarely think ab Qi o
Jated temperature increase, even for this large;0 :':1 friction heating in liquids; the calcu-

_ - ange | i i
ability 10 sense b)’_s"c?‘mg our finger in the wau:rg IR el e
Friction heating involves the conversion .

or potential) or of external work (injection, sh

Al o aterials (gas e pr €Xpansion) into internal energy.
trostatic, etc.) the i

magnelic, clgc Internal ener er uni i

P i heating or cooling, Thus, BY Per unit mass can change is through

u

_ d(friction heating) 4 dg [constanl-density

dm dm materials only )
Solving this equation for the friction heating per unit mass, we see that it is
given by the Au — dQ / dm term on the right of Eq. 5.1.

This friction heatl_ng 1S ot connected with any heating or cooling of the fluid
through heat transfer with the surroundings and has the same meaning whether the
fiuid is being heated or cooled. This may be seen by considering the simple, fric-
tionless heater for a constant-density fluid shown in Fig. 5.1. Fér such a heater there
is no change in elevation or velocity and, because there is no friction, there is no

change in pressure. Similarly, there is no pump or compressor work, so B.E. simpli-
fies to

d
0= —(&u - ﬁ) [frictionless heater] (5.3)

If, however, there were friction in the heater, then Au — dQ / dm would be a positive
pumber, whose value would be exactly equal to the amount of friction heating per
unit mass.

The increased internal energy produced by friction heating is generally useless
for industrial purposes, so friction heating is often referred to as fricu‘qn loss. Energy
does not disappear in this case. Rather, energy of a valuable form is converted to
energy of a normally useless form; hence the “loss” of energy (really, of useful
energy). ) .

As discussed in Sec. 2.2, there
is no such thing as an absolutely

—=

——>

Flow in

g

Bunsen burner

FIGURE 5,1
A simple frictionless heater.

ovaliicu vy valiliovaliici

Flow oul

incompressible fiuid. Furthermore,
there are some situations in which
even a fluid with a very small com-
pressibility, such as water, behaves in
a compressible way. Thus, we speak
of an incompressible flow, by which
we mean a flow in which the changes



-

IR A LS B A SR

S i .\Hilﬁ i

~ v e

han of an incompressible fluid. As 5 §
rather steady flows of gases at low Velocing, _

: ant, _
e gmimportane most S

in densty ¢ W quids and mpressible, whereas some unsteady fioy o
3l steady flow ,Unq.dcrl‘d in¢e of gases at high velocities may noe be %
[ o - y ﬂo“'s b ’ f S i hi “‘(xi : ”,
<ider the flow of & gh tes i g ©

B.E. only to incompressible fiows a-;:

Au — dQ/ dm, that is, fnction l.%g :

-
;’-‘:l;

ered incompre
where we will
combinations.

only the incomp oo
: w symbol for the fricti |
o we now introduce @ new SY "

To save wnting,

Ly

a) [ constant-density |
s

umt mass, . - - )
Bu— =¥ = (pel‘ unit mass flow )

i i . Most civil engineerin B

. 1 confusion with F for fo.rce ' T

we use F mrav:ld :,c;,c,-c g is the acceleration of gravity ax‘Jd hs ot h, L
or gL, ome thermodynamics textbooks introduce the K_.z .

.54). 8 i
(Sec. 5.4) i jaw of thermodynamics. It can be shown s,

K i ini second
Jost work in expiamning the ; an I
the I fuid at the heat reservoir temperature the friction heating -

nsi
:?,rit“mC;';”ﬂt:::uy t:qual to the lost work per unit mass, SO some tC_xts call this ey~
LW Other texts call it (— AP/ p)gictions Since for the most common pipe friction pros-
lem, steady flow in horizontal, constant-area pipes, & = (—AP/ Diicrine
Substituting the definition of & into Eq. 5.1 changes it to the final workin

Here
this quantity ghy
friction head loss

[F1+]

form

of B.E.,
P Vz) dW, ¢
(p Bt ) am F :

One may show as a consequence of the second law of thermodynamics that ¥
is zero for frictionless flows and positive for all real flows. One sometimes calculatss
flows in which & is negative. This indicates that the assumed direction of the flow i3
incorrect; lfor the ass!.lmed conditions at the inlet and outlet locations the flow is ther-
lrrmd)f;nauucally possible only in the opposite direction. On the other hand, fricuos-
css Tlows are reversible; any flow described by B.E. in which & is zero could be

reversed in direction without a i
. g i
ey y change in magnitude of the velocities, pressures.

wn

<
-

vation or a de : .
turbine or an ;:cc;s:s;ﬂin\li::loclty Or a decrease in the work that can be extracted by 3
tion of these effects. € work that myst pe put in by a pump or some combind-
In Eq 5.5 we no
" : w h

ehnw.mgd the Q and 4 t:::sonlﬁ.tcnns that can pe measured mechanically; we h2*¢
EdEsRon i ‘B D require thermal measurements. Therefore. i
1gy is conse.n;;:is Of;te{; referred to as the mechanical-enersy %%

only if we include an “energy destruction” ™

trictj :
8°s in deng; g Eq. 5.1 and, in addition, the resmictio?
'ty are negligipje.
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Brake,
; FIGURE 5.2 applied
!' ) sple roller coaster, which ‘“usll'nlcs fems
gernouih § equation " Of the five terms jn

In most applications we w;
5 that the flud velocity ; aling with i :
&b;mfﬂo“ Thas apglrc;:ilocn-} 1S constant acrogs aﬂg?:\;rl.n * PIpe or channel and wil)
o the . (im i cr : ;
1. , : " aion s excellent for mog engi 0SS section perpendicular
11); one mteresung excepuion is discussed in Sec. 5 ;1{; INeenng problems (see Table
| B.E. deals with the conversion of one e
gre illustrated in a common roller coaster. Fy &Y 10 another. These changes
gers 1s lifted from ground level to the lop o
an electnc motor, which engages teeth op

f P the changc in potential energy, Agz, is equal to the work input (AW, /m). At

the top of the first hill, the car disengages from the chain, pauses a moment for the
passengers 10 anticipate what comes next, and then descends to the first valley. In this
part of the trip the decrease in potential energy is practically equal to the increase in
kineuc energy; at the first valley the car is going very fast. From the first valley to
the top of the second hill, the car’s kinetic energy decreases as its potential energy
increases. The top of the second hill is always somewhat lower than the top of the
first hill, because there has been some friction slowing the car, both due to air resist-
ance and due to rolling friction on the track. If there were no friction, the car could \
go up and down to the same original height forev.er'. with friction, the top of. :ach ::C}-\
ceeding high point must be lower than the preceding one. At ‘h; e‘l‘d 02;:':;; °(é:m:n
has more than the two hills shown here}', brgkes on tl;e IEC a: ft-;: il g
kinetic energy to friction heating). bri.ng::_gs :;c:c;n?p;i: (ff f roller coaster. The fifth,
Four of the five terms in B.E. appear in th

nvolvi s d : 5.
nvolving pressure, is discussed in Sec. -2

i Ty —

53 ZERO FLOW T Tp—

‘ ] - i iti Jowly becoming
The basic equation of fluid static g . e ar; ':n s
between any two points in 2 fluid flow e kinetic enerY
2er0, then there will be no work ©

zero so that 5.0

_ lZerO ﬂOw]
o)

T T

-y

9

L.
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- \ = 4Nl“~| L}

{8 .“. '\N“ s R NInMIl. AL ¥

D L} ’ "

1A nau
') :
Rearvanging, We¢ fine I_ S K S8 )
‘l
o Awfl = JP - __pg {2.11
Wiy de .
: ” 1 in Chap. 2 by making a forcs
(o of fluid statics. [t is found | tion shown here points o
which is the basic equation ¢ .Je of fluid. The denva s ut
clemental particie of zero flow.

balance around an

only that Fq. 5.5 18 general enoug

{ OF

THE HEAD FORM
5.4 THE HEAD IATION

BERNOULLI'S EQU

In many problems, particularly tho
open channels, it is convenient (0 d

which is called the head form of B.E.

h to include cases

se involving flow of water in dams, canals, and
ivide both sides of Eq. 5.5 by g 10 find

Cal

y|
A bk L) o ERRE (5.6)
g 28 gdm 8

Every term in Eq. 5.6 has the dimension of length. The lengths are at Ic:}st con-
ceptually convertible into elevation Az above some datum planc‘. These c}cvauans are
commonly referred to as “heads.” (“Head" is apparently a variant spelling and pro-
nunciation of “height.") Thus, we would refer to the various terms in Eq. 5.6 as the
pressure head, gravity head, velocity head, pump or turbine head, and friction head

loss. One occasionally sees the terms static head,

which is the sum of the pressure

and gravity heads, and dynamic head, which is the sum of the static head and the

velocity head.

There is no simple, universal rule for deciding when to use the head form of

B.E. and when to use the energy form, Eq. 5.5;
same result. Through practice engineers learn whic

if correctly applied, both give the

h is the most convenient for a given

problem. Civil cngi.nccrs use the head form much more than do chemical engineers:
but the terms velocity head and pump head occur often in chemical engineering.

FIGURE §.3
A simple diffuser in whic
orderly fashion,

h a fAuid flow is slowed in an

Scanned by CamScanner

3.5 DIFFUSERS AND
SUDDEN EXPANSIONS

In the following sections we will
See several examples of flow in
which a moving fluid is slowed to a
stop._Here we consider two ways of
slowing down a fluid: a diffuser and
& sudden expansion. A diffuser is &
gradually €xpanding pipe or duct,
as sketched in Fig. §.3.



T

T

—

P P T "

~ Two flow channels, one of which, (@), €© .
4 4 . ton.
- Other of which, (b), expands in the flow e

CHAPTER ¢
wrung B.E. for the Pipe bet\»ee BERNOULLI'S EQUATION 139
ﬁon- we ﬁnd n Ocallons | and
p. _ both 4 the same ¢
‘-3-\‘_{-)__1_ V% —_— v: Ve
p * ""“‘i-—u.‘. ——
From the mMass balance for 4 constant-dengj, flus (5.E)
_"-—__-,L"E:d We haye
Lvta™\ 0
, . - R VA
and. substituting for V, in G SE we f;k/ p LAY
2
PamPi=pli(,_ 4
. A3 p¥ (5.7
This increase in pressure that ac .

pressure recovery. In such a device i;

work (shown by an increase in presgy
Students find it hard to visualize Sy

down in steady flow. First, observe that in densit

can only change from one point to another ; Y steady flow the velocity

The left part of Fig. 5.4 is the common garden-hose nozzle with which the
reades 1s familiar. In it the cross-sectional area decreases in the flow direction, and
the velocity increases. Most students have observed that behavior: the slow-moving
flow in the garden hose is converted to the much-faster moving jet of water by the
nozzle. If we consider the small section marked Ax, we see that the fluid in it must
be accelerating, From Newton’s second law we know that F = ma; and if the accel-
eration is in the flow direction, then there must be a net force acting on this slice of
flud, in the flow direction. The only forces acting are the pressure forces, which act
on the slice from behind and from in front (we ignore the sma}l shcar forces at th.e
walls of the duct). For the algebraic sum of ll'lesg forces to point in ;t:csuf:\:r“:ze;;
tion (which must occur if the flow is acFelcrau:ng;fll;:E dog:ﬁ?:&iusw e e
less than the upstream pressure. The right pa g

_ NipRusers
\ b;)e‘tpt Tube

3 o // o bk %\:‘*““ﬁi’?be
. il z o - Ven buel M{nof
| _‘?L.‘ - 0. ol Q.c{;'.—wﬂ)—
e » £ - Rob™
(a)
- FIGURE 54 rection. the

ptracts in the fio¥ @

:
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w—it has no
seldom CxPcﬁcheder andﬂ;;;;pears in Vmolfsom‘i?n
left Studen h ce' It is called 2 i‘ﬂ? the crOSs-sccu'ona! area Pcl'pe:.
nfli:';‘, g en hos€ _ﬂoz ing dowm: becF e discussion t.o it, we see thay
example KT = e flow 13 ° e e applY 0 ctream and increasing and decrey,
n and dow ow direction across the sectiop

trial devices- . increa:
ow I8! ords upst_rca‘m ase i the fl
ust incre s the fluid.

dicular t0 ol
it is the same: ssure . decelerate ’ )
ilﬂg interchanBee The: prt::c a net forc® cd:n velocity in rolling dow hl;u on bicy.

hows that there 1s an anal.

Students have in velocity 1"
crease ! g paragraph S
d the ecTeBE o eceding paragr 5’".”; down the pressure hill, the

re
ressu he fluid slows down. The P/,

R C

image

fAuid speeds up (i
and V*/2 terms in = Sh&%ﬂsers i
It is possible 0 build as is common

s s ; O, . .

of the decrease in kinetic energys Oh 4% 2 frictionless diffuser.
i gsible from L

about 90 percent of the qma:;tm“_‘: Pguough a duct into a large tank of fluid with no

fluid flowing jon. Here point 2 is

Now consider a dden expansion.
4 in Fi . This IS called a su ) . .
net velocity, as Sh'-"“’“ﬂ‘:; Fﬂlugiﬁjiflct &5 ty at point 2 is negligible. Writ-

ly stated, the pressure recovery is

that the veloci

chosen far away from
ing B.E. between points | and 2, we find
pVi
Pz'P1=‘_2""Pg 5.G)

which is quite similar to Eq. 5.7. Here, however, the friction term is much larger than
of the fluid being brought to rest in an orderly fash-

that for the diffuser, because instead
dies, which convert all its kinetic energy into

ion it is stopped by a chaotic mass of ed
internal energy. Thus, it is an experimental observation that for such sudden expansions

the friction heating per unit mass is almost exactly equal to the decease in kinetic energy
rl;:;; l::: ix:tzszll zgdat::;t d:; 1:; pressure n:;overy at all. Therefore, the pressure of a fluid
it flows. This conclusion is lin'lljiat:‘_]‘:.ll‘t)t;1 flii.w: ::i.t?c cl thc i it R
; : . velocities less than the speed of sound,

it docfmcmt apply to sonic or supersonic flows, which we will discuss in Cha 0.8
ieap s:: :::, :ra;;s h(;{lsto;;pmg a fluid are a_nalogous to stopping a fast-moving auto
tial energy and top e { ﬂ-wn:by converting its kinetic energy into useful poten-
rgy stopping it wn!.h its brakes fmd thereby converting its kinetic energy
::;::tr?tsushc;:ss internal energy in the brakes. Most stu-
COmfortab:: ’:&Ct:"mon'rollcr coasters and hence are
tial energy (at e idea of converting from poten-
y (at the top of the roller coaster) to kinetic

e

—=D Ay Q@ c:::gy (at the first valley) and then back to potential
=2 P}, Vl = () us:dgl); ‘:ﬁﬂln at lhc tOp Or [hc next risC 'rhcy are lcss

FIGURE .5 see that aia:dfjl of a “pressure hill,” but from B.E. we
ﬂAul’:d:[:w" Fxp;nslun in which g kinetic Cﬂcl’g}; loy m:)vll:lg fluid stream can convert its

1] W i : . v .

el S ity hill, or into hijection D o LN B
il ork by climbing a “pressurc

or into in
ternal energy by friction heating.

Lvaliicu vy vaililiovat iici




p.E. FOR GASES

qs we have written it, is exactly correct f

" ' . g Or constan i i 1-
y correct for all flows in which the density changes t-density fluids and practi
/ ! o

R ncludes almost all steady flows. We show here that
- Jow-velocity gas flows.

are unimportant, For liquids
it also is practically correct

/‘-f— )
“Example 5 : I'hc' [ljﬁnk in Fig. 5.6 is full of air at 68°F = 20°C. The air is
s M.%l steady rate through a smooth, frictionless nozzle to the atmo-
sphere. What 1s the flow velocity for various tank pressures?—

At point 1 the velocity is negligible arid; s discussed in Sec. 5.5, the pres-
sure at point 2_15 eq].lal to the local atmospheric pressure, if the ﬂo-w 'is'subsonic.
Making these insertions in B.E., without friction, taking 1 to be in the tank away
from the nozzle, and 2 to be in the jet, just outside the nozzle, we find

Vo = [Z(Pl = Pmm)]”2
p

Which value of the density should we use here? It is obviously different at the
two states, because the pressure is not the same at the two states. However, if
the pressure change is small, the two densities will be practically the same. Let
us use the upstream density (but s;:e Prob. 5.5). This will be given by subst-
tuting the ideal gas law, p = MP;/ RT, in Eq. 5.8. 'y
q P\c Pﬁyn*‘O'O\,
59)

Vv, = [-ﬁ—rﬂ; (P, - Pm)]m (’7'{“‘

Using this equation, we can calculate V; for various values of P;. For example,
~ if Py is (Pum t+ 0.01 psig), then

) [2 (1073 psi - £ (R }lbmol) - 528°R  Ibf 144in” 32.21bm- ﬂ‘l” :
- (14.71 psi)(29-16m / Ibmol) UL ) Tof - s

fi2]"/? ft m N
S S S

(5.8)

Equation 5.9 is based on the assumption of a constant-density fluid, which is
not exactly correct here; the exactly correct result for this system, taking gas
expansion into account, is developed in Chap. 8. The
velocities calculated from Eq. 5.9 and the correct

solution from Chap. 8 are compared in Table 5.1.
B

From the values in Table 5.1, it is clear that to assume
that gas flows are incompressible and are described by B.E.
causes a very small error at gas velocities below about
200 ft/s. Even at 2 velocity of 700 ft/s (213 m/s) the
error caused by assuming incompressible flow is only about
505, The rightmost column in Table 5.1 shows why the
answers from simple B.E. and the high-velocity calcula-
iocin Chap. 8 differ, Using the methods in Chap. §, we

ed by CamScanner
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. GINEERS
142 FLUID MECHANICS FOR CHEMICAL ere

d high-velocity gas flow equitiog,

E 51 n an
TIEL | permais el
“on e ——
for the flow in Fig. 5.6 vV, from Chap. B, U/ Ty tevem Chag g )
1 B e i

¥ 59 fi/»s e — T e

(P, ~ Py, psia Vb Sy 14 7y

s Al

. 15 i 75

}:?] 10 191 “h

4% (90 264 :'1 f

06 267 343 42

| 340 476 .1

- 4 $72 f‘; 7

3 A58 713 27k

; - rwent rr b
see that as the velocity increases, the gas temperature falls; for ,mal;f ;':Im I the
table the temperature is 42°F less than the starting temperature. In gh-velocity gag

flow the gas can convert some of its internal energy 1o kinetic fncrgy.. w:‘ :"'k‘;;!;'
will be higher and the temperature lower than those we calculate using the consze,
density assumption in B.E. ; .

Most air-conditioning and low-speed aircraft problems involve .vclrjcum Prlem
200ft/s (61 m/s). so these problems can be solved with engineering accuracy &,
B.E. On the other hand, where there are significant pressure changes for gases i 8o,
Which lead to high velocities, the density changes must be taken into account 2
shown in Chap. 8. Observe also the very high velocities caused by very small pres.
sure differences acting on gases. The inverse of this observation is that for ordinary
flow velocities the pressure differences in gases are at least an order of magnirude
smaller than for the corresponding flow velocities in liquids. The reason is thay e
pressure appears in this type of calculation only as (AP/ p) and for gases p is ;-
cally about 1/800 the value for liquids. .

_ Applicazion‘of B.E. to0 a simple, horizontal Pump or compressor with equal-sized
inlet and outlet pipes (so that there is no velocity change) leads to

dW,, AP
If we ignore friction, this equation becomes
dw, , _ éf [ frictionless Pump or compressor,
dm  p constant-density flyid i

. . ases, whose density will change in 3

Sity into account, jg developed | - e correct resuly, taking the change of gas den-

small - " Shap. 10. However, - i
compared with the SV, If the pressure change AP is

inlet pressure p, then Eq

of the required frictionjegs work. For ex 7 g BIvEs a very good esumate

ample, if AP/ p is 0.1 or less, then the result
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R0
the effects of fricy; W= -

oW 1o ficuon. Before we N

Chap. 6. However, there are many fiow p::$:2° the & term, which we will do in Q\”Q

1l compared w § 1n which th ;

are sma -Lf BpE | ith the Otl'!er terms and cap e o cdt‘ncuon heating terms ’:; ~

by means of B.E. without the friction heating te gccted. We can solve these N

problem 1s the lank-draining & term. A good

tank, location 2.

lowing:
1. The diameter of the tank is 50 lar

- ge that the velocity at the free surface is
practically zero, V, = (.

The pressures at locations 1 and 2 are the local atmospheric pressures. The
pressure of the atmosphere is not exactly the same at both points, but it is
practically the same; so we assume AP = (.

There is no friction or external work.
Flow is steady; that is, the level at the top of the tank is not falling. This

means that fluid must be flowing into the tank somewhere exactly as fast as
it flows out at location 2.

Subject to these restrictions, we may write

&
Blaa —gy) + = =0 (5.
@ Here 25 — 2 = —h, so
Va = (2gh)' /%= [Torricelli's equation) (5.12)
=30 Torricelli's equation says that the fluid velocity is
exactly the same as the velocity the fluid would attain
=<\ by falling freely from rest a distance h. Substituting the
L_ [— g numerical values, we find
ft 1/2 ft m
The flow described by Torricelli’s 5 S
SQuation.
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% i« correct only for situationg
/4 i . solution. B8 CAN .

Vi ? j‘i(\ This is the classic tank-draintné Tormicelli’s equanon spply: i Examples 54
in rl"dlf'a hich they may not apply-

f the outlet nozzle | &2
Y A Example 5.3, makirg the:geen® o
Ve Pa> Vo Example 5.4. Repeat B0 00 nk 4 f° ,
and the cross-sectional area O % e velocity at the free surface is zerg
* * s \'\ In this case we cannot assu
gy, =W A as we did in Example 5.3. 50 L
. = 1T 2\n vi-Vi_o (5K
P*\ D g-m+—7 -
? IZh- itv fluid, we can solve for ¥, in terms
Vi 7 ) P . \ Using the mass balance for a constatll-d'=“Sﬂc‘i'j fluid, we :
4 Z_Q'\ of Va, A,, and A, and substitute for V. finding o2 PRSS
. 7y iRET o1 (Va2 o < +-3[1 -—(—2) =0 (5L
(VA g{—h1+:[‘§-(T)J‘° T Al j '
RV - : 1/2
) (a2 * 2711 - (A /A)
V> “ s ﬁ'% Inserting the numerical values, we find
T -322fu/s*- 30 fr)'/?
A & =(2 32 3 ) (5AD
3 < 1-(1/4)
. P
%\ e T This is the answer from Example 5.3, divided by (15/ 16)"/%
J e ? p
\ g
- 439ft/s ft m
P =3 d V= —————=453—=138—
P L 5 2 (15/ 16)”2 S s (5N)

\ & 415 o .

Why does the water flow faster in this case? All the water |
y de er . . in the tank has mea-
surable hl_:tenc energy; it is flowing down at a velocity of 114 ft/s. In Example 5.3
the water in the umk' has immeasurably small kinetic energy. |
What happens in Example 5.4 if the Cross-sectional area of the tank is equal to

the cross-sectional area of the outlet, that is, j

: ; s, if Ay = A i is i
Eq. 5.13, it pedicts an infinte velocity! Therefore, Eq A; lf o TOHRIES s In
situation. Recall the assumptions that went into th e i |
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< "
This looks strange- an o SSure tank ¢

srate 10 :i:c‘?:;‘lt‘t:;:l‘;} or Kitchey by mi
o CUD n bbli ; . et >
~'Carbonate 5 i

.gs. This gas is heavier thg,, .. s S rud
¢as an air Cup wi soda ang
aver, it mixes slowly with ai:nd can U be fijjeq with ;::ej;rc

re
and y) om ¢y s
Returming to lhc. Problem, iy , lllnm.-n.c_q)r will ispcfsclobcup. visibly. How-
However. there is a big diffe A~ at firsy 1o sa Y Cifusion.

” = Tence,
atmosphenc pressure b“"“t‘en : ﬂ.a - “Examplc 53
OCationg | a the difference in

xample 5.3 appear soy nd
Fxamp nd, so BE becomcs e other assumptions for
=8
p T8a-g)+
From the basic equation of fluid statics y ; -
e

B a

2. Th

Now we must be careful, becayge there
par Shown here and the P in BE. If we ;Lcll
its source, we see that the p in it js the p of the fluid th
it pco.- Combining these two €quations, we find o
~Pairg (22 — %) Vi
S T o
po,  TEa=z)+ 2oy
2

V2
= = - Pair
0 5 F 8(z — 21)( - -—-—) (5R)

Solving for V,, we find
pur \112
o

is flowing; we label

- , If we assume the air and carbon dioxide behave as ideal gases and are at the

same temperature and pressure, their densities &re proportional to their molec-
ular weights, 29 and 44 g / mol, respectively, so

'. : 1/2 1/2 ft -
R 1’3=(2-32.2§.,-30ft) -(1—§) = 439703472

s 44

- 2562 =18 =, (5.8)
; (4

i i i is i nt in Example 5.5, is it also
If the difference in atmosphenc pressure is importa P

important #n Example 5.37 Equation 5.14 applies as well to Exar;%e Sﬁicajnna?;e:_
to Example 5.5. Therefore, if we want t0 take the effect of the differe

. This is equiv-
spheric pressure into account in Example 3.3, we ;hogd_"s: .E?‘pi;::)‘;?.lsl:or lu or
alent to multiplying the answer in Example 5.3 by air

is i t
and air at normal temperature and pressurc. t:: :sf : e ; -
g / _ 12 2 09994 (5.T)
e (- o) s
He= “\' T 623tom/f

Pwater

| Séénned by CamScanner
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s equation for air and wqy,,
an the error introduced b-y some of the
this term out if the ratio of the dep

ng fluid, Psurrounding wid / Pmoving g,
blems but not in two-liquigg

, in Torricelli’
Ignoring the change tn atmosphenc pis‘lj:;: th
makes an error of =0.06 percent m:iu:" leaving
other assumptions). We are justifie £ the flowi
sity of the surrounding fluid t0 that © ¢ hydraulics pro
is much less than 1. This is l;]r:;- in mos

shlems (Probs. 5.15 and 5.160). .elli's equ
pre i :“" Becus (i EIO0E variant of Torncelli's €4

ation in Sec. 5.10.

/ MENT
58 B.E. FOR FLUID-FLOW MEASURE N
W measuring devices are bascd.on'thc frictionless
l;ﬁm:ts in these devices become Slgn]ﬁ.c;.inl‘ they are
cal coefficients and retaining the fric-

: P into B.E.
tionless form of B.E., rather than by introducing the: friction term 40 3.E. Thos, we

: . ; friction term in B.E., even though these
; S before we discuss the :
kvl o devices have been 1n common use for

- . . ] e
devices obviously involve some fricuon. Thes :
at least 100 years. Modern electronics and Computers. have maf!: possible orﬁ?‘r‘ types
of Apw-measnrine devices not baced on B.E. The devices described here arc still Mot
o P- — — i - -
widely used than the computer-clectronic ones, because the B.E. devices are simple,

reliable, and cheap.

Several important types of ﬂl:lid-ﬂ
form of B.E. Where the friction elle -
normally accounted for by introducing empiri

5.8.1 Pitot Tube

The simplest pitor rube (H. Pitot, 1695-1771) is sketched in Fig. 5.8. This is some-
times called an impact tube or stagnation tube. It consists of a bent, transparent tube
with one vertical leg projecting out of the flow and another leg pointing directly

upstream in the flow.
At location 1 the flow is practically undisturbed by the presence of the tube and

hence has the velocity that would exist at location 2 if the tube were not present. At
location 2 the flow has been completely stopped by the tube that has been inserted
so V3 = 0. Writing B.E. between locations 1 and 2, we find ,
——
Bb ¥
3 2 - F (5.U)
But inside the pitot tube id i i
P the fluid is not moving, so the pressure at location 2 i given by

P, =P, + pg(h, + h,) (5.V)

Py= Pum + pghy (5.W

Substituting Egs. 5.V ;
; - 9.V and 5.W in Eq. 5.U
rearranging, we find 54 -

|‘ % i
. Vl = (28hl P 29;-)|!2 (S.X

FIGURE 5.8 perim

. | | It has be imentally that the fri

Pitot tube for fluid velocity measurement. heating :;*;:)ﬁzdg; 5 xe'n l):-malt] f ; .C[ttilo
- J.X 18 no y less tha
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V)= (2gh,)172 _
itot tube allows one o Measure g ii.... Pliot tupe)
4 calculate a velocity from i by m:a:'-imd height (5 - (5.15)
s a
5 8, is used for finding velocities of B The iy sY thing 1o mcasurg‘;]

Example 5.6. A pitot tube exa

the velocity of a sailboat. Whe ctly as shown in Fig, 58

is ;
N the water Jeve] in the (o cwing

i water surface, how fast is the bog going? ube is 1 m above the
2
V|=(2'9.81—TE.,-1m) __( ma\i/2
1
. \) g q/qllf‘h Ci‘ \
: - - ’ ‘ .
| | 582 Pitot-Static Tube e e i

Thc' pitot tube shown in Fig. S.$ 1S _sunable for liquid open-channel flow but not for
flow of the atmosphere or flow in pipes. For the latter two uses, it is bined with
a second tube, called a static tube, shown in Fig. 5.9. This is Lhe: mclastc:?mrlrr:gn lvn e
with the pitot (or impact) tube inside the surrounding static tube. This combinatic}: i;
often simply called a pitot tube.

As the figure shows, the tube that faces the flow is the high-pressure side,
whereas the surrounding tube that has openings perpendicular to the flow is the low-
P pressure side. These two are connected to opposite sides of some appropriate pressure-
' ifference measuring device. Experimental tests have shown that for a well-designed

S

(7t

L ow } —8p—t——160 —
| D i_ _—'_;' =
' f ¥ A
8 static holes 3
0.02 10 0.04 in
“ -
Impact opening = 0.4D B
Low-pressure
|| -——— side
W\
: High-pressure side \'\ . Q/O\

; PHotstatic ube for fluid velocity measurement. The “low pns.s:m
€ and “high pressure side™ are connected 10 some appropnate

: Pessure-difference measuring device. The dimensions show.n. are "
" UPal of thoge on the devices used 10 MeasUe stack velocities in
Tl:::“ sampling. The pitot-static tub
1 beaeg Pl but somewhat different in d

es used in aircraft are similar
imensions. They are often

'0 prevent ice-plugging.
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the :
' ._ible, so we may read pressure (;
v is neglig Eq. 5.U rearranged:

ﬂénnke

1 'CUOﬂ Cﬂ-et L fmm
Puul—s::ﬂ,c ube d E]culatf \'elot.llf)’
B s e 24P\""  [pitot-static tube] 2
Vi = (T 16
; . Fig 59. The pmss"m-diff
. ing in the duct' in ; -
Example 5.7. AV 1 ‘Tx:;:_'g tiri‘: ube ndicates a difference of 0.05 ps; erl-:
o attached to the pitot=s
g«lhbu ; R
1s the air velocity ! , i i3 .
;02 32.2 Ibm _ fr _ "
& i 0.05 Ibf /" 14‘:[;" __TEE‘-—;T—- 78.6 S 239 _;_ (SZJ
L ]

V={7307s ibm/f’

e standard device for measuring the air speed of airplane
locity in pipes or ducts, particularly i s

g the local VC_ : _ ! [
pollution sampling procedures. One can easily ldenufymthe -;3;0;5:300 probes on air.
planes. Multiengine planes have them near the nose, at the mh low the pilot’s wip.
dow. Single-engine propeller planes place the probe below the wing, far enocugh om
from the center not to be influenced by the propeller. Look for these the next time you
are at the airport! For measuring flow in enclosed dl:lcts or channels, the ventur Ml
and orifice meters discussed below are more convenient and more frequently used.

The pitot-static tube S lh
and is often used for measurin

5.8.3 Venturi Meter '
Figure 5.10 shows a horizontal venturi meter (G. Venturi, 1746—-1822). It consists of a

truncated cone in which the cross-sectional area perpendicular to flow decreases, a short
_cyhnc_iqcal section, and a truncated cone in which the cross-sectional area increases to
its qngmal value. There are pressure taps both upstream and in the short cylindrical
section (the “throat”); they are connected to some pressure-difference-measurin

device, usually a manometer. Applying B.E. between locations 1 and 2, we find y

PZ"PI_'_V%—-Vf_
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D 2k B TR T g

C .
HAPTER 5 BERNOULLI'S EQUATION
jpstioting 10 EQ- 3AA and rearrangin, o find

V, = [gif-l-—:f_il_“_ﬁ 172
L (rﬁ/,ﬁ)

S

ssure difference P, — -
e ' = Pais 1 psi. The g; .
point 215 0.5 ft. What is the Volumetric ﬂ::vmelcr al point | I'Is
From Eq. 5.17, '—Xmlelhmugh this meter?

(M.mm’ 32.2 1bm - fr\}/2 ‘
623bm/f®  §F T )

V= T e LS m
{1 = [/ DOS PR/ (/)1 f)2 ) 72 = 39~ (5.AB)

The volumetric flow rate is

3
= 0.07055- (5.AC)

_ _ ft =
0 = V,A, =127 4 —4-(0.5 fty? = 2.49%3-

It 1s found experimentally that the flow rate calculated from Eq. 5.17 is slightly
higher than that actually observed. This is due partly to friction hcatiH the meter,
which we have assumed to be zero, partly to the fact that the flow is not entirely uni=—
form across any cross section of the pipe, and partly to the fact that the flow is not
perfectly one-dimensional, as we have also tacitly assumed. One could attempt to
account for these differences by using a more complicated formula than Eq. 217
however, the more common approach is to introduce an empirical coefficient into Eq.
5.17, called the coefficient of discharge, C,:

- U[Z(P, ~ P;)/pl”z

5.18)
1 - (A3 AY) |

A large number of experimental tests have shown that C, de?cnds oply on tt}e
Revnolds number, a dimensionless group whose lsigniﬁcance will be discussed in
Chaps. 6 and 9; these results are summarized in Fig. 5.11.

Example 5.9. Rework Example 5.8, taking into account the experimental

results summarized in.Fig. 5.11.
This requires a trial-and-error solution because, to calculate V, we need

to know C,; which is a function of V. The procedure is as follows.

1. Assume V = Vgx s = 12.7 ft/s. "
2. Compute the Reynolds number, QR at pont 1.

ViDip Va(A2/ A))Dip
@l — — ______.-—--—'-'__p
I 3 .
(12.71t/s/4)" Lf-6230m /oo 0 —

="Tp 67210 lom/ft s P

3. On Fig. 5.11 we read Cv = 0.984.
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-.-'_.--—-.--_._'_-_._,_.—-"
o——1 | NN .
—————— | —
Ly
]
0.99 —— ,"' O =
V4 A %-‘"————_ ______
| pe——T""7"" | emmm————T"
0.98 w
-—-r‘:"'_"
Cl' : ¥
P I
096 —
/ |
> |
0.95 —
"’
0.94 . : e ;_Jos
1 1 L 4 56 |
o 2 3 456 810 2 3
a = V|D| PIF-
FIGURE 5.11

Discharge coefficients for venturi meters, Here velncities and diameters, V.r:n: QDr,
are measured at point | in Fig. 5.10. The solid line represents the bc:n ;lvc £

the available data; the dotted lines represent the range of the sc?tter in the
experimental data. (From Fluid Meters, Their Theory and Pracnc:: 5th ed.,
ASME, New York, 1959. Reproduced with permission of the publisher.)

ft
4, Vovisea = 0.984 - 12.75:- =125 (5.AE)

5. We should now repeat steps 2 and 3, using this revised value of V. However,
in comparing these, we ask, “How much would C, be changed by using
Vievisea = 12.5 ft/ s in calculating the Reynolds number (step 2) and then
using a new value of C,?" Clearly, because of the shape of Fig. 5.11 this
would cause a negligible change; so a revised C, would be the same, and
we accept V = 125 ft/ s as a satisfactory estimate of the velocity. Then

3 3
Q=125 % -%(o.s ft)2 = 2.45 -f-t;- = 0.069 —“:;— (5.AF)

If the velocity. had_ been much lower, not corresponding to the horizontal part
of the curve in Fig. 5.11, this trial-and-error solution probably would have
taken several steps; normally these meters are designed to operate at high

velocities, on the right-hand side of Fig. 5.11, so that this trial and error is very
simple. »

1 T_hﬂ fflrcgoing is all based on a horizontal venturi meter. If we use the setup
Z u?t; in F:cg.PS.IZ and_take the manometer reading as a pressure difference to get
ue of (P, — P,) in Eq. 5.18, then the result is quite independent of the angle

to th i .
: €d Dy the elevation change i :
venturi meter in Fig. 5.12 ge In the manometer legs. Consider the
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LANLY e \‘I"(‘l“l w LTS l“‘\‘ I‘ a

wplhving BE between ponng

i ‘
wd - AT AD T gives and

Al
- b}
one thay Npwe  and solving for

: I\V/2 n
\ _\kl ‘:\ - \_-U U r) Ve

fo solve tar () = Fa), letus call Py knowy

and wuo v
o step By Step: ’ Otk bur way through the manome-

Pyom Pyt pigiay ~ 1)

S (S ALD
Pa= Pyt pae(an = 2) (S Al
Py=Py-prglay - ) (N.AD
Adding these equations and canceling like terms, we find
Py= Pyt pgl(2 = 2) = (2= )] + ey - 2) (S AK)
Py = Py= —pg(t = 1)+ g = w2 = m) (S.AL)

Substitning this i Eqe S8, we see “&i'\\t elevation (2, = 3) does indeed cancel,
LI\
and we hind PR AN St .

%‘_u: (- i"),“."‘. f‘j_‘_t}]‘ : \inclmod ventun \H (5.19)

a

2 P ! a3 g aetet
e Al/AY) meter with manomet

the pressure chitterence we would have calew:
had not taken the difference w length of the

- o e ) Me ¢ a0 we
manometer legs mto account. The result found above is e ll\:\:‘nll.\‘f“bw can e
h\n‘\h‘\lc ‘ha“ .“ lllt‘ V(‘l““ll "lclt‘f i!. \:\‘““c\'tcd as hhl‘“ nan " Lodarsdisi,

- : W see Prob S.34)
kot the angle o the vertical and simply use Eq. 3.19 (but &

But glzy = 2)(ps = M) precisely
lated for the manometer reading i we

884 Orifice Meter

The ventun meter described above \
Gwuses little pressure loss (that 1S the
1 . " %
® Widely used, particularly fo! large Wt

hable flow - IeAsunng device !-unhm.\m:r :I
g ml value ot ¥ iv sl For these reas n.\t .
m;“m fiquid andt gas flows: However, the metet
wme 1w
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0

NS 1
\%N\ Onfice plate Circular drilled hole
Je & L (J
@ =>e
£ Y Qlpu) @
. @ Front view of
orifice plate

FIGURE 5.13
Orifice meter for fluid velocity measurement.

is relatively complex to construct and hence expensive. For small pipelines, its cog
seems prohibitive, so simpler devices have been invented, such as the orifice mete,.
As shown in Fig. 5.13, the orifice meter consists of a flat orifice plate with ,
circular hole drilled in it. There is a pressure tap upstream from the orifice plate
and another just downstream. If the flow direction is horizontal and we apply BE
ignoring friction, from point 1 to point 2 in the figure, we find Eq. 5.17, exactly the
same equation we found for a venturi meter. However, in this case we cannot so eas-
_ily assume frictionless flow and uniform flow across any cross section of the pipe as

we can in the case of the venturi meter.

As in the case of the venturi meter, experiments indicate that, if we introduce
a discharge coefficient and thus form Eq. 5.18, then that coefficient is a fairly simple
function of the ratio of the diameter of the orifice hole to the diameter of the pipe

D,/ D,, and the Reynolds number; the relation is shown in Fig. 5.14.

E_xample 5.10. \.?Vatffr is flowing at a velocity of I m/s in a pipe 0.4 m in
diameter. In the pipe is an orifice with a hole diameter of 0.2 m. What is the

measured pressure drop across the orifice?
Rearranging Eq. 5.18, we find

pV3 ( A? v3 -
ap =222 [ _A1\_pV3 D;
22 \! A?) 26.3(1 B D_‘,‘) CAW
From the mass balance for steady flow, we know that
Vz=V1'—!'=l—nl-(1r/4).(o'4m)2— ft N
Ar s (w/4)-(02m) | Wiy B

The R i
eynolds number R, based on D, is calculable and will be found to be

— ol L'\

about 1.6 - 10° so, from Fig. 5.14, we have C, = 0.62. Hence

Py =Py (998.2kglm’)-(4m/s)"' N-s?/ Pa
2-062 W =~RE 1)/
=19 ' i o

5 kPa = 2.83 psi \__~(5.A0)

®
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- D, > D
100 T |7 = 0.759 --}_._ 2 -
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83 “ & D o
080 muy 52, =06s[|"%0
015 T = w=ay, b, -
o bt D, = 0601080
0_:0 ]
gens ; z-‘r
55 b
040 f)j, =010 D, 0.60
“'ﬁ = 0s0] 1] %2 D, =020
0.4 |
0.40 ! 44
0.35 e
0.30
0.25 [—:-F 4 l
0.20
0.15 L ] l
1 10 102 e L
2 10f 10°
R=ViDyp/p
FIGURE 5.14

Discharge coefficients for drilled-plate orifices. (Frox

.y . . m G. L. T
R E Sprenkle, “Orifice discharge coefficients for viscous liql.:;: :nd
Instruments 6:201 (1933). Reproduced by permission of the publi‘sher)

From.Fig. 5.14 we see that for small orifice holes (D,/ D, < 0.4) and high
flow rates (Z > ~1000), C,, is approximately equal to 0.9. These conditions occur
in most typical industrial orifice applications, so many practicing engineers
automatically write down C, = 0.6 for orifice meters, or for the flow through any
simple orifice. In new applications it is best to check Fig. 5.14 to see whether
this simplification applies. By the mathematical methods of potential flow
(Chap. 16), one may show that an ideal orifice should have C, = ml(m+2)=

0.611 [1].

Figure 5.14 is based ©
pressure taps. When the taps are in some other
ferent [2). In comparison with venturi melers.
losses—high #—and correspondingly high pu
mechanically simple they are cheap and easy 10 1057
orifice meters are much MO co;nrno e o mc{er;;'illed-Plate orifices (some-

The values of C, in Fig- 2} ‘he hole are not counded):
times called square-edge oriﬁge;f. f‘ curves for these have been
Some other standard types also &% u

published [3).

n a standard Jocation of the upstream and downstream
location, the value of C, will be dif-

orifice meters have high pressure
mping COSS, but because they are
stall, For flows in small-sized pipes.
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Nt llN‘“‘u‘

. Tranaparent apered
b with Jenmeter
n= '\| v e

Solid ball with
~ diameter Ny and
density gp

= =l
Fluid with density py

FIGURE 5.1§

Rotameter for fluid velocity measurement. (The

taper of the tbe 15 exaggerated; real rotameter
tubes have a much smaller taper.)

A ) (

0 F gravity 2. Fpreuum from above Fi buoyapey, F, pressure from below

§8.5 Rotameters

I'he four previously discussed devices yge
a fixed geometry and rend a pressure (if.
ference that is proportional to the square
of the volumetric flow rate. A rotameter
uses a fixed pressure difference, and o
variable geometry, which is a simple
function of the volumetric flow rate. Fig.
ure 5.15 shows a schematic view of a
simple rotameter. It consists of a tapered
transparent (glass or plastic) tube, in
which the fluid whose flow is to be mea-
sured flows upward, and an interior float,
which may have several shapes, and is
shown in Figure 5.15 as a spherical ball

Suppose the upward flow shown in
Fig. 5.15 is steady, so that the ball is not
moving, and is fast enough to hold the
ball steadily suspended in the flow. If we
make a force balance around the ball
(gsitivc downward), we find

(5.AP)

If we assume that the pressure below the ball is pfm:ncnlly uniform across the ball's
lower surface, and similarly for the pressure across the ball's upper surface, and
remember from Chap. 2 that the z component of that pressure force will be simply
the pressure times the projected area of the ball, we find

m m m
0 = EDgpbnllg + P.‘_D{_z) —— Dgpﬂuidg

4
L)
6
From B.E., we can find that

vi

P' —Pzgpfluul'(—"‘—

2

T
D3(Pal = Pruia) 8 = ry D3(P, — P,)

6 l4 0 ( . Q)
(5.AR)

- Vi A
) = Puid * ?(1 = R—) (5.AS)

i (A;/'A )’ is generally much less than 1, so we can drop it in the last term above.
And as discussed previously, the flow from 2 to 3 is a sudden expansion, so that P,

is very nearly the same as P,. Making these substitutions in E

V,, we find

q. 5.AS and solving for

V, = [4‘003 Puall ~ Pruig
3 Pruig

. Thus, applying B.E. (and some
diameter of the ball and of the dens
of V; that will keep the ball

Scanned by CamScanner
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] [rotameter] (5.20)

me judicious assumptions), we find that for a given
ities of ball and fluid, there is only one possible value
steadily suspended! That means that for any flow rate, &
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pe taper Of m; mbl"; By ‘:; general e
ed 10 2Bz and can he . ,
smﬂ“ Compar ! ; dmpmd‘ 'rh : )" term in ! S AT .
he ball stands 15 hrlu.:arl? Proportional 1g e :&:“HEOHPWS that the htightE? at .wh'u:;
This treatment is simple; more cq etric flow ray '
4 mplex treatmen c xs
gecause of some of the assumptions gy went ing ;‘Sl"f] lead to similar conclusions.
sssume thal We €an compute the true ve)ge nding Eq, 5.20, we should not

. les ths B
onfice coefficient would enter, However mngo :Ex:;:n empirical coefficient like the
S Clers are treated as calibrated

d—’ﬁCTL e et o] the Q-2 curve ig measured and thereafte
ereafter one

-]y reads the float positi :

perature and atmospheric pressure, using the same rotameter. When the reading S
is 50 percent of full scale, estimate ngﬁmm—
From Eq. 5.20 we know that the_velocity V. and hence the volumetric flow

rate, for a given float positon L7 N N
W, o T 4 y@}\'-
V= (M) A _ ,\'IQ- (5.AU) 5
Pud %u

Here the density of the ball, if it is made of almost any solid material, is at least \

1000 times the density of nitrogen at atmospheric pressure, so we can safely e A

drop the pguiq in the numerator, from which it follows that the velocity is pro- &3 . Hug
_-—"”/‘_-

portional to 1/ (fluid density)'/*. Thus wr A3 ) ) e

] = \)
; 172 ) /2 s \
AT O s U
helium nitrogen gt Mh‘&:m,-“ g‘\\«_ X ‘s
3 1/2 E '
_ lmcm 2—& =265 e (5.AV) /'?,;:Q ! \
- min\ 4 ‘Mib)
] _
Rotameters are very widely used for measuring low flow rates. The simple

; lex float designs are
* spherical ball float is used for the smallest fiows, and more comp g

- used for larger flow rates. s U Ddgy V9 Al

59 NEGATIVE ABSOLUTE PRESSURES: . q,é:fx S\ ol
CAVITATION p e

s shown by the fol-
i ‘ve absolute pressures, @ .
i ssures have no physical mean-

aative absolute pre
, negat colute pressure for a gas flow, then the

ing at all. When B.E. predicts 3 negative abgh for the assumptions of B.E.. the equa-

: ” hi
 flow probably contains velocities much (00
» prabably con s, 630 od.

Scanne *by '-CamScanner
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2—4 )\ ] :- \ W™ : 2
\%"ﬁ > E ; ! sauids Lative absolute pressures ¢
Vo ;‘; ““In liquids, ncgd ssures cap

exist under very mre conditions, but they are unsty.
ble. Normally, when the absolute pressure on a ligs.
aid is reduced © the vapor pressure of the liquig,
the liquid bols. This converts the flow 10 a two.

< flow. which has a much higher value of ¥ thy,
does the corresponding one-phase flow. Thus, when
B E. predicts a pressurc less than the vapor pressure
of the hquid. the flow as ca.hmla:cd is physically
impossible, the actual flow will have a much higher
friction effect, and the flow velocity will be less than

186 FLUID MECHANT

. FIGURE S.16 _ _ Wi
- ¥ e A :Vmﬂ at will pot work.: see that assumed in the original calculation.
. 5 £ Example 512 . . o .
g __’,-/‘:\4 Etample 5.12. Figure 5.16 shows a ﬂph(\l‘l that is draiming a tank of warer.
” - = o . e 99
= Y o - - s bsolu[c ressure at Pﬁl“t - .
\ 3 3"_ e 1,.\_ & What :pl;'z;g BE. “F.‘“hout friction from the free surface, point 1, to the outlet,
~ . - & 1 3 “c' ﬁnd o e ————
- 4\ < ‘\\ - P\)lnl . — . & - i ) 173
A AT v, = (2gin — )l =12 -(32--ﬂ15)dﬂl_tfl ' |
T < oS3y =1Tmrs (5.AW)

\5\3— x Y % Then applying B.E. between points 1 and 2. we find

N
Zy e Vi
‘Q d P:=P1-'p—.;‘+§(-'.:"'zl)

o P b v 2 2
AT . _Ibf ___lbm (253 fc/s)” zzﬁ-mﬁ]- Ibf -s* f
/:,// = 147 = 62.3 e 2 32. §2 3221bm-ft 144 in?
f Ibf
= 14,7_l_b§ - 21.6_lb—, = —691— = —47.6kPa m (5.AX)
n = n -~ \S‘Lo
‘ e s e o ) SUL pbs & S . n
A ONAG, 5> Jss s x\f- P85 s e Qelnnll €5 5
7 Zo Ja\ w9 % *** “This flow is physically impossible. One may show that, when water is open t0
g O the atmosphere, such siphons can never lift water more than about 34 ft (10.4 m)
— above the water surface, even with zero velocity; the siphon shown in Fig. 5.16 will

not flow at all. In.this exax}lp}e the physically unreal, negative pressure was mostly a
result of the gravity term in B.E. Negative absolute pressures can also be predicted
by B.E. for horizontal flows in which gravity plays no role.

y
TV
Example 5.13. Water flows from a pressure vessel through a ventuni meter to

» the atmosphere; see Fig. 5.17. P, = 10 psig and A,/ A; = 0.50. What is the
' pressure at location 27

Applying B.E. gvithout friction between locations 1 and 3, we find
-p.y]1/2 . ’ 4
V3=[2M} =[2- 101bf/in®> 3221bm-ft 144in°]"*
p ' .

623Ibm/f’  Ibf-s? fi2
=3862 < g™
sl '8? " (5.AY)
v, 2 Vo P2 “\‘\'%&);5
v "f’b R
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» The Mag
Il L_’_ o s blllnm;e gives yg
| \_ﬁ e :\\‘E‘;‘c Vz N Va% = 38'6 E l
| \ N X s 050
| 77.2-; =235 m (5.AZ
k’/.’:-, Applying B g Without fr; S -
b I"l:;ip—.:nt‘a-l veniun, see Example 513 locauuns ! and 2 ::tﬁr:dcuon e
r'. | G o |
Vi
b= Py P2 = 247 pria 23 1bmrf:3(77zflfs)* Ibf - §2 ft!
= A 77 1 — 3 2 2w _--l_-_
| - 247 psin ~ 40,1 psi = 154 g - 06k a 3221bm ft 144 ip?
| y 2bs m (5.BA)
| ||
This flow also is physically unreg

widely uS,Ed as & vacuum pump. An opening in the side of the tube at point 2 will
suck in air; such devices, attached to faucets, are widely used as a labo P:) o o

of medest vacuum. As the above example shows, with a high flow nnf:lal O:gdSOUrce
negative absolute pressure. But with modes produces a

t flows one does not produce an i Sl
n 1Mpossi-
ble flow, and does produce a useful vacuum. >

: Example 5.13 shows that as the velocity increases in horizontal flow, the pres-
3 sure falls. The pressure decrease can cause boiling of the liquid. Dramatic examples
of this phenomenon occur in pumps, turbines, and ship's propellers, as shown in
F Fig. 5.18. In these devices the fluid is often speeded up to a velocity at which it
: forms a vapor bubble. Then the bubble flows to a region of higher pressure and col-
g lapses. The collapse can cause a sudden pressure pulse, and the pulses, occurring at
high frequencies, can damage the pump, turbine, etc. The phenomenon of local boil-
F ing due to velocity increase is called cavitation, the study of which is an important

~ part of modern research in fluid machines [5]. We will say a little more about this in
! Chap. 10.

1 510 B.E. FOR UNSTEADY FLOWS

. BE.is steady-flow equation; however, it can be successfully apgll'::rti lg;?:!n:huolz‘cs?:i
' flows if the changes in flow rate are slow sasigiii o 1gn01‘et- dy flow (8V/ a1),,,

, the change must be to be ignored, we re;son asr f::'i?_::s;jg ;,: ;auiz would obscrv:':-";

: is zero. Thi at, although an 0DSErve oy _
[ Chang?n:l:*l:lc::;;?inthobsewer wgatching a specific poi’ fl : ::eléﬁ:):nmg v:::;::;;:%;:;,
o change in velocity with respect 10 time. We i sa:u compared with the accel-
effects if (aV/ a1),.y,. for all points :,n lhcl:: ;ﬁ:;;ﬁnlso;';mvm or the acceleration due
‘eration we are considering. that is, the @

oint in the
r o pressure forces, (dP / dL)/ p- 1f. o0 the other hand, (aV/ 1),  atany p

3

Scanhed by CamScanner
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FIGITRE 518
C

avitation bubbles formed at the tips of a propeller. The Pmpe:lc; 1shmdﬂs
rotaung in a channel with flow from left to right. AS the tips of t ch
the pressure is low enough to cause the water to boil. The bubbles ave

short lifetimes; the collapse of the unstable bubbles produces shock waves
in the water, which can

be destructive. (Photograph from the Garfield

Thomas Water Tunpel Building, Applied Research Laboratory, The
Pennsylvania State University.)

System is comparable to the largest of the other acceleration terms in the System, then
We cannot safely apply B.E. to the system.

Example 5.14. If the tank in Fig. 5.7 is ¢

and if the outlet nozzle is 1 m

to drop from 30 m above the

Here we assume that the

tion later. The instantaneous f|

here takes the form of Torrice

ylindrical with a diameter of 10 m,
in diameter, how long does it take the fluid level
tank outlet to 1 m abgye the tank outlet?

xy.z 1S small; we will check that assump-
OW rate is assumed to be

given by B.E., which
lli's equation:
V, = (Zgh)lﬂ (5.12)
But, by the mass balance for ap Incompressible fluid
: A
Vl = V| bl § (5 BB)
A,
Where V, is the rate g Which the free gucf i ard
Which is equa] 1o =dh/ di; g0 w0k e ks s
-dh A -~
i 1/2, dh _ A,
= A, = (2em)'/2, WS 29 (520)
~ [".dn 12 | A; h A o
./;.',?73‘ -2 A =Z(2‘g)”2./:. dr=z-j-(2g)"lr] (5.BD)

I
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Thﬁl'crore o
“Ha -
ERn
At = QULL] _
i I - 1 uz(hgl EQUATION 159
wi ~ hi/2
Inserting p, (Ay/ 4 ) l :
ers‘ . i
=2, / (
= 10 b
LGURE 519 The oo o 3 miy @y
fl ng the valve all oth Xim 81 m;s!)i,q
opeS flow not €r velociy lOCily in the
produces & K e mum val ie5 are propor S tank | (5.BE)
hed by Bernoulli's o0 ue of (3v/ 4 PrOPortiong) 1 5. ¢ 2

ol a4 e ou
de 0 it lhel'cfu utl‘ and

atin w s

cquanian- equat; ; e, th '
vation with, rcsp:: o lh.t outlet, Di;f: "
3V 110 time, we § -
---2. _ (2g)| /2 dh nd
I ar
substituting for dh / d1, we fing 2h'/2 4 (5.BF)
'-clﬁ = ( g )l /2 A 1/
o \an) ey = (—g_) 2 :

v \2h TR SeE  6BG)

Thus, in this example the maxim
of gravity, and the unsteady-ﬂowu;?pziu;f:; {8V 1 ) sk the scceleraion
€ problem can safely be neglected.
Most of the flow problems in whi .
hence in which B.E. cannot be applietgc;vtgfv: l;i;e:;y ﬁtl?: i’:: m’? M e
stopping of the flow. Consider the pipe and valve showxgl in Fi;. “; 11.; mlnrifis;nor;:dqm
is practically full of fluid and the valve is closed. Then the valve- is .sudderﬂ);r opel:':g(;
If the friction effect is neglhi gible, then the fluid will fall freely, maintaining its cylin'-
drical shape, just as a solid rod would. In this case the entire outflow process takes
place during the flow-starting period; the whole fluid is still accelerating when the last

particle of fluid leaves the pipe. Friction and surface tension complicate the picture.

but for Jow-viscosity fluids in short, large-diameter pipes the result described above

is experimentally observed. .
; : ocity, and thus (@V/ M)y 1S {he same
In this case all the fluid has the sameé velocity ¢ of he same om0

, L e B i} 0§ ;
at all points where there 15 fluid. Here 1t 38 equal 10 8 E_ and the test indi-

tions in B ;
largest acceleratl nch BE 1o1his

cates that we cannot safel

problc al t of unsteady-ﬂow
Thizoilie gc:;ff yglie.d by BE. 1s the
roblem Soi valve closing. which
= proble on called warer b
Quick-closing Figure - ipe, 8t the €7 .
u ha ;
valve liquid flo¥s theoul g vabve: 1 ©° e
which 18 2 = and valve is S04
FIGURE 520 - o flow W it steadily
ClOSing the value quickly pl’Odu“? 15 flo
equlIIOﬂ-

not described by Bernoulli’s
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160 FLUID MECHANICS FOR CHEMICAL ENGINEERS

closed, the flow during the closing process cannot be described by BIE. BE Woulq
indicate that, once the valve closed, the pressure throughout the sy Stem would be g,
pressure given by the basic equation of fluid statics. Actually, at the time the valve ¢

being ciosed, the Auid in the pipe has significant kinetic encrgy, and lhc sudden sh,,.
ting of the valve requires that kinetic energy be converted either 10 interna| energy

with a nse in temperature, or to injection work, with a rise in pressure.
This chapter has concentrated on problems most easily solved by the ener
balance (of which B E. is a restricted form). The problem of suddenly SIopping the

Aud, in Fig. 5.20, and the problem of starting it from rest are both more €asily solveq

by the momentum balance (Chap. 7). We will return to this problem and the problem
of what happens when the valve in Fig. 5.20 is suddenly opened in Chap. 7. For now

we simply note that although B.E. is immensely useful, there are some problems for
which 1t 1s not useful: the starting and stopping of the flow in Fig. 5.20 is one of those

probiems.

S.11 NONUNIFORM FLOWS

So far in this chapter, and in the vast majority of problews in pipes, channeis, ducts,
€tc., we assume that the velocity is practically uniform across the pipe, duct, or chan.
nel, so that we may associate one velocity with the entire flow at any one down-
stream location perpendicular to the flow. In most flows of practical interest to
chemical engineers this simplification introduces negligible errors (see Table 3.]),
However there are some very simple and common flows for which this is not the
case. The simplest and most illustrative example of this type is the flow over a sharp-

edged weir.
Figure 5.21 shows schematically the flow in an open channel that passes over
k by pouring

a sharp-edged weir. One may study a very similar flow in a kitchen sin
the flow does

water out of a rectangular baking dish, at a high enough velocity that
not dnibble down the side of the dish but rather flows freely away from the edge, as

shown in Fig. 5.21. The flow over the weir in Fig. 5.21 is simpler than the flow out
of baking dish, because the weir is assumed to extend a long way into and out of the
page, so that the complications where it meets the walls of the channel, equivalent to
the effects of the corners of the dish, can be ignored.

Here at 1, far upstream

from the weir, the velocity is
presumably uniform (ignor-

N ing the effects of friction),
equal to V,. Clearly at 1 we
do not have a single value

\ of z; instead, we have eleva-

tions ranging from z =0 to
Z = z;. Similarly, we do not

S L = O '
have a single pressure, but we

Zj

Z -

i
]
I
]
]
I
I
]
4
I
]
]
i
]
i
'
]
i
!

@ .
o have gauge pressures ranging

o from zero at the free surface
to P = pgz, at the bottom.

Flow over a weir

Scanned by CamScanner



SHAPTER ¢
- ] “®3 Brpn
ately. this causes littde gigq FRNOULLYS 1y,
portt { point 1, independent of
- qaN . 3 . >
5[3‘ » basic eqU{l.lIOI'I of fluid Stall(:s, ok ¢ declineg th P+ oy V2 2
0" 1he same is not true at 2, There €ep the e 1S con-

re 16t

sum of | Pressyre rises, o :
e pressure at 2 must pe the flow IS g he p/ + 82 termm CooTiing
e gaug A 210, g1 4) PeN 10 the 4 €rms constam
te B.E. between an arbitr E, I elevatjq T at both gjde 50 that
“1 poiﬂ‘ 2. Because the sum p/ o+ gzm‘ Dfllnl at 1 ang e € Wweir. We cap thus
?or which 1 = 0, and write 13 mdcpcndem of ; :tellevaﬁon ¢ (above z,)
V2 . » We choose 7 = 21
5 | %
8Ot — =g, 4+ 202
2

V-; = 2
2 - [28(7_, — z) + Y_‘_]llz
2

" ; .
ma)umum, With the value

jon, with 2 = 25. One ca ' |
4 N {ry this by Pouring water

and seeing that this is not exactly the cage The int
- inte

gllow the fluid at the surface o 20 that slowly

fluid just below it. Instead the faster-ﬂowing flui

gIven by the above equa-
from a baking dish in the sink
mal friction in the fiow does not
adjacent to the much faster-

flowing
d drags the surface fluid alon

g, faster

-

Y considering a length W into the page in

Fig. 5.21. To simplify the Integration, we now measure elevations downward from the

surface, defining h = z; — z, and write

h/ . V% 1/2
0= deA-—-WfO (2gh+—2-) dh (5.BI)

Normally V, is small enough that we can drop it from the right side of the above
equation, and integrate to find

h?iz

k= W\/z_g-ﬂ_z (5.22)
Experimental results show that the 3 /2 power dependence of Q on h, is correct but
that the flow rate is less than predicted by Eq. 5.22, typically about 67 percent of what

that equation predicts [6].
9I'he s.arri-,r ediffcrc[nges in velocity from top to bottom of lhg ﬂov.v that we calcu-
late here are certainly present in all the horizoma!-ﬂow exgmples in this chapter. How-
ever, in a flow like that shown in Fig. 5.7, the difference in qlevanon from the top to
the bottom of the exit flow is so small compared to the elevation change. f_r;m the fre-e
surface in the tank to the centerline of the exit that we make af::;g];ﬁg;it eﬂ g:ofr ;::
ignoring the minor differences in velocity from top to bottom 01 i e Bl.n e
same is true of most of the flows of practical interest 10 ct{cm}cadiS[iﬁa[ion éoium“s
Shallow gravity-driven flows, for example, the flow over Weirs in ‘

clarifiers, etc.. one must take them into account.

T ey S st
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. the jet that flows over the e,
Figure 5.21 shows the . : weir
ing thinner as it flows. This is also explained by BE “bec%\

» 88 g
in the next example- "o

Faucet
5.15. A faucet in an ordinary sink with

Jet EKMPIe . . . a
tially opened valve 18 shown in Fig. 5.22, The flow Par.

from the faucet, forming a thinner and thinner g

Drops .
8 flows downward. Eventually it breaks up into dpg N
PS, dug

6

surface tension, discussed in Chap. 14. If the g;
;l(f,u,:i ifm ” the falling column of fluid is 2 cm and its velocity 0 5 & of
partly opened faucet, where it leaves the faucet, what is the expected diamey, Iy
producing a jet that 0.5 m below the faucet? Tat
contracts as it falls Taking 1 to be the exit of the faucet and 2 tg 0
::i 2::: breaks up lower, we find from B.E. that D m

vi-vi=2gh Vo= (Vi+2h)'"? S,

1/2

2
V= [(0_5 E:—) + 2-9.81 % -0.5 m]

Lt 4

m2)1/2 m fi
=(1006—) =3.17—=104=
( 2 3.17 S 104 = (5.BK)

By material balance for a constant-density fluid,
.

Vl 0.5 m/ s
27"y, 317m/s — (3.BL) E

and correspondingly

AZ 1/2
D, = Dl(—) =2cm-0.158'2=0.79cm = 031in (5.BM)

Ay
As the velocity of the fluid increases accordin
. to B.E, ‘
erally according to the material balance. ° e column shris la:

. Fo; inhere:ntl)'/ two- or three-dimensional flows, like the flow around an airplane, |
e l::;p e .apphcanon ?f B.E.. from one point to another in the flow, which a;?hav;
us re, is only applicable if the two points chosen . ; |

scussed in Chap, 16, are on a single streamline, 8

512 SUMMARY

1. BE. is the e - :
nergy-balance equation for steady flow of constant-density fluids.

2. For constant-densj i
o ) ty fluids th |
tion heating per unit mags, S; term (Au ~ dQ/ dm) in B.E. represents the fric
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PROBLEMS

Sex the Common Uncts 2nd Valoes for Problems and
Az astenisk (%) on the problem number indicatas
1.7 2 bady f2lls 1000 & 1o free f21)

Examples inside the back cover.
that the answer i1s in App. D.

znd then s stopped by friction in such a way that all
's N enerzy is comvened im0 intermal energy. bow much will the temperature of the
body increase if

o, It s seeel C, = du/ 4T = 0.12 B / Iomm - °F.

by liws water. C, = du/ dT = 1 0B/ Iom - °F7 Here Cy is the heat capacity at con-
ot volome

£2. Show that in the bead form of BE each term has the dimension of a length.

83.%Waer 13 Bowing m 2 pipe & 2 veloonty of § m / s Calculate the pressure increase and the
mCTTase in mtemal energy per unst mass for each of te following ways of bringing it to rest:

(a) A complesely frictionless diffuser with infimitely large A,

(b) A diffu
infinnely large As

(c) A sudden expansion.

€4. A Ruid is flowing in a fricuonless diffuser in which A5/A;, =3 and V, = 10ft /s Cal-

culate the pressure recovery (Py — Py)
(ay For the fluid being water.
(b) For the fluid being ar

5.5, Rework Example 5.2. calculaung the density from the formula p = MP,,
is 0.8(P, + Pum) Compare the resulls with those shown in Table 5.1.

5.6. Tormcelli's equation can be reduced 1o 2 simple plot of V as a function of A, Prepare such

aplotfm!wighuupwl(ltnn

&5 tank shown i Fig. 5.7 15 modified 10 have an outflow arez of 2 fi®. The diameter of
5 -ug'munk is so large that 1t may be considered infinite. The height h is now 12 ft. How

ety £ feer per second are flowing out? Assume frictionless flow,
- Exampie 53 when the fluid is gasoline. |

R BERNOULIL S BQLAY

14

user that hzs %0 percent of the pressure recovery of a fnctionless diffuser. with

g/ RT where P,

-y

It
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. Jav ~2u

L Ny

L

5.9.*Repeat Prob. 5.7, except that now the horizonta) Crogg
il 'f, sectional area of the tank is 5 ft*.
| 5.10. Hoover Dam bas a height of 726 ft. Assume the y,,,,
l ”,® is up to the top of the dam on th'c upstream sigq ¥
= ] .'.;,'ﬁ_‘.f.f-j{- one were to drill a hole thrf)ugh its base ang let
il e A water squirt out, and if friction were negligible, What
(4 o 29 [ Helium: .| [ A= 40t velocity of water jet would we expect?
" Vi_x% T An ocean liner strikes an iceberg, which tears 3 5.2
V §od e NV L R R R T 5.11. ; o
b " " ) SRS hole in its side. The center of the hole is 10 Meters
1’,-— N ;«0‘7' i Air below the ocean surface. Estimate the volumetric flow
,’Q}P"’.}- L rate of water into the ship.
J/ -S;He FIGURE 5.23 5.12. Rework Example 5.5, making the fluid in the tany e
\ Buoyancy-driven gas flow.

be at the same temperature and pressure as the ajr of
the atmosphere. Is the answer from Eq. 5.12 plausib)es

Would the

10 m

. \\) FIGURE 5.24 7{7
f

answer from Eq. 5.14 be plausible?

5.4 *The tank in Fig. 5.23 is full of helium, a

5

the same temperature and pressure ag the
surrounding atmosphere. Assuming steady,
frictionlese flow, what is the velocity of

gz?/ helium through the hole?
T /Ié The tank in Figure 5.24 is cylindrical with

a diameter of 10 m. The outlet is a cylin-
drical frictionless nozzle, with diameter |
m. The top of the tank is open to the
atmosphere. When the level in the tank is
10 m above the centerline of the outlet.
how fast is the level in the tank falling?

In Fig. 5.25 a tank of water is immersed
in a larger tank of gasoline, and the water
is flowing out through a hole in the bot-
tom. What is the velocity of this flow?

5.J6.*In the vessel in Fig. 5.26 water is flowing

steadily in frictionless flow under the bar-
rier. What is th ity of the water flow
under the barrier?

In the tank and standpipe in Fig. 5.27,
which way is the fluid flowing? Hint:
Write B.E., taking the two free surfaces as
points 1 and 2. Compute the magnitude
and sign of & for flow in each direction.

*In the tank in Fig. 5.28, water is under a layer of
" compressed air that is at a pressure of 20 psig:
The water is flowing out through a frictionless
nozzle that is 5 ft below the water surface. What
is the velocity of the water?

5.19. In the preceding problem, if the liquid lcv?l

remains constant, an lowly lower the 2
o FIGURE 5.25 h:%of-t' d we slowly .

Wiz

~ -\
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; ure, i Jocity will be
Two-fluid, gravity-driven flow. pressure, at some air pressure the velocity

10 ft / s. What pressure will that be? %
‘. :
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Y
™
o
q .L? }! 20 fi
e, ft
‘b‘l 10 fi
] v
"%:f 26
i GURE s v -
N &\ ﬂp-ﬂﬂld- gravity -driven flow. FIGURE 527 ?r/ " ¥
!aqk | Which way does this system flow? Pp"f 4 \.h/ A
&y ,_17‘:"""_'\ 5.20. The system in Fig. 5.29 . P“'P" N v \‘l\\
% o ‘ 20 psig a layer of co * 9+£7 Consists of a water reservoir with 5 g ,..»E'-'( ,oh
""‘Nr o mpressed air above the wat d i -\
_ and nozzle. The ” Water and a large pipe B X \
I £ _- 1€ pressure of the air is 50 psig, and the ({«\( ’
etiects of friction can be neglected, What is lhge s 1 oz 4
. b 1
@ : i *;;the water flowing out through the nozzle? ’ L- Sw
\ - t 1 1 \
M : e tank in Fig. 5.30 ha§ a layer of mercury under a la;.u:r\‘1
7 of water. The mercury is flowi ‘o
4 o less nozzle. What i Wing et Sxgugh ¥ fiction:
- €. What is the velocity of the fiuid leaving the
FIGURE 5.28 nozzle?
by Flow driven by gravity and 2. jIhe_COI_npresscd-air-d;?iyen water rocket shown in Fig. 5.31 \5 \ )D\B \
e § pressure 1s ejecting water vertically downward through a friction- o
t‘h less ns)zz.le. When the pressure and elevation are as shown, - Z
T what is the velocity of the fluid leavin 7 Pa}’n - pa‘{ + Uz 4“‘3
kg i — 5.23.*An industrial centrifuge is sketched in Fig. 5.32. > H; o
e g The fluid in the basket is water. The radii are S:"”"‘
9 S0 psig ry = 21 in and r; = 20 in. The basket is revolving
o at 2000 rpm. There is a small hole in the outer wall
o of the centrifuge, through which the fluid is flow-
. ing in frictionless flow. What is the velocity of flow
through this hole?
- 5.24. Flow-recorder charts frequently have a square scale
: rather than a linear one. Why?
FIGURE 5 ?9 5.25.%A pitot tube is being designed for use as a speed-
Flow driven by pressure against ometer on power boats. For ease of construction the
gravity.
(" Ailr, ‘
‘ 10 psi - i
psig — ‘
Water gm
, Water | 10ft

A e g W |[='/"""— -.—fz-{
".4 v
I f l e ) =~
i
]

FIGURE 530
Two-fluid, unsteady tank draining.

| ) o
N 'iqﬂ'fl-ffs"' ) b
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1 FIGURE 5.32
FIGURE 5.3 Centrifuge basket with leak.

Compressed air-water rocket
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tubes will not extend more
. A pitot-static tube istobe u '
We will not use the tube
ter is less than 0.5 in because smal
air velocity at which we can use thi

5.27.*Repeat Prob. 5.26 except that now W

which they can be used? i _
sed to measure a flow of air. The manometer fluid is wager

ler differences ar
s pitot-static tube?

fluid is waler. ) L
528. A pitot-static tube is used to measurc an airplane’s air speed. When the pressure-
t is the plane going?

difference gauge reads 0.3 psig. how fas
(a) At sea level where the air density 18 about Q.0
(b) At an altitude of 10

(c) Does this difference cause

or aeronautical engineering

5.79. A pitot tube, connected to a bourdon-
of a boat. The tube is just below the wa

is going 60 km / h, what is the reading of the pre

5.30. In this book and most textbooks, equations are O

000 ft, where the air dens
problems for the pi
friends for help on part ¢.)
tube pressure gau
terline and faces

ple, Jack Caravanos (Quantitative Industria
Cincinnati, 1991, page 66) gives the followin
based on measurements with a pitot-static tube:

V = 4005VVP

where V is the velocity in ft / min, and
Is this consistent with Eq. 5.16?

57( If the venturi meter in Example 5.10 is to be used
useful to have a plot of volumetric flow rate vers
the pressure drop and simply look up the volume
flow rates of 1 to 10 ft’ /s.

5.32. In the venturi meter shown in Fig. 5.10, the flowing fluid is air, the manometer fluid is water,
(D,/ D) = 0.5, and the manometer reading is 1 ft. Estimate the velocity at point 2.

;&. The venturi meter in Example 5.8 is now set at 30° to the horizontal, as in Fig. 5.12.
The flowing fluid is gasoline. The fluid in the bottom of the manometer is colored water.
The reading of the manometer is z; — g = | ft. What is the volumetric flow rate of the

gasoline?

.34.*Repeat Prob. 5.33, except that the’ two pressure taps have been replaced with pressure
gauges. Thc-sc are placed on the side of the pipe, so that they indicate pressures on the
pipe centerline. The gauge at point | reads 7 psig, and the gauge at point 2 reads 5 psig.

than 10 ft above the water. What is the maximum speeq 5,

difference in the manome.

low that the clevation
e hard to read. What is the smaljeg,

¢ measure the flow of gasoline, and the manometay

5 1bm / f©’?
ity is about 0.057 Ibm / fc*?

lot? (You may have to ask your pilot

ge, is used to measure the speed

directly forward. When the boat

ssure gauge?

rect for any set of units. In “applied”

or “practical” puhlications, one regularly sees equations that are unit specific. For cxam-
| Hygiene; A Formula Workbook, ACGIH,

g equation for the air-flow velocity in a duct,

VP is the “velocity pressure” in inches of water.
on a day-to-day basis, then it will be

us pressure drop, so that one can read
tric flow rate. Sketch such a plot for

-

2, > X

™
‘&

a The difference in elevation between the gauges, (z, — z,), is 2 ft. What is the volumet-

ric flow rate of the gasoline?

\9\ ;5\!_:_\ 'P%\ 535. In the apparatus in Fig. 5.33 what is the volumetric flow rate?

5.36-.26 ‘gmﬁ meter in F1g. 3.34 has air flowing through it. The manometer, as shown, cof-
thcﬂsmﬂtl mercuq[fz and water. The cross-sectional areas at the upstream location and at
at are 10 ft* and 1 fi>. What is the volumetric flow rate of the air? The discharge

coefficient C, equals 1.0.

5.37. ::;dr:r:ft::;sr in the thcd S.tafes. Europe, and Japan have mostly replaced the carb¥-
s cmm::tos \Ztoth fuel injectors. But autos produced for developing countries sull
biles and power as do power tools such as lawnmowers. The carburetors in automo-

power tools are much more complicated versions of the carburetor shown i
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CHAPTER 5 pro
. = 5
Cross-sectiong] BERNOULLY'S EQuaTION

area 2.0 ft? "
h'f’:_-:_:':--« - -
— —

A =102

Water

Cmss-&cclional
area (.5 fi2

FIGURE 5.33 e e ——
. pewvice for Prob. 5.35. FIGURE 5,34

Venturi meter with two-fluid manometer.

Fig. 5.35, but they operate the s

_ ame w ;

points 1 and 3 are large enough that ii:sv:?:::‘:ilmp:; one. The cross-sectional areas at
F b 1tes there can be i 3t

f:on:lp?red toa]t.hc velocity at point 2, and the pressures at pOinag 1 agzn ;lgrir;dol?ueshglhie

:::nocs yh:gl;- ::s:ut:-n 05phcnc_ pressure. The gasoline enters from a C“ﬂsml'ﬁquidlif:cl-.

be corl: sidereg " friceti:eslmou ;hzliough a large-diameter tube and a small jet, which may
nless nozzle with diameter D,. The di

i, polatd, is D ;. The diameter at the throat of the

(@) Write the equation for the air-fuel

Inlet airflow ratio, which is the (mass flow rate
0] of air) / (mass flow rate of fuel), in
terms of the diameters of the throat,

i the jet, etc.

(b) How does this air-fuel ratio change
with changes in air flow rate to the
engine? (The air flow rate 0 the

ids v engine is governed by the setting of

wl § the throttle plate, which is connected
L Gasoline to the driver's accelerator pedal, and
el @ located between the part of the car-

Hﬁ‘f buretor shown here and the engine.)
et (c) If we want an air-fuel ratio of

; Gasoline level 15 1bm/Ibm (typical of gasoline
» g held constant by engines), what ratio of D,/Das

Iﬁﬁ’ 3 a float valve. should we choose? ‘
ip (d) If the carburetor shown here gives
#: (©)] ine-ai an air-fuel ratio of 15 at sea level,
m’ Gs_:sohnc-:ur L it give the same, & highet, or a
mixture 10 fuel-air ratio in Denver, ele-

engine lower "

vation 5280 ft above sea levc. .

o 5.38. In the United States natural gas is nor-
Wi - . 4 inside buildings at a pres-
o mally piped il e
"} cure of 4 in of water, whereas prop
? FIGURE is piped inside buildings at 8 pressure
e Ektrtnlar: -:aszbmctor, The liquid leve! in the of 11 in of water Why?

: reservoir is held constant by 8 fiod! e
£}
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lbm / f:’) is ﬂowing throy, b

| (density 35 . '8 throyg
5.39. An ul_lﬁ((i"m Fig. 5.36 The oil velocity is | R/,
the :cnpfpc c, = 0.6. What is the indicateq valye
int :
P — Pz? -
E)fm,- 'mcasiO“a”y sees Eq. 5.18 written
5.40. 4 [2(?. _ Pz)]'/z
}‘)i\\l" o - ——— e (S_BO
0.2 in-drametet V= (1- A} /Alz)l N P A
Inside h}.le new coefficient, o
diameter 110 defines a _ =
l 536 ?n;(l:han§/ A})!72, which is Ca"=dfthe coefs.
g v is coefficient for D,/ D, =
Orifice meler. n velocity corrected. Sketch this coelhc 2/ Dy =g
scharge, approac e Fig. 5.14- .
ﬂ?lf:{ g:‘; D:g= 02ona graph h[k',: F‘;famc,e, pipe. We want to select a drilled plate
an - -in . ) i r
fr/sind : t will be 3 psig. What diam_
841, Mercury is Aowie C l:ha: the pressure-drop signal across 1 psig 1am
to insert in the pipe $0 orifice hole?

eter should we select for the The fuid flowing is water. The pressure it

5.42.*A venturi meter, Fig. 5.10, has Az .
point 1 is 20 psia. ! point 2 that corresponds to a pressure ?t pount.Z of 0.0 psia?
(o) Wikas 15 128 v::loc:tgoiFP?B vapor pressurc is 11.5 psia._ Whal is the highest veiocity
- :vfn:::br;ﬂ;(crp;;l{at wl;ich water at 200°F will not boil? - '

i . ilar to that sketched in Fig. 5.16, we want ‘the uid to have a vel?c’ny of

5.43. For a siphon sim1 If we assume that flow is frictionless and that the minimum

in the siphon pipe. . j :
Il,om:;:.-: ;T;owablf is | psia, what is the maximum height that the top of the siphon may

have above the liquid surface level? . o
5.44. In Example 5.12, what is the highest possible value of (z; — z;) for which cavitation will

not occur? The vapor pressure of water at 20°C = 68°F 1s 0.34 psia.
5.45. The tank in Fig. 5.37 is open to the atmosphere at the top
@ and discharges to the atmosphere at the bottom. The cross-

/A, = 05.

R sectional areas are; 1, very large; 2, 1.00 ft2; 3, 1.50 fi®. The
flow is steady and frictionless. What is the pressure at 27
Water 5.46.*A ship's propeller has an outside diameter of 15 ft. When
L=5f o) the ship is loaded, the uppermost part of the propeller is
submerged 4 ft. If the water is at 60°F (vapor pressure,
b @ p.26 psia).. what is the maximum speed of the propeller,
in revolutions per minute, at which cavitation cannot be
it expected to occur at the tip of the propeller?

Vertical, ey e i 547. Is ;'.;avitatifon likely to be as severe a problem with the pro-
pellers of submarines as with th

sl e propellers of surface

5.48, i
48. In :‘:amﬂie 314, instead of the tank being initially filled
o d:P;h Of_ 30 m ab‘ove the outlet with water, it is filled
e :s l'o 10 m with water and then has a layer of 20
gasoline on top of the water. How long does it take

the |
the th;I o top of the gasoline to fall from 30 m above

5.49.+Th oy )

Its chlt?rlilfolrl ?g' 338 &8 cylindrical and has a vertical axis.

FIGURE 53 the bottonl-:ti:, cross-sectional area is 100 ft?. The hole in

ookt et f A5 @ cross-sectional area of | fi?. The inter-
fluid g dl‘ilning_ ace bCchcn the 0 1°.

horizonta] at 4 gasoline and the water remains perfectly
tmes. That interface is now 10 ft above
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[

|
:Uﬂ
|
|
!
- L’

: £as expands. Assume
: an ideal gas ang :
remaj nd that is temperat
spacen's constant at 20°C = egeF. Initially ri;: ":i
5.51. The o 15 1 ft high, and a P = 20 psig gas
with zitiog?d shown in Fig. 5.39 is full to the top
water runs.o v Lo f.JPCning is uncovered, so that the
bottom Opml;;gm.tolu;i aﬁ The cross-sectional area of the
1S 1 It". How long does it tak
empty? Assume frictionless fi ERE

F]GURE 5.39

Tank draiming with non-
-onslan\ cross section.

L

5.52, , i
An open-ended tin can, Fig. 5.40, has a hole punched in

its bottom. The can is empty and is suddenly immersed in
water to the c}eplh hy shown and then held steady. The area
0 of the hole is 0.5‘ in’, and the horizontal cross-sectional

! area of the can is 20in?. If we assume that the flow
through the hole in the bottom of the can is frictionless,
how long does it take the can to fill up to the level of the

surrounding water?

FIGURE 5.40 5.53. A fiuid mechanics demonstration device has the same flow
Gravity inflow. diagram as Fig. 5.6. The tank is rectangular, 6 in by 5.5

in. The outlet opening is circular, D = 0.30 in. The tank
is filled with water and allowed to drain. How long will it take the level to fall from 11

in above the centerline of the opening to 1 in above it?
5.54.

A 1-gal paint can. diameter 6.5 in and height 7.5 in, is filled with methane. A 0.25 in.
diameter hole in the top is covered with masking tape, as is a 0.5 in. diameter hole at

the bottom; see Fig. 5.41. At time zero, the two masking tapes are removed, and a stop-
watch is started. The methane flows upward out the hole in the 1id by gravity and is
lighted, producing a Y

ellowish flame. For all the calculations below, assume that the flow
i i i ligible.

tance through the hole in the bottom is neg .
res}sWhat is thcginitial velocity of the methane through the hole in the top?

e the methane in the can is replaced by the inflowing air, that velocity falls and the
P cb comes smaller and bluer. What is the relation between that velocity and
ﬂ? meedeﬁ(:m'l Here use the two classic mixing models of chemical engineenng,
elaps ! s ;
1otally unmixed flow, 1n which th

e air and methane form separate layers, one above
3 in which the concentration of methane in the mix-
tally mixed flow, In W
k the other, and 10

: . o is always uniform throughout the container.
wre inside he mm;:::;gll: the n)[;cning at the \op becomes less than the laminar flame
(c) When the R ralfm mixtures, 1.1 ft/ s, the flame burns back into the container, where
speed for _mctlha:‘lcs than 1.1 fi / s and spreads rapidly, producing a bang and a flash.
the VCIOCIIE-I:Z t;i container's lid into the air. The internal safety chain prevents the lid
and propeill

.o anyone, and pulls the can up off its bottom. How long does it take for
from huwﬂS; ccording 10 the totally unmixed and totally mixed models in part (b)?
this to OC::L& time is about 325 5. This demonstration is described in detail in (7).
The 0bs¢

g

L]
1
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T ﬂ' Gas
-l : flow
! | 0.25m.
! IJ diameter hole
|
|
! \ Internal safety chain
|
75m
J air
7] 05in.
diameter hole
|
- 65in. |
FIGURE 541

Simple time bomb; see Prob. 5.54.

5.55. Repeat Example 5.14 with the water in the tank being replaced with propane
zero mixing between the propane and the air above it. PR, At
5.56. Figure 5:42 shows a toy fluid-mechanics demonstrator, which consists of a wood
(or plastic) spool, a piece of cardboard, and a thumbtack. When one I:;It:n.v.rsoha::l1

Airflow in gnough downward into the spool, the cardboard
/rz is held firmly against the spool; when one stops
| blowing, the cardboard falls away by gravity.

Sketch a pressure-radiug
" . plot for pressure alon
Spool :}“s: ::;—A In the sketch while air is ﬂowingg.

€ axes shown i

iy in the lower part of the
s ca:jhbz function of the thumbtack is to prevent
it plays 1 ard fl‘O_m moving sideways; otherwise
Pressure Thumbtack Cardboardo .l'Ole o the device. Assume that the
botsiaen & 1S stiff enough ‘that the distance
S = i © cardboard and the spool is constant,
Pendent of radius. The device works with 8

Distance iece .
FIGURE 543 ialicsogrordmary flexible paper, but the mathe-
Spool and cardhogrg o between © more complex because the distance
demonstrator, Wd mechanicg of Paper and spool is not constant. A piece

adhes; ,
helps. Ve iiaps holding the thumbtack in place
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q the spoul-and-cardboar
- ! _« a diameter of 7 ; demonstrayor ;
has 2 1 MM, the oneees
petween the spool and the cmd::mde d
ar s about I L and is bl(\\\-n St ?Td {hﬁk i
N aboy, 7
work 18 given by 'Bq, 11 g Mpressor

n ‘ht 8§ €8, esliy
s i pool ap mate the |
the fuiq Pump d the oW

is an ld
dw

nf

- f_‘ii dp
For very small pres N . f?
Ssure changes (g i
S practical)
y

(S BP)
fi_‘fﬂ_f_ _RT Ap
dn ~ M.
p, AP<<p,
Almost all real compressors o & | ! (5BQ)
surroundings) and isothermaj (c Niermediate b

P, [isothermal, frictionless)
and

dwn.[ - RTI[

= k K(p,_, (k=1)/&
dm M k-1 Pl) = IX {adiabatic, frictionless] (5.BS)

Here T, is the i :
Chap. 91») Whicl:r;l:l lemperature, k is the ratio of specific heats (1o be discussed in
- practically constant for any gas (=1.40 for air), and P, and P, are

the inlet an :

oare 2 plmdo?‘-\{;:l/I;;;:_S_Slt'lr\:js‘:vres?ecu\rely. To show how lhfase fcm.:ulae compare, pre-
/RT, (dWqyg. / dm) versus P,/ Py for air, showing curves for each

of the three equations, for the range 1.0 < P,/ P, < 13. Here the calculated work is

that dope to drive the pump Or COmMPpressor, which is work done on the system and has

a positive sign.

5.59. Figure 5.43 shows an air-cushion ¢

ar, of the type widely used to slide heavy loads over
relatively smooth surfaces. In it, a fan or blower for

ces air under pressure into the con-
fined space under the car. This air supports the car 2

nd its load. Some of the air contin-
ually leaks out through the gap between the skirt 0

f the car and the ground; the fan must
supply enough air 1o make up for this leakage. Assuming th

at the car and its payload
have a total mass of 5000 1bm, that the car is circular w:nh a diz.\m:ler of 10 ft, aer that
the clearance petween the <kirt of the car and the floor is 0.01 in, calculate the air flow
rate. Then, assuming that the blower i$ 100 percent efficient an

d isothermal (Prob. 5.58),
calculate the required plower horsepower:

5.60.*An air-inflated “pubble” structure has a
Airflow ¢kin that weighs 1.0 \bf / f*. Real ones
‘ are cylindrical domes, but for this prob-

lem consider it to be a fiat roof, held up
Blower by the pressure inside it. The floor area is
20,000 ft*. All such structures have some
Jeakage, which must be supplied by a fan
that runs constantly. The true leakage area
FIGURE 5.43 consists of many small pinholes in the
Air-cushio? car.

Air leakage
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assume that the leakage is equiyg ent
the

Fo:z of opcning. tructure.
inside ::s: be made up for by the fan.
; te that hich is assumed to b
) Estima® jeakage flo the fan, whic ¢ 100
the le . ent for Pe
,gql.llrcm
m wide and spills over a sharp-edgeq wei
pstream flow and the top C:;
the

Teen,

petween the U

ce I
s the upstream velocity?

5.61.
te the
(a) Esuma o it ) '
have made in neglecting this Velogy,

weltr
tream

(#) If the ups rcentage error

Torricelli's equation, which does -

(c) How large ape 29
in formulatng Eq. s‘i:ed the exit velocity bY_ ; g :
. In Example 5.3 we compmal at the bottom of the jet the VchFlty will be higher thap 4
ake into account the fact w large an error are we likely to have made? |y
> ith an outlet diameter of
tly rounded entrance wi : SR s
cgf;cbzlo w the fluid surface, how much difference shoylg th;:
s at the top and the bottom of the jet?
f water flows from 2 faucet into a sink. It is observed thy
from the faucet. If the flow leaves the faucey

with distance g el

2 lindrical jet wi ameter 0.25 in. and a

. 1y downward, in the form of acy veloc.
l\;;rggalll);[ /os what will be its diameter one ft beletw the faucet? .

In Example 5.15, if the column is expected to break into drops when its diameter is (| in,

how far below the faucet s
Equation 5.BJ shows V as S(

jet is passin
the centerline O et
be between the velocitie

5.63. A slow-moving stream O
width of the stream decreases

64 hould this occur?
h) for flow from a faucet. Show the corresponding equatiop

rd-breaking hurricane said, “It had a pressure of

5.65.
for D as f(h).
5.66. A meteorologist, discussing a reco
850 millibars in the center, so it had winds of 250 miles an hour!" Explain this state.

ment in terms of B.E.
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€ of
=
n Chap. 5 we found the working form of Bernoulli's equation (B.E.)
P 2 B
A(—- +gz+ Z-) = —_..dw"'f - %
p 2 dm (5.5)

k - . - - . . .
Uie appropriate pressures, velocities, elevations, pipe diameters, elc.

" The form of the friction-loss term is Strong
rm The problem is much simpler if the flow 15
éther than in two or three dimensions, as aroun

con; e ) ;- A
nsider fluid friction in long, constant-diameter PIPes in steady fl
ase to treal mathemat

f i Practical significance and is the easiest € p
f—;op?mg of flow in pipes are discussed in Sec. 7.4. In Sec. h
; Uonal drag on particles in steady, rec on, which, el i
~ensional, gives results quite similar to in long, straight pipes.

ilinear moti
those found

.
iy
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;m:h ?f;zlljlcd it to problems in which we could set the friction term, %, equal t

i apter we show how to evaluate the & term for the very im 'rz]m 3 orac

'ical case of steady flow in one dimension, as in a pipe, duct, or clf:nnel Er;inprz:;-

f'terms we evaluate here, we can use Eq. 5.5 for a much wider range c;f probglen;
than those we have considered so far, including many problems of great practical inter-
est to chemical engineers. Keep in mind that our main reason for evaluating % is 0
put the proper relation for & into Eq. 5.5, and then solve the resulting equation for

ly dependent on the geomelry of the
all in one direction, as in a pipe,

d an airplane. Therefore, we will first
ow. This case is of

ically. Starting and
13 we will consider the
ch, although it is two-
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and dl.l'CC-di.l‘nCuSiOI:'lal flows by using some
two-

3 i €
| investigat troducing several others.

e wil :
[n Part IV W hapter and in

of the ideas from this ¢
PERIMENT

. i d on an apparatug
rmine Z is performec
In thi experir(:::st we set the vnlumctrac flow ra[g'(t:' the
1. In this tric flow rate with th
the volume e
i » ting valve. We MEASe ad pressure
Bl wieh q‘e ﬂo‘:bzc f:ﬂljaclagd a stop watch. At slend)" state \:IZ r; pri:ssurc driauges
l; " Zr: u;;:il t?cord their difference. Usually we are mterzic([hc length of thg E::rt
ur:ifnlcngzth so we divide the pressure drop by d]s:tar;,lc: w rate 0.
O Pl\zl) x ag?ij:lllslzdv?slufl;zvn;rfg or what kind of pipe we use,
of what Newtonian ¥
the rei?f ?;dla;::'says of the form shown in Fig. 6.2, and for all gases at low velocities

It is the same as that shown. . ' o
" I-e:sl'l;u': lssalier:u features of Fig. 6.2 are that for one specific fluid flowing in one

specific pipe:

6.1 THE PRESSURE-DROP EX
i t

The classic pressure-drop experiment tO

like that shown in Fig. 6.

1. At low flow rates the pressure drop per unit length is proportional to the volumetric
flow rate to the 1.0 power.

2. At high flow rates the pressure drop per unit length is proportional to the volu-
metric flow rate raised to a power that varies from 1.8 (for very smooth pipe) to
2.0 (for very rough pipes).

3. At intermediate flow rates there is a region where the experimental results are not
easily reproduced. The two curves for the other two regions are shown dotted,
extrapolated into this region. The flow can oscillate back and forth between these

two curves, and take up values between them. If the experimental apparatus is like

that in Fig. 6.1, with a more or less constant value of dP / dx i
' , the
flow rate will oscillate horizontall g e sk

pulsing flow y between the two curves, producing an irregular

sl 1 el g
4 Ity
Pressure gauges

Flow-mguhﬂn g i o 7 e
valve

Stopwatch

©

L°“3 section Te :
F+——ahead of tes st section
R section, to ‘-I.‘nglh = ﬁx~1
Prr:lduce Segls
( ~Wwet f/‘ eckH 2 q uniform flow Bucket
Q g FIGURE 6.1 A\ o
Apparatus for the pressure- @ 'o”

in volume in th 3 ay rcl%ilher the i ; .

and | *thod here, calleq "iuitm based an calfbrygign m:::rcasF " Weight on the

15 used to calibrage other methods suc:,md Stopw:n;}{r ia the o On its sides, The fiow-
| - P2 - as those sh em in Chap, 5, dccurate method known

BA f@(f

) 4l
R RN _%';P'/Dx:’
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CHAPTER 6 FLUID FRICTION IN STEADY. ONE DIMENSIONAL FLOY

"_fﬂ-—f— | DG e T 20 e e e ‘1
+ ¥ H L L | l A 1 L] L v
pes P —&F @y
t Raf™™ ‘:’T‘\- Q % the ; Regron where ~dP / dx
.’ L 3‘. o 1§ propore nal o L‘\ 1o the
? L Lo ! 810 20 power /
< X \ 1
a3
b 4

. \ /

S ' Unstabie region ! '*‘
] | ehere —aF & \ 1
3 | oscliates between )/
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;
!
| E J
SO T Ny
T & I\ l
] ;
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Volumetnic flow rate, 0. gal /mn
PIGLRE &2 .
TqﬂMmﬂtfaamﬁcﬁmdmamﬁcpip;Mmakm;wdvaIm for an cil

.«,;5;::;.9mp=w$.ﬁmmma3mmmwmhmnmmdmmw
u,.—m::x:s.rz.hndtmncdmlrﬂmmdjﬁ’mlfthcvolmmicﬂwm:.Q.is’:onmL
;.,-:::ﬁ:zmmgimmﬁcwﬂﬂosdﬂmmﬂybemdnmomcsof—d?fdx.lf.

caeai —&P / dx 1s xed (e.g. 2 flow by gravity from a reservoir). then in the unstable region the flow
ol osclime borrzomrally hetwesn two valpes of Q.

This experiment is relanvely easy to run, and the curves have been found for many
combinanons of pipe and fluigftowever, since all possible combinations have not been
esed. it would be conveniefft to bave some way of calculating the results of a new
commnztion without having to test it Furthermore, no inquisitive mind will be satisfied
w1h Fig 6.2 without asking why it has three regions so different from each other.

62 REYNOLDS' EXPERIMENT

Ustome Reynolds [1] explained the strange shape of Fig. 6.2. In an apparatus similar

© tha of Fig. 6.1 but made of glass, he arranged 1o introduce a liquid dye into the
- fowing stream at various points. He found that, in the low flow rate region (in which
. ~dP/dx is proportional 10 the flow rate), the dye he introduced formed a smooth,
- ", straight streak down the pipe: there was no mixing perpendicular to the axis of
. U2 pipe. This type of flow. in which all the motion is in the axial direction, i1s now
‘ 2led izminar flow (the fluid appears 10 move In thin shells or layers, or laminae).

oldallliceu vy vaiiiouatiiiel
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He also found that'in the high flow e
esion, where —dP/dx is proportiona} ¢ .
- z,oglumerric flow rate to the 1.8 to 2__0 Pt?wer, )
matter where he introduc;d th-e dye it ‘?Pldly dis
persed throughout the entire pipe. A rapiq, chagy
motion in all directions in the Pipe was supery;
posed on the overall axial motion and Causeq ¢y
rapid, crosswise mixing of the dye. This type of
flow is now called turbulent ﬂo.w,

The two types of curve (linear and approx.

-

SRR (T imately parabolic) in Fig. 6.2 thus were shoy,, to
4 L e et k . " "
P bt X *;u.\ R represent two radically different kinds of fow.
by G Ladenar =0

faw - = | The distinction is very important, as we will see.
. My | students should observe bot.h types in the world
! about them. Perhaps the easiest example to g 5

Z i the smoke from a cigarette rising in a stj]] room

/ G shown in Fig. 6.3. The smoke rises in a smooth,
/ Cimﬁ;,// laminar fiow for about a foot, and then the How
' converts to turbulent flow, with random chaojc
FIGURE 6.3 motion perpendicular to the major, upward flow

Lamainas and utadent flows for a thin 0y Thic case, although easy to demonstrate
stream of smoke rising in a room with in the laboratory or in the livi g
very weak air currents. In the oy ) Ing room, is much
harder to analyze mathematically than Reynolds’
pipe-flow experiment, so we return to the latter,
Reynolds showed further that the region of unreproducible results between the

; tant pressure drop, as in F;
a higher and 2 lower value, P.as in Fig, 6.1, the

Besides clarifying the Strange shape of F;

brated application of dimensiona] ® of Fig. 6.2, Reynolds made the most cele-

in the history of fluid mechan-
transition frop, lami » for all Newtonian fluids, and for all

P/ p has g vy ent flow occurs when the dimen-
. ; th : A ue of aboy ; .
Q . Y Q, Qe T}f‘ avc.rage ﬂuud velocity in the sine. ut 2000, Here D is the pipe diameter, V is

L\m,‘uwf

R 9,7 Mo o°
tu(ku&“}

° Re QIL:{@@Q \3\;\’(}3\@ o\ e Re,;:

p- 4 L S\
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Tw -
sure 4rop Q'° a0 turbulen T P
pres Ox
rional to scillateg fro Flow
prope another- one vajy,
jds number <2000 er, ve € o ‘e
Eifi—— =~2000 1o :)' difficuly 1o Measure Q' {very smooth Pipes)

o Q 9 (\'C'I)‘ 1 § k
ou h plms

The transition region on Fig. 6.2 corre
i 4000. For Reynolds o s (0 Reynalg
s aer i e o s S 2ot 408, o T
. , N ApDToRcia: | : ¥ turbulent. For
ength is s

. T
giameter In the Reynolds number produc; ubstituted for the

s C . plpc
discussed later. All Reynolds numbers are 'Ng a different Reynolds number, as will be

The difference between laminer o (some length - velocity - density / viscosity).

s between about 2000

on from Re o -
This means that almost all flows of & e ynolds number =2000 to =4000.

and liquids like water in ord; ' )
- Inary-sized pipes
are turbulent. The only exceptions to that statement are flows of fluids much F:*n%re

viscous than water, such as as_phalt, maple syrup, or polymer solutions. (The fluid used
as an example to make up Fig. 6.2 is 50 times as viscous as water; if that figure had

been made for water, the laminar region would have practically disappeared into the
left axis') However, in very small tubes or other flow passages the flow is normally
Jaminar. The flow in the heart and the major arteries near it in our bodies and those
of most animals our size are turbulent. The rest of the blood flow in our bodies is
laminar, as is the flow of fluids in filters, in groundwater, and in oil fields. (These lat-
ter are not exactly pipe flow, but as shown in Chap. 11, the flow passages between
the solid particles in filters and in the ground behave as irregular-shaped pipes.) River
flows are mostly turbulent, and the main flows of the atmosphere are turbulent, but
in low-wind situations and in the stratosphere the atmosphere can be laminar. Both
laminar and turbulent flows are important; you could not read this statement without
the turbulent flow near your heart or the Jaminar flow of Tolood 1o your brain and eyes.
The results of Reynolds’ experiments are summarized on Table 6.1.

6.3 LAMINAR FLOW

Laminar flow is the simplest flow, so we discuss it ﬁr'st. Consider a stgady 1am‘m'fu ﬂo\; ﬂ(i
an incompressible Newtonian fluid in a hoﬂzon@ circular tubt.: o;r_l};xpe.lgc :Zc:;?s; e
tube Ax long with inside radius ro 18 shown in Fig. 6.4. We arbitranly se
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.s analysis iS DOt Cox-
d:“ﬁ"‘-g;umbc entrance fsee
I\r,,mﬂwi’_“m?“
oy i e axial lnction. These &

(6.2
2y _ pyar?) = = (P~ P2 o

forces have nO Com-
hkeclenwﬂlihe‘?[ﬁsm!" orce resisung he
Aicngmcc}'hn&‘m_alsmv fimdojgubem;nmd- but there is 2 urgfgmdier:iwh;hﬁ
poncat 1n the ¥ dIrecton ind:cdirecﬁouowosmwmﬂ
flow. The shear force actS | : is
in the flow direction. and its magnimde =2arAx-7 (63)
Sbarfom:=2—.rr31‘(5h“-“5ma”) -

mfomcmdshearforc:mmeonlyfmacﬁngin:hc_xdm

frlxdw;; I;:Sim of the forces is zero, these must be equal and oppositz. Eq 2
S T
ﬂmirgnntozmandsolvingfor:hesbearsuessmr.ueﬁnd

Shear stress acting —r(P, — P2) 60
7= | onthe cenmalrod. | == e
at radius r

MminmsigndmsMOminuﬁﬁonismandfactsintheminusxdﬁm
(See the discussion of the sign of the shear stress in Sec. 1.5). Equation 6.4 apphes
steady laminar or turbulent flow of any kind of fluid in any circular pipe or wbe.
Here we have applied Newton's law, F = ma, to the particularly simple case in
which there is no acceleration and sum of the forces is therefore zero; in Chap. 7 and
Part [V we will see how to apply it to more complicated cases.

. We saw in Chap. 1 that for Newtonian fluids in laminar moton the shear sess
1s equal to the product of the viscosit

Eq. 6, wefind y and the velocity gradient. Substituting in
iv_. . Pl - Pz
# dar TAx (6.5}
For steady laminar flow the ;
position in the pipe, pressure gradient (P,

50 we may integrae s 1o 2 ¥ 0€5 not depend on radial

(6.6}
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oy ey s i __ b 1 )
=0 \\ \}w —n s ‘:;:‘ l:’: for the value of the com
{ - T wWe '
' .\\. B . facy thint t‘;mn one observationnl
A ? Vel T — thing uu-“: the flow of every
) 45 e % CM tirelied pase
; Vias % ;.9 P~ p, luid a the solid uucl. o e
e the surface Thi rLace chings w
- rll.ﬁ““l 0.5 ively obviow “; el
Vel drstnbution an steady, laminar flow of Rt ‘des us fact, and we can
L circular pipe Ol & Newtoniay oo cnvt" it from some priot
| !- 1[1‘(’ I‘h(‘, ‘fha\r“,‘- is l.l\l“t
r differem from that of
: aver one another so that there 1y » sharo di whose slidi f  solids,
L ™ powever. S0 3 OBV “m‘. ’ 1y dmummuuy mn velocu 'nlﬂ Isurfucn do shp
r egves O the surface of & streari: lh‘u\“ 50 by watching the hch:v:urltlfc ;‘:d“lfﬂ hlm:“‘-
1 am: se at the o f bits of wood or
dlowly. and those nght at the bank not ay ;:;r :1:: nter move rapidly, those near th:. :n::k
no-slip €4 '”“:“"m‘ e klf\d of rarefied gas ﬂuw“:scm;'ihllon 15 often referred 1o as the
- 1 . -~ ¥ ~y 3 v’ -
| From this observatonal fact it follows that at = '_“‘(‘_ :d. lugmﬂly enough, shp flow).
! i o (at the pipe wall), V = 0, so
i 0 = —-LL—‘ v Pl ~ PI
' 4p Ax | constant (6.7)
t x . - h' i l -
r gubstituting this value of the constant i ;
i tin Eq. 6.6 and factoring, we find
] T .
; T el ) Ul 2
. is equation says that for st ' . i g
; This ¢q y eady, laminar flow of Newtonian fluids in circular pipes.
: 1. The velocity is zero at the tube wall (i = rp).
-: 2. The velocity is a maximum at the center of the pipe (r = 0).
1 3. The magnitude of this maximum velocity is
2
re Py— Py
] Vi i mesiamlagene (6.A)
4u Ax
b 4. The pressure drop per unit length is independent of fluid density and is propor-
. i ¥ :
{ tional to the first power of the local velocity and the first power of the viscosity.
3 . : . . .
: 5. The velocity-radius plot is a parabola; see Fig. 6.3.
|I '
r . ' d in the Volumetric flow rate
1 In engineering We are generally more mten?ste in the vo umetric flow Ta
than in the local velocity V. To find the Q of a uniform-velocity ﬁg‘” ;‘”‘: m_‘;:;:‘Ply :he
, . 3 1). The veloc-
velocity by the cross-sectional area perpcndncula: to flow (see Ta l;c‘me)rm pleg 8
. . . i i we must 1
ity of the laminar flow described above is not uniform, SO g
¢ times area over the whole pipe Cross ik
_ | o i g =P
3 re=r e 2
f 0 f VdA=f oL D
tube r=0 4'”' A
E y 2.2 Ar=To P -P, T
; Pi=PFPy ¥ I'o! _.f._. = .
&x ‘ 2“- r=0
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by Hagen and also. independently, by Porsesila (74
y lled the Poiseullle eqquaticn {400 WM amss et

on was developed .
C"mm()ﬂl)' ca : g
- P3) / Ax is proponiemial vy te

This equati A dnis?
ited States 1t 1 _
.I.n [t;U::;-y"J. [t shows that the pressure drop (P4 ¥ g, 6.2. TH Aot p
1 'fwcr of the volumetric flow rate Q. a8 shown 10 ;g. ; ‘fn: v:‘utnm " /',
first POWCE tisfying: using only very simple mathematics. We T & CHTOL 7
Imf??n:iu: of the flow. The description has been experimentally verified 0 well i, @&"
ict:::?aminar-ﬂnw experiments i circular pipes disagree with it, the EXPENINENS are .qtj‘
| P
in error. A
_ ; 4) that J
From Eq. 6.9 it can also be shown fp"’b“f“ “ 4
Ve = 5 =5 (6.19) 7
mr
f(,/z/zde /(V2/2)V-27rrdr
Y —— .
Averageke = — [ = {V"l)‘ 6.11,
f dQ [ V-2mwrdr

chown in Table 3.1.
th B.E. (Eq. 5.5), we apply B.E. from point 1 to point 2

AP from Eg. 6.9 to find
AP p 128
Ax (6.12)

F =
e P 'n'Dé

Both of these values are
To see how this fits In wi

in Fig. 6.4 and substitute for —

the % in B.E. to the flow rate, diameter, length, and (viscosity /

Equation 6.12 relates
tal flow in which gravity plays no role. If we repeat the enure

density) of a horizon
derivation for a vertical flow in a pipe in which the pressure is constant throughout
(Prob. 6.1), we find that the AP term is replaced with a pg Az term. When we

substitute this in Eq. 6.12 and then calculate & from B.E., we find

F =—glhz = Ax&' L.
0 5 'n'D?) (6.13)
Thus, for either horizontal or vertical laminar flow we find
[laminar flow
only! (1%

We may readily exten

at any angle to th ; at this equation : '

ing in m;f;in ar e vertical, so t.hat Eq. 6.14 is the gcnemcll s aPPhCS al:w-lo flows
ow of Newtonian fluids in circular pipes ption of friction heat-

Oil at a rat in i
rate of 50 gal / min is flowing steadily from tank A 10

nk B th_[’ough 30 3
show ugh 3000 f1 of 3-in Schedule ipe:
s the dnmer?smns of standard U.S. scﬁ%ﬁ‘oi“f Fig. 6.6. (Appendix A2
) ipe sizes. The inside diam-

v
ented to the atmosphere. What is the gauge

S‘=BO°GRLIM‘1V\ 3162-3 bm ’£b3 DE-c
'%onoﬁb D.’:%JDST .l wes w N Dn 5“‘%”
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..1 e h 1
o s Same level " ) O m Nice this Cuired
[ Ushing 1, OW rate?
uu)""q W —— “"“n“‘tt ||m-h from Ohe
: Y anoth
| schedule 40) Ppe \L Pay p“‘hlltp ix “m“l wn.h
s ““'Uklry Panticy) mon ip
Tank 0 leak of 1 ularly when
L A the fluig would }
b ANgeroys, )
T AP]'JIYIIW BE bee
ARE " L wanster from o b - Delweer
it jrven Ao one tapk g anoyl the fre
RO 1, upeq € surface
T ‘,:-\ a1 and 04 4n HE N tank A
U L

we that the velocities are negligip)e. Since there o e tank g (point 2), we
i\mul‘ or compressor work, we hyye "

}J
A }"} = -..{;

(6.B)
The density 1s constant, so in tank A t

iy : he gauge pressur,
if the flow in the pipe is laminar, |

hen we can goly i .
Eq. 6.14. The average velocity is ¢ for this pressu

e (P, - Pa)is (- p%),

re from
1.' - Q e 50 gﬂllmin 144 inz
L R T e S —_—,
YA (m/4)(3.068 in)2 2
ft
=217—=066™0
] [

Therefore, the Reynolds number is

g ~SB068/ 121 2.17 1t /5 - 62.3 om/ 0

(6.0)

=108 (6D
50cP6.72-10™*Ibm / (ft -5 - cP) e

—

As shown before, steady pipe flow is laminar if ® < 2000; so we havg lar.ni-
nar flow here and are safe in substituting Tor__? from Eq. 6.14. Multiplying

through by —p, we find

128 u
-AP =P, - P, = Q?"D—aﬁx
gal 128  50cP

=50 min 7 (3.068 in)*

- 3000 fu

s dofs min ft_ o0 B _(Tso ke )

' flow of 50 gpm.
This is the gauge pressure in tank A required to produce a

Readers may check that this corresponds to

: s
Ap _23.1ps _ 0‘77—56_5
B Ax B 3000 ft 1
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mi g e for a variety J (E__ 9}’
( " ‘glﬂp i ,l" v
jotted fO° g this € f V.o
made bY reped v if)éy‘d
s Y v 4
read® (a device for gV
| mele . < ' N )
ca Ilaryl‘:;;" ghown 1N Fﬂt-“:;:;-_ ,ﬁ;
2 QA the ﬂm:gi::f‘”’" and‘ » :}‘:‘E;:m:rvmr. "T.?’Ef .
) amete’ le 18 p|¢'4(3¢(‘l ¥ be is 0.1 m ¢ ;04{
° al tube. The 3 4 measured: Thcd“.’ " o
rtic ‘gy 15 ﬂui in - )
t ] f the , £ o
! ‘:nm _The _h"'g(;‘,zl © The fluid being tested A
o e b R e s 10
1050 kg /T - . ¥ a
i viqcm'd?f o surface in the reservoir ;,:’:{
P W th‘e'n' B E. between the If bottom of the viscometer &
it vy - Apph.:ld glhc fluid leaving the each point 18 atmosphcqc '35’?
;t[;::-‘:t:-sce (poll‘lf 21)) fvc see that the Pfc:;su:; atcarl ncglccl the vclocity n
- oint 2), . We
b hat there 1S (:fo pump Of compressor work
- and that
i — = mes
b e the reservour, so B.E. becO /2 — ; 1
@+ 12 . CD glzz — 1 2 >
= i er two terms. !
0. here is negligible compared with "hc. 0“.1 ¢
¥ ; The kinetic-energy term 7€ drop the kinetic-energy term *
< - : blems, so we drop
g 7L This is found in most laminar-flow pro '
[ 113 4 and find . . g
~Q o 00 f55° FZ gz (6.H) {_
RLETE ituti 6.14 and solving for p, we find ’
32— < Substituting for & from Eq. 6. .

_ pg(—Az) mDy
~ 1280 Ax
1050 kg /m*-9.81 m/s?-0.12m " = - (0.001 m)* }0°cP - m- A

128-(10™*m’/s)- 0.1 m \_kg/

=30.3cP = 0.0303 Pa s (6.1)

——
| |

Viscometers of tht_e same type, but slightly more complicated than the one described
above, are very widely used. In using them we recognize that:

L. They must not be used at flow rates so h

2. The ong enough that the err

— igh that flow is turbulent (Prob. 6.8).
equation (which only
b

woplics wel 4 or introduced by applying the Poiseuille
rief introductioz“tlgs;eam f;)m o AR 5 e Wik
€ pro -

does not apply, see Part I[)v " of entrance flow, to which
on applies only to N

ly only for such flui

Poiseuille’s equation
3. The Poiseuilje equati
tus can be ysed simp

EWtonian fluids, sg th;
ds; see Chap, |3, R iy o dopane
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¢4 TURBULENT FLOW

Why does the prcccding analysis not work for turbulent flow?
for steady laminar or turbulent flow of any kind of fiyid 'tm the '

u(dV / dy) for qnc shear stress iy correct only for laminar };km' of N SU}DSI nun@'d
In laminar flow in a tube there is no motion “‘o-ﬂwn ﬁ‘n'd:_
lent flow there is no ner motion perpendicul; . wu‘
an intense, local, oscillating motion perpendicular 10 the whe ais. The uamf::;‘f
fluid perpendicular to the net axial motion

. Causes an increase in shear stress over the
value given above for laminar flow of Newtonian fluids. This is most easily seen in

an analogy. Consider two students playing catch with baseballs. One is stand
the ground, the other on a railroad car; see Fig. 6.8.

In Fig. 6.8(a) the railroad car is not moving, and both students throw the
ball back and forth in the plus and minus y direction. Each time one catches the ball.
the student experiences a force and, if the student throws it back at the same speed.
the student exerts an equal force in the opposite direction. Therefore, the net effect
of their throwing the ball back and forth is that a force is exeried on cach mwﬁe
Mg 1o move them apant in the plus or minus y direction. There is no force in
X direction, L

In Fig. 6.8(b) the train is moving at constant speed in the Ivgﬁ?ui? t:fcuir

M still throws the ball in the plus or minus ¥ direction. 'Ht;: ¢ direction, but at an
"llive motion, each one receives the ball MG m[:;l ball)s (relative to the two
T8le between the x and y directions; the directions of n:ccivcs the balls in these
"dents) are shown by “the arrows. Since each 0:;:5 ball consists, not only of the

TeCtiong, the force exerted by a student in Stopping

Equation 6.4 15 correct

INg on
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p view of )
) b,

(b) top view of students playing €8

on of throwing the ball.

FIGURE 6.3 .
[liustration by analogy of i:ﬂl' fg:‘::g‘

/ing catch, neither m ’
students playing o dineil

one moving perpendicular to

the ball by throwing it, but alsq f:nt' the
en the train is moving, in addition o
rard the train and 0 drag the sta

into
y component, which the other student put 10t

. relative motion.

v component due (0 their re : -
the y-directed force there is 2 fo-:cel tending tC

jon: in the x direction. - -

UOMI')é stuzen:haelosr;i;n? mj;g happens in turbulent fluid flow. The exchanf; i::f ﬂu]i y

bctwec: ?Ee);aster-moving fluid in the center of the htiilb; am*;l11 t;w; :}:tw;r-lm . af puie

i tress over that which WO amm- .

it ol e s Rave ss after Reynolds, who first explained it.

This extra stress is called a Reynolds stre ; e ¥
Thuss e;u: actual % in turbulent flow is greater than that predicted by Poiseuille’s

equation. ' -
In the case of the students throwing the balls, the extra Stress 1S proportional to

the velocity of the train and the number of times per second which they throw the
balls back and forth. In the case of the corresponding stress in a fluid in turbulent
flow the stress is proportional to the velocity gradient dV / dy times the average mass
of fluid passing back and forth across a surface of constant y (across which there is
no net flow). Since the velocity goes from zero at the pipe wall to the average veloc-
ity near the center, the velocity gradient should be some function of Vm,g/ D. If we
now assume that this is a linear proportion and that the magnitude of the flow of mass
back 'and forth across a surface of constant y is proportional to the average velocity,
then it follows that

Vivg

e D (6.15)

Furthermore, the friction heatin
Including this idea, we find

AxV?

avg
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g should be proportional to the length of the pipe.
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T test Ihese assumptions, Blasius _— 4(Ay/ D)TFFR (6.18)
) . oy " b a s ‘a“l -~ |
(RC NVANELY O pipe- . . on |2 .
o S 8 100 nOWg ,‘ S APCHmeny i Calculateg gy fnction §
\e fetion tactor 'I“ NOLA constany, 5 Tedicreq bsm““‘h PIPeS. They fouor(; :c F Cou bV
im A\ ~ .l 4 ] ” - n U 1 - A= -)
reased stowly i\ h increasing Reynolgs Number H.\ he above SImple theor h“"" = rub
" i e b et - NMOwey I n o~
s ol vattous i lllln l_“\ u\! all velocities for 4 i ever, all the data for sSmooth ~L
e on A plot ot triction factor Versus Reyne) i rl;u range of fiyigs formed g single
Wl - X = . b . .
Once plots ke this came iy COmMmon yge i 't‘; T see Fig g0
ines cnm , ca :
ey poad fo1 smooth plll‘lt S, such as glass pipes or draw;nc Apparent that they were
P_r‘“““. drops they predicted were 100 low for rough pi metal tubing, by that the
e ‘pete . . 5,8
st wron or conerete. It appeared thay the roughness ofi:;e uch as those made from
o resolve the question Nikuradse (3] me

pipes o the m.sidc-.n(' whi@ he had glued
of /D, where & 18 the size of the sand
plot all his results on one cury
different values of & / D, This r

‘ : re were different curves for
atio, /D, is called the relative roughness. Figure 6.10
s currently the most commonly used friction factor plo

t (Which chemical engineers
normally call a friction factor plot, and some other disciplines refer 1o as a Moody
diagram), prepared by Moody [4a), who based it on N

kuradse’s data and on all the
other available data on flow in pipes.* Moody also suggested the working values for
the absolute roughness, shown in Table 6.2.

Figure 6.10 shows that, as the relative roughness becomes greater and greater.

the assumptions that went into Eq. 6.16 become beincr and ilix.t:len. f :;o’mcs a con-
sant that is independent of diameter, velocity, density, and fluid viscosity.

: ' fnction
To make life hard for the working engineer, there are two values of the fn

i ¢ in most chemical engineer-
factor in common use The one shown in Eq. 6.1‘8_ :EE;?::: ;,:1 ! g

| ] i [ ' vi
Ing books, but in mechanical engineering and ci

§ =
fci\:_ mech (Ai / D}(V: / 2)

g books there appears

(6.19)
4fchcm

.‘--'-'-—___

hat of &
; hat different from t
. the wall is somew f the rough spots n 8
v i : : . rains glued 1© ¥ d shapes 0
':;Kmir::mlm _bfh:"]‘_"f:\m Ofbll ]Plped“t::hb:a;:eglo the wide range of siges o7

1l pipe. This is believe

. Nikuradse. Moody
rains used by . "
i d shape of (e 5a08 S the data on commercial pipes
1l pi - iform size an rees with
Mercial pipe compared with the unifo ch ag 5 520

14

ion (5], WicR B8 L 16).
Made Fig. 6.9 according to the Colebrook cqllalizntfave been discussed (6]
The differences between the two kinds of roughnes
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6.2 Ty NSONAL 1yt 187
L ' surface roughnesge, for v, '
values © 6.10 Flou Mater}
\ﬂh Fig. 0 e, 9 be Uneq
““/"”,—\h“‘“&h_‘_‘_‘
Surg \
‘"""““-n-...__:_(_._ nmlhmu -
. e
-_"_'—"——u—______‘_- ) " ey
ss, lead, gliss, oc ) T . o LTS
bing (brass: ught § 000005 To— —~—
pr*" | ial steel or wiought iron 0.0 5 0 ey,
{‘_N“m;cd cast 1ron 0.0004 D01y
pspi? jzed won 0.0005 O 004y
C‘""m:.(.n 0.000% s t(l 006
cost ! jave ‘ 0-‘"-”041.0{11 010
“'.ﬁ‘d s 0.001 g 01 U7, 053¢
-rele ; D124,
oncre® 0.003.¢ 2
;h‘cll'd steel o 0.0%64 ¢
o« Moody 14]
lrl“
existence of the two .values m(.:.ans that Whenever Engineers plan 1o use a chan
The Fig. 6.10 or an equation with f ip, i they mug Check 10 see o whic
,Lcl cs the chart or equation is baged Throughout ty;
f value

4 times as large is called the Dar
oneé

y-Weisbach friction factor
=1/ (pV*/2); Jurey-weisbucn = 4t/ (pv?/2),
feanning e is really not much point in having a ¢ W on :
Tl:e{ since laminar flow in a pipe can be solved analytically. Poiseuille's equa-
factor P1O% n be rewritten (Prob. 6.12) as
son (EQ. 6.8) ca

A
- W (6.20
[ T @ v’ )

aminar-flow line
uation this simple is unncccSSa’T)’: ngc;elrEJ ﬁ]x:: r‘n‘;r:rl::; o
Plolliﬂg. i leqdcd in friction factor plots, as it is in Fig. 6. re-s et itk very 308
e ition region curves on Fig. 6.10 can be rep
transi
pbulent and

accuracy by (7] . }E’_)‘”X
f = 0001375 Kl - (20,000 =

] ] 11
. tlca .

(6.21)

603. (8] |‘ ,

6.21.
\ue from Eq.
d compare that value I:o l}1c= Vg_oo.‘.'is. Coor Eq, 621,
and (/D) = 0.00(1)(2). :2 closely as 1 can read it
From Fig. 6.10,

7+ —=
1375 |1 + (20,000-0.000- 10°
=000

] Fig. 6.10.
than our ability 10 read =

tW“ Vv IUCS 1
€ di i
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ENG .. g0 why bother with p
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AL
FOR CHEMIC .
188 FLUD MECHANICS od to WO _cquat_l\‘::iomcm. Most modern
Fig 10 can be r;d;nsidcmblc mm:):: of problems presented in E
As seen here ificanc® hat solve 1€ v - 6.10, are presented I
r = L . : ¢ ¥
2 Tt has gre3t PR mputer P hand solU “:,gl for what is g0ing on in 4
enginecrs hﬂ:‘:?s :qof this chapter o jevelop an intul 6.21 into a spreadsheet and, y
mo{fllo ﬂt:Lcsmd‘“‘ undersIL © jvised 1O P el tol g‘ ce at that figure and use i
to help " The student 18 on Fig: 6.10, on ing alues for problcms (and =
those Programs few chart Jjookup$ (o find WOr .
after making 8 1% " e equivalent ' out). f
eet, which 1 spreadshﬂet with yor: r/

spreadsh ;
. ou can brning your

exams, if ¥
£ FRICTION FACTOR

THE
PROBLEMS pmameler .
The friction factor plot, Fig:

e flow:

6.10, relates SiX

Pipe diameter, D.
Average velocity, Vave:
Fluid density, p-

Fluid viscosity, -

Pipe roughness, &-
The friction heating per U

& Therefore, given any five of these,
Often, instead of being interes

in the volumetric flow rate,

ﬂit mBSS- g:'

AR N R

Fig. 6.10 to find the sixth.

we can use )
ty Vavg» WE ar€ interested

ted in the average veloci

(6.K)

m are shown in Table 6.3. For all of these

L i 71
2 / The three most common types df proble
hown in Table 6.4. This appears to be a for-

problems the equations to be solved are s
midable list of equations, but as the following examples show, their solution, while

3 De -7
tedious by hand, is straightforward, and they are readily solved by com ]
ous ) puter. We will
_— f& pb . 2. ol4pegin with a type 1 problem by hand and then do types 2 and 3 by spreadsheet

: &l‘e g14/ .In ].Example 6.1, Fig. 6.6, we have decided that we wish to trans-
gal / min, instead of the 50 gal / min in that example. Now what is the

wired pressure in Tank A?

. 3L
F i This is 6 times the i
¢ required i :
L average velocity is V = 2.17qftls : ;’ olumetric flow rate in Example 6.1; the
Uo.b* TABLE 6.3 nar_ 1?"0 ft’_s' If the flow here were lami-
%o The three friction f st ﬁs 1t was in that example, then we could
n factor problems E?)t,'ml&uply the required pressure by
Type . - Bul 1n that e
w\% I Given Tt ber 9= 102 x:lt:r;;le the tf{eynolds num-
. . we
; D()p, . Q g  Pipe diameter, viscosi ave thf? same
3 Deppz Q 6 times the veloc; o, B CRHET, T
&p. 1% Q b R=103-6= ocity, so we must have
= 6164. This is >4000, so

the ' '
flow is Sure to be turbulent

Q. b16e/ uewo
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LpLE &4 ON v
o tions to be STEA
fne €992 solved in 5 DY, ONE-biyey

Plpe. SIONAL FLow g9
oull’s equation
|

chllon heating term in B.E.

ant"ds iinmbes

i factor, faminar flow, j .
Fr“'“on ‘ o R < 2000 or h:‘ 2—‘-'.. = -ig__ —
facior turbulent flow, if f= 16 = Dy
' 'y L —
% > 4000 R -

Fncuaﬂ

wikietric oW THIE &5 function of velociy
» 50me

Jems
sy .
\w’-‘

To use Fig. 6.10 or Eq. 6.2]

for commercial steel pipe from Tab\;': :;ed a value
£, We have

of &/ D. Reading the value

2 _ 00018in
D — = 0.000
3.068 in 6 L)

Then we enter Fig. 6.10 at the r
; ernghtate/D =
to the left to R = . = 0.0006
c?lart) 0 Vglgz, finding (as best we can read th::l Sr:?vlilug bt
e d;:@' e ter-ih € may ct.xectk that value from Eq. 6.21 ﬁndin: ()lf)J:‘)rE}'L(;;)f 1\};
will discuss later the uncertainties in friction factor values,,so for now we at;ce;l E

0.0091 as a good estimate of f.
The B.E. analysis is the same as in Example 6.1, leading to Eq. 6.B. Com-

bining that with Eqgs. 6.17 and 6.21, we find

Ax V2 _
=df—— 0 2 }) 7 _
AP =4f P D A« v 4/-—_\ > oo
- 3000 ft ‘som (13.0ft/s)* 2\
= -O.(fO 1 62.3 : 4 )

# 7 (3.068 /62)@ §ﬂ3 2 2Tom - £)| 144

= 484 psi = 3340 kP 35 &¥)

' i ich i alue shown on the turbulent
This corresponds to 16.1 psi / 100 ft, which 15 the value showr rbul
flow line in Fig. 6.2, which in turm was. made b}' r;p;:;:ltmg2 1m:s calc;l:tﬁu?;

. (484 /23.1) = 21 umes
e g0 ( s the value

i e :
spreadsheet for various nar, it would be 6 time

Example 6.1. If the flow
in Example 6.1.
w) it is necessary !

had remained Jam

In all such problems (and thcg PEY s €
‘volumetric flow rate (gal/ min or ft” /5© m'l .o calculation €an be snlmP“ﬁcd
/). ThiS routine . oa] /min COITE"

300 gal / min in a 3-ip pipe = 13.0 ft/S): oric rate in ga
o volume U.S. pipe Sizes: In the

1 2. Wthh shows dard ‘
y the use of App- A2 i/ s for all sc edule 40::;“23.00 ey min) / (ft/5) for

 sponding 1o a velocity ©
foregoing example we cOU
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190 FLUID MECHANICS FOR CHEMICAL ENGINEER

L - , ft
3-in pipe and comput 300 gal / min — 130 = (6.N)
Ve )/ (t/5)
Bl d all the
i d. We use —
blems this was quite su"-llghtfor:;; The sequence of?per.
17 ?fc : f:: lhcc I:;rninar friction factor equatiot
tions in Table ©- exc
ations was
/Volumetric ) Ly—oR >f— F — AP (6.0)
flow rate,
T
i that all these stPS were U_SCd- For Types 2 and
calculation to S€€ S ort 10 @ o -and-error solution;

iew the
Please review his but must

3, we cannot proceed as easily as
that is easy with a spreadsheet.

Example 6.5

Fig. 6.11. The pipeline -

diameter commercial steel pipe-

Common Units and vValues for Fro
o open to the atmosphere, an

< Sé ~ truck. What is the volumetric

’ b Applying B.E. between

e tank drains by gra
nk and the truc

Examples

d the level in the ta
flow rate of the g

the free surface in
all terms cancel except

vity to a tank truck; see
k is 100 m of 0.1 m
.es of gasoline are given in the
_Both tank and truck are

nk is 10 m above the level in the

asoline?
the tank, point 1, and the free

o~
777\ ™ surface in the truck, point 2, we see that
- gy P 2
“ =l A 6.22
. Ag)=-F =47 72 (6.22)
tion contains two unknowns, V and f; there-

This is a type 2 problem. The equa
fore, to solve it we need an addition
ables listed. The second relations
and V. We could use Eq. 6.21 to rep
some computer programs do that.

al equation or relation
hip is provided by Fig.
lace either f or V in terms of the other;
Others follow the trial-and-error procedure

ship among the van-
6.10, which relates f

here, replacing the chart lookups with applications of Eq. 6.21.

A
Vcn’r_]' ' |
f 4 ' @ |0’ m Vent
3 KA,
»E— i
O FIGURE 6.11 "

A gqvity—ddvcn fluid transfer from one tank to another.
;;egl ;nuﬁ::;n:h 6.5. The air from the headspace displt;ccd
id flow into the truck exits by the v
| ) ent on the
::ank roof. In the United States such tank vent emissions a
ontrolled to prevent air pollutant emissions N
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Here we know the fluid
properties and the pipe diameter
(0.1 m ID). From Table 6.2 we
have € = 0.0018 in; so

£ _00018in _m
D 0lm 3937in
= 0.00046 (6.P)

Fr.om Fig. 6.10 we see that for
this value of the relative rough-
ness the possible range of f for
turbulent flow is 0.0042 to about
0.008. As our first guess. let us try
Jeirst guess =_0.005. Then from Eq.

6.22, rearraEed to solve for
L

M TN
T

.
fof
iU



"fl!\’ guess’ we have ON IN ST Aty
VEEATE
5 NE.
. = "8(“ = Dh{tﬁ
‘ firsl guess = [——-—._.47};}___:_)_ . D 171 \IQNRL FLOW ‘9‘
: K1 5
. | =440 T—ix
i 9 I 10m [
; s <0 :‘_'_1_h_rn \172
. . 100
.. If [thS. 1§ a g°0d guc Ym
Using V $5. thep th
6Q)

fl'l"‘l guest’ first puess, We C e
OMpure

01 g

(44 _
: mlsj'nfj{kg’, 5
0006 ke /m m’)

g = 5] “)5

Compute,
d
T shoulg match
our firsg

‘Z\ﬁm guesy —

(6R)

frecond goess = 0.0044, and conin ‘
the successive values of f. Bu{uc
prwec:lijh::l}if :‘Pre]adshem as shovtr(: in Tab

5L colnn able 6. Y €asily for ,
ond shows the nature ;f;i:]ev;§ shows the St';ames of the vari T
above. based on frin, — 0_0053b\l:,' and th € variables, the sec-
umn lhal the 1atio of frompues/ [ . e-_Sce a
pumerical solution package (* guessed =

t
ol ﬂ:; bottom of the second col-
- We next ask the spreadsheet's

goal seek”
rajue on E
the Vv ] of fcomputcd / fgucssed become Cqual & ’;C;(l) -;Prea:sheets') 10 make
, y changing the value

of fguc.-.. d: We see that

1.0007 Z 1.00. We could foert o fg“f’“‘_’ of 0.00442, that ratio beco

. out data do not justif get more significant figures of agreem s
P justify that so we accept the values in th greement, but the

as correct. Then in the column at the right

(i , m 3 3
=—-(0.1m 2. —_—= m_ s fr al
5 min
-
TABLE 6.5
Numerical solution to Example 6.5
Variable Type First guess Solution
D.m Given 0.l 0.
Lm Given i e
Az m Given - o
| ein Given 0“00.1,8 U-U(;Li{"'
§ P kg/m" Given 120 06
. 0.6 '
| K, cP Given 000442
: 0.005 o
AR, guessed Guessed 4429 4.710
Iim/s Calculated ok 565222
7 531,533
Calculated 0.000457
/ 0.000457 .
e/D Calculated (04435 0.004424
i 10007

Jeompues Calculated s
; {T'_""‘"’“ /fl!ﬂtw:d Check value -
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192 FLUID MECHANICS FOR CHEMICAL ENGINEERS | B Prosd *
% 1 i ally fro \".__.’
1 500 f® / min of air horizontally from oy f
Example 6.6. We wan '© mSpgo 2y. The air is at 40°F and a Pl'tsmg; :-:“

air conditioner to an outbuilding ressure is to be 0.0 psig. We will use a cj;. 4

{ the outbuilding the p

g:lgr D metal duct, which has a roughness of 0.00006 in. Find the requireq s @
: ‘ “

duct d;[é:::l::; are applying B.E.toa compressible fluid. However, as discusseq s .

in Sec. 5.6, for low fluid velocities B.E. gives the same “"5““_ as the analys;s Fal

in Sec. 5.6, Applying B.E. from the inlet of the duct, :

that takes compressibility into account.

int 1, to its outlet, point 2, we find ‘ p
" e T " P
F=-45""7 (6.23) o ”

A

D 2
P = g
- in whi ing but the pipe diamete pPe
3 problem, in which we know everything r.
ot ek, e owns f, D, and V; therefore, we need

The equation contains the three unkn j

two agdil.iona.l relations. One is supplied by Flg._ 6.10_'. the other, by the

continuity equation, which shows that Q (which_ is given in the- pljoblem state- 0 1t

ment) is equal to V(w / 4) D*. We could use this :_'elauon to eliminate V or D e

from Eq. 6.23. but this is not particularly convenient, Rather, we procesd by o
diameter and calculate the pressure drop

trial and error. First we guess a pipe ]
from Eq. 6.23. Then we compare the calculated pressure drop with the known
C

value, 0.1 psi, and readjust the guessed pipe diameter until we find the diame-

ter for which the pressure drop is 0.1 psi. ‘
For the density of air we use the average pressure between inlet and out-

let and the ideal gas law:
in? - 29 Ibm / Ibmol 1b
- PM _ 14.75 lbf/l:!l-, 29 1bm / Ibmo —~ 0.080 lbm 6T)
RT ~ 10.73[Ibf - ft’ / (in” - Ibmol - °R)] - S00°R f

For air at 40°F we have p = 0.017 cP (see App. A.1). For our first tral we

select Deirst guess = 1 ft. Then

(E) _ 0.00006in _ o oos .15 6.
D first guess 12 in . (©.

500 ft* / min) - (min / 60 s fr
=t )-{ D 106~ = 3.23% 6V)

Vu’!l uess
e (m/ 4)(1 fr)?
1 ft-10.6 ft/s-0.080 Ibm / f®
R irst guess = 743 « 4 :
first g 0.017cP-6.72 - 10_4lbmfftscp 74310 (6W)

From Fig. 6.10 we read f = 0.0049 and, from Eq. 6.21, f = 0.00465. Then

Ax V?
AP: air =l fir o
-5 5)

Ibm 4 2 . g2 2
= —0.080—3@-—-0.00465-@&-(10.65) N u_
ft® 2 1 ft s/ 3221bm-ft 144in”

Ibf
~0.0146 — = —101 Pa 6.X)

in

I
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' neﬁd allowed A7, psi Given 00144¢ nan::
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ur first guess .
4 . dgu 88 of the diameter g 100 large, because it w \d
’ ssure drop due icti . ' ' ould rey -
drbp Pl't‘ a duct 1pﬂ in (:0 riction .lhm 18 only aboy one-seventh of lhanr;:l:tll':t[:l:
o i.e., e ‘Iamcler WI." do, but we can use a smaller one and mlll gr;
ime the required flow with the available pressure difference. We could make a sec.

ond guess of the diameter and repeat the cale
our cfompulcr do l.hIS. Table §.6 shows the spreadsheet solution. As in Table 6.5,
Lh!: first column lists the variables, the second describes the variables, and the
third corresponds to Dg,y, guess ™ 18, with the values sthown sbove in this
example. To find the solution in the fourth row we let the spreadsheet's
numerical solution routine vary the value of D to make the check value in the
lower right corner become 1.0000. This shows that the required diameter is
0.667 ft = 8.00in = 0.203 m. n

ulation, but it is much easier 1o let

6.6 SOME COMMENTS ABOUT THE
FRICTION FACTOR METHOD
AND TURBULENT FLOW

' iction fac Fig. 6.10,
i we use the friction factor pk‘.l‘
et i s Sh%WZ(]J“::d 6.21. However, the calculations for tur-

or its numerical equivalent, Egs. liable to better than 10 percent, bccﬂ““cp‘h':
s " l - @ T ul’-
ansition flow are not re han that CCUFaCy.
- H;Id tf:}'l ihc roughnesses arc seldom k.nownlt:;h bcl:;fr:odc or collect deposits.
:l: . uzsughnesscs of pipes change over time as they dustry 10 regularly
ermore r

B i| and gas pipeline in . ;
: ice i Jong-distance O &7 i cleans the inner pipe
It is common practice 1 Tci " gthrrout-’,h their pipellnes. T:Is l;c required pressure
force a scraper (called a "1 the roughness and lc»wenSlBOf s regular cleaning
surface, thus grcaFly lowc'nngcosl more than repay th‘.: ® valves, lbows, sudden
Chop. The Exvings pumplﬂg. f pipe that contaif 2 qenl' in all the actual

2. The plot is made up for sections © These are probably pre:
' etc. These

: | DSU
contractions, sudden expansio
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194 FLUID MECHANICS FOR CHEMICAL ENGINEERS
t P Il.""'

situations described in Examples 6.3, 6.4, 6.5, and 6.6. We will discuss hay P
»

account for them in Secs. 6.8 and 6.9. '
3. The data on which the plot is based are all taken well downstream of the entrance _ !J'ﬁ‘ (

to the pipe. We will discuss the entrance region briefly in Part 1V. r
The friction factor plot is a generalization of experimental data. One shoyy "

not attach much theoretical significance to it. So far no one has been able to ¢q).
culate friction factors for turbulent flow without starting with experimental dayg_

5. It can be easily shown that for turbulent flows the heat-transfer and mass-transfe, p"

Q coefficients are related fairly simply to the friction factor f. This is so because the
W eddy that transports momentum (and thus increases the shear stress) also transports

heat and mass and, thus, increases the heat and mass transfer. This subject is djs.
cussed in heat-transfer and mass-transfer texts as the Reynolds analogy.

6. In Part IV we will discuss briefly the measured velocity distributions in turbulent
pipe flow. Now we simply note that the velocity profile of turbulent pipe is much
flatter than that of laminar pipe flows (see Fig. 3.3). Most of the fluid flows in a
central core, which moves almost as a unit at nearly the same velocity throughout.
There is a thin layer near the pipe wall in which the velocity drops rapidly from
the high velocity of the central core to the zero velocity at the wall. Thus, it is
quite reasonable to treat the average velocity of a turbulent pipe flow as the velocity

representing the entire flow.
Now that we all have computers, and many of us have access to programs that

solve the above examples quickly and easily. The hand solution of these problems
and the reading of friction factors from Fig. 6.10 are part of an chemical engi-
neer's cultural background, but most likely not part of her day-to-day tool kit.
However, knowing how these methods work helps the engineer know what those
convenient computer programs are doing, and whether or not they are applicable

in some unusual situation.

6.7 MORE CONVENIENT METHODS

The friction factor plot, Fig. 6.10, is a very great generalization; all the pressure-drop
data for all Newtonian fluids, pipe diameters, and flow rates are put on a single graph.
However, as shown in Examples 6.4, 6.5, and 6.6, the plot is tedious to use by hand.
Therefore, before the computer age, working engineers rearranged the same experi-
mental data in numerous forms that are more convenient. The resulting methods are
more convenient but less compact than the friction factor methods; for instance, oné
might be using 20 charts instead of only one. These are now mostly of historical inter-
est, because our computer programs are so good. However, the student is likely to
encounter some of them and wonder how they are organized. Furthermore, many of
them allow more intuitive insight into these flows than the computers programs do.
Some of these methods are shown in this section.

Suppose we decide to build an oil refinery, a city water supply system, Of an
aircraft carrier. We will have to deal with a very large number of fluid flows. We
could calculate the friction effect for each from Fig. 6.10. However, in any of these
projects we would probably use U.S. standard pipe sizes for practically all of the
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our refinery. Waler system, or aircraf e
mmpaum. and the Navy haye done
In making such plots ang tab]
ommon problem, which is the |4
reartanged, is

1¢ .
- Carrier, Natyrg) Y, oi _
Just that, 3 Companieg
€S 1t is cyg

- \lom
n . ary 1o ge
pipe: B-E- & horizonta), °t them up for the most

Steady flow, horizonta)

Pipe, with no pumps or | (6.24)
compressors

harts customani

o the € jarts customarily can be read direc[] )
§ : e : in — : ; ;
polisctipt- If W must /u S¢ such a chart for sozmnoth:;i){ ? IfdrOPng the “friction”
the 3PPT°P”31‘3 :AP Ax and then yge Eq. 6.24 1o ﬁndpg;o problem, we may read

Flg(ljlre 6. I; l? Oagoe;mnplc of su.ch a plot. This figure .shows, for a 3-in pipe, the
pressure Ar up pe t as a function of volumetric flow rate, kinematic visce it
(viscosity / density), and specific gravity. The p] . viscosity

st ot is logarithmic on both axes, but
the log scale is different for each. A plot like this can be made directly from Fig. 6.10
(Prob. 6.29). o

Example 6.7. Rework Example 6.1 by using Fig. 6.12.
Here the B.E. analysis is the same as in Example 6.1. We start on the
chart at the right at 50 gal / min and read horizontally to the left to 50.0 cSt
Jine. and then vertically downward. The bottom section allows for fluids of var-
jous specific gravities; here the specific gravity is =1.00, so we read to the bot-
tom of the plot, finding 7.7 psi/ 1000 ft. In this example the pipe is 3000 ft
!' long. so the pressure drop is 3 times 7.7 = 23.1 psi. The perfect agreement with
Example 6.1 should not surprise us; the laminar part of Fig. 6.12 was made up

i | |
from the same equations we used there.

e” chart made up from Fig. 6.10. It is well suited

i i sums of money in pumping flu-
ny, which spends large umpin
b s s of 415 imes in laminar flow, sometimes in tur-

ids with a wide range of viscosities, somet . ; |

bulenll ﬂ;w ]But it igs poorly suited 10 the needs osz.i c;;ylga\:e;ss:ifar;;g ;rzr;p;r;)gf.
i : : i hen Fig. O. ! ‘

which deals almost exclusively with waler. When g L are dealing with

d constant.
6.10, the pipe diameter and roughness were hel i s oAl
water, we can assume that the temperature is CON

er s [ all i {
i | ute I'OUghﬂCSb Of W :
n lly wal YStCmSJ and thal lhe :].bSOI : ) l :

i in city wa ; ws of water at the
:;;%?PPTOXI? "“5131’ ;“:;‘;“ﬂoj rate can be mbumeddfor dl:'ofrkihe flow of water al
chosen tl;:)l;erz?r: l‘zﬁhpps:ndix A3 is such a table. mace ¥

Figure 6.12 is a “convenienc
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FIGURE 6.12

ple shown; flow rate = 120

gravity = 0.9; pressure loss (follow

ngineers, Standard Qil Company of

Pressure drop in a 3-in schedule 40 pipe, 3.068 in inside diameter. Exam

barrels per hour (BPH); kinematic viscosity = 10 cSt; specific
dashed line) = 10.7 psi/ 1000 ft. (Courtesy of the Board of E

California.)
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equal to the friction loss. We could solve this pr ing Fi
spmadsheemmle?G.S and 6.6. But it is fasit)e::t;n el::;:rgqu;ié i;%oo;;hbc

We start at the left of App. A.3 at 200 gal / min and read horizontally to the
column for 3-in pipe, where the pressure drop is indicated as (3.87 psi) / (100 ft).
The pipe is 2000 ft long, so the pressure drop due to friction is

dm /pump P Jriction
‘ 1bf
1 P n0n=— T4 (6.2)
p 100 ft p in

The pump must increase the pressure of the .ﬂuid flowing through it by 77.4 psi
to overcome the friction in t.he 2900 ft of pipe.

The pump power required is

dw nf _

——

dt

}E{
in’

Mn,f. .

—m

dm

(6.AA)

= pﬁ-!-'TlA
Po = “u p

bm

Here ,__ff__. z 18—

7.48 gal
44 in*

9

fto

Ibm (6.AB)

gal min cnq—.
200 '—m——l; ' 60 [ - 3 ﬂ3
.2 jbm 3221bm ft 1
DAL 2185 Tt 8
Po = 5 31bm/ft W
= 6.63K , ivered to the
= 8.90 hp ied here is the amount of mechanical powcr\\?::‘;:;x to the
The pumP power compu fficient pump this would also be lhelPO . motors which
For a 100 Perccn‘:rcr 100 percent efficient (nor &% m(shc CCtlrEl .
pump- Real pumps Tt;cir actual behavior is discussed in hap- 25
f them):
drive most 0

amScanner
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198 FLUID MECHANICS FOR CHEMICAL ENG

In using App- A3 remembe
calculation like that in Example 6.4.
value we read from the table here and seq .
culations for a large number of flow rates

: . n
Thus, that appendix is simply Fig. 6.10. reara £ .
flowing in schedule 40 pipes- harts convenient 0 their c!ass of prob-
i ineers have made ¢ - which the
Just as oil refinery engineer: ineers prepared Fig. 6.14, on y can 3
AgHs n air-conditioning use [8]. Here \

o =l H e

lems, so also have air-conditioning in commo ;

quickly solve most pressure drop prublems_:‘air.condi;ioning ducts is of air at about
almost all flow 1 sity are known, and that most of

they have recognized that ' :
70°F and 14.7 psia, for which the vnscoszly r::::gucri:nror e ich = is known. Thus, they
nized steel or alu ’ s (who treat fAuids with a vari-

the ducts are made of galva e ol selioey P
have one fewer variable than the oil € - each size pi
C;’v(‘lf vrsccfsiries), so that instead of having to have 3]1 SFZP;raw plot fo pipe,
like Fig. 6.13, they can have one plot that covers all sizes.

Fig. 6.14. Here the figure was made

I | 1 ; Repeat Example 6.6 by using e
/"r}b - fPr::a:E-paf 68°F whr_::ﬁ we can tell from the assumed densx;‘:a 0‘; 0-3;:5 lbtrhﬂ 180,
¥ : - oecbilami 40°F and a density of 0.080 Ibm /ft'. We know that e

while our problem is for we ignore these differences for

iscositi tch perfectly either. However,
viscosities do not match pe y s Ry e tor

f -L th t and simply use Fig. 6.14. We know the flow rate
re c ure drop (0.1 pad), length (800 ft). We need to convert the pres-

) o pressure drop (0.1 psi), and the pipe . :
b sure drop to pressure drop per unit length, which we can do either as
in H,O in H,O
B f: = 0346 —2— (6.AD)

AP 0.1psi 27.69in H,O _
= ” = 0.00346 T

Ax  800ft psi

or as
AP 0.1psi 6.895-10°Pa 3.28ft Pa
Ax 800 ft psi m (SAB)
These give the same entry point on the abscissa. Reading at the intersection of
this pressure gradient and 500 cfm, we find that the required pipe diameter is
about 8.2 in and the velocity is about 1350 ft/ min = 22.5 ft/s. The close
agreement with Example 6.5 (8.0 in, 23.5 ft / s) simply shows that Fig. 6.14 was
made using the standard friction factor plot. The small differences between the
density and viscosity of air at 70°F and 40°F are the probable cause of the

differences shown. -

Such convenient charts as Figs. 6.13 and 6.14
| : : . 6. .14 and App. A3 1 '
;T]Ei:;try for rm_m-ne .calcula-tlons. even in the computer age.p €Vhen :r:ii:(:::i:sl);e‘;iedt;ln
Isity and join industrial firms, they find that their colleagues hc;ve a larﬂteeSupc
g »
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Volumetric flow rate. gm(h )

"« Volumetric Mow rate! O\ 1 min

20
0.01 0.1 . K
Friction loss. in H,0 /100t gl
(] (b Lt || 11|m]|0 )
[ ]
X ] o
" ﬁv Friction loss, (N/m?)/m= Pa/m
3
I i /h).
ot - (es of 10 to 2000 ft* / min (20 to 3000 m nd)
ks aight ducts for e e nea ing through average. clean, round.
n of air in straig 3 /m®) density. flowing e olue below ”
Based on standard air of 0.075 b/ ft’ (1.2 ke B ). Do o

. . . —on.)
galvinized metal ducts having appmx]ma{l;;i,,dbgak-—:‘undamznmh. with permissi

' chart. (Reprinted from the 1972 ASHRAE

19

Si:anried by CamScanner



200 FLUID MECHANICS FOR CHEMICAL ENGINEERS

8 ENLARGEMENTS ;
¢ AND CONTRACTIONS g

The first part of this Chw“_fas devored
to the steady fow of a fluid in a pant of

a circular pipe, well downstream from the ' _/
pipe entrance. However, in cach of the __
.. iy E this chapter there were places B &
1LY examples 1n ] _
54 =y IV 22 FIGURE 6.15 where the flow entered and left a pipe. In "
; gerd ('L-',-l'“’f Flows in sudden contractions and enlargements Examples 6.1, 6.3. el 6?4 5 the fluid '-_ ¥ i
l Y H e flowed from the first rEseTVOIr into a pipe 5
| 7SS and left the pipe to enter a second reservoir. Friction losses are associated with these 1T -
transitions; see Fig. 6.15. o the basis of ~
can calculate the friction effect on asis of some
For the enlargements we " eans of the momentum P

. P ion, made b
simple assumptions; the calculation Y n the form

lation can be put 1

given in Sec. 7.3. The results of that calcu "
4F
(625) T
7
where K is an empirical constant, call e ! : ent. that is depend- o
ent on the ratio o?j the two pipe diameters involved, and V is the larger of the two
velocities involved. The experimental data agree with it reasonably well [9]. No cne P

has successfully calculated the friction effect of sudden contractions without hav-
ing resort to experimental data. However, it can be shown [9] that the experimen-
tal data can also be represented by the same equation. The experimental values of )
K for contractions are shown in Fig. 6.16, as are the calculated values of K for sud- .

den expansions.
From Fig. 6.16 it is clear that, the larger the change of diameter, the greater the

pressure losses. The reasons for the losses are as follows.

1. In a sudden expansion the fluid is slowed down from relatively high velocity and
high kinetic energy in the small pipe to relatively low velocity and low kinetic
energy in the large pipe. If this process took place without friction, the kinetic
energy would be converted to injection work with a resulting pressure increase. In
a sudden expansion the process takes place as a fluid mixes and eddies around the
enlargement. The kinetic energy of the fluid is converted into internal energy.
Therefore, when the downstream velocity is zero, the friction loss is equal to the
upstream kinetic energy. This is shown by Eq. 6.25 with K = 1, which is the value
for zero downstream velocity in Fig. 6.16 (see the discussion in Sec. 5.5).

2 Il.l a sudden contraction the flow does not come into the pipe entirely in the axial
Fim:ction. Rather, it comes from all directions, as sketched in Fig. 6.15. (The flow
Is not completely one-dimensional, but rather two- or three-dimensional.) On
entering the pipe the flow follows the pattern shown in Fig. 6.17.

e mThe fluid fOI'l'I.'lS a neck, called the vena contracta, just downstream of the tube
ntrance. The flow into the neck is caused by the radial inward velocity of the fluid
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FIGURE 6.16

Resistance due 10 sudden enlargements and contractj

coefficient K 1s defined in Eq 6.25. (From Crane _};;':;Ic?; resistance
410, reproduced by permission of the Crane C““"pany; aper No

approaching the Iupc. Because it 1s coming radially inward the fuid

mbe wall and goes into the neck. This peck IS surrounded by.a collarlofc;:mhml; tﬁe

In the neck the velocity is greater than the velocity farther downslreamg‘];'lhm utllcn1

kinetic energy decreases from the neck to some point downstream where- Lheu:t‘aloce-
ity 1s practically uniform over the cross section of the pipe. This ki;nelic energy is not
all recovered as increased pressure but leads 10 the friction loss shown in Eq. 6.25

with the values of K from Fig. 6.16.
Our discussion of entrance and exit losses has concerned turbulent flow only

In laminar flow these effects generally are negligible, because the kinetic energies gen-
erally are negligible compared with the

; viscous effects.

Example 6.10. Calculate the error
made in Example 6.4 by neglect-

/4_\‘@—-) ing the expansion and contraction
4 losses.

/ RS From Fig. 6.16 we see thai
for low from a tank to a pipe the
FIGURE 6.17 coefficient K is 0.5 and for flow

from a pipe to a tank it 1s 1.0. Thus.
the friction loss due to the expan-
sion and contraction should be
1.0 + 0.5 = 1.5 (kinetic energ)

Flow panem (turbulent flow) in a sudden
“ontraction, showing that the flow is not truly one-
cﬁfm;nsiv:mad. but comes in with a radial componenl.
using it to form a narrow neck before it
Waighiens out into one-dimensional pipe flow.
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of the fluid in the pipe). In Example 6.4 the velocity was 13.0 ft/s; therefore, it
can be shown that

VZ
—APexp.n-ticm = p'LF = pK _2_- a 2
and contraction Ibm L5 ft 2 . ft* . Ibf-s
= 62.3?‘—(‘3—'(”-0? 144 in? 32.21bm- ft
=170 = 1175 kPa (6.AF)
in’
|

This is ~0.4 percent of the 484 psi calculated in Example 6.4. In this example
the pipe was long (3000 ft). If the pipe were short, the contraction and expansion
losses would be just as large, but the percentage error in lneglccnng them would be
much greater. We can also consider the role of valves by using E_-Cl- 6.25. _A completely
closed valve is the same as that equation with K = oo; substituting that into Eq. 6 AF
and then into Eq. 5.5 leads to V = 0, which is the result a closed valve sh(?uld pro-
duce. Flow-regulating valves (such as those in your kitchen and bathroom sinks) are,
in effect variable Ks; wide open, they have a small value of X, fully closed they have

an infinite value of K, and by handle adjustment they can take up any value in

between, thus controlling the flow.

6.9 FITTING LOSSES

In addition to expansions and contractions, in most fluid systems we must take into
account the effect of valves, elbows, etc. They are much more complex to analyze
than the one-dimensional flows we have considered so far (take apart an ordinary
household faucet and study its flow path; it is much more complicated than that of a
straight pipe). Efforts at calculating the friction losses in such fittings have been made,
and the results have been correlated in two convenient ways which allow us to treat

them as if they were one-dimensional problems.
The first way to correlate these test results is to assume that for a given flow

= | that kind of *| of pipe = one pipe (6.26)

( Z through
valve or fitting diameter

a constant for & through a length

a valve or fitting )

If for a given kind of fitting this constant turns out to be independent of the kind of
flow, and independent of the pipe diameter, then this correlation will be very easy to
use. In turbulent flow, the constant in this equation is practically independent of pipe
size, t?ow rate, and nature of the fluid flowing. If we know the value of the constant for
a particular kind of fitting, we can calculate an “equivalent length of pipe” that would
have the same.friction effect as the fitting, and we can add this length to the actual
length of the pipe to find an adjusted length, which gives practically the same friction
e.tfcct as doe§ the actual pipe including fittings. The constant in the equation is dimen-
sionless. Typical values are shown in Table 6.7; they are referred to as equivalent lengths.
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1'.*31‘5 6.7

| Equi"a'e“t lengths and K vajyeg

for var;
arioyg kinds of fity
ng*

Et}ui\nltnl lengtyy
D, dlmeuslunless

e of fitting

Constany. K. Eq 625
dimensinnlm o

valve. wide open

? Gmt; calve, wide open 350
Ané valve, wide open 170 p

ate 3
K valve. swing lype 7 10
s standard elbow 10 013
;5" slﬂl‘ldﬂfd elbow R 20
ob‘ ong-radius elbow 15 0.74
éxandard Lee. ﬂow-lhmug: run ;g giﬁ
L51andafd ree. flow-through branch s 0.4
Couphiné 2 3
Umon 2 0.04
0.04

s§ource Reference 10.
Example 6.11.  Rework Example 6.4 on th
: - ; > € assumpti : .
_ 3000 ft of 3-in pipe, the line contains two globe Vflv';: t:at.lp addition to the
; and nine 90° standard elbows. , @ swing check valve,
. Usmg the constants in Table 6.7, we can calculate the equivalent length of
3-in pipe that would have the same friction effect as these fittings. This is:

S L/D=2-350+1-110+9-32 = 1098 (6.AG)

From Eq. 6.26 we see that this is the number of pipe diameters needed to
have the same friction loss as the fittings. Thus, the equivalent length is
1098 - [(3.068/ 12) fr] = 281 ft. Therefore, the adjusted length of the pipe is

(Adjusted) 3 (actua] pipc) N (cquivalent length)

length length for fittings
— 3000 + 281 = 3281 ft (6.AH)
The total pressure drop is
3281 ft ; 6.Al)
= . 20— = 529 ps) (6.
— AP = 48495 3000 ft P
and that due to the valves and fittings | aoups 6AD
_ 529psi — 484 psi = PP FIeREs. BT

= ﬁPvalves and fitnngs

or the friction losses

- eental datd f :
sent the same ”pe"g’:s 10 each kind of fitting. Thos¢

a value of K i? Table 6.7-
xperiments: are

~ The second way 10 repre
in valves or fittings is 10 ass1gn
values, based on friction-loss €

also shown in

Je 6.11. usi
Example 6.12. Repeal Examp
te that "
- BiopeadiEs iy i~y 3+ 1 .20+ 9'0.74 = 27.56 (6.AR)
= 3 6 -

E K valves and fitngs
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204 FLUID MECHANICS FOR CHEMICAL ENGINEERS .

and bm (13.0ft/s)®  bf-s* g2
— AP atves and firings = 27:56°62.3 73" 3221bm-ft 148 2
= 31 psi = 216 kPa (6.AL)

The fact the second method of making this estimate gives an answer only 69%
of the first reminds us that these procedures give only a fair estumate of the pressure
drop, not as reliable an estimate as we can make for low in a straight pipe. These

two methods appear to be quite different, but are not. If we write the friction heating
for each method,

L v? v
&= 4f(5)cqmvu]em_2— T 2

we see that they are the same if 4f (L/ D)equivatent = Keiwing- The equivalent length
method lets % of a fitting vary with the size of the pipe and the Reynolds number,
whereas the K method makes it independent of those. Both scem (0 maich the
experimental data about as well as each other. Lapple [10] suggests that the equiva-
lent length method matches experimental results better when R < 10° and the K

method matches experimental results better when R > 10°.
Laminar flow has yielded little experimental data on which to base pressure-

drop correlations for valves and fittings. Generally, the adjusted length calculated by
the method given above will be correct for turbulent flow but will be too large for
laminar flow. Empirical guides to estimating the adjusted length for laminar flow have
been published [11].

Do not attach theoretical significance to these empirical relations for fitting
losses. They are simply the results of careful tests of specific cases, arranged in a way
that is useful in predicting the behavior of new systems. Fitting losses and expansion
and contraction losses are often lumped as minor losses even though for a short pip-
ing system they may be larger than the straight pipe loss.

(6.27)

6.10 FLUID FRICTION IN ONE-
DIMENSIONAL FLOW IN
NONCIRCULAR CHANNELS

6.10.1 Laminar Flow in Noncircular Channels

Steady laminar flow in a circular pipe is one of the simplest flow problems. A some-
what harder problem is steady flow of an incompressible Newtonian fluid in some
constant-cross-section duct or pipe that is not circular, such as a rectangular duct or
an open channel. For laminar flow of a Newtonian fluid the problem can be solved
analytically for steral shapes. Generally, the velocity depends on two dimensions. In
:ie\:;:rél casef pf mtcrgsr the problems can be solved by the same method we used t0
nd Eq. 6.9: i.e., setting up a force balance around some properly chosen section of

Joualiticu lJ_y waliliovalilivl



ﬂﬂ“" SOl\Ping for the shca]' "

e s, and i 8, i
ghear stress, and integrayp, = Ntrogy;
g to find h utmg the

the 7 ) :
dismbu“on lhe_ \olumem‘c low rate he Newyg,
That these are all simjja to “Pressure droc“y lsmbum- law of
jar ube May be seen by COmparjy, ¢ .~ “TOP relay; pos tion. fy, Viscosiry for
] i e
s Clrculaf tUbC» For a cll'Cu]ar tube Onzonlal Slmina Oung “ﬂ{)cuy
N Al Ead hU[]
S0 Mtal ¢irey.
i P, - liong wit u
QM(HELL) W h that for
x .
1 ’ S Dll
S (Prob, 6.48) (6.9
- .= P — 3
16.28)

L T
Ax  p) 1280 - D?){Dﬁ + D? - D: - b}
only by the terms at the far right, which account forlme;ei;fmcsc s i
. e :
0{ the Casféshthal Cza—n4 be worke(.l out by simple mathematics hav?g;eie:?ﬂeg o
Bird (12, Chaps. 2—4] and Sakiadis [13]. One may show (Prob. 6.52) that agud by
ing in the annulus become small (D, — D,), Eq. 6.29 reduces o as the spac-

_(Pi= Py 1)\ 1 D. - D.\}
o=(P5" 3 ) €0

the slit length and slit width renamed. This is one
ms that can be simplified by converting them to

} (6.29)

which is the same as Eq. 6.28 with
of many circular or annular proble
equivalent straight or planar problems.

6.10.2 Seal Leaks

Eq. 6.30 is the problem
6.18(a) shows a statiC
nk or beer bottle. A
cap and the
the escape of

all enough 10

An extremely important chemical engineering aPP“"a‘i“;:‘_ O:“e
of seal leakage. Figure 6.18 shows three kinds of sct;lfs.a ;ift-dri
seal, as exists between the d the ;cs’le)d | e the il
thin washer of elastomeric ma ts
. al that preven
glass bottle top. This compressed material forms 2 se B
¢ top. not gxac[}y zero, OU

CO, (carbonation). The leakage rate lieaks through this ¥

hold the carbonation for many ff::[sl' when one of the seale

unimportant. Sealing is more di

W ihe e «iop seal between
Figure 6.18(b) shows 2 simple compre;_s;}t:na . " down over the B

; in whi

: . in
The example shown 15 3 water faucet

bottle cap an
terial 18 compre
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Metal bottle

r_'-————ap

T Sealing washer

Neck of
bottle
Carbonated
beverage
(a)
T e
Compression
nut or cap

Sealing washer
or packing

Valve body

Valve stem

Rigid
S attachment

&)
Garter
Rotating spring
shaft \ !

@le Cuff is not attached

to shaft; shaft rotates

inside cuff.
Flexible N
cuff

N Wall of
transmission
(c)
FIGURE 6.18

soft-drink or beer bottle and its bottle cap, (b) a
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faucet 10 COMPIESS an elagign o ic s
:_hfc“:I and the stem of the vajye Th ceal. Whic
“Ut eakage of the h’gh'PreSsure i Ompres.:,cd

- N the
. er . my ) dy of
Y put not so tight that (he Valve . PSide the o be tight e g Yl the
Se™ 1y aware from persona] exo. . cAnNot asily po, OVt along e -y
pably 2 e’\ptnence . Seany IOtateqd edge of the

5 small amount of water ingq the bathy IS type of

seal ofie .
1;]ng the nut normally reduces he leak l::‘)m SInk, thay Ciizes Ii:l leaks. If the Jeqy
;;e (but does not become zero!). a rate low €nough i ie Problem: tight

Example 6.13. A va]ye has

' a seal of
the valve 1s gasoline ar 3 pres o

ype shown ;

: sure of | : n Fig. 6.18(b). Inc
the valve Slem is assumed 1o haye an a\\ir‘}fr'cll:.:elg-hfrhe SPace between 1h(e }sc:;s;:;
. - * _
of :hf s_eal. m_the direction of leakage. i ! in l;{nc? of 0.0001 in. The length
is 0.25 ”_1 Esumale the gasoline leakage rate - 1he diameter of (he valve stem
This is the case describeq by Eq. 6.30, Inserting vayes we have
100 Ibf / in® 1 ' .
- ————. . . = N .
I in 12:06cp ™ 025in-(10 41“)3'5""‘cf—_£;———-..1441“‘
_sin’ i3 09-1071bf-5 g2
=7.5]0 -'_‘"-:0_27—._,-____1.3.10_911'1_
S h 5 (6.AM)

1

3 _ n Ibm b
m= =0.27—:0.026 —= = - . ___kg )
Op h 0.026 P 0.007 - 0.0032 b (6.AN)

Tests indicate that the average leak rate from m
cessing this kind of liquid, is about 0.024 Ibm / h, 3.5 times the value calculated
here [13]: see Prob. 6.49. There are enough of these valves in a typical oil refin-

ery or chemical plant that they contribute significantly to the overall emissions
of hydrocarbons and chemicals to the atmosphere [14, p. 347). | |

any oil refinery valves, pro-

Figure 6.18(c) shows in greatly simplified form the seal that surrounds the drive
shaft of an automobile, where that shaft exits from the transmission. The inside of the
transmission is filled with oil. The flexible seal is like a sh'utl cuff mmeld l?ack on
itself, with the outside held solidly to the wall of the transmission and the.umde held
loosely against the rotating shaft by a “garter sprin-g." If We el that ;P“f“_g tl'(:;Sané
then there will be a great deal of leakage. If we set il very nght, then the fric ';‘hc n
Wear between the cuff and the shaft that rotates inside it will bedcx_cessfl::.low Sl
ling of the tension on that spring is a compromise between the eesallr: o low ok
%¢ and the desire for low friction and wear (buyers expect 1hes: ; Jer0 leakage Fate
2 the auto!). That compromise normally leads 10 2 low, but no

: the floor of our

4 small amount of oil is always dripping out s :f ::;:lcla;::ighggcc have the same
- u

8arages. Valves and pumps also have shafts that m engineering all have the same

o o X28¢ problem. Pumps and vahves oo egularly used are more com-
"ol leakage problem shown Example 6.13. The seals reg

Plex Versions of the ones shown there.
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208 FLUID MECHANICS FOR CHEMICAL ENGINEERS

6.10.3 Turbulent Flow in Noncircular Channels
ssure drop in steady, turbulent flow in a non-
one. However, it seems reasonable to expect

for circular pipes (o estimate the results for

other shapes. Let us assume that for a given fluid the shear stress at the wall of any
conduit is the same for a given Vi eruge- independent of the shape of the conduit. Then,

from a force balance on a horizontal section like that leading to Eq. 6.3, we conclude

that in stecady flow
_(area pcrpcndicular) _ (wall shear)_(wet.lcd ) Ax &
to the flow stress penmeter

We are no more able to calculate the pre
circular channel than we are in a circular
that we could use the friction-loss results

Rearranging this, we find

AP wetted area perpendicular
2=y (6.32)
Ax perimeter to the flow

We now define a new term:

i i d

(Hydraullc) B 0 (arca pcrpcndlcular) / (wet_te ) (643}
radius to the flow perimeter
For a circular pipe this is
r D
HR = ;ﬂ_ o= -;- = [circular pipe] (6.A0)

If the assumptions that went into Eq. 6.31 are correct, then we can construct the ratio
it to that in a circular one:

of the pressure drop per unit length in a noncircular condu

(df’/ Ax)nonmrculn.r | /HR D
(AP/ Atamuwr /D 4HR (6.AP)
AP _ (AP D

(_A-;)nonutn:ulur - (_A;)cin:ulu(mﬁ) (6.AQ)

But for turbulent Aow (AP/ Ax)eicutar is given by the friction-factor equation,
Eq. 6.23. Substituting, we get

AP ~-4fpV? D ~fpV?
(_') T (6.34)
AX noncirculur ZD 4 HR 2 HR

Alternatively. we may write

fAx V2
P concircular = ﬁ' ' _{ (6.35)

What value of f should we use in Eqs. 6.34 and 6.35? Experimental results indi-

s work fairly well if one uses the ordinary friction factor plot

cate that those equation
s do

(Fig. 6.10) but replaces the diameter in R and in &/ D with 4 HR. The equation
not work well for shapes that depart radically from circles. such as long, narrow shits
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CHAPT
ER 6 FL
ICTI0N,
ON IN STEADY ONE
: -DIMENSIONAL FLOW

. le 6.14. Air
gxampP at 1 aim 4
- & n .
whos€ Cécif&f(fé t-mn\:s I ftby o 5d S8°F is flowin
g U. in. hat is th . > - ng
» o e pr g = 40 * Feclangular d
First we calculate he hydl:a:f:_um drop per unf;tlls' . ‘°“ghnessrof ‘:ti;
© radius: TRR?
HR = 0.5 f2

BT e
1 e
Vp(4HR) 40 fi/s- f)+ (203 Ry = 0167 f
R=""41 " 00 > 2075 1bm /¢ (4.,
E ~ . ( 72 ]0 4 lbm f n o cP} = 165 p 105 (G.AS)
D 4HR (4 200006 in
From Fig. 6.10 (for this low a 0';667) f-(2ingfy = 757107 (6.AD)
: - N &/ D we us -
6,34, we find 9 621, we find [ = 0,00300 Guas ., orve) W find
Eq - Using the latter value in

209

(6.AR)

AP 0.00390
= 0.075 Ibm /- (40 11 5

—— , B
Ax 2-0.1667 I ft 1bf - s

144 i 322 Tom - fi
- 2 .
=30 107 2 _ o inH0 P
100 ft ' m (6.AU)

We 1:nay check this result by using Fig. 6.14. Here we assume that the pressure
drop in this rcclangul.ar duct should be similar but not identical 1o that for l‘f\e same
volumetric flow rate in a circular duct with the same cross-sectional area. The diam-
eter of such a duct would be

D=\fi —-\f-4—05ft2— :
w2 = 0.80ft = 9.6in (6.AV)

Entering Fig. 6.14 at V = 2400 ft / min,
and interpolating between the 9-in
Slant length = 55.67 fi and 10-in diameter lines we find
Slope = 0.5 approximately the same pressure gradi-
ent values shown in Eg. 6.AU. Many
air-conditioning ducts are rectangular or
square, because for a given Cross-
sectional area they can fit in a smaller
L 85 fi |, 498n ceiling space than an equivalent circular
I 184.6 ft ' duct. This comparison shows thal-'lh.e
pressure gradient in them 1s Very simi-
lar to that in 2 circular duct of equal

249 fi

FIGURE 6.19 '
¢ of the large irigation cross-sectional area.

Cross-sectional view of on

waler canals of California’s Central Valley Project. |
The sloping sides have dy / dx = 0.50, The cross” Example 6.15. _ Figure 6.19 s‘;\o:]s
sectional area (at the design dtplh of 249 ft) the Cross section of one O e

= 3356 fr°, the wetted perimeter = 196.4 fi. and canals in the Central Valley Project

HR = 17.09 fi. See Example 6.15
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irrigation system i
are the velocity an

First we apply B.E. fro

downstream point in the ca
same.
_sectional

sphere, the pressurcs are the
in a canal of constant Cross
are the same. There 1s 0O pu

terms arc

rease in

This says that the dec
.e., the

“Joss” due to friction, i

n California. The
d volumetnic flow

— 0.21 ft/ mile. What

sl
rate in
m sO

point In the canal to some
are open Lo the atmo-
stant-density fluid
locities at the two points
or turbine work. Therefore, the remaining
mp
Az=—F (6.AW)
P =
polcntial energy is €
mechanical energy co

3, we find

xactly equal to the energy
nverted to internal energy.

Substituting for & from Eq. 6.2 -
~8477 FHR f Ax

In the previ
duct. Here we do not include

ous example the wetted peri

meter was the entire perimeter of the

the part of the perimeter facing thc air, because
e part

flow compared with the walls of the canal.

the air exerts little resistance to the

The reader can verify this by watching the flow of leaves or bits of wood on

any open stream or irrigation ditch; those at the center move much fas'ter than
those at the edges. If the air restrained the flow as much as the solid walls
do. then the whole top surface of the flow would not move at all, just as the
fluid right at the solid boundaries does not move. Therefore, the hydraulic
radius is

flowarea  _ 3356 ft?

wetted perimeter  196.36 ft (6.AY)

= 17.09 ft

The absolute roughness of a concrete-lined irrigation ditch is estimated from
Table 6.2 at the low end of the range of values shown, 0.001 ft, so the estimated

relative roughness is
€ 0.001 ft

4HR 4-17.09ft

Here we do not know the velocity, so we cannot directly compute R. However,
we can guess a velocity, and proceed. We take Vi, guess = 1 ft/s. Then

_4-17.09ft- 1.0ft/s- 623 Ibm/ f

= 0.000015 (6.AZ)

BT L0cP (672 10 lm /ft-s-cP) | O S
Thus, from Fig. 6.10 or Eq. 6.21 we find Jriest guess = 0.0024; therefore,
Viccons e = (2- Lol b b5 ey L
0.0024 : ) =428~ (6BB)

The design value is 3.89 ft/ s
for the roughness of the conc
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+ indicating that we have chosen a smaller value
rete canal walls than did the designer (who had



experimental data on gy, c

f. finding = 0.0023, by, W could ¢com
. , € are i Pute 3 gec
rtainty not i ond
uncertainty of the roughness, Justified i doing this ﬁ:i:ﬁ.

anals), We

of & and

Isi ‘-
Using the design vyjye of the velagiy oo
Ity, we find

Q =VA = fi
3.89 . 3356 fi2 = 1 i

611 MORE COMPLEX p
INVOLVING B, CDLEMS

Now that we can evaluate all the terms

1 i b y COﬂSid
i f g E., we ma Er some o
interesting types o prOblElTl that this equation can be used t 1 f the more

5;2::}‘::‘30?'21;60 :;i ]i'gaevmhlgh'messurc f:hemical Teactor contains water at a
- A 3-1n schedule 80 line connecting to it ruptures at a point
10 ft from the reactor. What is the flow rate through this break?

This is an unsteady-state problem; the reactor pressure will fall during the
outflow. However, if the reactor is large, the unsteady-state contribution can be
neglected. and we will do so here. Applying B.E. from the free liquid surface
in the reactor to the exit of the pipe, we neglect the potential-energy terms,
which are negligible, and the small velocity at the free surface. The remaining
terms are

Pr—Py V3_
p
The flow rate in this case will be much higher than is used in common indl.lsl:ria]f
practice, so App. A.3 will be of no use to us. Here the ;nct:onﬂ::s; :wont:;i oh
two parts: the entrance loss into the pipe and the 125157 ‘::e ?ind g
the 10 ft of pipe. Substituting from Eqs. 6.25 and 6.17,

-F (6.36)

V2 Ax V2 (6.BD)
i F= k7 * Y
:
entrance straight pipe

Substituting Eq. 6.BD into Eq. 6.36, we find

4 | !2 A'\'
) 2 v —Va =) (6.BE)
"Pz—Pl -Vs3 KV3 4féi...-:=—-i—"(] + K+ 4f D) (

——
— e —

V, =

-

2(P, - P2)/ p )”2 (6.BF)
_2p - FPp
(1 ¥ K+ 4f(Ax/D)

d K = 0.5 (the diameter of the line is much smaller
an read K = U

From Fig. 6.16 we € 0. A2 we find that for 3-in schedule 80 pipe

than the tank diameter). From Ap
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212 FLUID MECHANICS FOR CHEMICAL ENGINEERS
the inside diameter is 2.900 in. Then, from Table 6.2,
s 00018 o062 (6.8G)
D 2.900 in
Itis safe 10 assume that the Reynolds number here will be very high; so on Fig,
6.10 we select as our first guess a friction factor at the far right of the diagram,
which for an &/ D of 0.00062 gives us f = 0.0043. Then
. 2 ) . 2731/2
2(2000 — 15) Ibf/in 3221bm-ft 144 in —
V2= ] 54 tbm (|+05+4-0_0043-10n) Ibf - 52 fe? '
R : (2.900/ 12) ft
. ; 27172
:[ 2 1985-32.2- 144 ‘g_] s ans w2 (6.BI)
623-(1+05+071) ¢? s s
We then check to see whether our assumed friction factor is correct:
: +62.3 - lbm /ft® - 365 ft /s
R = (29/12)ft-623 4m —82-10° (6.81)
1.0cP-(6.72- 10" " Ibm/ ft - s - cP)
From Fig. 6.10 we see that our assumed f was correct. From App. A.2 we see
that for | ft/s the flow rate is 20.55 gal / min; so the flow rate is
20.55 gal / min al m’
0=36s2 DPelimin B o4y (6.BK)
s ft/s min S
This is the instantaneous volumetric flow rate. As the flow continues, the pres-
sure and flow rate will both decrease. n
Appendix A.3 is of no use in this case, because the flow velocity is much larger
than normal pipeline velocities. Ignoring the kinetic energy of the exit fluid, or the friction
loss in the pipe, or the entrance loss would have given a significantly incorrect answer.
Example 6.17. A fire truck, Fig. 6.20, is
sucking water from a river and delivering it
P through a long hose to a nozzle, from which
; it issues at a velocity of 100 ft/s. The total
flow rate is 500 gal / min. The hoses have a
diameter equivalent to that of a 4-in schedule
40 pipe and may be assumed to have the
same relative roughness. The total length of
hose, corrected for valves, fittings, entrance,
etc., is 300 ft. What is the power required of
the fire truck’s pump?
| Applying B.E. from the surface of the
River river, point 1, to the outlet of the nozzle.
point 2, we find
FIGURE 6.20 3
Fire truck pumping water from a river. used in Vi dWo ¢
Example 6.17, 8(z ~ 2)) + —i_ = rm - ¥ (6BL)
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Vi

n'l(lhg 1
—~ AP A S ¢ m oA
= ——— . 20 3,65 AL,
Aa P . ]-“:)1[:1'“ 00 £, ‘;d P“i .24
2 — It
f1 ) "“)m ~”n.. f 144111"
1260 — / :
3 Ibf 2 o
Then we have (6,50,
AW, ¢ _ ft
am 322 3 100 4 001y 2 )
' T 4 1260 Y - ft
m = gal : TS (g,
1= 500 == . lbrn mi s
min 8“ "--:- ¥ _b__l_[! = 69 Ibm kg
gd‘ 6{) 5 A «.-;._ = 3] 6 -2 % B(Ji
Therelore. 5 '
Po = —d—‘yﬂl = -t{-.w_.'_‘_'_
dr dm m
= 94 695 'PM  br. g2 N
__2— ’ -5 S— ——— . p "8
S * 322bmf Sson g0
=37hp = 276kw T
}

pe branch, assuming steady flow. The three-reservoir

complexity that can exist in municipal and indus-
trial plant water supply networks that have grown and been modified over t;

ime
For such long pipes the kinetic-energy terms in B.E. will be negligible, and the
gauge pressures al the free surfaces

are all zero. If these two simplifications are not
appropriate, the problems can still be solved, but not as simply as is shown here.

Writing B.E. for the three sections of the pipe in Fig. 6.21, we find
@

|

P,
— +glzo—2,)= -%
Section B, 1 p g(z; 1) A
2000 ft of V2
40 f 3o pipe 301t & _(4f.f“i . _2_) (6.BQ)
¢ P )
20001, o —2 4 8(2a— 23) = ~F,
2000 fi of p i
6-in pipe i} —(4 E}_f—) 658,
Section C, D7),
1000 ft of -
4-in pipe —2 + g(za — 22) = —Fc
P
FIGURE ¢.21 . - Ax V2
Multiple-reservoir system with branching pipes, !gir’f:z: o _ (4}'-5 = (6.BS)
City water systems that have grown and been mo .
over time,
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5

$

¢ i

From the mass balance we find PN IJ"’E

A A o
- yv. 2B —c |

Ou=0s+Qc Va=Vay *+ Ve (6.BT) L

Here we have four equations relating four unknowns (the three Vs and f’z). However, ) f"a.lﬂlc
to solve the problem, we must use the correct values of the three fs, which are related ‘ W ,‘w}

to the pipe diameters and the Vs by the friction-factor chart, Fig. 6.10, or by Eq. 6.21. v C"‘p

Thus, we could also think of this as a system with seven unknowns and seven equa- ¥ nes
tions (taking the friction-factor chart or Eq. 6.21 three times). ‘?“""a““ Of,thc forms e 165

of Eq. 6.21 there is no possibility that one can solve these equations analytically. The ﬂy‘"‘t
solution must be by trial and error. o _ L

In the problem statement the elevation at point 2 is not lgl‘mﬂ‘ aﬂ‘_j the pressure e
at point 2 is unknown. In practice, we will know the elevation at point 2, and the b 10
flows will determine the pressure there, which will be different from the pressure 1“10{‘
which exists there when no fluid is flowing. The problem is inherently a trial and 1
error, easy on computers. We begin by defining P;‘f

N 1
Py—r .7

a=(——2 o +Zz_Zt) (6.BU) ‘\.Th

Fa T
and guessing a value of a. Using it we can solve each of Equations 6.BQ, 6.BR and u
6.BS, for the velocities in each of the pipe sections. From those velocities we com- N
pute the three volumetric flow rates and check to see if the algebraic sum of the vol- {

umetric flow rates into point 2 is zero. If not, we make a new guess of a and repeat \
the flow calculations, to find the unique value of a which makes that sum = zero.
For this three-branch, one-node example the trial and error is quite easy (Prob.
6.68). For more complex examples it is not. A widely used systematic procedure for
solving this type of system was developed by Cross [15]. Computer programs to carry
out that solution are available [16].

.12 ECONOMIC PIPE DIAMETER,
ECONOMIC VELOCITY

From the foregoing we can easily calculate the flow rate, given the pipe diameter and

pressure drop, or calculate the pipe diameter, given the flow rate and pressure drop, etc.

A much more interesting question is, Given the design flow rate, what size pipe should
we select? It is possible that the choice is dictated by aesthetics; e.g., the pipe goes
through a lobby, and we want it to be the same size as other exposed pipes in the lobby.
Or it may be dictated by the supply; e.g., we have on hand a large amount of surplus
4-in pipe that we want to use up. Most often the choice is based on economics; the
engineer is asked to make the most economical selections, all things considered.

For economic analysis we must consider two possibilities:

L. The fluid is available at a high pressure and will eventually be throttled to a low

pressure, so the energy needed to overcome friction losses may come from the
available pressure drop.
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228 FLUID MECHANICS FOR CHEMICAL ENGINEERS d 19}5 d_ |
‘;;"it"‘féﬂﬁ
.5‘1#’
This drag force is equal and opposite to the “thrust” force that must be supplied ¥ 0
by the engine and propeller to keep the plane moving at this speed. The lift Vfﬁ‘pﬂ“
force is given by e
v? W7
Fin = ACp 7 (6.Cn) § ﬂ.‘e.lf;l
Which is the same as the drag force multiplied by C,/ C,; gey ‘
0.8 11161
Fiin = 945N - 0" 18,900 N = 4249 |bf (6.CK) ) fof"
* e
The lift is equal to the maximum gross, loaded weight of the aircraft, =] I:;_.—,ﬂ
The last example shows why the lift and drag coefficients are so useful to aero- fiv?
nautical engineers. Their ratios, C,/ C,, are equal to the allowable ratio of total aijr- fof
craft weight to thrust of the power plant. Normally both C, and the C,/ Cy ratio are 1Y
functions of aircraft speed and of the angle between the oncoming airstream and the Ly eC
Wing surface [22]. This also shows why commercial aircraft fly as high as they can 7
To maintain level flight they need a lift equal to their weight and a thrust equal to
their drag. The lift and drag are both proportional to pV~. For a given weight the
required speed goes up as the Square root of the air density goes down The drag has
the same relationship. So the higher they go, the lower the air density, and the faster ?R(
they can go for a given hourly fuel input. Thus, their fuel cost per hour remains cop- see
stant as they go up, but their fuel cost per mile goes down. (They also deliver the cus-
tomers to their destination sooner, which the customers like, and pay for fewer hours o
of work to pilots and flight attendants.) “:il
6.14 SUMMARY !

Le., the velocity at the surface is zero.

3. In turbulent flow the pressure drop per unit length is proportional to the flow rate to
the 1.8 to 2.0 power. The behavior cannot be calculated without experimental data.

4. All experimental data on the turbulent flow of Newtonian fluids in circular pipes
can be represented on the friction factor plot.

5. The friction factor plot can be replaced by two fairly simple equations. The first,
for laminar flow, is simply a rearrangement of Poisueille's equation and is
restricted to laminar flow in a circular tube, for which it is rigorous. The second
is simply a satisfactory fit of the experimental data. With these two equations we
can completely replace the friction factor plot. But the plot has considerable intu-
itive content and is stj]] useful for hand calculations.
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PROBLEMS

see the Common Units and Values for Problems and Examples inside the back cover.

An asterisk (*) on a problem number indicates that its answer is shown in App.C.In

all problems in this chapter, unless a statement is made to the contrary, assume that

all pipes are schedule 40, commercial steel (see App. A.2).

6.1. Derive the equivalents of Egs. 6.5 and 6.9 for fluid flow in the vertical direction, taking grav-
ity into account. Then generalize them for fluid flow at any angle, taking gravity into account.

6.2. Air is flowing through a horizontal tube with a 1.00 in inside diameter. What is the max-
imum average velocity at which laminar flow will be the stable flow pattern? What is the
pressure drop per unit length at this velocity?

6.3.*Repeat Prob. 6.2, for water.

6.4. Show the derivations of Egs. 6.10 and 6.11. .

6.5. Show the effect on the calculated viscosity, in the viscometer in Example 6.2, of the
10 percent error in the measurement of

(a) Flow rate
(b) Fluid density
(c) Tube diameter. ; f the fluid increase
; er unit mass 0
66. In Example 6.2 how much does the intemal eneigy 7 s 1o heat transfer from the fluid

) : 9 Assume that there i _ o
' o e wscomell:rt.h:‘ Sl’:t:u capacity of the fluid is 0.5Bw/ Ibm - °F =

to the wall of the viscomeler. e e rise?
2.14 kJ / kg - °C how much does the fluid’s tempera 20,000 cP (= 1000 Poise) and

: ; ° =1 :
' 6.7.*A circular, horizontal tube contains asﬁhal:s“gi ;ay be considered a Newtonian fluid
e p = 70 Ibm / ft°. The tube radius is 1.00 in. Asp ays one. We now apply a pressure

for the purposes of this problem, although it 18 :::mﬂ 21:’ e
gradient of 1.0 (psi) / ft. What is the steady Sta
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—_ 'y
i H
he Reynolds number in Example 6.27 What is the lowest fluid viscosity for é..'_".""‘ :
6.8, What s the Reynvld . 9 /' g
which one should use this wm‘m:l:":_‘;;““ple 6.2 is not the same os that actually used. In { “v‘ g
4 ometer in E & 0 , . J :
6.9, The simple ;mill‘l:::'v::‘::l:w two marks on the gluss, and thle. user reads the hwlpe for ‘.__ "\\ &
the practical ver “between the two marks. In Example 6.2, il l‘ht upper reservoir has ' ,_I‘:f' |
the fuid level (o pass how many seconds does it take the level in the reservoir to fall ﬁ"*
10 mm, how ¥y .
» .lmn::;:e“s‘i:f" 01 m? (In actual practice the marks are placed in nnmwir parts of a tube e
i ; voir, so that reading the passage of the interface is easy. To see *
above and below thcl.‘n-st-‘: : ymeters in any laboratory glassware catalog.) ¥ ¢\
; these work look at the visce : o 0
s in Fig. 6.8(a) throw a standard 031 1hm baseball back and forth, if its b
6.10.*11 the students in :“ Ii.lh and if cach one throws it an average of once every 10 s, o
o iy \ L m ' ,
wlochy In ES ' . direction tending to separate them? \
what is the average force in the v direction . g 3 : £ b Bt dinbal o
6.11. Show that in Fig. 6.8(b) the force in the x direction is independent © $ § gy
move in the y directions. ; " i
' i g then calcu-
6.12. Show that, if we define the shear stress at the pipe wall as 7 ;fp'-r‘ /2 an n calcu
late the pressure gradient for horizontal flow, we find Eq. 6‘} 99
6.13. Show that Poiseuille’s equation may be rewritten as f.a 16 | . . I
6.14.*A fluid is flowing in a pipe. The pressure drop is 10 psi per 000 ft. e“t'l:w .-m;l c t .e
volumetric low rate, holding the dinmeter and fluid propertics constant. at is the pies- _ ,,J."
sure drop if the new Reynolds number
(a) Is 10?

(b Is 10%
6.15.*As discussed in the text, there are two friction factors in common use, which means that

there are two versions of Fig. 6.10 in common use. When one encounters a friction fac-
tor plot and wants to know on which of the definitions it is based, the easiest way is to
look at the label on the laminar flow line. For the Fanning friction factor used in this
book, that is labeled f = 16/ R. For a chart based on the Darcy-Weisbach friction fac-

tor, what is the label on the laminar flow line?
-16. Water is flowing at an average velocity of 7ft/s in a 6-in pipe. What is the pressure

drop per unit length?
6.f7. An oil with a kinematic viscosity of 5 ¢St and SG = 0.80 is flowing in a 3-in pipe. The
pressure drop is 30 psi per 1000 ft. What is the flow rate in gallons per minute? Show

the solution two ways:
(a) Using Fig. 6.12.
7’{ (b) Using Fig. 6.10 and/or Eqs. 6.20 and 6.21.
8. We want to transport 200 gal / min of fluid throu in pi i
; ! gh a 3-in pipe. The available pressure
drop is 28 psi per 1000 ft. The fluid properties are SG = = : i
Sibe big Enotien? P 0.75 and = 0.1 cP. s a 3-in
6,49.%0il is flowing at a rate of 150 gal/ min, with & =
, , K =15 cP, and SG = 0.87 i -in pi
1000 ft It.mg. What is the pressure drop? Calculate it two ways: WEFIR R3-in plpe
(a) By Fig. 6.10 and/or Eqgs. 6.20 and 6.21. .
(b) By Fig. 6.12.
6/20.
0 ;’ci’:;gpksfjﬁehlv:[nt:ch does the temperature of the gasoline rise as it flows through
- ere is - .
WS T ey no heat transfer from the gasoline and that its heat capac-
6.21. (ﬂ) Set up the s
preadsheet program shown in Table 6 5 '
. < and verif
(b) Using that spreadsheet, find the corresponding values for A-yzthf;gl;es.

6.2, (a) S
(b) Uesznugp l:'lh:t sprcadshccl ngmm Shown in Tablc 66 and Vcrify the Values
Spreadsheet, find the corresponding values for Q = 2000 cfm.
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g ) ¢ - ing g o0 reoey
on Fig. 6.10/Eq.6.21. B Show heyy, he g,:n PN 10 the "aaly tircngh g ;r;
S0l = A g P
e Prob. 623 Wwe want 1o W l‘mvfrll 173 Niters Hesw i
24. : Teplace (he N lable A 354 =
10,000 gal / min under the same dtmt.ng P that breq

s on

«Two lanks are connected b '
6,35 g Y 500 ft . bize
and SG = 0.85. The level in ke Ii:f 3in Pipe The A pipe shoulg we ch
pressure in the second is |0 e rstl
fowing through the pipe? Whic ?::;ct than the
) . 15 1t flowine?
6. We are offered some pj hg
6.2 we pump Water Ihrougphp:s:;i?:dc of a new kind of plastic. T.
40 ft/s. The observed friction gfle made of this mater,a) ‘au (:r:“I S -
. average yeloeisy o
e plasuc‘ or s 00032 Estimare the abmi::g;o i
ug

e 6 hness of
sC : icti
© As dis in Sec. 6.5, the friction facior plot. Fig. 6.10. rel

. Fig. - Telales six variables and

fore can be used for finding an Plot Fi e

6.5, and 6.6 show how to ﬁl%d 1h¥c:fo;h1;es: c:lalnhtcmmhﬂ- five are known Examples 6 4

shows how to find a fourth, given all the others. Thc:rf;:n all the others. Problem 6.26

viscosity of the flowing fluid. Turbulent-flow pressure dm;\slni:w:;;:ﬂmc ch.su; and

determining fluid viscosities or densities. Discuss why this is so. never used for
6.28. Equation 6.21 leads easily to quick trial-and-error solutions 1o all the problems in Sec

6.5. One could also use it 1o eliminate a variable and thus reduce those trial-and-csror

<olutions to a single equation. Show the algebra of that elimination and the resulting

single-variable equations for Examples 6.5 and 6.6. Are those equations likely to be eas-

ier 1o solve analytically or numerically?
6.29. On a piece of log paper 2 cycles by 2 cycles. make up the equivalent of Fig. 6.12 for 2

2-in pipe. Show the following:

(@) The zero-viscosity boundary.

(b) The laminar-flow regiqn.

(c) The turbulent-flow region-

(d) The transition region. .
6.30. Calculate the pressure drop per unit le ﬁ

pipe by using Fig. 612 . 2 3-in pipe. According 10 F':im °n;'
6.31.*0il of a kinematic viscosity © o hich the flow ¢ certain 1o be lamé

(a) What 3 1€ e volug:'cl: this correspond to? . cerain to b€ qurbalent”

(b) What Reynolds number .

(c) What is the Jowest vol

(d) What Reynolds mfmb‘! | comepond 03 .
6.32. Do any of the values in APP 24-in pipe © see whethef T3 mc,_m‘gxds
6.33. Check the values in App- L:cnhc pipe SiZ¢ is -o-dc -

stant friction factor or whe in Fig. 6.10. The ns}

10 the “smooth tu g" curve }

is 22.624 in.

is‘ R.w cﬁsb) l ' - lh;t‘-“‘l&‘;
1 lhc Sal" )
) ) . ork Exarnpl . ’ "mcdl ula[ gawllnthas |Pp' a " ¢ (4 ) ’nd “‘H esly

398 =457
ym =39 7 uming 7
: s 0. s
example the PIP€ lDw:vo , f‘fbl:r:‘n:;ﬁ
ol ;t.'?:n::u his simpHfice®
how much &}

neth for the flow of lOOgalitmnofmrsz-m
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232 FLUD MECHANICS FOR CHEMICAL ENGINEERS

6.35. Estimate the pressure loss for 1000 ft® / min of air flowing in a 12-in diameter 5.

conditioning duct 1000 ft long.
. - " L}
6.36. :Esl:xan;ate the required pipe diameter to transport 100 m> / h of air with a friction loss of ry
m.

6.37. E_stirnate the volumetric flow rate of air for a pressure drop of 5Pa/m in a duct with

diameter 0.125 m
6.38. Estimate the pressure drop for 1000 ft® / min of hydrogen flowing in a 6-in diameter pipe

500 ft long in two ways:

(a) Using Fig. 6.10, or Eq. 6.21. d

(b) Using Fig. 6.14, and suitable corrections for its much lower density than that of air y
6.39. The common friction factor plot (Fig. 6.10) is based on the Colebrook equation (5], ”'I

i (e/D N 1.255)

which itself is a data-fitting equation with no theoretical basis. It is difficult to use,
because f appears on both sides, once as the argument of a logarithm. There are other
data-fitting equations that attempt to reproduce Eq. 6.59 with a more easily used form,
of which one of the most popular is that due to Haaland [23],

6.9 e/ D\ M2
f=025 /(—1.3 log[—@j + ( 37 ) ]) (6.60)
another equation, [24], is
e 5.74\1?
f= 0.0624/ [108(3.703 + -9?’3)] (6.61)

where Dy is the hydraulic diameter, twice the hydraulic radius.
Find the friction factor for ® = 2.00 - 10°, and &/ D = 0.0006,
(a) From Fig. 6.10.

(b) From the Colebrook equation (Eq. 6.59).

(c) From the Haaland equation (Eq. 6.60).

(d) From Eq. 6.21. .

(e) From Eq. 6.61.
6.40. Figure 6.14 is the “standard chart” for air-conditioning applications. It is based on Fig.

6.10 and the assumptions that the air flowing is at 1 atm and 68°F, i.c., the same assump-

tion as given inside the back cover of the book. The plot is logarithmic on both axes, but

the length of a decade on the vertical axis is greater than that on the horizontal axis.

(a) If a given duct diameter corresponded to a fixed value of f, what should the (line?
curve?) for that diameter look like on this plot?

(b) Is that shape observed for the small ducts, i.e., those with D < 5 in?

(c) Is that shape observed for large ducts, i.e., those with D > 10 in?

(d) Why are these different?

(¢) Figure 6.14 shows a pressure gradient of almost exactly 0.2 in of water / 100 ft for
1000 ft* / min in a 12-in duct. What value of the absolute roughness & does that cor-

respond to? _
() How does the value just determined in part (e) compare to the value for steel in Table

6.2? Explain!
6.41. Examples 6.11 and 6.12 show significantly different values for the pressure drop due to
the valves and fittings, calculated by the equivalent length method and the X method. Is
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Very large
:[?;l ‘ Water

(0 fi 3-in stee) pipe

FIGURE 6.27

Tank draining by gravity, with pipe
and entrance friction, Prob. 6.45.

24 in

FIGURE 6.28
A portable demonstrator of tank
draining with friction. Prob. 6.47.

FIGURE 6.29
; A8,
Suggested dimensions for Prob. 6

i
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Psi, What is the volumetric flow rate throu h th 9

6.45. The water in Fig. 6.7 ; ) ; gh the pipe

flow: rae -6.27 is flowing steadily. What is the
6.46.*We are gping to lay a length of 6-in steel pipe for
a long distance and allow water to flow through it
by gravity. If we want a flow rate of 500 gal / min,
how much must we slope the pipe (i.e., how
many feet of drop per fool of pipe length or how

many ft / mi)?

A 1-gal can full of water has the dimensions shown

in Fig. 6.28. There is a horizontal piece of }-in galva-

nized pipe inserted in the bottom. The end of the pipe
is unplugged, and the water is allowed to flow out of
the tank.

(a) How long will it take the level in the tank to fall
from 7 in above the centerline of the pipe to 1 in
above the centerline of the pipe? Make whatever
assumptions seem plausible. _

(b) As the level falls, the flow slows down, unul 1t
finally converts from turbulent to laminar. How .far
will the level be above the centerline of the pipe
when this transition occurs?

6.48. Derive Eq. 6.28. 1t is suggested that you use
. the coordinates shown in Fig. 6.29. Here the
flow is in the X direction _frum left 0 nghL:
and the slit extends a distance [ n meh.-.
direction. Choose as your el;mem for tm e
force balance a piece symmem;al :ﬂ:’m.ul ;
. axis (other choices are possnbl; t?ut e
3 difficult mathemaucs). Hinr: This 1s
. mOTCI of the derivation of Eq 68 ina Q1f-
?::{::aggomc[ry. Simply follow that deriva-
e

tion, changing the geometry.
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6.49. Derive Eq. 6.29. This equation is derived in detail in Bird et al. (12, p. 54).

6.50. Example 6.13 shows that the calculated leakage rate is less than the average observeq
rate for typical valves in oil refineries by a factor of 3.5. In that example we assumeq
that the average thickness of the leakage path was 0.0001 in. If we held all the other val-
ues in that example constant except this thickness, what value of the thickness corre-
sponds to the observed leakage rate?

6.51. In Example 6.13 we replaced Eq. 6.29 (flow in an annulus) with Eq. 6.30 (the linear sim.-
plification of Eq. 6.29). How much difference does it make in our answer? Check by
repeating Example 6.13, using Eq. 6.29.

6.52. (a) Show how one obtains Eq. 6.30 from Eg. 6.28.

(6) Show the ratio of Qgq 6.30/ Qgq 6.28-
(c) Using a spreadsheet, show the value of this ratio for D,/ D, = 1.1,1.01,1.001,

and 1.0001.
6.53.*The wooden frame of a window is 2 in thick; see Fig. 6.30. The bot-
Glass tom of the window closes against the sill with a space between frame
and sill of 0.001 in. The width of the window (distance perpendicu-
Frame lar to the paper in the figure) is 2 ft. When the wind is blowing toward
2in the window and creating a pressure difference of 0.01 psi across the
¥ 1sil window, what is the volumetric flow rate of air through the space
'0‘001' in' between frame and sill?
6.54. The cylindrical vessel in Fig. 6.31 is full of water at a pressure of
FIGURE 6.30 1000 psig. The top is held on by a flanged joint, which has been
Leakage flow ground smooth and flat, with a clearance of 107> in, as shown. The
beneath a window, diameter of the vessel is 10 ft. Estimate the leakage rate through this
Prob. 6.53. joint.

e e e e e e
’

4 v 6.55. Calculate the hydraulic radius for each of the fol-
b1 in lowing shapes:
(a) A semicircle with the top closed.
(b) A semicircle with the top open.
_*, (c) A closed square,
(d) An annulus. .

6.56.*Rework Example 6.6, assuming that a square

duct is to be used. For equal cross-sectional
N A areas and equal wall thicknesses, what is the

ratio of the weight per foot of a square duct to

FIGURE 631

N that of a circular one? Based on this, which
;I;:a:agcs:ow through a flanged joint, would normally be chosen if there were no
00. 0.J4.

. ' N space constraints? Look around public buildings
in which such ducts are visible, and examine where circular ducts are used and where

Square or rectangular ducts are used. Do your observations agree with your answer to
this problem?

6.57.%In Example 6.15, what values of fand e did the designer use to estimate V = 3.97 ft/ s?
6.58. (a) In hydraulics books one regularly encounters the Chézy formula for open channel

flow,
V= c,/HR- —4z (6.62)
Ax

in which we have changed from the notation normally shown in those books to the
notation in this book. What value of C makes Eq. 6.62 the same as Eq. 6.AX?

'
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p= 1000 peig

T
Water 10 fi

Large

" siameler -————-l
el T 1on

—

F]GIJRE 6.32
pressure and gravity-driven figy,

6.60,

FIGURE 6.33
Pumpc.d fluid transfer with both pressure
and elevation change, Prob, 6.60.

A

Water

FIGURE 6.34 _
Gravity draining flow with
friction, Prob. 6.61.

Stack

h= IOUfl

Fumace

Airintake — )
FIGURE 6.35 .
Flow in a furnace and chi

mnc).. ﬁob, 6.62
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with friction, Prob. 6.59, 6.59.»

50 ft 6.62.

Eatyy g, vz ey,

. nisape
1% 2 Hithne
0.0 for I'!niﬁ_d :: PATATTRIEY whep

81003 ¢ T Vil
Ofv fud o .
thay Corres Srsion fac1ey, Determine t;:lfr'm:.-,,
. %I - RE YR
In Fig. 6,37 g ;4" 615

" 3-jn 08 G L
A Well-designeg g0 " P8 1t vk

Entrance Joyq Wh:::a-m‘ 10 which g

in the pipe? —
In Fig. 6.33 water 18 bein

llﬁpe. The length of (he
e

i w1t is 5o
Insantanesyg velotiey

2 pumped through 2 3.n

% ' los the equivylen:

n2th for finines i« 92 el stk S

i 10 gal i, e i o e

(@) At lhis' flow rate, wha pressure rise acrons the
Pump is required?

(b) If there are no Josees in pump. moter, cou-

pling.. eic., how many horsepower must the
pump's motor deljver?

: 6.61.*The tank in Fig. 6.34 is antached 10 10 1 of 5-in

pipe. The losses at the entrance from the reser-
voir to the pipe are negligible, What is the veloc-
ity at the exit of the pips?
The flue gas in the stack in Fig. 6.35 is 2t 350°F
and has M = 28 g/ mol. The stack diameter is 3
fi, and the friction factor in the stack is 0.005. In
passing through the furnace the air changes sig-
nificantly in density, because it is hezt=d by the
combustion and then cooled in giving up beat 10
the working parts of the fumace. Thus, we can-
not rigorously apply B.E. in the .fom we use in
this problem (we could do so by m::gnimg f:;‘:u-:
point 10 point, over points sfc_dusc together ﬁ
he density change was negligible, bt ‘ﬁ‘;r“::'ih
be very difficult in such a c?mpli:lﬂdia :n =
3 furnace). However. experimen ot oind
friction effects of fumaces indicate o oy
¢ constant-density devices With THEE il
!hem i the density 2nd viscosity of the _ga:'
i havu'lgmm we can use EQ- 6—35-_':0’ this fur-
the stack, s, K =30 Thus. in

with M = - chout the fur-
gas W yins that M and T UOUERT C
then maintat Ectimate the velocity

AL, V41 p
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l. s S 0x y f P = 30 psig

0ft

. S

6.63.*The vessels in Fig. 6.36 are Connecteq
by 1000 ft of 3-in pipe (neglec fit-
ting and entrance and exit losses). In each
vessel the diameter is so large thay Vis
negligible. The fAuid is an oj] with p =
100 cSt, and p = 60 Ibm / e, How many
gallons per minute are flowing?

Which
way?
6.64. The two vessels shown in Fig. 6.37 have
the design conditions shown in Table 6.A.
The connecting line between the vessels
is 3-in pipe that is 627 ft long, containing
— six elbows, four gate valves, and one
globe valve. The fluid to be pumped hag
a specific gravity range of 0.80 to0 0.85
and a kinematic viscosity range of 2 o
' 5 ¢St. The fAlow rate is 150 to 200 gal / min.
Bypass valve, T T

- . We are ordering the pump. What values
normally closed ~————— will we specify of

(a) the flow rate?

(b) the pump head, AP/ pg, in feet? For
this problem the head form of B.E. is
convenient. '

FIGURE 637 6.65.*If we shut off the pump in the sys-

tem in Prob. 6.64 and open the

FIGURE 6.36

Flow driven one way by gravity and the
opposite way by pressure difference, Prob. 6.63.

Vessel 2
Vessel |

Pu
Ground level, z = 0 P

A somewhat more realistic pumping situation, Prob. 6.64.

bypass around it, what are the max-
TABLE 6.A imum and minimom values of the
Values for Prob. 6.64 volumetric flow rate? Which way
does it go? Neglect the friction
Vessel 1 Vessel 2 losses in the pump bypass line.
P i 20 81 Assume .that the globe valve is

P palp 8 47 al_ways wide open. - _
Max liquid level, above 'z = 0, ft 43 127  6.66. Figure 6.38 shows a siphon, which
Min liquid level, above z = 0, ft 21 100 will be used to empty water out of
a tank. The siphon is made of 10-in
pipe, 60 ft long. When the water is at its minimum
A level, as shown, what is the volumetric flow rate,
/_\"T and what is the pressure at the top (point A)? The
Total pipe | ’ (\ X bend at the top of the siphon is equivalent to two

length 60 ft _ 90° long-radius elbows.

E | |20t 6.67. The National Park Service has recently decided to
P — > : construct a pipeline to carry water across the
water Grand Canyon from the relatively water-rich North
level K3 Rim to the arid South Rim. A cross section of the
g e ¢ | | system is shown in Fig. 6.39. The length of
ows el ] b (106 pipeline between the springs and the river cross-
i 28 000 R 4 ing is 10 mi, and between the river crossing and

the pumping station it is 4 mi. The desired f"low
rate is 1000 gal / min. The pressure at the springs
and at the pumping station may be assumed

FIGURE 6.38
Siphon with friction, Prob. 6.66.
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% ']1 fIL s Stion uth Rim ust b - Becayge all the
i "’i( !i‘-‘}, el 0 fi back r . TOUEhL ing lace | Htenals
: ‘l'iu) bi; " crabi. Vch is Costly ]:Jﬂc; on mule.
i HQ"'« b E"istln h INcentjye t ' TIETR 15 2 congig.
Q&) % B ghtWei O make the pj
! h'a:’ Pump;, as . Pipe ag
‘Vb ¥ statj 8 “hat maers POssible, Reco
. i on op dlerial the o mmend
. 63) Q}] ;Ul‘llo of. Wha‘ “8 Insidep:ipe Sho'md be made
P, ver Crossing, lateay, and whay it 'ameter shoulg be,
:h:b‘t :“'e R 2500 f Slevation  0-68. Solye o, WAl thickness ghoyyg pe
. elev 4000 € steady
Ve, A fi 21 Y state fiows in Fi
Cap,, M, 9 Lo 08 A first gyeg <
taj : ly F’GI’!RE 6.3 hich 15 close ¢ $ take o = 10,
2 ""’g Flevations for the freshwater pipeline — of @ whicy O, but not equal the value
m op 4 Canyon, Prob. 6.67. the et makes the sum of the voly.
0 lped hq: Gran ) Tc flow rates into point 2 = g
0 : :
gi[!';‘;!o tubes 1 _E c;g; w’:‘;‘ (23— 2y)
i TP o and (z, - )=
it n, ‘ /\ ?I; —40 ft. Hint: In this Case,
RS 217 Cap . Dot all the flows will be i
. D the same direction as in
) Prob. 6.68.
B‘E . LS TNTTR T 6'70-*F'lglll't 6.40 shows the -
Z Pis of a manifold in which
one major pipe feeds into
ey FIGURE 6.40 :
o Part of a manifold, Prob. 6.70, & nuraber of smaller pipes
the that branch from it. Many
Mgy, . air-conditioning ducts are
e mamfo]dsaln’l;hls figure shows only the last two branches. The flow out through t.tfc branches
Way deg h 8 : PSt 'e lltlﬂl)'ely on the pressure in the main channe] Opposite them, and very little
’ on the velocily in that channel. For the flow as shown, will the velocity out of tbe 1 be
on greater or less than that out of tube 2;
te, (a) For zero fric:'tion -in'the 'pipe ﬁo.w (because it is so much bigger than the tubes)?
15 (b) For subst.armal friction in the pipe flow (because a cylindrical rod has been inserted.
thus making the cross-sectional area perpendicular to flow much less)?
h (c) Dr. J. Q. Cope, vice president of Chevron Research when the author started there
f

in 1958, used this device to teach humility to new Ph.D.s. He would describe the
device, without mentioning the insertable rod. Then he would goad the new Ph.D.
into betting him which jet would squirt higher when water was introduced. Then
he would go and get the device, inserting or removing the rod as needed before
returning to collect on his bet. What practical lessons might a new engineer leam
from this story [25]? _

6.71. Check the assumz in’clion factor in Example 6.18. For the 'value of relative l:;mug‘ruu:sls1
shown, the range of possible friction factors in turbulent flow 15_0.084 ;o 0.01. How muc
would the economic diameter differ from Example '6-18 if f = 0.017 ;

6.72. Th i f economic diameter of pipes shqwn in Sec. 6.12 was appar-

~ 86 Lype 0 G elieony : i tion with the problem of selecting
ently first performed by Lord Kelvin [26] in connec To see how he obtained his result,
the economic diameter for Iong-dista.ncc .elecmc \:;reasn ;13;; ¢ sl G iy
derive the formula for the economic .dm-n;:er urchased cost of the whole transmission

Eq. 6.47) using the following information: st:uiion Jabor, etc.) is A times the mass of

;lniI: l(ipcltlhdmi ill'aeoh;‘s';1 :?:ﬂml?::’ ;ﬁgn:;zzs of $/1bm. The annual cost of owning the

al in the ;
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238 FLUID MECHANICS FOR CHEMICAL ENGINEERS

transmission line (which includes interest on the capital investment in the line, Payment
on the principal of that investment, taxes, and maintenance) is B times the purchased cost
of the whole transmission line, where B has dimensions of 1/y. The electrical energy
that is lost due to resistive heating in the wire costs C, where C has dimensions of
$/kWh. The resistive heating is given by Q = /7R, where R is the resistance of the wire
and 7 is the current. The resistance of the wire is given by R = r Ax/ (7 / 4)D?], where
r is the resisuvity (with dimension ohm-ft), Ax is the length of the wire, and D is the
wire diameter.

Your formula for the economic diameter should be written in terms of the cur-
rent to be camied (not in terms of the voltage), and in terms of the other variables listed
above, plus any others that you consider necessary. Do not be concerned about numeri-
cal units conversions; your final equation should be like Eq. 6.47, showing D.con as a
function of the appropriate variables to the appropriate powers. (Kelvin's solution is stil]
correct for low-voltage transmission lines, but not for the high-voltage lines now used,
in which the major loss is not resistive heating but corona discharge from the wire’s

surface.)
6.73. (a) Work out the equation equivalent to Eq. 6.47 for laminar flow. Start with Eq. 6.45
and substitute f = 16/ R. Simplify the resulting equation, finding

327 -PC-(4/7)° u;f]h‘s

Dc:on. laminar = [ CC - PP (664)

(b) Check to see whether the laminar part of Fig. 6.23 is made up by this equation, by
calculating the economic velocity for 200 gpm and 2000 cSt, and comparing your
answer to the value you read from that figure. Use the economic values that are shown

with that figure.
(c) The lines of constant viscosity on Fig 6.23 have slope = 0.2. Does this agree with

Eq. 6.647
(d) Figure 6.23 indicates that the economic velocity is practically independent of fluid
density. Does this agree with Eq. 6.64?
6.74. It has been proposed to solve Los Angeles’ air pollution problem by pumping out the
contaminated air mass every day. The area of the L.A. Basin is 4083 mi>. The contami-

nated air layer is roughly 2000 ft thick. Suppose we plan to pump it out every day, a dis-
tance of 50 mi to Palm Springs. (It is assumed that the residents of Palm Springs will
not object, which is not a very good assumption.)

(a) Estimate the economic velocity in the pipe.

(b) Estimate the required pipe diameter.

(c) Estimate the pressure drop.

(d) Estimate the pumping power requirement.

(e) Comment on the feasibility of this proposal.

6.75. It has been proposed to solve the water problem in Los Angeles by importing water from
the mouth of the Columbia River, where vast amounts flow into the sea. One way to
do this would be with a pipeline and pumping station. Both ends of the pipe are at sea
level, so the only pumping cost would be the cost of overcoming the friction loss.
The pipe length would be about 1000 mi. Assuming that we want to move 107 acre-ft a
year (1 acre-ft = 43,560 ft?), estimate the horsepower of pumps required. State your
assumptions,

6.76. If in Example 6.18 the fluid were water contaminated with hydrofluoric acid, we would
have to use a special corrosion-resistant pipe. Suppose that this pipe had a value of PP
exactly 10 times that of carbon-steel pipe. What would D,.,, be?

oldllieu vy vadirioudalliiel
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o pees the result in E'\"mple 6‘13:11 onsg

; ¢ selected to d ) ; ta ;
 -g, YOU are se e31gn the . 1S the 0 Tah;
8 ant: low mass 1s the main goalfuel line for s 1'Pi'0bab‘e Ciu;ﬁff:]: Fig ¢ 23
problem are. and write in gene,., f “ha - nding rocke; oney i
. A I p diameter spherica] Particle with §G “Quivaleny c-ch'-‘l o f
- f

“ec
CTOrs in
iy of 10 m/s. How far does ; =20is Ciected £ 647 or this problem this
L To .

] a
distan it i stop BUD into air o1 4
on ffec e ce. whj ped by v 5 veloc-
Ignore the effect of gravity, ch appears often ; *C0Us friction” (This dis-

(@) Work out the equation n " Parile lerature,
only force acting on the
opposite the direction of

Scr?eral terms, by
Particle, after jy |

mo“on_ a-nd iS gi

“fTillng F=
= ma.
€V the gup g, T2 fOe i the

ven b)- Eq_ 6.54
F = =37uD\ = ma = ED‘ d__\_ ﬂ_ -
6 dr dr T D:p (6.65)

V(,D'-’p
X - = —
Stokes siopping 18 M (6.66)
One often sees this equation with a C. for the Cunningham correction factor in the

numerator.

685. Probably the most-studied kick in socce?

(b) Insert the numerical values and find the value of xg,..
i g . 1okes’ stopping distance-
(c) On the basis of the logic of this calculation, how long does it take the particle 10
come to exactly zero velocity? How long does it take it to come to 1 percent of Vy?
(d) How far does the particle fall by gravity (which we ignored in this derivation) in the
time it takes to come to 1 percent of V}?
6.81.*Rework Example 6.19 for the particle settling in water at 68°F instead of in ar.
682. Rework Example 6.20 for the ball falling in glycenn instead of in water. pgyc = 800 ¢P.

and py, = 78.5 Ibm / ft'. N
6.83.*A spherical balloon is 10 ft in diameter and has a bu.ogiant force 0.1 Ibf greater than its
weight. What is its terminal velocity rising through air-

684. A standard baseball has a diameter of 2.9 in and a mass ©
pitchers can throw one at about lOQm_sl h. 1
(a) Neglecting the effect of the smchnl:lg on
the drae force of the air on the ball. i
(b) The diflancc from the pitcher’s mound‘.llcll ::ogcgsinz :
pitcher’s hand at 100 mi / h, how fast w &

- )
subject to the simplifications 10 part ltfl-

£ 0.31 Ibm. Good fast-ball

he ball and the spin of the ball, estimate

s 60 ft. If the ball left the
hen it reaches home plate,

David Beckham’s free-kick goal in

i in 2001,
the England-Greece World Cup Quallﬁers in

.a< hi gh 10 pass
title (*Bend it like Beckham,” 2002)- |t was high enough 10 P

eal axis 1o curve toward the

. ; m/s. =+ entic )
The kick left his foot at - inning enough \c,-,] but suddenly slowed down
over the screen of defenders. and SEC aimed above the godk.

corner of the goal. It appeared 10
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240 1.UID MECHANICS FOR CHEMICAL ENGINEERS

icall flight, and fell into the upper co : ;
;:I;-'i":ll: l:ls:"wu: possible. A standard soccer ball weighs =~425 g, and has a diameter

of =22 3cem,
6.H6.

answer?

You have certainly observed that you can walk ml;cr
you are up to your neck in a swimming pool. “fhy s
more viscous than air? Or because the water 15 more

mer of the goal. Explain in terms of Fig

faster in air than you can when
that mostly because the water is
dense than air? Or some other

all for a while before open-
6.87.A 120-1bm parachutist jumps from a plane and falls in free fall pe

ing her chute.

(a) If she falls head first, then her projecte ;
w1 ft? and C, = 0.7, What is her terminal velocity

to reach 99 percent of this terminal

independent of velocity? How far does 8
If instead of falling head first, she spreads ;rut
tally, then her projected area will be ~6 ft and Cy

(h)

condition,

6.83. We want to design a parachute. The requircment is that at

d area perpendicular to the direction of fall is

2 How many seconds must she fall

velocity, assuming that the drag coefficient is
he fall in this number of seconds?

her arms and legs and lies horizon-
== 1.5. Repeat part (a) for this

terminal velocity the rider will

have a velocity equal to the maximum velocity the rider would reach jumping .w the
ground from a 10-fi-high ronf The rider weighs 150 Ibf. The parachute will be circular
and its drag coefficient C; = 1.5. What diameter must the parachute have?

6.89. Occasionally, car companies advertise that their sports-model automobiles hgvc very low
values of C,, typically about 0.3 for teardrop-shaped cars. That drag coefficient is based
on the frontal area. If a car has that C, and a width of 6 ft and a height of 5 ft and is

going 70 mi / h,

(a) What is the air resistance of the car?
(b) How much power must be expended to overcome this air resistance?

6.90. In Examples 6.19 and 6.20, we assumed Stokes’ law applies, calculated V, and then
checked R, to see whether the assumption of Stokes' law was a good one. If our
assumption was not a good one, then the V calculated in the first step was a wrong
velocity, and the calculated %, was wrong, too. Is there any chance that this proce-
dure can lead to a combination of V and &, that indicates that Stokes’ law should be
obeyed when actually the 9, based on the correct solution is outside the range of

Stokes’ law?

6.91. Check the results of Examples 6.19 and 6.20 on Fig. 6.26.
6.92. A spherical raindrop with a diameter of 0.001 in is falling at its terminal velocity in still

air. How fast is it falling?

6.93. In James Bond movies the hero is often swimming and has to dive deep into the water
to escape the bullets from the enemy helicopter flying above him. How deep should he

dive? Assume the bullet is a sphere of

surface of the water vertically at a velocity of

diameter 0.5 in and mass 0.027 Ibm. It hits the
1000 ft / s and will not inflict serious injury

if it is slowed down to a velocity of 100 ft/s or less, For the purposes of this problem

only, assume that the drag coefficient
o 0.1,

6.94. A bullet was fired straight up at 2700 fi
dard mass unit in U S, gun lore, | lbm

is constant, independent of velocity, and equal

/s. The bullf.t had a mass of 150 grains (the stan-
= 7000 grains), a more-or-less cylindrical shape

with a sharp point, and a diameter of 0.30 in.

(a) If there were zero air resistance, how high would it go?

How long would it take to

reach thzfl altitude? How long would it take it to come back to ground? What would
its velocity be when it came back to ground?
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in which c is the volume fraction i

: , of solids and n = 4,65 ; ; ;
with value decreasing to 2.33 for @, > 100, Using this :;::cei:?:i I:Lw region,
velocity of a simple spherical particle of SG = 3 and D = 70 . ate the settling
and in a mud that has ¢ = 0.4,

d then
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FIGURE 7.15

Cutaway of a modemn Jet engine. This is a Pratt and Whitney JT8D-219, whose basic parameters are
shown in Example 7.10, Observe the large number of rotating and fixed blades that interact with the
moving fluids, (Courtesy of Pratt and Whitney, a United Technologies Company.)

Vou V2
e S 2 T =F (7.AS)
o : | ] — and t‘hat,. if there.is no friction, the outlet
. | . ; Blade velocity ve]oc3ty 15 equal 1IN magnitude o the inlet
Fluid ve'locnyv | g:ict)iclty tl;]ut in t]x different direction, 1f there js
: on, the outlet velocity wil] be 1 i
,\\ ——————————————— h System boundary cannot posmbly b ty ess, but it

more, from the viewpoint
of an obseryer riding op it
e
FIGURE 7.1 énergy balance y? i a st:alal:lasd o
Simplest possible Jet-blade interaction. concern about (he signs of V' ao dW ;:/ b
in @nd V.
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daw {dm
ZWE
|

Turbines Atomizers
[ ]
: ruote T 1 ]
405 0.5
Vbiade / Viet
FIGURE 7.17

The ratio of work produced per pound to inlet kinetic e
" range of values of blade speed/jet speed.

From this figure we see:

1. For Viage/ Viet = 0 the work extracted per pound = 0. The blade is standing still

nergy per pound for a

and resisting the flow but not extracting any work from it.

2. For Viaae/ Vier = 1.00, the work extracted per pound = 0. The blade is moving
at the same speed as the jet (like a person walking through a revolving door that
is turning at exactly the person’s walking speed) and has no force interaction with

the jet.

3. For Vm,de/ Vjer between 0 and 1.00 the work extracted is positive. For Vijaqe / Viet =
0.5 it is a maximum, and (dW/ dm)/ (V%./2) = 1.00. At this condition all of the
kinetic energy in the jet is being extracted by the blade and converted to work. If
we consider Fig. 7.16 from the viewpoint of the person riding on the blade, then
the fluid is overtaking us at 0.5 times the jet speed and leaving at that speed, in
the opposite direction. From the viewpoint of a fixed observer watching us ride
by, the jet leaves the blade at zero velocity; all of its kinetic energy has been
extracted. (In a practical turbine of this kind the jet leaves with a little ¥ velocity
to get out of the way of the next batch of fluid that follows it; if it left with only

x velocity, it would run into the part of the jet behind it.)

4. At the left of the figure for Vyjage/ Viee < 0, the blade is moving in the opposite
direction from that shown in Fig. 7.16. In this case it is doing work on the jet.
From the viewpoint of someone riding the jet, the exit velocity is still the same as
the inlet velocity, but from the viewpoint of a stationary observer the exit velocity
is greater than the initial jet velocity. The sign of the work has changed because,
instead of the jet doing work on the blade, the blade is doing work on the jet, This
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To estimate the starting behavior, we take as our system the pipe from its
entrance, point 2, to its exit, point 3. Here we can assume that the pressure at
point 2 does not change during the starting of the flow and is given by
P2 = pg(21 — z,). Applying the x-directed momentum balance (Eq. 7.15), we
assume that the density of the fluid does not change, so the mass of fluid in the
system is constant and the mass flow rates and velocities in and ont at any

instant are equal. Then

Msys dViys = D F dt = [(Pz = Ps) %T D? - TWDL] dt (7.44)

Here the shear force acts in the direction opposite to the pressure force; at steady
state they will be equal. Replacing 7 by its expression in terms of the friction
factor, and expressing the mass of the system in terms of its volume and den-,

sity, we find
L

P

o

and

2
D’LdvV =3 Fdr= [(P2 - m)%oz —fp %WDL] dr  (7.45)

(PZ—P:’)_ﬁ.VzJ D,
T D 3 dr = Z_(Vw V )dt (7.46)
dav

__ D  V.+vy
f= BTt C (7.48)

Here at ¢t = 0, V = 0, so the In term on therightisIn 1 = 0, from which it follows
that the constant of integration C = 0, We may also check to see that Eq. 7.48

TABLE 73

?’Iow Starting behavior

in Example 7,13

Velocity, n /s Time, §

—_—  Times
01 031
! 324
2 8.57
24 17.11
244 23.1
2.449 318

245

Infinite
e S il

gives the correct stead -State solution by setting ¢ = oo,

evaluate

D_ _ [6065/12) m /328 g
4V 4:0.0042-245m7% $00

and then make up Table 7.3. We see that the velocity

f'ncreases quickly at first and then asymptotically
Increases to the steady-state value. L]

= 3745
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If, as the problem suggests, we stop the fluid instantaneously, ther.l the left-ha’nd
side of this equation must be minus infinity! The only way the rlght-hand side
can be minus infinity is for Ps to become infinite! If it were possible to s%op
the fluid instantaneously, and if thé fluid did not increase in density nor the pipe
wall stretch, then that is exactly what would happen. One might compare FhlS
situation and the one in the previous example to dropping an egg off a tall build-
ing. The velocity of the egg increases steadily as it falls, but the forces acting
on it are gentle enough that it is unharmed. When it reaches the pavement, its
deceleration is very rapid, practically infinite; the egg responds by splattering.
The observational fact is that we generally cannot stop the flow instantaneously
but that with readily available valves, closed as quickly as possible, we can stop
the fluid quickly enough to generate very large pressures adjacent to the valve.
To solve the problem we must take into account the fact that the liquid will
compress, slightly but significantly. In real problems the expansion of the pipe’
due to the increased pressure must also be taken into account; it makes the pres-
sure less than the value we will compute here. If we are able to stop the flow by
shutting the valve at point 3 instantaneously, then the layer of fluid adjacent to
the valve will be stopped. It will stop the next layer, and so the region of stopped
fluid will propagate backward up the pipe to the reservoir. (This is analogous to
the big freeway pileups that occur during heavy fogs. Someone slows down and
is hit by a faster-moving car coming from behind. The first crash produces a pile
of stopped, wrecked cars. This pile then enlarges in the upstream direction as
more and more cars pile into the stopped wreckage.) The rate of propagation
of the boundary between stopped and moving fluid (assuming rigid pipe walls)
will be the local speed of sound. That is not proven here, but will seem clearer
after we have discussed the speed of sound in Chap. 8. From Chap. 8 we can bor-
row the fact that for water the speed of sound is about ¢ = 5000 ft/ s
(1520m /s) so that the stopped layer of water will reach the reservoir in
(t=L/c=13000m/1520m/ s) or about 2 s after the valve is closed.

To' compute the pressure in the stopped fluid we take the viewpoint of the
person riding on the interface between the moving fluid and the stopped fluid.
}t::igure 7.20 sl}ows this ch.ange of viewpoint and its consequences. We will apply
froin s:hrtcvliz%cosi:;'egﬁl tnt'n;s again in this book. The upper part. of the figure,
e againslt) L3 as a.(;]naryl ot?servcr, shows the wave passing from right
above, describes howofw’twlt w:iocjty L VI')' A SP?ed ok soEmd, shown
fluid i’s moving, with t;z rzssuc;ltmh WaVCT?OVleS e Conary fulds here the
viewpoint of S(;meone ridin ths g pa.rt i t-he figure shows the

g the wave. From that viewpoint we are standing

rom the viewpoint of the stationary observer.

ShownT{iking the viewpoint of the observer riding the wave, and using the system
In the lower part of Fig, 7.20, we find that the x-directed, steady-state
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Here the minus sign before the radical has no physical meaning. From Egs. 7.52 ‘and
7.AY we can calculate the value of & (see Prob. 7.52). Equation 7.52 may be put into
an interesting form by dividing through by z,:

V2

(7.53)
Z] 2 4 82

The dimensionless group V7/gz, is called the Froude number (William Froude,
1810-1879); its significance is discussed in Chap. 9.

From the foregoing it is clear that z, / z; must always be greater than or equal
to 1 (a value of 1 would correspond to a jump of negligible height, i.e., one that was
vanishingly small). One may verify from Eq. 7.53 that z, /z, = 1 for a Froude num-
ber of 1, and that z,/ z, is greater than 1 for any Froude number greater than 1. In
studying normal shock waves in gases, we see that another dimensionless group, the,
Mach number, plays a similar role.

This topic is traditionally included in fluid mechanics books for the following
reasons:

1. Hydraulic jump is readily observed in nature.

2. Hydraulic jump is an interesting example of a problem that cannot be solved with-
out using the momentum balance. =

3. Shock waves and hydraulic jumps are very similar, as we will see when we study
shock waves in high-velocity gas flow. Hydraulic jumps are easily demonstrated
in any kitchen sink and easily studied in any well-equipped-hydraulics laboratory.
Shock waves are much harder to demonstrate and study. Therefore, from visual
observation and mathematical analysis of hydraulic jumps we can gain an intuitive
understanding of shock waves. We will return to their similarity in Chap. 8.

Equations 7.52 and 7.AY are equally well satisfied whether a flow is from left
to right or from right to left in Fig. 7.22. However, if we calculate & for both we see
that right-to-left flow in Fig. 7.22 (deep, slow flow to shallow, fast flow) results in a
negative value of &. This is forbidden by the second law of thermodynamics, so the
flow can be only in the sense indicated in the figure. We see here a strong parallel
with what we will see concerning shock waves, in which the continuity, energy, and
momentum equations are also satisfied by flow in either direction; but the second law

of thermodynamics shows that only one direction is possible. We also see that a

hydraulic jump is only possible if the upstream value of the Froude number js greater
than 1; when we study normal shock wav

hen v es we will see that a normal shock wave is
only possible if the upstream Mach number is greater than 1.

Example 7.15. A steady water flow as shown in

and z, = 0.0005 ft (= 0006 inches). What are the
First we calculate

Fig. 7.22 has v, = 4 ft/s,
values of V, and 73?

2 3
Froude number = % = vi o &_ S
821 (322 ft/s%) - 0.0005 fi ' (7.BB)
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The force that gravity exerts, the
weight, acts downward. To coun-
teract this, the air must exert an

equal and opposite upward force,

Thrust < E {—=Drag  called the lift. It is the function of
i < o i the aliplanc’s Wwings 10 maks Wil
g P ; air exert this force.
I e i To see how the wing does
Mo this, we make a momentum bal-
FIGURE 7.24 ance around the airplane and take

as our system the airplane plus an
envelope of air around it, large
enough for the pressure on the outside of the envelope to be constant. This system
boundary is also shown in Fig. 7.24. We base our coordinate system on the airplane,
so the airplane appears to stand still and the air to flow toward it. Applying the y com-
ponent of the momentum balance in constant-velocity flight, we see that there is no
accumulation: we have d(mV);,s = 0.* We have assumed that the pressure around the
outside of the system is uniform; then the only external y-direction forces acting on
the plane are the force of gravity and the force exerted by the air. Thus,

Vy.)

Since not all the air comes in or goes out at the same velocity, the two V, terms in
this equation must be some appropriate average velocities, obtained by an integral of
the flow per unit surface area over the entire surface of the system. However, we need
not worry about this integration, if we merely think of these velocities as some appro-
priate average. .

In the direction of the +y axis, F, is negative. The flow through  is positive,
so (Vy,, — V,,) must be negative; the air must be accelerated in the —y direction,
downward. Thus, we see that, to_stay in level flight, the airplane must accelerate the
surrounding air downward, This is precisely what a swimmer does in treading water—
by accelerating the water downward, the swimmer stays up.

Airplane in constant-velocity, level flight.

F = weight of the plane = m(V,  — (7.54)

Example 7,16,  An airplane with a loaded mass of 1000 kg (and thus a weight
of 98IQ N) is flying in constant-velocity, horizontal flight at S0 m / s. Its wig -
sp'rcad 18 15 m, and we assume that it influences a stream of air as \;vide as i
wingspread and 3 m thick. How much average vertical downward veloci :

it give this air? Assume that the air comes in at zero vertical velocity ; e

. kg
m = pAV, = 121 —. , : l_n_ i kg b
PAV, - (15m-3m): 50 - 2723?=6°°°Tm (1.BD)

Fy 9810 N ‘m
s ™ ™ BT ot = 3608w 11 R
m  (2723kg/s) N ~ 85  (7.BE)

*In the most exact work, we would

" have to consider
that is small enough to neglect here. the decrease in mass due to the buming of fuel, but
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7.4. In movies and TV thrillers the hero shoots the villain, and the force Qf {h'c Pullet th.n‘)ws
the villain into the air, causing his corpse to land several f'eet from hxls original position.
If we assume that the bullet remains in the villain, what is the relation of the momen-
tum transferred by the gun to the hand of the hero, and the momentum transferred b,y
the bullet to the body of the villain? Are movies and TV a good place to learn one’s

physics? 3
7.5.%A hre hose QIrects a sueam Of Waler against a vertcai wail. 1ne fiow jaie ul tile watet
= is 50 kg /s, and its incoming flow velocity is 80 m /s. The flow away t.'rom the impact

point has zero velocity in the x direction. What is the force exerted by this stream on the

wall?

7.6. Repeat Prob. 7.5, but instead of a fire hose the exhaust from a jet engine flows against
the wall. Its velocity is 400 m /s, and its mass flow rate 200 kg/ s.

7.7. Tn Examples 7.3 and 7.4 the analysis was simple because the jet was at right angles to
the solid surface. You can observe with a garden hose that such jets, perpendicular to,
walls or sidewalks, go off radially in all directions, with more or less circular symme-
try. You will also observe that there is a region near the jet that is much shallower than
the rest, as shown in Fig. 7.23 and described in Sec. 7.5.3. A more interesting and
complex problem is the flow of a jet against a flat surface that is not perpendicular to
it; you can also observe this flow with a garden hose. The flow is more or less circu-
larly symmetrical, but much more goes away in the direction away from the hose than
in the direction toward the hose. But why does any of it flow back in the direction toward
the hose?

We can understand this if we replace the three-dimensional problem (circular jet,
moving in x, y, and z) directions with a two-dimensional jet (as might issue from a rec-
tangular slot) that is constrained to move only in the x and y directions (by directing it
into an open rectangular channel, which prevents flow in the z direction). This flow is
sketched in Fig. 7.27. Friction is assumed to be negligible, so from B.E. (ignoring grav-
ity) we see that both streams flowing along the wall must have the same velocity as that
in the jet, V;. In the figure the stream going off to the upper right, (2), is larger than that
-goin.g t:o the lower left, (3), in accord with the observation described above. If the flow
l:c tﬁ::c:,t:;nal]cis. tthhen there can be no shear stress on the wall, so the resisting force must
: o the surface as shown. We could attempt to solve for these flows by writ-
ing the x and y components of the steady flow momentum balance, but that adds more
terms and only makes the analysis harder (try it!),

i o, e s e s,
’ , the r direction, perpendicu-

lar to the plate, i : s
il p as sketched on Fig. 7.27. We now apply Eq. 7.17 in the s direction,

0= mVicos 0 ~ raVy — gy + F, (7.64)

From the assumption of frictionless flow, we can see th
i A at F, = 0, that th -
fuwdu of Vi, Vo, and Vj are the same, but that V4 is in tho' minus s dimec;::dmethn:s'
is equal to ~V,. Making these substitutions, and dividing by V,, we find i :
O-Iiucoso-rh;+rh, (7.BK)
(@) Using the material balance to eliminate my, show the |
(b) Show the equation for the force exerted on the wal] {

78. In a steady-state methane-air flame at a
pproximatel
ature is raised from 68°F to 3200°F. The lncomin: {i:

equation for my / .
n the r direction,

tmospheric pressure the temper-
“BAs mixture and the products of
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