School of Engineering

Chemical Engineering Department

(965201) Computer Applications for Chemical Engineering

First Semester - 2020/2021

Quiz#2

Q1: Write a MATLAB script to:

- (a) Plot the function $z(x) = \sin(\sqrt{x}(1+x)^{1/3})$ for $0 < x < \pi$. Label your axes.
- (b) Numerically find $\int_0^{\pi} \sin(\sqrt{x}(1+x)^{1/3}) dx$ using:
 - 1. trapz function
 - 2. quad function (use the inline function here).
- (c) Find the relative error occurred from using trapz function.

Q2: Solve the following implicit differential equation over the range t = [0,10]

$$y'(y^3 - 1) - t^2 \cdot y^2(y')^2 + \sqrt{y'} - t/y = 0$$

with
$$y(0) = \sqrt[3]{2}$$
, and $y'(0) = 1/\sqrt[3]{2}$

- Write your **function**
- Write your commands to solve the differential equations
- Plot the results after writing down your full plotting command.

School of Engineering

Chemical Engineering Department

(965201) Computer Applications for Chemical Engineering

First Semester - 2020/2021

Quiz#2

Q1: Write a MATLAB script to:

- (a) Plot the function $z(x) = \cos(\sqrt{x}(1+x)^{1/3})$ for $0 < x < 2\pi$. Label your axes.
- (b) Numerically find $\int_0^{2\pi} \cos(\sqrt{x}(1+x)^{1/3}) dx$ using:
 - 1. trapz function
 - 2. **quad** function (use the **inline** function here).
- (c) Find the relative error occurred from using trapz function.

Q2: Solve the following implicit differential equation over the range t = [0,10]

$$y'(y^3 - 1) - t^2 \cdot y^2(y')^2 + \sqrt{yy'} - t/y = 0$$

with
$$y(0) = 1/\sqrt[3]{2}$$
, and $y'(0) = 0$

- Write your function
- Write your commands to solve the differential equations
- Plot the results after writing down your full plotting command.

School of Engineering

Chemical Engineering Department

(965201) Computer Applications for Chemical Engineering

First Semester - 2020/2021

Quiz#2

Q1: Use the **inline** function and the suitable solver to solve the nonlinear equation below, and find its **three** solutions in the range of 1 < x < 10.

$$f(x) = \sin\left(\sqrt{2x}(1+x)^{1/3}\right)$$

Q2: Solve the following set of differential equations over the range t = [0, 1], and then plot your curves $(y_1, y_2, and y_3)$ (always label your axes):

$$y'_1 - 2y_2 + y_1^2 \cdot y_3 - 2 = 0$$
 $y_1(0) = 1$
 $y'_2 - y_2^2 + y_1 \cdot y_3 + y_3^4 + 3 = 0$ $y_2(0) = -1$
 $y'_3 \cdot (y'_2)^2 - 2y_3^3 - 1 = 0$ $y_3(0) = 0$

- Write your function
- Write your commands to solve the differential equations
- Plot the results after writing down your full plotting command.

School of Engineering

Chemical Engineering Department

(965201) Computer Application for Chemical Engineering

First Semester - 2020/2021

Quiz#2

Q1: Use the **inline** function and the suitable solver to solve the nonlinear equation below, and find its **three** solutions in the range of 0 < x < 10.

$$f(x) = cos\left(\sqrt{2x}(1+x)^{1/3}\right)$$

Q2: Solve the following set of differential equations over the range t = [0, 1], and then plot your curves $(y_1, y_2, and y_3)$ (always label your axes):

$$y'_1 - 2y_3 + y_1 \cdot y_2^2 - 2 = 0$$
 $y_1(0) = 1$
 $y'_2 - y_3^2 + y_1 \cdot y_2 + y_1^4 - 3 = 0$ $y_2(0) = 0$
 $y'_3 \cdot (y'_2)^2 - 2y_1^3 - 1 = 0$ $y_3(0) = -1$

- Write your **function**
- Write your commands to solve the differential equations
- Plot the results after writing down your full plotting command.