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1.1 Verify the dimensions, in both the FLT and MLT systems,

of the following quantities which appear in Table 1.1: (a) vol-
ume, (b) acceleration, (c) mass, (d) moment of inertia (area),
and (e) work.

. ! 3
(2) Volume = L

(6) acceleratiovn = EFime rale of change of velocity

LT~ . 2
T e

ly-

() mass = M
or with F=MLT?

. - 2
mass = FL ava

(A) moment +F 1nertia (Area) = 5€cond tnoment 0F Arex

= (12)r) = LY

(e) work = dLorce x distance
2 EL
or with F=pMLT?
work 2 M L2T 2
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1.2 Determine the dimensions, in both the FLT system and
MLT system, for (a) the product of force times volume, (b) the
product of pressure times mass divided by area, and (¢) moment
of a force divided by velocity.

() force X Volume = (F)(L%) = ——'tﬁ

Since F = MLT™?
Lorce x volume = (MLT“’)(Lg):‘— /ﬂq [_(’cf"z
—/ -
™) pressure X Mmass . (FL'Z)(/M) - (FL—z)(FL 7"4\3)
( QA rea. B L? L2
/:ZL"57~2
(rg 070 () (M)
L? |

MmELPT R

Il

I

fmoment of o force . FL - FT
velocity 7! =

Gar772)(r)= LT

(

(€)

LI

[—2
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Veri"fyﬂ the dimensions, in both the FLT system and the
MLT system, of the following quantities which appear in Table

1.1: (a) acceleration, (b) stress, (¢) moment of a force, (d) vol-
ume, and (e) work.

(@) acceleration = Ve,f’w&’ = -[-‘—~2 = [T *
+lme T —_—
= -
(A) Sé_’/ess:: ’.[Ol’ﬁe : ____2_: = /:-L 2
area ["

Since F=MLT}
-2
stress = LT = MLTITTH

2 e N

cc) tnement of « Yorce = Foyce x distance = FL

e —

SLTIL = aLlT*

(d) volume = (/6/757“/)) = L3

P —
e

() work = force x dishince = FL

(ML T O = mr*7 >

il




r% 14 If P is a force and x a length, what are '(

the dimensions (in the FLT system) of (a) dP/
dx, (b) d3P/¢x3, and ‘(c) P dx?

(w) 9L 2 E = g2
adx L =

L5

1.5 If p is a pressure, V a velocity, and p a fluid density,
what are the dimensions (in the MLT system) of (a) p/p, (b)
pVp, and (¢) p/pV*?

. ML._'T-Z . 2 -2,
(a) -:E" == /-3 = L T

2,73 __ -
(b) pVp= &L“‘T‘)(LT“’)(M[’)ﬁ mMILTT

’P ’ /\7'[’/7‘”2 . o101 | |
(¢) —— = = M°L°T dimensionlpss )
AvE - (ML) (LT)" (m ’

/

{
~x

e
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1.6 If Vis a velocity, fa length, and v a fluid
property having dimensions of L2T-!, which of
the following combinations are dimensionless: (a)
Vv, () VU/v, (¢) Vv, (d) VIB? '

(a) VAV = ([,T")(L}/sz'/ = ZyT‘Z ﬂyorl //}nens/‘oa/ess)

\//@ - 7! L) P
(4) — = [[:f_i_z_);'(_:;) = /°T° /a’/m(_ns[an/ess)

() viy = [[_7") /LZT“)—‘—"' /;97~3 /097‘ (/(Menszbn/cs.s)

Vo T L -
(d) 77—/—-‘:: [[_L)/([_Z 7__/) = [__l (ﬂo‘lé d/ihfr)S/bﬂ/ij)

4.7

1.7].  Determine the dimensions of the coef-
ficients A and B which appear in the dimen-
sionallv homogeneous equation

d*x dx
W*‘Adt'ﬁ'BX"O

where v is a length and 1 is time.

2
d“x +AF;.O.’£+B,;(::O

L dt
[/_7‘“’] + fA][/- T“Z) «[B][L] =0
S/nce cach term must have the same dimensions :
[a1lr] = [T

SO "/114'/‘

Az T
ancl iy
(g][L] = [LT]

" B=T7*
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1.8 The volume rate of flow, Q, through a pipe containing a
slowly moving liquid is given by the equation

B 7RAp
T 8ud

where R is the pipe radius, Ap the pressure drop along the pipe,
w a fluid property called viscosity (FL™*T), and ¢ the length of
pipe. What are the dimensions of the constant /8?7 Would you
classify this equation as a general homogeneous equation?
Explain.

v+ [
7] () 7]

The Consktant —'7/8 Is dimensmn\essj and

‘/’he eﬂgud—:bn Is a ﬁeneml homogeneous

ezud‘:bn That 15 valid 1n any  Consistent
Um'y system. Yes.

I—b
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1.9 According to information found in an old hydrauiics
book, the energy loss per unit weight of fluid flowing through
a nozzle connected to a hose can be estimated by the formula

h = (0.04 to 0.09%(D/d)*V*/2g

where & is the energy loss per unit weight, D the hose diameter,
d the nozzle tip diameter, V the fluid velocity in the hose, and
g the acceleration of gravity. Do you think this equation is valid
in any system of units? Explain.

K= (004 0.?)7‘) /_g)‘fzga
[ oo oo [ ET
[/- ] = [0'0‘* o 0,07] [L]

Since each Lerm 1 The ezua,zl/o'h must have The
Same  dimensions, The Constant ferm (0.04% + 0.09) must
be o/ mensionless . 77»1&(5/ The fgdﬂ,éﬂp}/ /5 a Geneval

bamogeneoas efamé/o}, That s Valid i any SYstesm
ayﬁ &IHI-+_5. Yes,

1. /0

1.10  The pressure difference, Ap, across a . .::owsit)rf‘(FL'zT), p the blood density (ML), D'

" partial blockage in an artery (called a stenosis) is the artery diameter, A, the area of the unob-
approximated by the equation structed artery. and A, the area of the stenosis.
% A, 2 Determine the dimensions of the constants K,

A = K. D + K, (Z - 1) pV: and K. Would this equation be valid in any sys-

) ) . tem of units?
where V is the blood velocity, x the blood vis-

1p= kA /(u[ﬁ?”']zﬁvz )
= i J XN ) it T2
(e = I ) Do) « [k [Fe]
Since each term must have fhe same (f/’menszbﬂsJ
K, and K, are dimensionless. Thus, the equation

/S a ?eneml hcnwyeﬁeoas %uaﬁ'o« That would be
valicd 1n any Consistent system of units. Yes.

-7
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‘ Assume that the speed of sound, ¢, in a fluid depends
on an elastic modulus, E,, with dimensions FL ™2, and the fluid
density, p, in the form ¢ = (E,)*(p)’. If this is to be a dimen- -

sionally homogeneous equation, what are the values for 4 and
b? Is your result consistent with the standard formula for the
speed of sound? (See Eq. 1.19.)

/ A
C = (E,,)a({o)
Since ¢z LT E,TFL* p=FL

[#1 [ 7] [55]]

For a g//rht’nSIbnd//e, hamogeﬂeous -eZuA.bo'n each +term
In The eguation ust have The same dimensions. Thus,
the right hand side of £y (1) must have e dimensions
of LT~ Therefore,
aA+b=0 (+» e/iminate F)
2b =1 (2o sahsty cometion onT)

Za44b=-1 (% ﬁﬁ_.wéy ondtion on L)
[’Z‘ —é//aw.s That 6&:-—[2 and é:-—-_é,..

So  That — 7
c = V’:"

.2
[

——

Q

;.
This resul 4 I's Consistent wwitn The standard 7£mfu/a for The
Speed of sound. Yes.




s 1.14  Make use of Table 1.3 to express the

following quantities in SI units: (a) 10.2 in./min,
(b) 4.81 slugs, (c) 3.021b, (d) 73.1ft/s?, (e) 0.0234
Ib-s/ft.

@) 1021, = (102 mm)/f-f‘/w"”-z%) ;;n-;n)

— -3 Arm
= 32 x/0 = 432 2%
(6) 481 slags= (%51 shgs ) (157500 51%)“‘ 70,2 44

() 302 b = (Go2lt ) uwe X)= 1344

) 73'/2%_- (75’,/%) (309‘?/(/0-/&): 22 3 T?—:_

/b-s - 7 2
€) o023k ZE - (0. 0234 "2) (v 78900

L

N 22
— =)
= 1/z 25
/—-/0

3
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1.15 Make use of Table 1.4 to express the

following quantities in BG units: (a) 14.2 km,
(b) 8.14 N/m?, (¢) 1.61 kg/m?, (d) 0.0320 N-m/s,
(e) 5.67 mm/hr.

(a) /42 #m = //542)«/03/»4) (izy/f/)-g): 446 110" £

/b
(b) K. /4 ;"/"/'3 = (8’/4/)-4—(’\-/3 ) [é Jéé)(/(fj Fé3 ): 5'/gx/o 2 b
~ o Feo
m 3 ‘
-3 s/ -
) /&) "ég B (/é/ >(/76‘0)C/0 i:::s):._ 3/2)(/03{!5:9_5
3 e
m > |
A/' 7[7“&
() o030 57 = (0.0520 M2 ) (13704007 ZSZ )
M
_ s
= Z23Lx10 " ZC.’%_{“L'
© s 2« (n0y 2 (2202 ) ()
5. b7 Py ( b7 X106 35 ‘(ZZX/ /m) 3600 5

A
= 5,/7 x/b _3i

/—1

»
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1.16 Express the following quantities in SI units: (a) 160 acre,
(b) 15 gallons (U.S.), (c) 240 miles, (d) 79.1 hp, (e) 60.3 °F.

¢ L2 -2 2
(@) 1,0 acre = (160 acre)(4 356 x 10 W}(q.zeo X1 ?:%)
Y xlc?'g/m z |

J

(b) I5 Gallons = [b Gallons )('? 785'4 -l-er:r)(‘o Im? >= .5'(0.89052%3

) 240 m¢ = (240 ma)(ﬁ'zgd )(56":‘8X|b m

..--)- 3.8bx10° m
o ;

t. J ¥ T
A .
(A) 79, hp-(791hp)(550 : )(\ 3su&u) 5.4p500°
an d ,%-’-" \\/\/ Se "'\\a‘b
79.0 hp= 5,90 X 10 W
ce) To=2 (0.3 -32) =15.7°C

= 157°C +273 = 289K

[~]2
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(5) W= ¥x Yolume
y=pg=(025)007 )01 %

1.17 Clouds can weigh thousands of pounds due to their
liquid water content. Often this content is measured in grams
per cubic meter (g/ms). Assume that a cumulus cloud occupies
a volume of one cubic kilometer, and its liquid water content
is 0.2 g/m’. (a) What is the volume of this cloud in cubic
- miles? (b) How much does the water in the cloud weigh in
pounds?

(a) /Vo:/amé = / Ké/mf =
Since [m = 3281 £ |
f z A\

| o) (2261 )

- (Gzpaw’ £5Y3

9 3
/0 /m3

V5 [ume

———
—

= 0.240 i3

= (192 xwdﬁg )(1o%m?) = 1.

=iz N ) (2 ags ' 32 ) = byl x0T [b

e
)< 9420 5

b ‘
97 XI10° N
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118 1.18  For Table 1.3 verify the conversion re-

lationships for: (a) area, (b) density, (¢) velocity,
and (d) specific weight. Use the basic conversion
relationships: 1 ft = 0.3048 m; 11b = 4.4482 N; ‘
and 1 slug = 14.594 kg.

() [ Ft = (14 )[/0 3049) e }-_- 0, 09290 m™
_é?_
Thus, multply +* by 210 E-1 4 convert
fo “ =

(5 ) / S/u{ (/ s/uff ) (/¢ 55y /eg / H—j
; £¢32 Sluj (0 30%,)

*4
= 5/5. 4 3

Thas, multiply slugy/ F£3 by 5154 E+2 4o convert
to ‘éy /moz

cc) | £5£‘..- (/ 7%)(0.3079%’): 0,309&3%’1

7%%5) mu//xp/ﬁ ,fz‘/s 55 .5’,04‘8 E—/ t  convert
fa 4"'/.\/5.
N | £47
@) //143 (/ ffB (6‘4002 (:(030%?)3 ]

— /57/
T/)MS MM/%/p/j /é/ffe é_g /57/ EFtl 4 Copvert
+o N for 3.

/=14




277 -l 1.19  For Table 1.4 verify the conversion re-
lationships for: (a) acceleration, (b) density,
(c¢) pressure, and (d) volume flowrate. Use the
basic conversion relationships: 1 m = 3.2808 ft;
1N = 0.22481 Ib; and 1 kg = 0.068521 slug.
£t £t
( (// )(3 2508 -~ ) 3 28/ r
Thws) mu”i/)/g m [s* [oj 3.28| to Convert
to Ft/s%
I
L) ta . __3. 0.0b852] S1ugs o }
/ m? (‘ m? ( z—> (3 2308)" #°
— -3 slugs
= [ FHo xI0 !
T/qus} mul{zp %j//m b3 [ 9‘:‘015"3 £o  Convert
{-o S/M 75/16'6 3.
| m >
) | N, 02248 L) L
| ™ ( )( ) (3 2708)* F£*
B , -2 b
2,089 £L1b o
Thus muH/P N/ma Eg 2,089 E-1 4o ctonvert
Lo IL/HFE*
%3 _ 7Cf3
(d) | 2 (/ )[(5’ 2808) = 3531 %

T/')us) muléip/g m3/s by 3531 E+|l to convert
Lo F£1EYs

/~15

.‘




/. 20
1.20 Water flows from a large drainage pipe at a rate of
1200 gal/mm What is this volume rate of flow in (a) m®/s, (b)
llters/ min, and (c) ft3/s‘7
(o)

3
fowrate = (/200 90/ ) (¢ 309 x15° 5 Z )

gal
min

= 757 )(/0'2 _{’_s”’..j

(b) S/nce | liter = /Z>

J

FHowrate = (757 <1677 %”'_3)(/0;//;[05) éﬁﬁ)

min

/i Fers

min

4540

(c) ,[’/owraéc = (7.5’7;( ) -%—"3)(3.5‘3/XID "S_t'j )

3
s
= 267 7§

m
s

/<16
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(a)

1.2) A tank of oil has a mass of 2§ slugs.
(a) Determine its weight in pounds and in new-
tons at the earth’s surface. (b) What would be its

*.:mass (in slugs) and its weight (in pounds) if lo-

cated on the moon’s surface where the gravita-

tional attraction is approximately one-sixth that

at the earth’s surface? I
we/'j/rz‘ T omass x g

::(25' S/HﬁS) 322_5_.1)::: 8.054

(25‘ s/uqs)-[/‘/.ﬁ‘f% )(?.X/ —E-”;_): M

9]

- 25 s/uqs (mass dafs /’)z)[‘ c/e/wnd on

(6) mass =
gra vitational attraction )
we/y/n_‘ 2 (25 slugs > (32'2 '—é—é) = /34 b
— e ——
122 1.22 A certain object weighs 300 N at the earth’s surface.

Determine the mass of the object (in kilograms) and its weight
(in newtons) when located on a planet with an acceleration of
gravity equal to 4.0 ft/s2.

weight
Mmass = ?

I

300 N  _ 30.&%;
7.8/ =

6?‘ g{ = %0 7‘;‘/{2‘/
veigpt = (306 ds ) (40 %) (0,308 5)
= 373 N

/—1[7

» S
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1.23  An important dimensionless parameter the Froude number using SI units for V, g, and
in certain types of fluid ﬂow problems is the Froude (. Explain the significance of the results of these
- number defined as V/Vgl, where V is a velocity, calculations.

g the acceleration of grav1ty, and [ a length. De-
termine the value of the Froude number for V =
10 ft/s, g = 32.2 ft/s?, and { = 2 ft. Recalculate

I/’) Bé &//7/'7‘5/

/0 #i—

e (e (270

Ii

™
AN
0

Ln 31 units:
- £ . om
V= (10 £ ) (05089 ) 3085

- 98 &
7 s
= (2 44:)(0.3042 %’é’): 0. b1 m
Thas, .
vV 3,05 25

y?i—z—' W?SI )[Oéarm)

777e Va/t/e o;[ G. c“//'mmsion/z’ss /Dammefer /S
/ndependent of The unit sqj%em,

I-18
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1.24  The specific gravity of mercury at 80 °C
~is 13.4. Determine its density and specific weight
at this temperature. Express your answer in both
BG and SI units.
7/ = S = -
/0 & = /fgo @ #e°C 4 r }
I'n B6& anits
- slugs ) = slugs
E /3.4(/.7%72_3) 26,0 ek
= (3¢.0 3/495 )( F£Y 2 1t
y= s (752 ) = 837 s
In WA units :
3
~ /3.4 (/900 1‘12 >'= /3. 4% x /0 ﬁ
L m3 2
34 P LN
y= (3yxi0 Z2 ) (781 2)= 13/ 2
/25

1.25 A hydrometer is used to measure the specific gravity
of liquids. (See Video V2.6.) For a certain liquid a hydrometer
reading indicates a specific gravity of 1.15. What is the liquid’s
density and specific weight? Express your answer in SI units.

A

o @4

SaG =

(5= L

Joop R% ,,
m3 :

P = (1.15)( 1600 %3)

Iy

//501@
/”43

y=pg = (1150 %)(‘?.31 g”;): [, 3(%’3
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. An open, rigid-walled, cylindrical tank contains 4 ft3
of water at 40 °F. Over a 24-hour period of time the water
temperature varies from 40 °F to 90 °F. Make use of the data
in Appendix B to determine how much the volume of water will
change. For a tank diameter of 2 ft, would the corresponding
change in water depth be very noticeable? Explain.

s of water = V5L
Wheve V° 15 The volume and p The density. Jince The
Mmass must vemain Constant 45 The —femfam-éuye e hanges

‘b;f/flo' i —b?;’x/;o" )

F' E / = _.f!lizﬁ
7om  lable /20@%’/2 /940 2L
- Slugs
/i‘zo@?ﬂ"/—' = L5 7’27‘3
mfreér& Lyom £ g.(7) .
__l74 - (4#’:’:‘3){}'%@ ’f:‘;j: — %D/Xé 75263
n’ [43] 2%,

Thus, The incvease v volume 15 .
4 p)gl — #o00= & 01 8¢ L

The change in (o cher deph, AL 4 {jm/ +o
A0 = AY _ o 018l

area — 2
LAY/
z &ft)

This small change 15 dlepth would not be very
Noticeable. No.

-3 ,
= 59240 HL=0.07101n

Wode: A shightly dtereat value hor AL Wil be obfamen
1f specifec weight of wattr Is used reTher Than density .
This 135 due to The fack fuat fhere is some ancerfuity

i~ The ourth Sigmificant Froure of These Fwwo values, and
Fhe solution 3 sensitive 4o This uncerfainty. ,

/-20
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1.28 A beaker contains 10 in.? of pure giyc-
erin. If 2 in.? of water is added to the glycerine,
what is the specific gravity of the mixture?

@/y x ﬁ/a/wn%/y / (yo/ame)

(V’é/t/me)/ r (Vd/i/me)

[lanw e ) (o i i >am)](i;‘§,,,)

B (/Mr +z/'3)/#3)

density of mixture =

/728 /h,2
= 2.3, 3l
_p.ta
slugs
SG = - 23 s L Jag
lhoowe — Iop B T

I -2
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The information on a can of pop indicates that the can

. contains 355 mL. The mass of a full can of pop is 0.369 kg
while an empty can weighs 0.153 N. Determine the specific
weight, density, and specific gravity of the pop and compare
your results with the corresponding values for water at 20 °C.
Express your results in SI units.

Weight af 76/”12:‘/' | (r)
Volume of +lucd

tota! weight = massx g = @.BAfﬂég)/?tf/;”f): Tl N
Wf/jﬁ/ of can= 6. /53N ] y
Volyme of f/m'ﬂ’ = [355)(/0"?1)//0'3—?-_"-— )-‘— TS5 X[ m @

77114.5/ From E‘j (1)
2l2NMN — 0.]53N v,
' éZ 77 /0 ;5

J= T3

—

F5hE X 10 " m
y 7770 ’A/'.a N 52 44
/0: -?}" - ? i g Q?é o ¥ :77 /ma
62—
42 |
S6= _ﬁ. = 796 m3 Qﬂé_

Hypo @ #°C /600 %

For W{céﬁr L 20°C fgﬁg 7;J/e RB.2 a /4/:/3&4/,3( B)
= ?78 "/"‘{ : = éé . - 7
Sy0” T S la s 76205 5 Sh=0978z
/71— 6&%}04//5&// o/ 73ese Vﬂ/m?.f 95/ /uzl—e;f iTh Those
for The pop Shows That The specitis weight,

6/5/15/:7"'7/ GuAd J/Dec/}gc' jrm/b‘y oF 7716 /oa,o are all
Slightly Jower 7han The corresponding values For water.

[-2L
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“1.30° The variation in the density of water, p, with tem-
perature, T, in the range 20°C =< T =< 50 °C, is given in the

following table.

Density (kg/m’) | 9982 | 997.1 | 995.7 | 994.1 | 992.2 | 990.2 | 988.1
| | | | | %88

Temperature("C)" 20 l 25 l 30 i 35 I 40 ] 45 \ 50

Use these data to determine an empirical equation of the form
p = ¢, + ¢,T + ¢;T* which can be used to predict the density
over the range indicated. Compare the predicted values with the
data given. What is the density of water at 42.1 °C?

Frt The defa Lo a secomo ovder pslynom,e]
USIng G Standagrd Curive- £ Hiis Pregram  such
as sund 1n EXCEL. ThHus,

P = [o0) = 0.05373T ~ 0.00% T* (1)

As  shown ;4 1re Lable below , PL predicted )
from £ (D Is 148 good dgreement with /a (g1v%n) .

T.°C p, kg/m"3  p, Predicted

20 998.2 998.3
25 997.1 997.1
30 995.7 995.7
35 994 1 994.1
40 9922 992.3
45 990.2 990.3
50 988.1 988.1

A4 T= %20 °C z \
too) ~ 0.05335 (42.1°C) - o.00%1 (421°¢) = T9L5 =%

1/0:: ——

[—23




[31

1.31 If 1 cup of cream having a density of 1005 kg/m® is turned
into 3 cups of whipped cream, determine the specific gravity
and specific weight of the whipped cream.

4
Mass s £ créeam , mm = (/ 005",,,‘,%)" (-ch.p >
wheve Y~ volume.

Since Meverm = wlipped
Cream
M W h s ol ‘/Qﬁ_
/’lhw’w = crihel - (I 005 3 >+Le.ugp
c ream
.J»[—% C.“-PS' JVL'; QKPS
k¢
- | o5 m 3 335 \.a;k_&'
3 m?2
hog
S C:) = chre&p':‘d '335. (7%’1-&3 = 0 335'
) *¢. —
(;)'JZ.D @ “f c looo —/;n‘—3

tream cream
. N
= 3290 XL
m

- =24
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1.32 The density of nitrogen contained in a tank is 1.5 kg/m’
when the temperature is 25° C. Determine the gage pressure of

the gas if the atmospheric pressure is 97 kPa.
£ J [25‘6 +2 k]
= 133 %R (abs)
Y (gyge) = B~ B,

|33k Py - Tk = 3b kP

/.33

1.33 The temperature and pressure at the surface. of Mars
during a Martian spring day were determined to be —50 °C and
900 Pa, respectively. (a) Determine the density of the Martian
atmosphere for these conditions if the gas constant for the
Martian atmosphere is assumed to be equivalent to that of
carbon dioxide. (b) Compare the answer from part (a) with the
density of the earth’s atmosphere during a spring day when the
temperature is 18 °C and the pressure 101.6 kPa (abs).

= -————-//o = %OM =0.0214 t}
fMars RT ’ ’ m?3

(’33‘7 o )[(—50 c+z13)a

4 Iol. tpxao
(L) —_— = 99 RE
c“m' RT (Zal,‘i-—')[(mc*zﬂ)k] 22 n3
/k’ %4
T\r\us)

e +q

ars o 002 s 015 = 1,159

/O eart .22 '_klﬁ* -
m3




1.3% A closed tank having a volume of 2 fi® is filled with

0.30 Ib of a gas. A pressure gage attached to the tank reads 12
psi when the gas temperature is 80 °F. There is some question
as to whether the gas in the tank is oxygen or helium. Which
do you think it is? Explain how you arrived at your answer.

| _ weght 0304
Density of gas in tank  p = 2 x volume [zz;_fé)/zfé’)
27

-3
= S/&{¢.$
HbLb x 10 3

A .
e with  p= (12¢/%7)/95/¢

(ﬁf/‘no.s//'lf’/’zé pressure  assumed fo be x /‘/:7,0.3’/'42)
and witn T = [(POF +4ks)R At Allus tht

.f/ﬂte /0:

1b inx
- /.24.7 7;.,_)//4#—'%2’)__ 712 s lugs (1)
£ (540°R) £ A3
Prom Table 17 R=/55%x10> For oxygen
oA L= /,,24‘2X/0l" #t b 7Lar Ae/mm,
5/,,9.0,@
7714(5/ Lrom Eg. (1) +f Tne gas Is oxygen
- 7./2 J/t{.ﬁ = 4’52)(/”-35/”%
~ /5543 J3 3
ano Aor  Felium _
e 7. /2 = 573 X1 y“i?%ij
l2yzxlp

A C&M/)W’/!Z‘ﬂ of These talues wiTh The actual  density
of  Fhe 45 1i The tank indicetes Tnat Tre

9aS  raust  be OKygen.

-2
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1.36 A tire having a volume of 2.5 ft* contains air at a gage
pressure of 30 psi and a temperature of 70 °F. Determine the
density of the air and the weight of the air contained in the tire.

) v
b (30 % + 1472 ) (1wl -
,—Q—:r = A. /n,”-) ( S - 703 )(/0 2 5/.444::

(’7/6» %% )[(70‘7 o) = ==

/-’::

weight = e volume = /7.09)(/53 %5) (22,2_?1) (25'—/%3)

- 0.570 [}

/=271
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1.37 A rigid tank contains air at a pressure of 90 psia and
a temperature of 60 °F. By how much will the pressure increase
as the temperature is increased to 110 °F?

P PRT R (57’3)

FDV & rigid closed fank ﬂe arr mass ancel
Volurne ave wnséomf Jo /0 = Cansz‘anf Thus,

#}ﬁﬁm t‘g l & /wn‘w R camz'-ﬂnz‘)

* - | (1)
where = §0psca | T = 60 F + Y40 = 5 20°R,

and T, = //0°F -/-6%0 = 6‘70% r. me; Eg‘, )

S20 "k

5 = 275_ 4 = 576°; )(ﬂ/xm) 75’ 7/.9544“_‘

=28
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/s /n °C
| T= °C+ 27315

| /4 spreadsheet (1 EX(EL) pregram Hor calewlating P Follows

*1.38

Develop a computer program for calculating the

density of an ideal gas when the gas pressure in pascals (abs),
the temperature in degrees Celsius, and the gas constant in

ff:;V an sdea) 94s

ff;./o/eT

So That
p=

Wherve f is absolute pressure
I's absolute +emperatdré. . Th

E
RT

Then

R The gas cons }'“”é/ ahd
us, 1F The tempe rature

- |This program calculates the density of an ideal gas |

- |when the absolute pressure in Pascals, the temperature

in degrees C, and the gas constant in J/kg+K are specified.

" |To use, replace current values with desired values of
temperature, pressure, and gas constant.
A B C . D
Pressure, | Temperature,| Gas constant,| Density,
Pa °C JIkg-K kg/m®
1.01E+05 15 286.9 1.23 Row 10
X
Formula:
=A10/((B10+273.15)*C10)
l | |
Example. (4leulate P for b= Zook Fa, temperetyre
1 20°C, ana R=287 J/hy- k.
> A e B A [ C D -
Pressure, | Temperature,| Gas constant, | Density,
Pa °C JikgK kg/m®
|2.00E+05| 20 287 238 Row 10

—
—

/=29
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*1.39

cheat Problem 1.38 for the case in which the

pressure is given in psi (gage), the temperature in degrees

Fahrenhext and the gas constant in ft lb/slug °R. ,

Fpr an (deal gas
e P
ﬂ_.

S0 +ned

/Q/

Thus, /7‘ temperature e °F, and pressuve 10 psi
T= °F+ %5947  ana P l_-f’(/’") 'JS.;, CPS“Q)_—]’(”%"

L«)/u’re p s absolute /)re.ssure, ang T Is né.ra/u{-e '/‘empeméunﬂ

Then

Sprmd.sbee-i / EXCEL) Pr&ymm for M/ﬂull—‘é'lnj (0 #o //aws

This program calculates the density of an ideal gas

~|when the gage pressure in psi, the atmospheric

pressure in psia, the temperature in degrees F, and

the gas constant in ftIb/slugdeg R are specified.

‘| To use, replace current values with desired values of

‘|9age pressure, atmospheric pressure, temperature“,‘

and gas constant.

i 2

-

?;iu
A B C D E
Pressure, | Temperature,| Gas constant, | Atm. Pressure, | Density,
psi °F ft Ib/slug-°F psia slugs/ft®
0 59 1716 14.7 0.00238 | Row 12
X
Formula: N
=((A12+D12)*144)/((C12)*(B12+450.67)) ||
| 1 t |
E&amp!e Cq/cula'l'c /O 74')" ? 6(0,956 ‘é(mﬂmfm’? /490/6.
ﬁ, - ‘?' 14, 7/95./,4. ana R= /7/4# /A/J/uj'
A B c D E
Pressure, Temperature, Gas constant, | Atm. Pressure, Density,
psi °F ft Ib/slug °F psia slugs/ft®
40 | 100 1716 | 14.7 0.00820 | Row 12

| =30
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1.40 Make use of the data in Appendix B to determine the
dynamic viscosity of glycerin at 85 °F. Express your answer in
both SI and BG units

T, = —;: (7.-32)= Z (g5 -32)

= 294 °C
F/’pm F;y B/ in 4,0/){%!//:! B
//( (4lycerrn o a?f"/“(.w.#"d) ~ O é M-S e (SI “”"'}5)
N M S ~2
fR06 D5 ) (2oss xio ft’* < L3x10° =3 % (85
/”12;

1-31
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141 One type of capillary-tube viscometer is shown in

¥ideo V1.3 and in Fig. P14l . For this device the liquid to Glass
be tested is drawn into the tube to a level above the top strengthening
etched line. The time is then obtained for the liquid to drain bridge

to the bottom etched line. The kinematic viscosity, v, in m¥/s

is then obtained from the equation v = KR*f where K is a

constant, R is the radius of the capillary tube in mm, and ¢

is the drain time in seconds. When glycerin at 20°C is used

as a calibration fluid in a particular viscometer the drain time )

is 1,430 s. When a liquid having a density of 970 kg/m” is Catp'é'a’y
tested in the same viscometer the drain time is 900 s. What ube
is the dynamic viscosity of this liquid?

Etched lines

, & z
= KR "L m FIGURE P1.4l

For alycern @ 20°C V= [19x10 Tm¥%
e = (kR 430 5)

L

LRt 5.32x107 m®/s*

For wunknown /zZul.c/ with = 900s

il

(5 7240 m*/s2) (900 s)
T4q xj0 " om*/s

p

(970 "éo%,a) (7. g xip
M.
m 2

-

u

i

Since /L(,

I

[}

p 727 R& = 0,717
m-5

/~32
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142 The viscosity of a soft drink was determined by using
a capillary tube viscometer similar to that shown in Fig. P1.41
and Video V1.3. For this device the kinematic viscosity, v, is
directly proportional to the time, ¢, that it takes for a given
amount of liquid to flow through a small capillary tube. That

" is, v = K1. The following data were obtained from regular pop
and diet pop. The corresponding measured specific gravities
are also given. Based on these data, by what percent is the
absolute viscosity, u, of regular pop greater than that of diet

pop?

Regular pop Diet pop
1(s) 377.8 300.3
SG 1.044 1003

% qreater =

ey ~ et x1ob = /éuk" )

- —_— X loo
Mdiet Sdiet

S/nfe v:/l/o) W,:‘ki} ﬂllﬂl /0: Ksél)/oyzﬁ ﬂqoc
KV/~0)!"c_{«y

0; 7reate t"’ ;
/b grester (V0 )dit

%x lod

_ | (£ 35>f93 _ (| x oo
(£ x S&ldiet

= (37785)0““') _ (| x l}o%o,
((300.35)(1.003) [

/]~ 33
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1.43 The time, ¢, it takes to pour a liquid from a con-
tainer depends on several factors, including the kinematic
viscosity, v, of the liquid. (See Video V1.1.) In some labo-
ratory tests various oils having the same density but differ-
ent viscosities were poured at a fixed tipping rate from small
150 ml beakers. The time required to pour 100 ml of the
oil was measured, and it was found that an approximate

(a)

L= |+ <10V ¢ Sx|0°VZ

equation for the pouring time in seconds was r = 1 + 9 X
10% + 8 X 10°»? with v in m%s. (a) Is this a general ho-

mogeneous equation? Explain. (b) Compare the time it

would take to pour 100 ml of SAE 30 oil from a 150 ml

beaker at 0°C to the corresponding time at a temperature of

gO"C. Make use of Fig. B.2 in Appendix B for viscosity
ata.

(1)

[T]= [17]+ [7;(/0?[—5] + [3}(103] —7[-_'-:]

Since each +erm 1n the egum!/[m ryst have the same
dimensins he constants a,p/)egr/}yj i The egaa_ézéa

ust have

[7= ]

drmen 5/0}15/ L @

RURE [

Thus, WiTh a  change 10 units The value
Constants would cHmmge and This 1S HoTL &

homogeneous Lyguatws.

i o) <[E]
-

Q[ 7716.
Geneval

Mo .

(L) From 7Table 8.2 sn A ppendix B :
(Yor SAEZD 6i] @ 0°C) V= 2.3% /072 m*/s
(for SAED o;] @ 60°C) V= 4o x 07 m*s

77};/_5/ f/;fpm Eg(/)
@ ©0°C t=

[+ Gu0* (2.3x1)+ o110 (2.3% 1)

= J/s

P ——
P ——————————

@ b0°C

2
S+ = |+ ?’xzoz(%ox/o“f)r é’X/bg(’leO;)

= [, O% 3

/=34




77

1.44  The viscosity of a certain fluid is 5 X
10~ poise. Determine its viscosity in both SI and
BG units.

Fl“pm /4,0/37/7#/46 E /0-“’ —% = //70/53 T;I(/S

s (i pne ) (167 25 )e s

9
Polse M

and From Table 1%

\ 5 6.5 T 1pes
= (4 __Al‘__. o )=/ 0 =,
= (50" 25 (2,089x10 %)_ r04x
”me ‘
1.45  The kinematic viscosity of oxygen at 20 °C
-.and a pressure of 150 kPa (abs) is 0.104 stokes.
~ Determine the dynamic viscosity of oxygen at this
temperature and pressure.
p= )
b ssox . y
08 o ]
é}u@ [ 3)k
mz
L= O[04 stokes = O)o% —
oml Z
0./0 0 M N( 197 _-—)
= (0004 227 ) (107 2 (147 7
Y- -5
= Q.05 < /) s S 2.05 x10° NS
mrSs

/~35
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*1.46 Fluids for which the sheanng stress, 7, is not linearly -
related to the rate of shearing strain, ¥, are designated as non-

Newtonian fluids. Such fluids are commonplace and can exhibit

unusual behavior as shown in Video V1.4, Some experimental
data obtained for a particular non-Newtonian fluid at 80 °F are
shown below.

(b/fY) | 0 | 211 | 782 | 185 | 317 |
vy | ol so | 100 | 150 |20 |

- Plot these data and fit a second-order polynomial to the data using

a suitable graphing program. What is the apparent viscosity of

" this fluid when the rate of shearing strain is 70 s™!? Is this

apparent viscosity larger or smaller than that for water at the

same temperature?

Rate of  Shearing
shearing stress,
strain, 1/s Ib/sq ft £ 40 1=0.0008 7* +0.00357
0 0 g * )
50 2.1 G 30 /
100 7.82 8 20
150 185 B A
200 317 £
5 00-:“’/(
£
® 0 50 100 150 200 250
Rate of shearing strain, 1/s

/.;i,'am the é,@}, “l‘ 000026’ + 00035 ¥ wbere

T 15 fhe sheanns Stress i U’/—Ft" dnd Y /s ’/74e rate
o[ shearing strain in s/

| at
/‘appm,.+ Fr (2)(00009)3%

,4i- Y= 75"

/l{ﬂ.f/a’”,yf "‘(Z]/” 0008 ’ctz.)(705‘

:'O,II ‘3{_{_

0. aoa’s‘

)+ oaoa

_lLs

e

=5 lb.s

From Table /5’/ " /ippmdci B, /“,;w@gwr' = 179/ x1o Wf'n

qm{ simce &wai-er s a /Vewiwman Aluid
Independent of & -

-F/md /’Ms a maah /ﬁi"?(’r Value

515 Ua/ue Is
Thus, T7e zmknaam Nnon- Newtoman




I 47 LAy Water flows near a flat surface and some measure-

- ments of the water velocity, u, parallel to the surface, at different
heights, y, above the surface are obtained. At the surface y=0.

After an analysis of the data, the Iab technician reports that the
velocity distribution in the range 0 < y < 0.1 ft is given by
the equation

u=081+92y+ 41X 10%°

with u in ft/s when y is in ft. (a) Do you think that this equation

would be valid in any system of units? Explain. (b) Do you

think this equation is correct? Explain. You may want to look
at Y uk o 1. .2 to help you arrive at your answer.

raz oy ose/—,«aZg-r 4/3(/o3g
- firl: | [0.81]+ [‘f ZJ[L] + |# leo] [LZ‘J

Ea&h ferm 7 The eguation must  have The same d/menswn{
777515 The toastant O.8/ rmust Have 41”’{"5'0”4 of LT:I
72 dimenssons of T~ aaa 4 x 17 dimeasions of L~ r!
Since T7e d«on.:éﬂﬂi':' /n The e‘f"‘“ﬂ;”' /MVC clsmensuns Their
M/hes will ch4/77¢ with a. change (i “”5%5 MNe.

~ (é) Eguaimn c’mmmf be »rreuf 5//7£e aﬁ l:f o 'M"ﬂgl’&%)

a ”ﬁ”‘??/’d VA/UC I:O}IIC/] would V(D'a,{-g ’h;e_ no S’IP
Conditin . /(/‘47!-‘ qorrect. ,, |

i

/=37
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1.48 Calculate the Reynolds numbers for the flow of water
and for air through a 4-mm-diameter tube, if the mean velocity

*is 3 m/s and the temperature is 30 °C in both cases (see Example
1.4). Assume the air is at standard atmospheric pressure.

For water at 30°C (From Table B2 i Appendix B):

4 . N
»ﬂ: 2457 —4;23 /“ = 7.975 %10 —/;’5;_
4
e = PVD (7257 ;”33) (3 %") (@,0@4/»4) ~ /5 000
S 7. 975 <107 NS '
ml-
For acr at 3p*¢ (14‘0/77 Table B4 in Appendix B):
- Ay o -5 M5
/ = /165 — /u_ [, 86 <10 -
L Aa N\, om
poo pVO (L5 55)(3 T) (o0
Vo [ 86 x10°° VS =
qu

| =38



/049 1.49 For air at staridard “ziihiéspheric pressure

the values of the constants that appear in the

Sutherland equation (Eq. 1.10) are C = 1.458 X

10-¢ kg/(m-s-K'?) and § = 110.4 K. Use these-
values to predict the viscosity of air at 10 °C and
90 °C and compare with values given in Table B.4
in Appendix B.

3 - 3
- CTZ //,45(?)«/04___1@1__.)7-1
= = %
/( /)r)-g./(z
T+ S
T + l1o.4 K

For T =/0°C = [0°C + 473,15 = 283.15K

" 3,
[, 459 X10 (,283,/5/< -
= (1. 458 / ) = [ 7p5 %[00 N3
28315 K+ 1164 __ m*
From Table 3.4)/= L 76 x10”° 23
e *
For T = 96°C = 90°C + 27316 = 363./5K,
/A
_ (/459 x10"°)( 303 15&) " 5
/Lf. - ) = 2-/3)6/05 _4_/;.5
363 15K + 1104 _mw*

avma——

Mm%

From Table 8. 4/ /k = ,?,/4;(./0"5 NS

/-39




/5D
/.50 %
1.50* Use the values of viscosity of air given
in Table B.4 at temperatures of 0, 20, 40, 60, 80,
and 100 °C to determine the constants C and $
which appear in the Sutherland equation (Eq.
1.10). Compare your results with the values given
in Problem 1.q. (Hinr: Rewrite the equation in
the form ‘ ’
T3 1 A
W (c)T fe
and plot T*%/u versus T. From the slope and in-
tercept of this curve C and § can be obtained.)
fjluf/o;o [.10 can be wriften 1n The form
3
and w1ty The deta from Teble B.Y :
% %2 \
Tl) T (x) Jelwst) T o [ Chg/ns)
o A73.75 171 x00™° 2.6%0 £ /0 ‘:
20 Q4305 (82 xn™? 2.75Px Iy x
%o 313.15 [87 410 ; :.‘iéjx/og
6o 33345 97 X0~ 387X
80 35375 207X /07 T A0EXIO
100 3735 2074107 3. 322 x 10
ot r% T -
A plot of 7T Y vs. T 15 shown below
3.5x10" o e
'e./
34 i
e [ o S
/ % Z0XI0 =
:Z.s"XIO‘;“ L 280 i %oo |
| , T(k)
leon)
/=70




150%]  (Con't)

Since The deta plot as an approxmede straight |ine,

Ej.(“ an be re/omsm%ed .57 qn 5’51(4;1.‘102/ of The
form
Y= bx +a

A
where jmT/uJXNT) 15~//c)a;m a~ S/C.

Frt 7736 date 40 a lhear égcga){vén Using a

Standard  eurve~fiting Progvam Such as dound
In EXCEL. Thus,

57= é.‘?é?)(/oix + 7. l/-L/./xlb7

and
-é-=5= CT69x 0%
-6
s Pt C = 143 518" Ayffm.s- k™)
and - ' ~7 o
S-a = T4u/ xI0
C
and Therefore

S= /07 K

7}”?56 Values 4ov C and S are in good ayreemm‘é
wi Values given in [Problem | 49 .

/

|

41
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1.51 The viscosity of a fluid plays a very important role in
determining how a fluid flows. (See Video ¥1.1.) The value of
the viscosity depends not only on the specific fluid but also on
the fluid temperature. Some experiments show that when a
liquid, under the action of a constant driving pressure, is forced
with a low velocity, V, through a small horizontal tube, the
velocity is given by the equation V = K/u. In this equation K
is a constant for a given tube and pressure, and y is the dynamic
viscosity. For a particular liquid of interest, the viscosity is given
by Andrade’s equation (Eq. 1.11) with D = 5 X 107" 1b - s/ft?
and B = 4000 °R. By what percentage will the velocity increase
as the liquid temperature is increased from 40 °F to 100 °F?
Assume all other factors remain constant.

- K
\/Lfbo ) /U%D

- K
Vies™ .
Pieo
- | Voo ,
°b Increase 1N V = \_(_’_"_":___\_/i‘f X100 = [_:7",‘1 -1 )X 100
) | V“i’o' ' Yo°

- and ﬂrom E%_(I)S{(Z)

°/° Incvease n

vV = ‘.(._/.‘.../i‘_"_" -—\}K%[oo = &"‘2' -1 KlQD
K//u%' ~
From Andmde’: ezua;}hbg . foo0 ‘»
= &Ex[b (HoF+460)
/U,fo, 5x(o e |
Yooo

and //' = 5’“0—’78 ;m,
100 ;

| | 5x10 €

o/ incyease In V= — 50
b Imevease | sxi57e 32

= 13L%

—p[% 0o

(N

(2.5;)

(2)

I-42




1.52% Use the value of the viscosity of water
given in Table B.2 at temperatures of 0, 20, 40,
60, 80, and 100 °C to determine the constants D
and B which appear in Andrade’s equation (Eq.
1.11). Calculate the value of the viscosity at 50 °C
and compare with the value given in Table B.2.
(Hint: Rewrite the equation in the form

lnﬂ=(B)—;—,+lnD

and plot In p versus 1/T. From the slope and
intercept of this curve B and D can be obtained.
If a nonlinear curve fitting program is available
the constants can be obtained directly from Eq.
1.11 without rewriting the equation.)

'3 gaa dion 1l can e written o The form
In pe -(B) =+ InD
ond wiTn The deta rem Table B.2 -

T(¢) Tk)  1/Tt)  p(Wshm?)

In A

(/)

o 27315 3.0l 10> / 7&'7;(/@‘33 —4.327
2o R293.45 34/ 20”7 /002410 —{.90¢
Yo 3135 2193200~ cs29xp™F - T.33%
60 333/5 3 002 X0 % sesin —7.¢70
90 35315 2.832 20”2 547 ot =7 9vy
/00 3735 2.086 P 2.818x0"F - &1T%
A P/"f of /’1/4 vs. 1/T 15 shown below :
- 70 o
-8.0
/n/« _
b0 o | I R B 1 AR A 5
dox/  Zoxie™3 4ox10"
)
/ Tk
(cor2) "%
[-43
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(Con't)

Sirce 751e c/méa. ,D/o?f' as an a,,bproxzmale _5-.}—;«4,'?,,{_
line  £g.01) Can be used +o represent These deta.
70 ebtamn B mmD/ &'t The data Eo an
exporentia/ 04 uation of tne form Y=4ac
Such as Bund 17 BXCEL.

Thus,

by

D=a = 1767 x10" % w.5/m?

and 3
B= 4= 18I0 XN K

Jo That {_CZZP

-4
/t- /767 XIb £

At 5p°C (323.5Kk),
/870

/( = /.747 xio " e 3230%

I

-4

From Table B,Z} /14 - 5 6%00)(/0—6‘,1/,5/4”2‘

J-44
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153 For a parallel plate arrangement of the
type shown in Fig. 1.3 it is found that when the
distance between plates is 2 mm, a shearing stress
of 150 Pa develops at the upper plate when it is
pulled at a velocity of 1 m/s. Determine the vis-
cosity of the fluid between the plates. Express
your answer in SI units.

du
T=p 7y
du - U_
dy b
- T . /50 G
= = =
(—5) [/5.,>

O 0037

/-45
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1.54  As shown in Video V1.2, the “no slip” condition
means that a fluid “sticks” to a solid surface. This is true for
both fixed and moving surfaces. Let two layers of fluid be
dragged along by the motion of an upper plate as shown in Fig.

otresd ot tha upsar plata, and the lower fluid puis a Shear SIess

on the botton plate. Determine the ratio of these two shear
 SLresses. ‘ Fluidl  0.02m

Fluid 2

P1.54. The bottom plate is stationary. The top fluid puts a shear ‘
fe— 3 m/s —=|

m FIGURE P1.54

For fluid 1

' /Al @9 'l:pp Sur-face_ (GH m,:.)(
For *ﬂlutdl-
lfoﬂ»m surface

Thus

{”P swr—ﬁcc 2o P _
¢ boHom surdace o

j«2 mis+|

0

DLlmm

0.02

l

P
| a———

m e
3% - %% )

m

‘z-;s)_@
)=

op () < ex %




1.55 There are many fluids that exhibit non-Newtonian
behavior (see for example Video V1.4). For a given fluid the
distinction between Newtonian and non-Newtonian behavior is
usually based on measurements of shear stress and rate of
shearing strain. Assume that the viscosity of blood is to be
determined by measurements of shear stress, 7, and rate of
shearing strain, dw/dy, obtained from a small blood sample
tested in a suitable viscometer. Based on the data given below
determine if the blood is a Newtonian or non-Newtonian fluid.
Explain how you arrived at your answer.

AN/m®) | 0.04]0.06]0.12 |0.18]0.30|0.52] 112|210
awdy 6112251 4501 11251 22,51 45,01 90.0 1225 1 450

For o Newboman Fluid 7he ratio of T 7o du/dy 15 a
Constant. For The data g/ven :

7

c/u/a’g
The ratio 15 not a4 Constant but decreases as Zthe rate of shearing
Strain increases. Thus This Flud (bleod ) 15 @ pon- Newtonan Flurd.

4 ,D/oé of The

Curve

would be a 5fi’t//9;//?ﬁ /ine

/ /V'S/mz) 0.0178 | 0.0133 |0. 0107 | 2.0080| 0.0067 | 0.0058 |0.0057 0.00¢]

Gata & Shown below. For a Newbtonien Fluid The
with 4 Slope of

to /.

....... T

LOvop——s
[}

5-/—”55/ 7; Wfm?

oMb
9

SAe‘ak

R

oo : - ‘ -
lo /6.0

Kute oF S/Imr/;rj Jt/m/h) J/{/‘/g) s

)
r0.0

/

/=47
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1.56 The sled shown in Fig. P1.56 slides along on a thin
horizontal layer of water between the ice and the runners. The
horizontal force that the water puts on the runners is equal to
1.2 1b when the sled’s speed is 50 ft/s. The total area of both
runners in contact with the water is 0.08 ft?, and the viscosity
of the water is 3.5 X 10* 1b s/ft*. Determine the thickness of
the water layer under the runners. Assume a linear velocity
distribution in the water layer.

BFIGURE P1.56

F (Z;rceD = TA
fiy' = y_ Wheve d = thidepess o'ﬁ water '@vh’

T: )/(' dy d

hus, ¥
Fefpgh
and
“d: UVA - (5.5‘;(:»'5%;’)[50 f;‘)(o,og,et")
F )

= 1170

[-48




.57 |

1.5 7 A25-mm-diameter shaft is pulled through
a cylindrical bearing as shown in Fig. P1.57. The
lubricant that fills the 0.3-mm gap between the
shaft and bearing is an oil having a kinematic
viscosity of 8.0 x 10~*m?/s and a specific gravity
of 0.91. Determine the force P required to pull
the shaft at a velocity of 3 m/s. Assume the ve-
locity distribution in the gap is linear.

Bearing Lubricant

gl' - 0.5 m |
FIGURE P1.57

Z F:‘ =p = = = =
Thus
© P=TA
where A=rmD = /ﬁha/f /c’ngfh " bfa‘r/'ng) = 77'01
and (velocity of shaft) v
T‘/‘ ( Gap widtn) —/‘1:-
So ﬁui

p-(# £ )roL)
Since. p=Vp = HIENL,, o4 ),

P- (502002 a2 16° 22)/32)f1)(0,025m)(0.50)

(0.0003m )

= 8L N

/-49
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1.5% A Newtonian fluid having a specific gravity of 0.92
and a kinematic viscosity of 4 X 107*m¥s flows past a
fixed surface. Due to the no-slip condition, the velocity at
the fixed surface is zero (as shown in Video V1.2), and the
velocity profile near the surface is shown in Fig. P158 . De-
termine the magnitude and direction of the shearing stress
developed on the plate. Express your answer in terms of U
and 8, with U and 6 expressed in units of meters.per sec-
ond and meters, respectively.

m FIGURE P1.53

C{j =0)
_d—(-/-{ el —f - :i 2:)
dy 2y z 4

gl

0552 F Yt ackig o bt on ploe

[-50
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1.59 A layer of water flows down an inclined
fixed surface with the velocity profile shown in
Fig. P1.59. Determine the magnitude and direc-
tion of the shearing stress that the water exerts
on the fixed surface for U = 2 m/s and h =
0.1 m.

T=p 3‘% FIGURE P1.5%

du . 7, % - 4°
s-vl%-7)
Thasl at the F+ixed surface (_7-'—0)
_d_a.) = 2
dy ¥ =0 h

So That , (1 ’m)
2—:/‘/‘27-{/’) = 4/21/0_ —,/r”—"i )(J-) (Q/i)

= Y4 u9 /o ;n".fz acting in direction of Flow

| -51




/, -
sl L

f -
(¢0

1.60*  Standard air flows past a flat surface and (a) Assume the velocity distribution is of the form
velocity measurements near the surface indicate u=Cy + Cy
- | 94 2

the following distribution: ) .
y (ft) ] 0.0050.01|0.02[0.04| 0.06| 0.08 and use a standard curve-fitting technique to de-
: ’ : termine the constants C, and C,. (b) Make use

u(ft/s) 1074 [1.5113.0316.3711021114.43 of the results of part (a) to determine the mag.
- The coordinate y is measured normal to the sur- nitude of the shearing stress at the wall (y = 0)

face and u is the velocity parallel to the surface. and at y = 0.05 ft.

(4) Use nonlinear regression program, such as SAS-NLIN,
o obtarn Coeffrcients C, and Cy. This program produces
Jeast Squares  estimates of The paramebers of a  ponlinear

Model. For The data gjven,

- -2 _
C= /535" as (< 4350 ££ 5

(4) Synce,

it follows That
7 =p (C, * 3¢ y*)
Thus, ot The wall (y=o)
-5 /b

T=/4 (, = /3.’76‘)</0-7 % )//533{): 5“7?,(/4 vvat-"

At y= 0.05 £

.
T=(37% m-"?%.:)[/ﬁ}/, ” 3/“350;2;—}%"”5#) f

-5 Ib
= (.94 xio 7o

/=52
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1.6/ ' Theviscosity of liquids can be measured
| through the use of a rotating cylinder viscometer
of the type illustrated in Fig. P1.61. In this device

" the outer cylinder is fixed and the inner cylinder
" is rotated with an angular velocity, w. The torque
3 required to develop w is measured and the vis-
 cosity is calculated from these two measurements.
'Develop an equation relating 4, ®, 5, {, R, and
R.. Neglect end effects and assume the velocity
distribution in the gap is linear.

TOrzue d 7: due +o shearing stvess
on snnev cylinder 13 €jtm/7‘v
d7T = F TdA
o bere 4’,4-‘-6?{_- d46) 4, Thus,
4T = RL T db
and %vrjne reZu/'rea’ to rotate

inner cz;//mc/?r is
72 RAT / /6

= ar kK A7

Fixed
outer
e cylinder

Liquid

S

-

AN NN NN NSNS \;\\\
~

T N N NN NN N NN NN

k

A/ SIS SIS SIS IS S SIS I

.
~—Ro

FIGURE P1.6}

top view

(A ~ cylinder length )

For a linear velocity distvibution in +he gap

Jo 7“/74f




The space between two 6-in. long concentric cylinders
vith glycétin (viscosity = 8.5 X 1073 lb-s/ft?). The
inner cylinder has a radius of 3 in. and the gap width between
. cylindersis:0il. in. Determine the torque and the power required
to rotate the inner cylinder at 180 rev/min. The outer cylinder
is fixed. Assume the velocity distribution in the gap to be linear.

From FProblem 1.41, 5
o . TR pw
R, - R
! = rev vad [/ tne ) vad
and with = (180 in )(’77;}';)[405 er ==
Then

EPAVS sx16” 183 )T )
S D1 LI Gk LY

! )
L2

Since power = TT)‘C\) ct Follows That

power = (0.994 fi-lb) (67 24) = 178 L4

/I-5Y4
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R=0.1 ft—

1.63 A conical body rotates at a constant angular velocity of
600 rpm in a container as shown in Fig. P1.63. A uniform
0.001-ft gap between the cone and the container is filled with !
oil that has a viscosity of 0.01 1b - s/ft>. Determine the torque =021t
required to rotate the cone.

RFIGURE P1.63

The ércej c/F) dcting on e syrface

of The cone 153 egdal +o

dF= TdA = T (z2mrdx)

and o BWF |
> wwr)(errds)

Thus, torgue I = f”‘“:?ﬁ'(h 1r

= AT WH "},3d
ek [Pac

L X
An o ax = _é dr
FY&M E‘g(” K _,Q EB
i.TJ'UJ,EQ 3 = TF(AJ[M
07J: Q’Q" r dr 7 h
0
and with

b s
f_: 0.2-%} R= 0.\-'K'£) ‘e.,:' 0.00! F—ﬁ) (p:{ooorp/m) /[A.:o,m T

T T (oo BN Yo o1 5) 2 9.1 )’

2 (o0.001 f)

=0.197 £ 1b

/-85




1.64* The following torque-angular velocity
data were obtained with a rotating cylinder vis-

cometer of the type described in Problem 1.61. /i L]
Torque (f-lb) | 13.1]26.0 [39.5]52.7 | 64.9 | 78.6
Angular

1.0’ 2.0| 3.0' 4.0' 5.0I 6.0

For this viscometer R, = 2.50 in., R, = 2.45 in.,
and { = 5.00 in. Make use of these data and a
standard curve-fitting program to determine the
viscosity of the liquid contained in the viscometer.

velocity (rad/s)

The ﬁrg«e &f is rvelated +o the anju/ar velocity, w, Mrough
The egaabzon )

7. T j/‘ W
=B
(/ See solutwn +o Froblem |6l ). 777445) doy 4 Fixed geemetry
and o quen Vistesrty, £9.0) is of The form
y=bx ( 4T and x )
Where b 1Is 4 constant Lgual o

Kj
b= & LM (2)
/Qo - B‘_ .
T obtain b ot the date 4o a linear .qud'mn
of The form Y=bx USIng & stan davel Cum/e»f:h‘vnj

pProgram such 4s Sound 1n EXCEL.
"Thusi —l[ram Eg.u)

(1)

)R-

/e 2r R
and with The duta guven,
(13,00 Fthes J(2:50= 255 1, )

b= 1308 Ftlbs ) 5o it

- — 245 lbs
= 3 £t
ar (245 4)° (552 #2)

[-56
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1.65 A 12-in.-diameter circular plate is placed over a fixed
bottom plate with a 0.1-in. gap between the two plates filled
with glycerin as shown in Fig. P1.65. Determine the torque
required to rotate the circular plate slowly at 2 rpm. Assume
that the velocity distribution in the gap is linear and that the
shear stress on the edge of the rotating plate is negligible.

Torque,d T | due Fo shearing stresses
on plate 15 egual #o

a7 = F LA
here A= 2wrdr, Thus,
d 9T = ¥ T 2rrdr
an# R
aZ/:Z]f T dr
[»}
j/me 7":/" % J and ;4;' a

[mear Veloctty distibutidn (see ﬁjure)

Teprw
/‘5
Thus,

2

R ) ,
f oka’r 5 [‘f)

ana with The dete g1ven

oy, 27 (0,033 53 )KZ

# FIGURE P1.65

l./.
rev ) o 22 (12 ) 7 #)

Rotating plate

0.1 in.gap =

-
§ 4
v A

‘-’-’-‘-*=y-=r.@

gy 8 3

Ve (oa‘rl'y distr bution

(_"/_ZJ ) (%)

,ptz.
= 0.0772 Lt/

/=57
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147  Estimate the increase in pressure (in psi)
required to decrease a unit volume of mercury

by 0.1%.
£, =~ df £
“y ry (Eg.1.02)
Thus,

dp = — £, 4% _
P "% =~ (% x 10t ,—’,f‘;)/- 6, 001)

dp = 419 x10° ps.

168

1.Lb& A 1-m® volume of water is contained in
arigid container. Estimate the change in the vol-
ume of the water when a piston applies a pressure

~ of 35 MPa. ,
dp ' (
EV d_y/y g. )
Thu5)

Ay ~ — ¥ 4p _ (!nﬁa)(’;?auo‘;’:z)
E

4 2,15 X 1p 7."_’2
or »

decrease in volume z O, 063 m3

= -0 0/463m

3

|-578
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L&A Calculate the speed of sound in m/s for
(a) gasoline, (b) mercury, and (¢) seawater.

C: _%&: (Eg./;/?)
/0
) 9 N
(a) For 7450///76.' e .—]/'31/0 mr_ 38 A
£ - s
680 7t —
10 !

tb) [or mercary ! C = 2 EEXI0 S - ys .
136 X Ip¥ %2, T s

-
(¢) FZr 5€¢wa£er.’ C = 3,3‘/%/0?;1-/2 _ -,éxm
= |5/ Ez

/ho3x103ky
, 771 3

] -59




1.70 Air is enclosed by a rigid cylinder con-

taining a piston. A pressure gage attached to the
cylinder indicates an initial reading of 25 psi. De-
termine the reading on the gage when the piston
has compressed the air to one-third its original
volume. Assume the compression process to be
isothermal and the local atmospheric pressure to
be 14.7 psi.

For isolhermal compression, %:wnsfemz‘ S50 That

ﬁ' = ﬁ Where (~ Injithal state and
/d‘,_ (¥ £ Linal state .
= % .
£, yi £
Since p= mass (% thibdl wlime
volume /2': C hnal volume

Thus,

=3 (for consiont Imass)

and Theretore
7; = (3)[@57« I14.7) psilabs))= 119 psi cass)

or
f ‘iﬁ,je (/?-—- /‘/'7)/99c = [0Y ;ps;.' /gzye)

/¥ o
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1.71 Often the assumption is made that the flow of a certain
fluid can be considered as incompressible flow if the density of
the fluid changes by less than 2%. If air is flowing through a
tube such that the air pressure at one section is 9.0 psi (gage)
and at a downstream section it is 8.6 psi (gage) at the same
temperature, do you think that this flow could be considered an
incompressible flow? Support your answer with the necessary
calculations. Assume standard atmospheric pressure.

For 1soThermal change 1n density
b A
Jo ﬁm{ /z ¢$2_
T
The percent change 1h  aiF densitres defween sechons €1) §C2) 13
%C/Mnfe = /';A x 100
i

z//___ .{éz)xioo = (/-%‘)X/ﬂa

Thus (3. 4+/%7 Jpsca
70/'””79 = |/ - ( —
b G0 +14%7)psia

X 100

= (b9 %

Since /.L5% < 2 "/‘, The 1L/ow Could be Consideved /P;CﬂM/’Ve’S'Ser.

Jes .

[-b1
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1.72 Carbon dioxide at 30 °C and 300 kPa absolute pressure
expands isothermally to an absolute pressure of 165 kPa. Deter-
mine the final density of the gas.

+ -

For Jssothermal expansion /-5— =

constant so That

i) - Where L~ initial state and
/o‘. % -t~ Linal state.

Thus,

/7

4/50) 3

4
"7'?/’1.'

.- -+ 300x/a*—-/-y
°x It =

KT (183. 1% )[/30’(+.173)/<j

les £A £A
/?C " 200 4é/°a. \/5 L/

—

- 293 %4
/;”3

= 524 %2

3

|-62
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1.73 Natural gas at 70 °F and standard atmospheric pn‘@éStxre
of 14.7 psi (abs) is compressed isentropically to a new absolute
pressure of 70 psi. Determine the final density and temperature

of the gas.

P = Copstant  so That

F 'Y .
or /senz‘rop/c compression /—07%

;‘i = [Z/'%E where L~ inibal JJ—é_fe and
L # F Fingl state .
Thus,
A _ oy
G Bl

[~

or /fc= /17? 0.

N———
&

Also N Y A )//441"-’?) )
/)' a - dadn e = /.29 x 10 3 Shugs
‘ £ /3%%(/03 £hilo o] ,‘czg
' 57;;;,2) [ (76%F+%0) @7
Se ‘/’ﬁﬂi l
= L3I
/;[)_ = 70 psviats) (/,2? " /0-3 fl@fj) = 42¢ x/gas/uzs
(] PsC (#bs) 3
/4.7 psc (@b #L3 F+
andl i
4 .
%= ,ﬁ:‘ L (ro g W)
7R Y25 2575 g5 ) (3,097 10° FE 2
= 75 R
er

77;: 765 % - Yl = 305’ o

/=3
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1.7%  Compare the isentropic bulk modulus of
air at 101 kPa (abs) with that of water at the same
pressure.

For aicr (Eg.1.17),
E‘, = ‘éf; = //:’%0)//0/)(/&3/;’,-_) = L4/ "/05-/2;

For water {7‘*5/\: 14)
EV: o?-/g)(/@f/?{
7774/52'

Ey /w«;éer) _ .75 X /0?/34
EV /4/;') L%l X 10%H

= /,5‘,2)</0“




1.75* Devﬂelgpaicompuf[er program for cal-

culating the final gage pressure of gas when the

initial gage pressure, initial and final volumes, .

atmospheric pressure, and the type of process :

(isothermal or isentropic) are specified. Use BG

units. Check your program against the results ob-

tained for Problem 1.70. |77 0

for  com pression or cxpansion,

*
— 7 Constant

where %=/ for isolhermal process,and %= Specific hat vati
7or lsentrope process. Thus,

+ . &
A
where 'n initial stite , £ 1‘}/%4/57‘271.‘4’} So Thit

~
fﬁ://’?') ﬁ. (/)

Since _ Mmass

Volume

Then 4 . V:
7 7

Where /) , 14 , are The mitial and £isal l/o/umes/ vespectively .
Thus, #¥om Eg (1)

%
= [ Ve
?25 ” éci'm _V; ) /€f+ fnl,,,,) (z)

Where The subscrpt g velers to gage pressure . Ezuafwkfl)
Can be wyitHen as

L *
7?6; ) (FZC) /753*7254") A | )

A spreadsheet (ExCeL) program #or Calewlatig
1he Final Gage Pressure Lollows

(con? )




1. 75* (ﬂ@ﬂ't)

This program calculates the final gage pressure of an ideal gas when the
initial gage pressure in psi, the initial volume, the final volume, the

atmospheric pressure in psia, and the type of process (lsothermal or
lsentroplc) is specified. To use, replace current values and’ Iet k = 1 for isothermal

process or k= specmc heat for lsentroplc process.
A B C D E F
Initial g_a_g'e Initial Final | Atmospheric ' Final ange
pressure | volume | volume preséure ' pressure |
Pig(Psi) Vi Vi Pam(Psia) k Prg(PSi)
‘ 2§ 1 ‘ 0.3_333 ' 147 1 104.4 Row 10
S | A
_|Formula:
=((B10/C10)*E10)*(A10+D10)-D10
I 1 I

Duta Hrom Foblem 176 ave included 1 The
above table, 9iving 4 Fial gage pressuve of 104 Y p3C

/-66
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1.76 An important dimensionless parameter concerned
with very high speed flow is the Mach number, defined as Vic,
where V is the speed of the object such as an airplane or
projectile, and c is the speed of sound in the fluid surrounding
the object. For a projectile traveling at 800 mph through air at
50 °F and standard atmospheric pressure, what is the value of

the Mach number?

Mach number = =

me 7&.“2 5,3 In A-ppend:x B

£+
‘ =t

Talr @ 50°F

Thus

]

¥

Magch numbey :
o ok 5F

= Lol

e ——
e ————

(800 {mph)(ﬂiib%-ﬁ;i)(?&g

=67
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1.77 Jet airliners typically fly at altitudes between approx-

imately 0 to 40,000 ft. Make use of the data in Appendix C to
show on a graph how the speed of sound varies over this range.

C= )//éKT (Eg. 1 z0)

5, 4=/l% aua R=17/t 1t

Sug-R
C= %90 7R

Frem Table C.| In 4/9,06’/45//'4\’ C at an a/?LH-ude 071-0 O 4
T= 5900+ %0 = SI9°R  se Thet

C= %490 V579% = /174 2?:‘

Symilav calcalatons lan be tmade for shher alttudes
and The resa’/f/hy 7/*4//1 is shown below.

Altitude, L Temp.°F__ Temp °R ¢, fUs
0 59 519 1116
5000 41.17 50117 1007
10000 23.36 48336 1077
15000 555 46555 1057
20000 12.26 447.74 1037
25000 -30.05 42995 1016
30000 -47.83 41217 995
35000 -65.61 30439 973
40000 -69.7 3980.3 968

1120

. 1100 \\
o \
$1080 \\,
1060
3 '\
)

1040 |
[,

S \

-ngo , <
[ : \
‘%fooo

980 - \

960

0 5000 10000° 15000 20000 25000 30000 35000 40000
Altitude, ft

/=68
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1.78 When a fluid flows through a sharp bend, low pres-
sures may develop in localized regions of the bend. Estimate
the minimum absolute pressure (in psi) that can develop without b
causing cavitation if the fluid is water at 160 °F.

Cavitation may occar wwhen the local Pressure egw/s the
vapor pressure . fop water at 160 °F (fom Table B i ApotndicB)

P = 474 psi (abs)

.
ﬂms/ mInImum pressarve = ‘%74 /Dsc'[dés)

79

1.79 Estimate the minimum absolute pressure (in pascals)
that can be developed at the inlet of a pump to avoid cavitation
if the fluid is carbon tetrachloride at 20 °C.

Cavitation may occar when The suction pressuve
at 1he pump inlet (?gzw/_s The Vapor Pressdre.

Bor carbon bebachlmde at 20°C = /3 BB (abs) .
Thus, 200710 um /Oréssmfez = /3 bR /45)

s
e ——

/—ba




(.80
When water at 7p °C flows through a converging sec-
tion of pipe, tk}e.pressure is reduced in the direction of flow.
Estimate the minimum absolute pressure that can develop with-

out causing cavitation. Express your answer in both BG and SI
units.

i;wﬂfm}v tray occar 1h The converging sectien of pipe  Lwhen
z ¢ Pressure eguals The vapo pressuve . From Table 8.7 1 Appendry B
y water at 70 f/ '7? 3.2 AR (qbs5). T/tasj

Minimuam pressuve = 31,2 %R (abs) /n 3L ynrts

f

_Zn Bé éf/?HL.S
Ininimum  Pressure = /3"2“03;5; )// #50,(/[%'/}";{" )
2.

= 452 psia

/81

1.8) At what atmospheric pressure will water
boil at 35 °C? Express your answer in both SI and

BG units.

The vapor pressure of water af 35°C 1s

591 AR (abs) (Framn Table B 1n Appendix B

USihg linear interpolatios J. Thas, i water beoils

@t THis femperatlyre The atmospheric pressure must
be éjaa/ to 5 8] £Falabs) in 3L units. ITn Bé units

3 4 -4 N
(550 %10° 2, (14505167 22 ) = 0, 42 poi (abs)
Tt -

.82

1.2  Small droplets of carbon tetrachloride at
68 °F are formed with a spray nozzile. If the av-
erage diameter of the droplets is 200 ym what is
the difference in pressure between the inside and
outside of the droplets?

_ Q0
75_ sy (EZ L21)

Since 0= 269 x/o_?';-’: at 53";@;20"(:))
' -2 N
_ 4 (2.69x10>% ) - s34 A
/o0 X106 m ——

/=70



/[ &3

183 A 12-mm diameter jet of water discharges vertically
into the atmosphere. Due to surface tension the pressure inside
the jet will be slightly higher than the surrounding atmospheric
pressure. Determine this difference in pressure.

For egquilibrium (see Fgure ),

7s/z,e![)= o (2 54)

So Thatl
N

R
-2
_ TBYAN o

_/2_:2,‘/5"3””

12.2 R

]

N/

N7 P 2R §f

\. XS P excess pressure
Surface Htnsion Jovees T 250

1=71
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1.84  As shown in Video V1.5, surface tension forces
can be strong enough to allow a double-edge steel razor

blade to “float” on water, but a single-edge blade will sink. ,
Assume that the surface tension forces act at an angle 9 rel- Surface tension

ative to the water surface as shown in Fig. P184. (a) The force
mass of the double-edge blade is 0.64 X 107°kg, and the
total length of its sides is 206 mm. Determine the value of
6 required to maintain equilibrium between the blade weight ;
and the resultant surface tension force. (b) The mass of the ® FIGURE P1.34
single-edge blade is 2.61 X 107°kg, and the total length of

its sides is 154 mm. Explain why this blade sinks. Support

your answer with the necessary calculations.

(a) Z F =0

V€¥+ICal ‘
% = Tsinb

wheve D) = rm X9 and T= T x Jengm of sides
blade )

o (oL xw"%;) (4.9 m«,{sz.)= (7_34 X)D'Z%WO. 206 m) sinb
ji‘ne. = OLHE
b=245°

(b) For Single- edge blade
2= g™ F

H

(2.61 x10% kg) (7.8] M/s")

= 0.0Z5L N

and
T sine = [O‘"x lengh of é/aJe) Sin &

(7.34 %107 M)y ) (0.15% ) 5in B
= 0.0113 5/}19
Th order for blade +o "Llpat’ 9 < Tsimoe.

Sihce maximum Value fov sn6 15 \/ T+ Lollows
that W >Tsime and single-edge blade will sink,

[~72
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a)

,,,1““ :

opaque walls, an open vertical glass tube is attached to the side
of the tank. The height of the water column in the tube is then

used as a measure of the depth of water in the tank. (a) For
a true water depth in the tank of 3 ft, make use of Eq. 1.22 (with

6 = 0°) to determine the percent error due to capillarity as the

diameter of the glass tube is changed. Assume a water
temperature of 80 °F. Show your results on a graph of percent
error versus tube diameter, D, in the range 0.1 in. < D < 1.01n.
(b) If you want the error to be less than 1%, what is the smallest

;tube diameter axllowed‘? o

7he ex ces.s heisht, i h, cau.sed Iye 774e Jurfna éens/an 15

To measure the water depth in a large open tank with

h- ch‘ccp..e (Eg J.22)
YR
| /g.. 49 78]
i | ko | ‘)
%Fram Té/e B.[ in A-ppendzx B 7£ar water a;lf X’D"F
20"- $4 9/ »(/o“?/b/#: and f“ 6222 /5
Thus Ffrem £3.(1)
NACUTEY. ~
NP AN A TR e
(g4, B D(m) |
S (b2.22 s) ATy D D(in.)
Since °/o error l}(;tﬂ x 160 (witn 'i—‘);i_—!-rue clepth
| \ s ~ =3 )
rf' follows oc‘rom E‘gi.( 2) that 3
’/o €rroy = 3579 X1°_ x1p0
3 DGn.)
= ‘o';‘ 2‘_{‘_ (a)
L ~ Dlin.) T
A plot of % evror versus tube chameter /s
spown on e nect page
( ton)

/=73
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Diameter

0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

L

of tube, in.

% Error

1.26

0.84 1.50

100 -\

0.63
0.42
0.32
0.25
0.21

% Error

0.18 0.00

0.16
0.14
0.13

0.50

Y

S
v

L 4

0 0.2 0.4

g

0.6

0.8

Tube diameter, in.

1

N

Values obtained
from Eq. (3)

F‘Br /% error %:Dm EZ (3)

) =

D-::

0 0./126

o\

D(m')

Zé n.

9
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1.66

Under the right conditions, it is possible, due to surface

tension, to have metal objects float on water. (See Video V1.5)

wt. = 490 Ib/ft

" Consider placing a short length of a small diameter steel (sp.
) rod on a surface of water. What is the

maximum diameter that the rod can have before it will sink?

~ Assume that the surface tension forces act vertically upward.

Note: A standard paper clip has a diameter of 0.036 in. Partially
unfold a paper clip and see if you can get it to float on water.
Do the results of this experiment support your analysis?

Ih srder ér md %a f/aat (Sfe ﬁl?lﬁe)v
"/t é//ﬁws Hat |

eol 2 2 (‘"—)(DM sheel
Thus for 777( /imt{'mj Case |

2

204

so Pt

)

E)max-

I

a/mmeszk of o.
0. 0414 Ih.,

“will verify This.

Ty T
[s(s03x15° S\ 3

o (490

03¢ m

5/,,(,: a 5£am’ﬂrd ,SZ-ee/ /zmper c/:}

Which 15 |

8T
T Sstee|

Ey]

O. O{»l '+ In.

€5s Tran

1t 5}10”/4; -F/‘g¢i—. A symple ex per |

ha_; -

N
= 5| xIb

eriment.
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1.87  Anopen, clean glass tube, having a diameter of 3 mm,
is inserted vertically into a dish of mercury at 20 °C. How far -
will the column of mercury in the tube be depressed?

/&: 20 Cos @
T (£5.).22)

For «9’3130:
-~/
2 (4eexw ' L) cos 130

/133 x Jo 3;"‘-’3 0. 0015 m)

-3
= — 300 X0 m

Thusj column will be de/oresse;/ 300 o

1. 9%

}.88 An open, clean glass tube (f = 0°) is inserted vertically
into a pan of water. What tube diameter is needed if the water
level in the tube is to rise one tube diameter (due to surface

tension)?
4 05 6 =
- o;is (€4 1.22)
r 4=2R and 6=0°
LR = 20 (1)
¥R
dnA 5:&3)(/0—3 II:'J.".-

2 g

R='§;—
b2,y Ik

’ &3

R= 9.9 x> L
ciameter = 2R = _:f___._i;OXM-Z\C{-

[-76
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1.89* The capillary rise in a tube depends on to these data and estimate the value of the prod-

the cleanliness of both the fluid and the tube. -

Typically, values of h are less than those predicted

by Eq. 1.22 using values of ¢ and § for clean fluids

and tubes. Some measurements of the height, h,
a water column rises in a vertical open tube of
diameter, d, are given below. The water was tap

water at a temperature of 60 °F and no particular

effort was made to clean the glass tube. Fita curve

From EZ l.22

uct g cos 6. If it is assumed that ¢ has the value
given in Table 1.5 what is the value of §? If it is
assumed that 4 is equal to 0° what is the value of
a?

d(in.) |03 10.25 ]0.20 |0.15 ]0.10 ]0.05
h (in.) 10.13310.165 1 0.19810.273 1 0.42110.796

_ 20 s&/ 1L\ _. 4T cCosé/ |
# - 2lfe) - tme(]) r)
with  d=2R. Thus, £3.01) 5 of The form
, ’ff b d' c2)
tJnere .
y= Hocese and d'= ;L

&

The wﬂshﬂfjb) Can be
Sq uares 't of e

1fd (£)

obtained by a linear /eas-é
G1vo#n deta (4 and ’/c/).

4 (Ft)

Yo 6.0//08

Y& ©.0/375

bo O.0/650

so 0. 02275

120 O.03508

vy 0. 06633
A plot sf The data shows a Jood LF Lwitn
a Jineqr Curve and 4 Pt of The data using

& SHandard Cavve- £,tf1nq Program Such as found

In Xl Sives Y
4 =2749%10 (1) 4)
so  That b= 27199X16% L™
(C’M,Z)
/=17
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( con't )
Thus,
T Cos® = Q;d:
_ (2

If o= 503 x/o”3 /e , Then

/
19916 ¥ 4t )(624 ﬁ’,)
e

..3__/f
= 4 37 x]o =

37x/0"
7 ) =
oo = B0 2 - 0849
S8 %
d
o o= J297°
If 6=0" Then Cos& =10 and
3 4 /b
L2 3
o= #3TXI0 Fhoo o w3q o0 g
/.0 ~
0.07
0.06 /
h = 2.799 E-04 (1/d) S~
0.05 //
__0.04 <
0.03 -
0.02 //
0.01
0
0 50 100 150 200 250

1/d (ft7)
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1.90  Fluid Characterization by Use of a Stormer Viscometer

Objective: As discussed in Section 1.6, some fluids can be classified as Newtonian flu-
ids; others are non-Newtonian. The purpose of this experiment is to determine the shearing
stress versus rate of strain characteristics of various liquids and, thus, to classify them as
Newtonian or non-Newtonian fluids.

Equipment: Stormer viscometer containing a stationary outer cylinder and a rotating,
concentric inner cylinder (see Fig. P1.90); stop watch; drive weights for the viscometer; three
different liquids (silicone oil, Latex paint, and corn syrup).

Experimental Procedure: Fill the gap between the inner and outer cylinders with one of
the three fluids to be tested. Select an appropriate drive weight (of mass m) and attach it to the
end of the cord that wraps around the drum to which the inner cylinder is fastened. Release
the brake mechanism to allow the inner cylinder to start to rotate. (The outer cylinder remains
stationary.) After the cylinder has reached its steady-state angular velocity, measure the amount
of time, ¢, that it takes the inner cylinder to rotate N revolutions. Repeat the measurements us-
ing various drive weights. Repeat the entire procedure for the other fluids to be tested.

Calculations: For each of the three fluids tested, convert the mass, m, of the drive weight
to its weight, W = mg, where g is the acceleration of gravity. Also determine the angular ve-
locity of the inner cylinder, w = N/t.

Graph: For each fluid tested, plot the drive weight, W, as ordinates and angular velocity,
w, as abscissas. Draw a best fit curve through the data.

Results: Note that for the flow geometry of this experiment, the weight, W, is propor-
tional to the shearing stress, 7, on the inner cylinder. This is true because with constant an-
gular velocity, the torque produced by the viscous shear stress on the cylinder is equal to the
torque produced by the weight (weight times the appropriate moment arm). Also, the angu-
lar velocity, w, is proportional to the rate of strain, du/dy. This is true because the velocity
gradient in the fluid is proportional to the inner cylinder surface speed (which is proportional
to its angular velocity) divided by the width of the gap between the cylinders. Based on your
graphs, classify each of the three fluids as to whether they are Newtonian, shear thickening,
or shear thinning (see Fig. 1.5).

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Rotating inner cylinder

Outer cylinder

Drive weight
Fluid
@ FIGURE P1.80

(C&w’f)
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0.02
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0.05
0.10
0.20
0.40

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

m, kg

N, revs

Silicone Oil Data

4
12
24
20
24
30
20
25
40

Corn Syrup Data

1

2
4
8

Latex Paint Data

2
2
S
10
10
10
10
10
20

(Cont )

t s

59.3
66.0
64.2
35.0
31.7
31.0
17.4
18.8
26.0

282
275
272
257

32.7
20.2
32.2
47.3
37.2
29.8
246
201
34.0

®, rev/s

0.07
0.18
0.37
0.57
0.76
0.97
1.15
1.33
1.54

0.04
0.07
0.15
0.31

0.06
0.10
0.16
0.21
0.27
0.34
0.41
0.50
0.59

(6902)

W, N

0.20
0.49
0.98
1.47
1.96
2.45
2.94
3.43
3.92

0.49
0.98
1.96
3.92

0.20
0.29
0.39
0.49
0.59
0.69
0.78
0.88
0.98

Solution for Problem 1.90: Fluid Characterization by Use of a Stormer Viscometer

From the graphs:

Silicone oil is Newtonian
Corn Syrup is Newtonian
Latex paint is shear thinning

o=NA

W =mg

/- 80
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Problem 1.90 Problem 1.90
Weight, W, vs Angular Velocity, o Weight, W, vs Angular Velocity, o
for for

Silicone Oil Corn Syrup
4.50 4.50
4.00 4.00 &
3.50 3.50 //
3.00 3.00 /

Zz 2.50 We2.56 =z 2.50 /

2 200 SRR 2 200 g ‘
1.50 1.50 4 W=1280
1.00 / 1.00 /

0.50 7 0.50 +—&/—
0.00 0.00 — ' X
0.00 0.50 1.00 1.50 2.00 0.00 0.10 0.20 0.30 0.40
o, revis o, revis
Probiem 1.90
Weight, W, vs Angular Velocity, o
for
lLatex Paint

1.20

1.00 /

0.80
2

-~ 0.60

=

040 / 0.707

W= 1.466/0"
0.20 ¢
0.00
0.00 0.20 0.40 0.60 0.80
o revis
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1.91 Capillary Tube Viscometer

Objective: The flowrate of a viscous fluid through a small diameter (capillary) tube is a
function of the viscosity of the fluid. For the flow geometry shown in Fig. P1.91, the kine-
matic viscosity, v, is inversely proportional to the flowrate, Q. That is, v = K/Q, where K is
the calibration constant for the particular device. The purpose of this experiment is to deter-
mine the value of K and to use it to determine the kinematic viscosity of water as a function
of temperature.

Equipment: Constant temperature water tank, capillary tube, thermometer, stop watch,
graduated cylinder.

Experimental Procedure: Adjust the water temperature to 15.6°C and determine the
flowrate through the capillary tube by measuring the time, ¢, it takes to collect a volume, V,
of water in a small graduated cylinder, Repeat the measurements for various water temper-
atures, T Be sure that the water depth, A, in the tank is the same for each trial. Since the
flowrate is a function of the depth (as well as viscosity), the value of X obtained will be valid
for only that value of A

Calculations:  For each temperature tested, determine the flowrate, Q = V/t. Use the data
for the 15.6°C water to determine the calibration constant, K, for this device. That is, K = v(Q,
where the kinematic viscosity for 15.6°C water is given in Table 1.5 and Q is the measured
flowrate at this temperature. Use this value of K and your other data to determine the vis-
cosity of water as a function of temperature.

Graph: Plot the experimentally determined kinematic viscosity, v, as ordinates and tem-
perature, T, as abscissas.

Results:  On the same graph, plot the standard viscosity-temperature data obtained from
Table B.2.

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Capillary tube

Graduated cylinder

@ FIGURE P1.91

(cont )
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Solution for Problem 1.91: Capillary Tube Viscometer

V.ml ts T,degC

92 1938
9.7 158
92 168
91 213
92 131
94 101
9.1 8.9

v =K/Q K, m"2 ml/s"2
5.21E-07

15.6
26.3
21.3
12.3
343
50.4
58.1

Q, ml/s v, m"2/s

0.465 1.12E-06
0.614 8.49E-07
0.548 9.51E-07
0.427 1.22E-06
0.702 7.42E-07
0.931 5.60E-07
1.022 5.10E-07

v (at 15.6 deg C), m"2/s
1.12E-06

K=vQ=1.12E-6 m*2/s * 0.465 ml/s = 5.21E-7 m*2 ml/s"2

From Table B.2

T,deg C

10
20
30
40
50
60

v, m*2/s

1.31E-06
1.00E-06
8.01E-07
6.58E-07
5.53E-07
4.75E-07

1.5E-06

1.0E-06

v, m72/s

5.0E-07

0.0E+00

Problem 1.91

Viscosity, v, vs Temperature, T

¢ Experimental
- From Table B.2

\'\’\
0 20 40 60
T,degC

80

/- 83




[ 72

1.92 (See “A vital fluid,” Section 1.6) Some measurements
on a blood sample at 37 °C (98.6 °F) indicate a shearing stress

of 0.52 N/m? for a corresponding rate of shearing strain of
200 57!, Determine the apparent viscosity of the blood and
compare it with the viscosity of water at the same tem-
perature.

Codw gy
TR
0.5’2.7;;1.

/U) = -:-z:— Ly = 26,0 X110 —
bleod Y Z.o,a—}— — - (m

From Table B.2 1n Append's B:

, - 15 0t
(@ 3o°C /MH,_O- T.475 X100 ==
° - -4 N.s
@ Y°C My, 524 x0 LT | .
Thus, with linenr 1mkerps lation (37°¢) = .96 x10 M3
’ P g /u"*zo m*
CMA __q N-S
/Mblmx . 2b.0XDd = - 374
/“uzo b. b XI1p ¥ N-s
{ml—

.93

1.93 (See “This water jet is a blast,” Section 1.7.1) By what
percent is the volume of water decreased if its pressure is
increased to an equivalent to 3000 atmospheres (44,100 psi)?

_ _ dp ~ - Ap (E-"%,I-\:L)
=v T ¥/ I gY: '

B _ bp o psin- 41 psie |
¥ Ey 3.2 x10% psca

T\nus)
O/b cieckeasE I Vo‘iMme - IL'L- l o/o

/- 8%




174

1.94 (See “Walking on water,” Section 1.9.) (a) The water
strider bug shown in Fig. P1.94 is supported on the surface of
a pond by surface tension acting along the interface between
the water and the bug’s legs. Determine the minimum length
of this interface needed to support the bug. Assume the bug
weighs 107 N and the surface tension force acts vertically
upwards. (b) Repeat part (a) if surface tension were to support
a person weighing 750 N.

EFIGURE P1.94

Foy €gu¢libvu)m 5
aw: U—;Q

(o) g, W ™" N

pe ,.I.,me.m:& W v waght
m 0"~ Surface +ension
= (-361“;‘3”“ ﬁfv l?njfh o'f Ih*’ﬂ*ﬁicc_

(.30 X167 ) (1031*_"/‘_:_"‘) = [.3b o

b ———— %

(b) ﬁ g 150N
7.3 x1p”* N
/m
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