3.1 Water flows steadily through the vari-

able area horizontal pipe shown in Flg P3.1. The
elocity is given by V = 10(1 + x)i ft/s, where
is in feet. Viscous effects are neglected. (a) De-
‘termine the pressure gradient, 9p/dx, (as a func-
§~t10n of x) needed to produce this flow. (b) If the
.pressure at section (1) is 50 psi, determine the
epressure at (2) by: (i) integration of the pressure ,
.gradient obtained in (a); (ii) application of the - ' FIGURE P31
Bernoulh equatlon “ ‘ -

(a) —¥siné - :;-"-" = evg:? bt 020 and V=100 +x) Fijs
W
9% = —oVE  or ¥ = —eVix =-p (10(1+x))(10)
T/wsj ?d%n— "y 79:%”;!2(/0 ﬁ)z(/-;x) , with X in feet
= ——/?6‘(/1‘)() f£3

R %<3
X F = /97 (1+x) sothat  (do =-rgx[(1+X)dx

/, .50,06‘1 X =0
2
or f = so/om-w/M(s's‘ ”’ (—-ijT"z =50 -/0./=39.9 ps)
2 /#4n. il

() /01 PV +y'2, =/, '/"'L(OV 2 or with Z =2,

~=h 12 P(V,z* L*) where. Z”: Jo (] +0) .-=/aé}_
Vo = 10(143) = 40 &
| Tﬁm
o= 50psi 3 £ US40V L5 ( JhL,) = 329 0




3.2

3.2 Repeat Problem 3.1 if the pipe is vertical with the flow down.

(a) -¥sin6 -3& = oVIE  With @ ==90° and v=10(1+x)
B=oVie+¥ or P =-oVEE+8 =—pl0(1+2) (1) +&
Thus, éﬁ =~ 94 5/" 5(/oﬁ) (]+X) + 62.4 -){,% , with X in feet

= /9 (/+x) v62.4 Lo,

fo X,=3
(b)(z) % = —/9% (| 4+x) + 82.4 <so that fogi fﬁ!i’/(/fx)+5z #]dx

=805 X,=0

or B = Bopsi —19%(3+5 ) ( LT L) + 628 (g (M

THEin> / f‘f‘ )

= 50 -/0.14/.3 = 41.2ps/

G PN = pt RN EZ or with 2,20, 7,3
and V), =10(1#0) = 20 Y =]o(1+3) <%0 S

f ﬂ*zp(!/ Vz.) §Z,,
= Sopsi +4 (/.94 .—ﬁ-z)(/o —4#p*) — 2. ?‘;;Fa(o.s ft)
= U/, Z‘QJV




3.3

3.3 An incompressible fluid with density p flows steadily .
past the object shown in Video V3.3 and Fig. P3.3. The fluid © Dividing
velocity along the horizontal dividing streamline streamline
(= = x =< —aq) is found to be V = V(1 + a/x), where a is v

the radius of curvature of the front of the object and Vyis the 0,
upstream velocity. (a) Determine the pressure gradient along 7o (p)
this streamline. (b) If the upstream pressure is py, integrate the

pressure gradient to obtain the pressure p(x) for —» < x < —a.

(c) Show from the result of part (b) that the pressure at the stag-

nation point (x = —a) is py + pV}/2, as expected from the
Bemoulh equation.

L 4

® FIGURE P3.3

(a) %-’—'-Q\/% where V=V, (1 ++)

Thus, #:g_{:_
% z“—evo - 5)= pak’(2 * )
f# ffﬂ:wzf@J%M Mﬁ%%dwm

X=-
a X
i
/’/% pali [- % -2
o OO

T/)U.s ‘
P fo pae [X zx"}

(€) From part(b), when X =-a
Pl = pread[draa] = grtoy

X=-a

From the Bernovlli equation £t Zok = 7 +3

where |
V VI = %(""(-4)) 0 -
X=-a

T/iw, = *"%f’%‘z 4s expected.
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3.4
3.4 What pressure gradient along the
streamline, dp/ds, is required to accelerate water
in a horizontal pipe at a rate of 30 m/s??
. ) d
B _ ¥ sin6 — (OVISK where 6 =0 and
¢S QJ,Z - = 0%
V S - QS = 7/ &%
Thus,
k m .
gg— = — (945 = —-999 —‘,—”’25 (30:,3 = 30/000%)//77
or
—dﬂ: - 30.0 ,(“Pa/m
¢S = ]
3.5
35 At a given location the air speed is 20 m/s and the
pressure gradient along the streamline is 100 N/m>. Estimate
the air speed at a point 0.5 m further along the streamline.
£ neglect bty 92 __ iV WV _
If neglect gravity ), 75 = eVis or s %oV
or 3V _ N !
s = 10055 /(123 1‘,;,13)(9.0 Z) ==#07%
Thus,
K .
JV= % §s = (-4.075) (0.5m) = - 2.03 L, sothat V+§V=20"2 -2.03 22 |
~ m
or V=/8.0%
- 3.6

3.6  What pressure gradient along the streamline, dp/ds, is
required to accelerate water upward in a vertical pipe at a rate
of 30 ft/s*? What is the answer if the flow is downward?

op _ - ysinb - (JV;%Z where © =qo’ for vp flow

Y J

6= —70:/{0/'- down flow,
and V- =a_=30fL
Thus, for yptiow s S

L2 ~62.4()) b, — 1.9% ﬁ,{%@i(so%) = —120.6 -;I%.)/H =-0.930.48

¢S
and for down flow ——tl

slygs ,. _ Ib _ - pSE
S = _s2ynl - 198 TF (30 f) = 420 (47 ) /¢ =a0292 £ﬁ‘:

e ——n o —

3-4
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3.7
3.7  Consider a compressible fluid for which to obtain the “Bernoulli equation” for this com-
the pressure and density are related by p/p" = pressible flow as [n/(n = 1)]p/p + V32 +
C,, where n and C, are constants. Integrate the gz = constant.

.equation of motion along the streamline, Eq. 3.6,

2
g_¢ + 4 + g2z = constant along a streamline
e 2

and 7
Pns,‘f_ or P:..._f_%-— so 1hat
2z =%

g”o'{f’f" (‘f% C"fao i = PR ot
Thus, .

n
(% st p(z) -a 8
Hence: —— ﬁ— 3 V tg2 = com/aﬂf a/my a s?‘ream/me

3-5




*3.8

*3.8 A wind of velocity V, blows past a smokestack of radius o / J—
a = 2.5 ft as shown in Fig. P3.8. The fluid velocity along the di- iding
viding streamline (—oo < x =< —q) is found to be V=

V(1 = @*/x%). Plot the pressure distribution from a distance 30 ft v°: ' .

ahead of the smokestack to the stagnation point on the smoke- Po  Stagnation

stack for wind speeds of V,, = 0, 10, 20, 30, 40, and 50 mph. point

. HFIGURE P3.8
From the Bernuvlli eq. with Z=constant:

Potdo = p+EeVE, or with g, <0
p=%p[V-V'1 =4p[V*-V,*(1-a%cf]
4 eV L1~ l+2(a4)*-(a0)" ]

LoV [2(ak) - (a/x)* ]

Hence, with the given data .. ]
P= 5 (0.00238 slvgs /H43) [2 (2.5 t/x) "= (2.5 fi/x )“] V. “(mph) (38 ft/s/someh)

n

L

or
70

- p=0 00256[2(2.5/x)*-(2,5/x)* ]V,* Ib/ft*  where V,~mph and x~ ¥
For exarple, with X=-3.5ft and V, = 5omph,
p = 000256 [2(2.5/5.6)(2.5/3.5)¥] (50)* = 4 84 Ib/H*

The resvlts for variovs X and V, are plotfed below.

[

6 /
l, /
/ Vo = 50 mph
g ¢ ," — — = Vo =40 mph
o) N R Vo = 30 mph
a3 / ~ - - —Vo =20 mph
/ /I = = =Vo=10 mph
, .
2 !
1
0 -




39  Considera compresmble liquid that has a constant bulk
modulus. Integrate *‘F = ma’’ along a streamline to obtain the
equivalent of the Bernoulli equation for this flow. Assume
steady, inviscid flow.

From Ey, 3.6

dp +1pd(V*) +¥dz=0 where ¥=¢g
and  dp=E, i’Pﬁ where

E, = bvlk medvlys = constant

(see Eq.1.13)
Thus, alonq a stream|ine: '

EV%,‘ t3pd(v?) +pgdz =0 or

de 2V2) +qdz =0 which can be infegrated bet
o= +d(zV?) ¥ d between points (i) and (z) fo q;sewee”

[44;- fd(iv‘) fgatz =0
e, ,

or
B[] + $L6-W* ] 4g L2 <0

Hence : N
Zz - EV + o -consfanf a/mq a sfream/me

————
—————

3.7




[3.0

- 310  Water flows around the vertical two-di-
- mensional bend with circular streamlines and
- constant velocity as shown in Fig. P3.10. If the

- pressure is 40 kPa at point (1), determine the
- pressures at points (2) and (3). Assume that the
- velocity profile is uniform as indicated.

YYYYYY

| 'FIGURE P3.10.
VR L b B2y nd V= somss

‘:‘jg‘“=-b" —P—-— or

f%d =—fa‘dn 2/,,0,{”

| 50, z‘bm’ since a‘anab Vare co//sfam‘s

L= =-¢n - oV fz—,—,; |
n=0
T/)u.s
LA N -V * (%)

or

- and
with = %0kf and 75 c2m /g %okﬂm 9, 00X10"

or

W/{/; 2y = ¥0kPa and n, =1m g, yok&:f’fk/o;;a(/m)
' - 999 2% (102" |n (-£-)

7 (2m)

~999 &4, s (108 //5 (5)
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3.1

30 It can be shown that if viscous and grav-
itational effects are neglected, the fluid velocity
along the surface of a circular cylinder of radius
ais V = 2V, sin @, where V, is the upstream
velocity and s = a@ is the distance measured
along the streamline that coincides with the
cylinder (see Fig. P3.). For a fluid of density p,
determine the pressure gradient in the radial dir-
ection, dp/ar, on the surface of the cylinder.
Assume the axis of the cylinder is vertical. Is
ap/ar positive or negative? Explain physically. For
what ¢ is dp/ar the maximum? Explain why.

FIGURE P3.1)

B'd” ‘%7' km%f' =35 == and

so that =0

a 2 2

% - ﬁ%" = *‘%V' where V=2V, sin® and R=a
Thus, |

= 4o W sin*8 /a

WNote that for any lecation (ie 0) it follows that

3£ >0, except at =0 or 6 =180deg where % -0

- Myst have £>p if floid i's o
follow a curved path, except where
£ r V=0 (as af =0 4 9=/3048y.)

+

Maximom d% gccurs at 8= Qode (c.e. maximom of sin’)
since that is The [ocation of maximom rermal acceleration.

3-7




3.12

3.12  Water in a container and air in a tornado flow in hor-
izontal circular streamlines of radius r and speed V as shown
in Yideo V3.2 and Fig. P3.12.Determine the radial pressure
gradient, dp/dr, needed for the following situations: (a) The
fluid is water with r = 3 in. and V = 0.8 ft/s. (b) The fluid
is air with r = 300 ft and V = 200 mph.

N FIGURE P3.12

For curved streamlines,
- % - %’_,Xg; . or with g;so (horizontal streamlines) R=r,
and g,;‘ = - % this becomes
Ly
dar r /
Q) With r = 7%.‘ ff and V= 0.8# and water (P=/.9$‘ f?%);
ae - o 58 (08 8)" _ 447 Shts <97 L2
r .

(A7 e
| (b) WHh r=300ff and V= 200 mph 88’-{:1 = 293 it
‘r- and V'= Y (W)_ £

and air ((J=0.00238 ‘"%{gi), ,

| 1085 1595 £2Y2 ;
dp _ 0,00238-5-;7?;'(273s) - slvgs = 0.48 1b
- 300 ff = 0681t = _i_Fff

3-10




3.3 ]

313 As shown in Fig. P3.13 and Video V3.2, the swirling
motion of a liquid can cause a depression in the free surface.
Assume that an inviscid liquid in a tank with an R = 1.0 ft ra-
. dius is rotated sufficiently to produce a free surface that is
h = 2.0 ft below the liquid at the edge of the tank at a position
_ r= 0.5 ft from the center of the tank. Also assume that the lig-
- uid velocity is given by V = K/r, where K is a constant. (a)
Show that & = K2 [(1/7) — (1/R*))/(2g). (b) Determine the
value of K for this problem.

h=2.0ft

(a) - '¢ = Pﬂvz or —5}4 = ﬂz V
Th
l/S f PKz‘( 0(" or % ﬁ”

Thus,
a‘/):' wﬂk[-”’ “'Fa-] or 5‘/}76’9 J’:p?l

K* [

! _ | _' |

2 + 2(32.2 fi/s*) (0.5 H)? (/14)* ]
or 4
K=6554

But ﬂ,* 5h and p=0 at r onthe free sorface.

o

() Wilh h=2F, R=1#, and r=0.5H Eqn.() gives

3-/1




3.4
3.14 | Water flows from the faucet on the first floor of the ' F?
: ) BN
building shown in Fig. P3.1# with a maximum velocity of 20 T
ft/s. For steady inviscid flow, determine the maximum water /

velocity from the basement faucet and from the faucet on the

second floor (assume each floor is 12 ft tall). (3) =Y _t
- . . / 4 ft

(1) =
V=20 ft/s f;%?

- FIGURE P3 1‘1—

-ﬂ + Z =constant

%
Ty 7 = P, W
m:j, Bt ohiz = z%,t..,‘;; tZ Wil g, 2 =0 (tree jed)
20 fi)* g LY 22085 | 2yt
< PH) ==&
.im + 44 = ( ff) + ( 5’{7‘) Z, &ff

or | = 3%2{1‘—

and
z}‘/_+ i 43/ 4.; 0 42, Lw%ﬂ,-/, =0 (free jet)
or V 20 ) Z/zéé#

(20 £ =
P e LA i) . 2(322%)+/6f¥ % /eH

]/20 2 _2(32.2)(12) = / - 373 Impossible! Mo /oy

| ffo,” second ffoor favcet.

or

3-/L




3.6

3.16 A 100 fs jet of air flows past a ball as shown in

Video V3.1 and Fig. P3.16, When the ball is not centered / Ve 1‘40 s
in the jet, the air velocity is greater on the side of the ball !
near the jet center [point (1)] than it is on the other side of Vy= 110 1Us |5

the ball [point (2)]. Determine the pressure difference,
P2 — Py, across the ball if V| = 140 ft/s and V, = 110 fus.
Neglect gravity and viscous effects.

The Bernoulli equation from L
point (3) 10 (2) and () fo (1) wjth ~ ™ FIGURE P3.16
gravity neglected gives

pstdeVe = ot oW and prthoVt = p bl

But py=py=0 and V3=V,

Thes, even though points (1) and (2) are nof on the same streamline,
prael = g4l

or

prmfo = F o= U?) = F(o0oass St o~ (10 1]

_ slvgs 1b
= 8.9’3 H,,Sz - 8o?-3 HZ

3~/3




AL

3.17  Several holes are punched into a tin can
as shown in Fig. P3.17. Which of the figures rep-
resents the variation of the water velocity as it
leaves the holes? Justify your choice.

@ ® )
FIGURE P3.17

,3% +-2-\£+Z = constant so that with M;’OJ r =0 and 2,=h,
/ at the free sorface, then

,{%L + .é__l/,;,t 2 = -}% +-—2‘%]—- 122 or with g,=0 (free jet)and 2,5,

or

/7/ = ,_7\;;;.{,/]2 so that V, = 1/7—;(/7,'—/71) :l/g,g/)

T/Iﬂs 5

A

or

I\
A\
A

Fig.(@ is correct distripvtin

3-/4




' 3.18 A fire hose nozzle has a diameter of 1}
in. According to some fire codes, the nozzle must
be capable of delivering at least 250 gal/min. If

~ the nozzle is attached to a 3-in.-diameter hose,

- what pressure must be maintained just upstream
of the nozzle to dehver thls ﬂowrate‘?

SO 7‘642‘ W//A %-’-
Vi,

e

o
—

6190 1

i 43.0 ps/

£+ (1.94 i’i{gi) [80.7*-naw*] £z

7 D,=3in. D,=1125 m.
ﬂ,_+_*~* _ﬁ_+ +Z g = 125 .
T /Zw 16° Y, s
/min\ _ 4
and @ ::(250 ”’//7)(2 '3 )( /728/'03) 60 )" 9557 &~
TﬁUsJ , o H
— L Ty2 ,2 - 0.557 ——
-] where K% - i s
and .
V= = R =134

3-/5




379 |

3.19 Water flowing from the 0.75-in.-diameter outlet
shown in Video V8.6 and Fig. P3.19 rises 2.8 inches above
the outlet. Determine the flowrate.

| % FIGURE P3.1g
The flowrate is @=A,V,, where from
the Bernovlli equafion
£—+ —\gh? é”w 2 +2’2
wa; with g, = /72 =Z,= V=0 we obtain

V, = ]/2;22 = |2 (32.2 f62) (2.8/12)t = 3.88 fi/s
so that |

Q AV, =;11(07‘H) (.88 %) = o.om -5—3

3-/6




1320 Pop (with the same properties as water) flows from a
~ 4-in. diameter pop container that contains three holes as shown in
Svr fa ce /Surface atr=0

Fig. P3.20 (see Video 3.5). The diameter of each fluid stream is
0.15 in., and the distance between holes is 2 in. If viscous effects

b o
are negligible and quasi-steady conditions are assumed, determine at t> q”'?'“‘ ~ “ fhl =h
the time at which the pop stops draining from the top hole, hz { o
Assume the pop surface is 2 in. above the top hole when ¢ = (. hg P
Compare your results with the time you measure from the video. + b

| Q=Q + Qz. *03 = -Ay j{’ IFIGURE paz@
N wllﬁfe 0 VA vzg/) /4 ﬂﬂa{ A -/q A _Z‘(O /5{_})
(¢=,23) = 1227x)0° ' H?
Thys Ar=F —4-‘-6‘) = 0.0873 {J" |
Vg AL +1h 41, ] = ~Ar 48, where h=h, b= het, b, - bm
Hence, and L=2in

(A . _db fore £ Yo i
RIS [ e b e et

to reqoh 7%9 z;a/arﬁv/e
or L (/7
/L= 4y dh
M’Zi (Vh +hiL +Yh+2L)
0.0873 fi* y dh
(/.zz7x/a ’W )kz){.az 2 f/s* ]%)C(W +‘y/j,‘:z+m )
' TﬁVs : L

88.7 =75 =087,
£= ((V‘*W*W)—*Z‘ZJ where L =7 11 0/557”
Note: h/n% L infeet, this equation gives ¢ in second.

(con't)
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3,2.0 (aon’{)’

for this is 91’:/5/7 below. 1

777é nvmerical valve of the infegral is obtained by vsing f/)f
trapezoidal rule since the closed form analytical solvtion
/s not qgiven in mntegral tables. The EXCEL spread sheel veed

h, in. h, ft ), 1R (1/2)%(F, + fp)* (s - h), Y2
0.0 0.0000 1.015 0.00804
0.1 0.0083 0.914 0.00743
0.2 0.0167 0.870 0.00711
0.3 0.0250 0.837 0.00686
0.4 0.0333 0.810 0.00665
0.5 0.0417 0.786 0.00646
0.6 0.0500 0.764 0.00629
0.7 0.0583 0.745 0.00614
0.8 0.0667 - 0.728 0.00600
0.9 0.0750 0.712 0.00587
1.0 0.0833 0.697 0.00575
1.1 0.0917 0.684 0.00564
1.2 0.1000 0.671 0.00554
1.3 0.1083 0.659 0.00544
1.4 0.1167 0.647 0.00535
15 0.1250 0.637 0.00526
16 0.1333 0.627 0.00518
1.7 0.1417 0.617 0.00510
1.8 0.1500 0.608 0.00503
1.9 0.1583 0.599 0.00496
2.0 0.1667 0.591

Sum of column = integral = 0.12011

Thus, t = 88.7*0.12011 = 10.7 s

#2887 ([ fln)dh where fih)= pr sy
= 38.7["%’5 (‘E + 1[‘4, )(h‘q;,“h‘- )] —'-'-(88.7 V%)[O/ZO H]

O©OoONOODEWN-= -

O, I N N i G N G G G G
SO0 OONODOAWODN = O

=

10.75

3-/8




3.2

3.21  Water flows from a large tank of depth H, through a
pipe of length L, and strikes the ground as shown in Fig, P3.21.
Viscous effects are negligible. Determine the distance /4 as a

function of 6.
2 L,
B FIGURE P3.21
%—4‘?'}3’— L‘*”"‘EZ P Wher'e ﬂ=/2=0)z/=HJZz’ASIbQJ
and V=0

Hencg ”-— 7 +A smﬁ
or |, =y2g(H-Lsin8) ()
Also since from (2) 1o (3) the only acceleration the particle feels is
that of gravdy, if follows that a =0, Thus, V= ¥, =V, cosO (2)
me //Ie Bernovlly equafion betweon (1) and (3),

+23 = é_.’. +2 W/)ﬁfc fl “’QJ 0 Z;= // aﬂdzs"h

or e
H =z5 th
By vsing Egs. (1) and (2) this gives

H= V;Lcos’e 1h = 24 (H-Lsin6) cos*d +h
25 = :

Thus,
h = H(]-cos*6) +L sinf cos*6
or since [-cos*0 =sin*® ,  h = Hsin8 +Lsinb cos®6
Note: 1 If 6=0, then h=0

2) If 6=90°, then h=#

8)If Lsin® >H, then the above is not valid since Vi = Ynegative number

(see £q.1) which is not possible. Why is this so?

3-/9




‘,3.2)2‘\ :

3.22 A person thrusts his hand into the water
while traveling 3 m/s in a motor boat. What is
the maximum pressure on his hand?

2 2
Grigfraz, = B egorn wih 2=
o vesg

£=0, =

Ly 2 k 2
ys _.,3\4 =gpV” or /Jzz—.z’—(qqq -,—”%)(353) = #500,-;7/'—/1 =450 kPa

" 3.23

3.23 A differential pressure gage attached to a Pitot-static
tube (see Video V3.4) is calibrated to give speed rather than the
difference between the stagnation and static pressures. The cal-
ibration is done so that the speed indicated on the gage is the
actual fluid speed if the fluid flowing past the Pitot-static tube
is air at standard sea level conditions. Assume the same device
is used in water and the gage indicates a speed of 200 knots.
Detﬁrmme the water speed.

Lp=Fp

P . 2f L slvgs 2
In air, &4, =% (0.00238 -#,—)(200 knots)
In Wm‘e/“ ALlyuter = = (1.9% Jﬁ%)( vy’

so that with af,, = A Pwater

% (0.00238)(200)* = 4 (1.94) v*
or |
V= 7.9/ knots
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3.24  When an airplane is flying 200 mph at relative to the airplane. What suction pressure is

5000-ft altitude in a standard atmosphere, the air developed on the wing at that point? What s the

velocity at a certain point on the wing is 273 mph pressure at the leading edge (a stagnation point)
of the wing?

(@) P+z PV +z =constant 3 Vi =273 mph
(7)-—"'"&::’: —
Thos, with 52, = 2, V=200 mp b p=2.048Ki0 %}
P to el = p +#plk* | bot p=0 so that
£ = i"p["; '] where V, =z200mph dom,: ) = zygf/
and V= 272 mph ::,—j; = 4003&
OP /% 4 (2.08x/0 3_{1‘525)[293 400 _] £
=-76018  (go9e)
(b)  Also |

=L s
A= ¢

3-2!



3.2‘5,‘

| 325  Water flows steadily downward through the pipe
| shown in Fig. P3.25. Viscous effects are negligible, and the pres-
. sure gage indicates the pressure is zero at point (1). Determine
| the flowrate and the pressure at point (2).

2

%+Z,+# =-$+Zg+5}’.
where Z, =31 2,20 f=f=0 M FIGURE P3.25

and | .
= Ay = FL0IH) )y = 0oy,

- Z (o. 1244)*

Ths,
: 2. ,2

(0.69%) Vi I oo £t
G2t VI pmmamey or V=/73%
so that 3

Q, <AV = (01193 8) = 052 £
| A/so,L

: 3 2 2
| ﬁ;_ +‘§zz 42‘;’; = ﬁ;} +Z, +7—_}_‘—

where p,=0 and since A=Ay if follows that Ve =W
Thus,

Z,_~¢Z,s-% or f}?-f*lff

or

1b

ﬂz -.: *Zf{(éz.lf’,ﬁ% = m/zs ,ﬁ.‘i

3-22
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3.26  Small-diameter, high-pressure liquid jets can be used
to cut various materials as shown in Fig. P3.24. If viscous ef-
fects are negligible, estimate the pressure needed to produce.a
0.10-mm-diameter water jet with a speed of 700 m/s. Deter-
mine the flowrate.

W

D,=10"m
(2
Va

2.45x/0° -4‘,;4;

Also,
Q=WA, = 700%[%’(/0"m)2] = 5.50x/0 2
e —

3
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327

3 2’7 Axr is drawn into a wmd tunnel used for testmg auto-
~ mobiles as shown in Fig. P3.27. (a) Determine the manometer
reading, h, when the velocity in the test section is 60 mph. Note
that there is a 1-in. column of oil on the water in the manome-
ter. (b) Determine the difference between the stagnation pres-
sure on the front of the automobile and the pressure in the test.
section.

€)

mFIGURE P3.27

(ﬂ) 41'*2, } :=-£1’ ‘{;.i.zz

Wbere

wa w/fﬁ V Jom,oé—— &ﬁ

G-k o

fas -2 P = -4 (0.00238 50 (96 )= 922 [,

42
But p, +a/,/,lo/’ ~¥y(2t) =0 where & —0737/,,-—0 9(62 # 4 )
Thes, '“ZW | |

taafh s hi) s () =0, or h=0.2230

; 2 2
iz 4o = fo 1z 0
Ty F Ty

where
2.2 and Vs =

L* V" = 41 or
ﬁ;% <20 d (omse Y ) ee BV = 9224
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3.28 A loon is a diving bird equally at home
“flying” in the air or water. What swimming ve-
locity under water will produce a dynamic pres-
sure equal to that when it flies in the air at
40 mph?

4
2 / 2 ) _ P ,
3 Cair \4/7’ =2 8‘)’:.0 V‘/zo or %0 B [_—Q‘m } \{u‘r

Ch0

) -3 ‘S’llgs .
Vigo * [ /M‘.%?.’ ](”‘”’/‘“ = 1.40mph
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3.29 Water (assumed inviscid and incompressible) flows
steadily with a speed of 10 ft/s from the large tank shown in Fig.
P3.29. Determine the depth, H, of the layer of light liquid
(specific weight = 50 Ib/ft’) that covers the water in the tank.

50 Ib/ft3

() =

From the Bemaulli eqvation, rieunE Fes

‘ +,2; J-Zl . 4.;2, +Z,

where p= G}, V<0, =0, 2,2 ##, and 2, =5 1
Thus,
Vi

2 z‘ ,
SH+2 = 25 *Ez S0 that with V, = Jofi/s,
solb/fi”_ (10 fi/sY

(Gwarm )W+ 4 = gz.0m/5%) +5f1

Therefore,
H=3.14ff

T 10 fis

ft
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330  Water flows through the pipe contrac-
tion shown in Fig. P3.30. For the given 0.2-m
difference in manometer level, determine the flow-

rate as a function of the diameter of the small
~ pipe, D.

| FIGURE P3.30
Loy Vg L B 5 with 2,222 and V=0
s + 29 ) =t t B or with =2, and =g,

bot ooty and pu=Ohe so that ppo=0lh-h)=028

V, = ]/z;-"-'%b—‘,::]/z; (0.2)
or
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3.3/ |

‘3;31 Water flows through the pipe contrac-
* tion shown in Fig. P3.31. For the given 0.2-m
difference in the manometer level, determine the

flowrate as a function of the diameter of the small
pipe, D,

'FIGURE P3.31

2. with AV <Ak

2 sz
41-;-?:%42, =~60—;’= 4——2-;;*+

(& Dz) R
Thus, with 2‘,=Zz_ or V= (:- ) =( %) A
R (& Ly? - v
X N 2; R 2g
but
£=8k and p=th, so That ﬂo]-/,oz Y(h -hy) =0.2¥
Thos, ‘ ,
0.2¢ [(%!)4_ 1] V* y = 0.2 (13)
¢ 2 [(%"-1]
and l
@"A =T (0. 0.2 (2 ('9.‘8/))
a l/[(%i)“w 1]
or
0.0/56 »*

_ 2 when D~m

Yo -F S
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3.32 |

3.32 Water flows through the pipe contraction shown in
Fig. P3.32. For the given 0.2-m difference in the manometer
level, determine the flowrate as a function-of the diameter of
the small pipe, D.

BFIGURE P3.32

f—"+l//.+Z= 2 4 W, g
¥ "zg ! 4" 22 2

h/ﬁere Z, =2, and Vz =0
4L+ 2

g,——)( and P2=0.2m+x so that

V‘,
X +—2; 0.2m+X or

V= ‘VZ;(M-m = (202818 ) (0. :'-m)) g2
Thos,

Q= AV, =E(0.imf(1.982)= 0.0156 7 ary D

i
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(3)
]

333 The-speed of an airplane through the air is obtained
by use of a Pitot-static tube that measures the difference be- 1
tween the stagnation and static pressures. (See Video Y3.4.)
Rather than indicating this pressure difference (psi or N/m?)
directly, the indicator is calibrated in speed (mph or knots).
This calibration is done using the density of standard sea
level air. Thus, the air speed displayed (termed the indicated
air speed) is the actual air speed only at standard sea level

conditions. If the aircraft is flying at an altitude of 20,000 V=V
ft and the indicated air speed is 220 knots, what is the ac- _
tual air speed? )0, - f)
Vz_ =0
(1)
|4 —
——»— @
{
b (2)

For the Pitot-static tube shown

V=A2(B-p) /0 . This, pu-pu =40V so that with the

same indicated a/mp eed (IO 3 '_f ¥ )sfanda/d - (/0 3 _/04‘ )zomo or
L 2 _ 2
2 e?fa/dd/'d %*fandard T2 on_,ow \él;ooo . He cnce,

4 slvgs
Vo000 = \Qandaml[ (otandard 1 = 220 knofs | 2:00238

20,000 e;o;oav 0.00]247 S
or

V. = 302 knots

20000 ~ = 7"
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| 3.34

3.34 A Pitot-static tube is used to measure
the velocity of helium in a pipe. The temperature
and pressure are 40 °F and 25 psia. A water ma-
nometer connected to the Pitot-static tube indi-
cates a reading of 2.3 in. Determine the helium
velocity. Is it reasonable to consider the ﬂow as }t—-
incompressible? Explain. T

‘é’**'i\%“‘/‘ & ‘z\f?'*‘?z V= a5 |
with 2 =2, , V,=V, and V=0
T/)u.s)
( f’z"ﬂ _|2pp)
29 L P

where

- L - (/W ) =-sr.@o/\'/o"‘(-“3:'/5.3‘2’z
C=%T (/ 29‘2)(/0" ”’5 )(%0-1-9‘0)%’ ft

: >>
and since %0 %

2.3 b
L1 :,%0/7 = 62. 4«ﬁ3(,2_ f1) =11.96 z12

T/)ﬁé‘, 1
_1/ (’//%,—z) = 203 H
- S

v $.80xI0 _ggi
Note: M= _CY' where c :-VW
Thos, { e
= [/. £6 (/. 2%2x70%) <Trg- %? (460 + 940)",?] 2 2/0 %ci
or 203 ﬂ ’
M= omfy = 0-062<<0.3  Thus, the How can be

considerad incompressible.
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338 A 0.15-m-diameter pipe discharges into a 0.10-m-di-
ameter pipe. Determine the velocity head in each pipe if they
are carrying 0.12 m*/s of kerosene.

3
Vi o e 5.79 2
/ /ql 'g{a/i/ﬂ)z o. K3

Thus,

V2 Ler gy
25 2(981%)
and |

2 & om M2
—\é’: %_)_ = 1.9m
24 2(981%4) =

= 2.35m
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3.36 |

3.38  Carbon tetrachloride flows in a pipe of
variable diameter with negligible viscous effects.
At point A in the pipe the pressure and velocity
are 20 psi and 30 ft/s, respectively. At location
B the pressure and velocity are 23 psi and 14
ft/s. Which point is at the higher elevation and
by how much?

2 2

7 Z;“?ﬂ ="§2+’5—¥§' +Z with ¥=995 f

A5 PSR/ LT ) X SR C Lt
8 % = Ty 2g 99.5 %0, 2(32.2§)

or

Zo-Zy = 6.59H, Bis above A
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3.37  Water flows from the large open tank
shown in Fig. P3.37. If viscous effects are ne-
glected, determine the heights, k,, h,, and &, to
which the three streams rise.

F A
4
Diameter D/2 “Diameter D

FIGURE P3.37

2 2
%+;§+Z,:%—+——2‘§- +Z, Where Z,=/7, Zz*-'/?, 1 =20
s and V, =V, =0

vs,

b= h

Similarly, sipce

2 A
éu—%’; +z,=§§+%} rZ wil Zy=hy apd Y, =0

b= 4
Alse,

o, W s s Ly 2 with - d 2,4
..7{-[--2—':;— 1By = LE ot W/i%/%-ﬂ,——aj Z5 =0 an Zy =Ny
| or

= ‘(:'- %‘—2 ()

* 2 2 .
but Vs = V224 and Ve =WYoo + Wy = 2 since Ve =0
also <, , S
bx = Vex since the acceleration i the horizontal direction s Zép.

%‘X = Y cos9 = WGWG P [_/5-), = VZ;ﬁ Sinb
so hat £a.0) becomes

Ths

= M‘;"'\éz Vax + W =ty _ L 2
hy = 'T;"L T g =g Wy = 745 (2gh)sin*6

N

o
hy=hsin*0 =} sin*45° = a5 )

e ————
T —
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3.38 The circular stream of water from a faucet is observed
to taper from a diameter of 20 mm to 10 mm in a distance of
50 cm. Determine the flowrate.

()
]» D,=0.020m

ﬂl‘ zl;*Z/ 2;2:"‘%/;:*32 0.50m

whcre £ =p=0, 2,20, Z,=0.50m L

and 0 o (2) D,=0.0/0m
V=g sy q

Thus,

2 _ 2 - __Z‘& - _A !
() +292-(8) o = [2255] - alen
or Since

% =(g"‘ )2 we obtain

V222, 4 2
Q= A, o o < %(o,omm)

‘%m:"

1
2(7&/ )(o,som)]

(0.07.0
= 2 56‘ x/0
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3.3q

"/Closed end
+ M (0)

3.39 Water is siphoned from the tank shown in Fig. P3.39. The
water barometer indicates a reading of 30.2 ft. Determine the

maximum value of & allowed without cavitation occurring. Note 3-in.
diameter

that the pressure of the vapor in the closed end of the barometer

equals the vapor pressure. 3021t ’

~le—5.in. diameter

M FIGURE P3.39

2 Z
1 _.._V' = 0% -—-—-\é‘ = = =
: +2} +Z, t,;" +2—9 +Z; where £ =0, =0, ﬂz"/m,oar
Thos, |  E=0, Z = H

2 )
0 ;ﬁ:;eezu._z‘_’;_wﬁ

but /)o +30.244 ¢ =// or Since ﬂ;"’/mpar, &%9_@ - —30.2 f

A;/Goa%
2 2 2
0 =-3az2ft + -2-—11(;;-4'51(7[ or i‘,\é‘ = 242 op l{,_:[z(sz.zg)(zy.zfl)]
Thes,
- {

%_~ 3q‘{:€£— /) 2 . 2

.. % 3.

Since Vfls=Vofly, VW =Gth= "Bk =(T5) @)
or

V3=/4‘.2 :?{
Howsver,

Z /2 -
7%%?,
/4.2 _ﬁi = 1/2 (32.2%)}) i or b =313 H
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3.40 An inviscid fluid flows steadily along the stagnation
* streamline shown in Fig. P3.40 and Video V3.3, starting with
speed V, far upstream of the object. Upon leaving the stagna-
tion point, point (1), the fluid speed along the surface of the ob-
jeet is assumed to be given by V = 2 V, sin 6, where 6 is the
angle indicated. At what angular position, 6,, should a hole be -
drilled to give a pressure difference of p1 — P, = pVE/2? Grav- (0)
ity is negligible.

W FIGURE P3.40
I A AL
where V, =0
Thus, /
fi =zl -V) =70k
so that if ,
f-f=20% then Vo=V,
That js:
\4=2%si0@ =V, or smnb =%
//6/709, 9&=i_0_i’
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3.4

Vi,
3.41 A water-filled manometer is connected to a Pitot-static ) '
tube to measure a nominal airspeed of 50 ft/s. It is assumed that
a change in the manometer reading of 0.002 in. can be detected.
What is the minimum deviation from the 50 ft/s airspeed that
can be detected by this system? Repeat the problem if the nom-
inal airspeed is 5 fi/s.

(2) ¢

. 2
é’--}i‘gfz, = %* %+22 where p =0, V2=0
Z =2, and f2= Jl'l;go}7

| v J 8 F) Sl S 2 )t{ iﬂ
24 .._F._h r h = iv'l = (0"00238 ;’, )(Vl s2 ) (1 TT)
- : = I/zﬂ‘ 0 = e "(‘7.7“9‘ . <2 2

’%’"—‘3; h=2.2900% V,z where V~ fi/s and h~in.

s
For VI:= 50—}2i this gives
h= 2.29 xlo:lf( 50)* = 0.573 in.
while for V, =54 it gives

h =2.29x10%(5)* = 0,00573 in.

With hto.002in. from these nominal valves we obtain

h, in. V,, fils
0.57/ 499
0.573 50.0
0.575 £o.l1
0.00373 4,04
0.00573 5.00
0.00773 5.8

Thus, with V, =501 the minimm air speed deviation that can
be defected is 0.1 15 ; for V=51l if is 1O.81 Hfs.
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3.4

3.42  An inviscid fluid flows steadily through

the contraction shown in Fig. P3.42. Derive an o

expression for the fluid velocity at (2) in terms of (n @p,
D.. Dy, p, p... and h if the flow is assumed in- Moy —> @,
compressible. e U
L~ !
. T |
(3) -1 — l |ap Density pm

FIGURE P3.42

=12

and V/A'/“Vz/qz or V= ()Y,
Tﬁl/s,

ﬁ = [1,_( ()
but

L=tV =gy =+ (L-h) + U h

f o = 50-h 45 h =21 = (£ =0)h = 9 (0n~C)h

Z/ ﬂz (6” _ I)/') 2
Combme Eg.s (1) and (%) {0 obtain

V"‘]/ 29 (f:—fz)/é" _ 2—9(’?”’)

-3 | -2

L
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3.43 |

A smooth plasuc, 10-m-long garden hose with an in-
slde diameter of 20 mm is used to drain a wading pool as is

shown in Fig. P3.43. If viscous effects are neglected, what is
the flowrate from the pool?

FIGURE P3.43

‘%’*"’2\% z =G L ;’LZl where f,=f.=0, 2 =0.2m

v Z, ==0.23m qny( [4.—.:?
Thus, “ ¢

- ~ L
=]/2g(z, -2,) = (2 (aalg’%)(o.Zm-—(-a.zsm)))z
= 2.90%

or

Q =AY, =Z(0.020m)*(2.902) = 9.1l xs5*
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3.44  Water flows without viscous effects from .
the nozzle shown in Fig. P3:44. Determine the

flowrate and the height, A, to which the water
can flow.

ﬁ--f--!’—i-l'z, —fé +-—‘-/3:

0.8 m

J'g;g@p = 85kPa
e

MFIGURE P3.44

= . , here =z =0, f=0
g4 4 and AV, =A, l{z_ or ¥ (%‘) A
-_—(0.05”] 2V
Thus. - o.lom]) '+
’ . =0.25V,
Vz;— \/z?,(%-~ 2)/(/—-(0 25)2.)
or

Thos,

@ =A. =V~Z}£ (0.05m)"(12.842) = 0.0252 2
Also,

‘ﬁ‘ ’+z,z =——§‘1 +—X—*;:+zs where f, =0
Thus,

M2
h= W: _ (12.84 &)
2

7~ 2(¢8/%)

= 8.49m

= [.2 0.0 2) (S fj;‘,f; 2 o om ) {1- (o.zs)z)J

V3 = OJdﬂd%=Zg_'['b
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3.45

3.45 Water flows through a converging—diverging nozzle as ‘1
shown in Fig. P3.45. Determine (a) the volumetric flowrate, O, h
through the nozzle and (b) the height, h, of the water in the Pitot 0 \: l

3

tube inserted into the free jet. Viscous effects are negligible, -

il [T
"]1 1 tj Mercury

BFIGURE P3.4

5

(0 From the Bernouvlli equation,
ptteV bz = pidoVl ¥z, where 2,22, and p, =0 (1)
/q/.w, £r= fo” 3,';9 h,,; - X/'/w /’),,20 , where o =0 so fhat
pr =136 (62.416/H°) (% £4) - 52.44/1;/#3(% fi) =167 /4>
In adah'{/on}( AV =M Vo or V= (%)z\/z =(%)2V2 = 4,
Heﬂcel Eq. (1) becomes
167 b/fi* 44 (1945 Igs /1) (%) = L (1.9%slugs /#13) V2

U

or
V,=3.391t/s . ,
This, Q=R Vo = F (75 1) (339fifs) = 0.0739 /5

(6) Frem the Bernovll; equation
ot 7 pV:-tJ'Zz = P +7p Vo +dz, , where ,=0,2,=0, V=0, and 7,=0
Ths,
teVe =fs, where g, = ’h so that

#(1.9%slys /1) (3.39 fi/s) =(62.418/1°) h
or |
h=0.179f =2./4y,
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3.46

346 Water flows steadily from a large open tank and dis- — TiMURE Fa.48

charges into the atmosphere through a 3-in.-diameter pipe as
shown in Fig. P3.46. Determine the diameter, d, in the narrowed
section of the pipe at A if the pressure gages at A and B indicate
the same pressure.

diameter = d

Pettol’ rrz, = fa +30W +82 | where 2,=0 and p,=0

Thus, since p, =fy ,

fot# oV +izy = £0k )
//ow;t/e;; r *7':(71’,2""’ Iz .-=/z_ +1L€léz+m'2, u/éepe,o/ “fp= 1//=,g,_
so tha L =
TV =0z, or Vo=V2Lz =)= =[2(32.28) 14 )] = 32.1 46

But

Pt RV 82 = gt 2OV 402 where Vo =Vs since £ s

Thys, i

Ps == ¥zy = -(16+Q)FH(62.4 [b/H) = /560 l/Hf (2)

From Egs. (1) and (2):

-1560 18, +4 (194 %”g‘—‘) 2 = Ll.9# f;";’gi) (22, £y*
or

Vi = 6.1 t/s
Since A Vu =R Vo it follows Hhat
FdVe =#0

or
= V__V& /g Vsz,/ff/s _ .
d Dz Vo © (3[/7.) m}-{; = 2.50m,
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3.47

pm = 900 kg/m3 g

Determine the flowrate through the pipe in Fig. P3.47.

L} ‘ ®
Water N (2)_..__ 0.08 m

|
FIGURE P3.4#7

2 2
& Vg = Loy e

t2g =~ *;;“I'Zz where 2,=Zz and V, =0
Thus, , , —
A A =
but,

Fr=CL=h+0(Lth) = or po—p, = (F-bn)h
so that

A
_ ' 9m . m~f, _ 900 7%’3 ‘
V/- 2?(’ y)h = [2(%9/32)(1 W 5 m)
=2.zo_§’-

Thos,

2 3
Q=4 =% (0.oem) (2.202) = 0.0/11 2=
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3.48

3.48 Water flows steadily with negligible viscous effects
through the pipe shown in Fig. P3.48. It is known that the 4-
in. diameter section of thin-walled tubing will collapse if the
pressure within it becomes less than 10 psi below atmospheric
pressure. Determine the maximum valye that & can have with-
out causing collapse of the tubing.

2 2
%L’LZ/';E,% = 2""22, ;
Where

(1)

4-in. diameter thin-walled tubing

4 6 in.
T 3)

W FIGURE P3.48

%;o Vfb 0, 20 and p, = ~10 8 (m4 %) = ~/340
vs, with 2
gf == /5&4:0/5/6‘2 ; Ve

/ 62,406/ " 2(32.2f1/s%)
or ¥ = 4178
Also, )
-£L+Z, E‘gf = l';:l 2, *%
w/7ere 2V
£o=0, Zy="h, and Vs = 2= = )V 4’”)(1//7f-—)

,MS,
Thys, s
o (18.5F4f5)

it h+ 2(32.21/s2)
or
h=131ft
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3.49

3.49 Helium flows through a 0.30-m-diameter horizontal pipe
with a temperature of 20 °C and a pressure of 200 kPa (abs) at a
rate of 0.30 kg/s. If the pipe reduces to 0.25-m-diameter deter-
mine the pressure difference between these two sections. As-
sume incompressible, inviscid flow.

2
Brtog o=y tag e
where z =2,
Thus, '

or
/I/MJ
k
”:) = P’q’V/ :0.30’5’
v ok L
/ ’ A1 " (0.329 %, ) Z(o.3m)*
and

/9:% =Aule or
V

Thus, from £9.0):

) (2 =@
D,=0.3m | D, =0.25m
p =200kfa akbs
7, = 20°C

£ zooxm‘:';,,/"/l

O p-p=to(6-V)  where o= Fe 2
P=0'329!/§%

m
94‘

1»)z ,(o.Bm)?’ my - sg.62

77 I_‘.;.f!.’.”/? )(273+20) K

' 2
2 2\'m _
Fp =5(0.329 %) (18.6-129°) 8 =29.5Pa
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3,50

3.50 Water is pumped from a lake through an 8-in. pipe at a
rate of 10 ft/s. If viscous effects are negligible, what is the pres-
sure in the suction pipe (the pipe between the lake and the pump)
at an elevation 6 ft above the lake?

(1)
-_f_ W = e
#" 2;. +‘Z/ t 27 \/Jf
Wﬁe/‘e £ =0, V,zaj 2,20, 2,=6.0 '

and 5

VI RY R A (L B
2" A2 mo* 77~/__&H)2 2
Thus : \72

L= =¥, -0l =—-62¥H3(60f{) - 4 (1.9# H_,)(zasﬁf)
"’//68??-3 = = 8.1 pss

n




. 3.51 Air flows through a Venturi channel of rectangular cross _§ Yot ) | Freeiet
section as shown in Video V3.6 and Fig. P3.51. The constant ' '
| width of the channel is 0.06 m and the height at the exitis 0.04 m.
- Compressibility and viscous effects are neghglble (a) Deter-
- mine the flowrate when water is drawn up 0.10 m in a small tube ~F~ R : ,
- attached to the static pressure tap at the throat where the chan- 9,04 13¥0.10 m § 0.04 m
~ nel height is 0.02 m. (b) Determine the channel height, &,, at ‘ ) ‘
section (2) where, for the same flowrate as in part (a), the water
is drawn up 0.05 m. (c) Determine the pressure needed at sec-
tion (1) to produce this flow.

Water
® FIGURE P3.5}

(a) For sf&ady inviseid, mcompressnb/e flow' (¥=12.0 3)

28
(0 z,‘;.—a +-£5- = l% zg Where fi,=0 | ps= =¥ [ =860x102 (0,1m)
Also =“9807»'z

*AsVy =AYy sothat Iy =-ottn00ém) |

0,02 06
T/)US Eqn (1) becomes (0:02m »0.06n)

~980im L 4V
/zo»—"% 2(?9/ )'Z(M/:’s%) or %‘ 231§

//encel 5
Q= /494 % = (0.0‘//))"0.06”7)(23.,/-'3@—) = 0[0551,: —g——

A
) (b) z;, tip = ﬁ"- f where g, =0, =40, = 96’oxmﬂ (005m)

= - 49013‘
From part (a), V= 23.2

Thus, Eqn. (2) becomes

-~ 490 4 s V. _ (28
12, 0/" 260.81%) 2008 %)
But Vz/)z Vz//);a so That

(36.555) (0.06m)h, =(23.,2) (. 06m)(0 o%m) or h, =0.0253m
(3) () Alse, £L+—-" = %{ +y§ where f,=0 and A, V, = Ay Uy
But since /), =(0.0¢mx0.06n) = A, fhen V)< Vi and Egn.(3) g/ves

ﬁ/:ﬁyﬁi

or =365

- 48
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3.52 |

352 An inviscid, incompressible liquid flows steadily from
the large pressurized tank shown in Fig. P.3.52. The velocity at
the exit is 40 ft/s. Determine the specific gravity of the liquid

in the tank.
' 2. # 40 ftfs
ﬂ.,LZ TH/a =l o,z V,r. ® FIGURE P3.52
;- s 2 z.;z, o
w/;ere
b

pr= 0t (reif) = mrelhe | o
Z,"",/‘ﬂ) Z=0, y, =0, and V, V, = %y_rﬁ{
Thus,

o /W (O f/s)
ey B LYY VS

or
Y= /463 ﬁ%
f/elice |
S6=S_ . 1 1b/H3
J}/ A b2.416/H3

]

N




3,53

—

3.53 Water flows steadily from the large open tank shown in g ( )
Fig. P3.53. If viscous effects are negligible, determine (a) the R
flowrate, @, and (b) the manometer reading, h.

Q \ T

0.10m 0.08 m( Mercury

MFIGURE P3.53

@ From the Bernoulli equation,
Pt PV 2, = g +2L(’M’¢ +{'2, whe/\eﬂ £2=0 =0, 2, =4m, and Z2=0.

T/?U‘S‘ | —
¥z, =3 sz , or PgZ é'szz.so that Vz*"V;};‘z/

V ﬁis/m/sz)('é‘m) = 8,86m/s

Hence,
Q= /I V, = Z (0.10m)’(8.86m/s) =0.0696 m*/s

L}

(&) From the Bernoulli equation,
V& 2€V3 +{Z; < /z 2.(0‘/2 ‘*J'Zs where Z2= Zs dﬂdﬂz
so that

p=Fe(Ve V)

/)/50 A Ve = As Vs sothat % Vz ( ) Yz = Zé;",,,) 8.86m/s=13.84m/s
Hence,

f3=7 - (999 kg /m*) [(8. 24m/s) - (13.84m/s)" | = - 56500 Nyim* (1)

Also, from the manometer,
s = X h +J' ,(2m+(0.08/2)m)

= ’(/33X/0 A//mJ)h +9.80x10°N/pm*) (2.04m)
= —133x/0°h + 499x10" Ni* whers h~m »

Thys, from Eqs. (1) and (2):
CL.45x10% Nimt = —133%19%h +1,99x10" N/m*

or
h=0.574m




NN

*3.54 Water flows from a pressurized tank through six equally
spaced outlets on the vertical spray tower shown in Fig. P3.54.
The diameter of the lowest outlet is 13 mm, Determine the di-
ameters of the other five outlets if the flowrate is to be the same
from each of the outlets when the pressure in the tank is
p1 = 200 kPa. With outlets of these diameters, the flowrates
from each outlet will not be equal to each other if the pressure in
the tank is not equal to 200 kPa. On one graph plot each of the
six flowrates as a function of p, for 100 kPa < p, < 300 kPa.
What range in p, is acceptable if it is required that the flowrate
from each outlet must be within 10% of the flowrate from any of
the other outlets?

ﬁ V2 CyR FIGURE P3.54
h _f . . _ _ ! >
¥ t2g1%4,= é"*'{; tZ; , where V=0, f,=200kPa, g =0, 2=2m (@

o — 200 2 %
- —Z) = nN 227 m> -

]4. = JZ?(@,’» +Z, zz) = 2(18133{280%)‘*2'" zl]}
Thus,

V; = 4.6‘3422-6‘-21' 2 , where Z;~m 0]
//ence, Q. =AY, =-47-’—‘(0.0/’3m)2(9‘.4‘3).‘/22.4 +o .s’!'- =0.00278 %3
l/? geﬂeral g @‘ = Qz or

%

EDEV; =@, Thus, D; =[—;-(-%] " with Vi from £4.0)

That is,

D = 4(0.002.79)4" % _ __0.0283 here Zomm @
¢ | masanfzzp-z, 2] T T (22,428 Y c

The following valves are obtained:
/ ‘Z‘.J m AD‘. ’ nm

13.0
13.3
13.7
11
145
15.1

Nothghww
SO MO

Consider the various G for 100kPe < £, <300 kPa
From Eq.(0) we obtain

. . 5 4
Vl., =/2’(€L +Z, —Z") =[2(Q8/%)(§%E!m‘; +2m “Z‘-)} 2

or
14. = 4 ¢3J % +2-2Z; ;‘cgi , where f, ~kPa and Z;~m (&2

(con't)
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+3,54 | (con?)

//ence Q; =A:V: =F DV,

Qt“.?%gpi(# +2-2 V¢ B for =237 with p,~ kP, )
Z, ~m and D;~m

The calculated results are plotied below.

0.004 l

— - p, =100 kPa
—%—p, =200 kPa
*"pﬁ, =3OO kPa

0.001

2 3 4 5 6 7 8
i, nozzle number

Determine f, range so that all §; valves are within 107 of
each other for a given valve of g;. For given f |, Qppay= Q2

(c.e, the botlom nozzle) and @y = @, (i.c, the fop pozzle)
provided p,<200kPa. For g, 200 kPa a// the @, are

equal. For f7200kpa wax =@y and @uim = @, . (see below)
T/)w‘ the minimm g, for which all flowrates are

with 107 of each other is hat for which @ /@,=1.10,

“and the maximom s & /@ =1.10. From Eg.(¢)

Q =3.48 D, (%42)2 and @, = 3¢8D (ﬁ‘b-—a)/

—}.%3 +2 ]Jiv 13.0\2 | £ +196]72
(D;w £l_o__8 J -( 15./ fl 78.4

(con't)
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K

1 con'h)
or
@ _ gt 4 _
Q7 07‘/1(ﬂl 8% (5)
Fo —67—..//0 £q.(s) gives f,= /60 kN
w/)//e fo/‘

9 _ 0 £4.(5) gives g, =272 kN
z

Thos, with (604N < g, <272 ki the flowrafe from any
nozzle (for a given valve of g,) is wilhin 197, of that from any
other nozzle. Note : This is copsistent with the calcolated

resvlts shown above.
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7,55

3.55 Air flows steadily through a converging-diverging
i fe, ‘ctangular channel of constant width as shown in Fig. P3.55

and Video ¥3.6. The height of the channel at the exit and the
exit velocity are H; and V,, respectively. The channel is to be
shaped so that the distance, d, that water is drawn up into tubes
attached to static pressure taps along the channel wall is lin-
ear with distance along the channel. That is, d = (dp/L) x,
where L is the channel length and d,,, is the maximum water
depth (at the minimum channel height; x = L). Determine the
height, H(x), as a function of x and the other important para-
meters.

® FIGURE P3.55

pH 2z +4 e V= = ft Z,0 pl/,, where 0 =air density
where

Z=Z,, FPo=9, P = “d;"z.od = —% d”w(
Thos, |
-8 dmax)(.,. PV =7 el
Bvt

AV=Bls, or V=3V, = oy, oo that

J

2
"%o%’"x +1LP(%Q%) 13

/1'0 _‘/, + Zxﬂzovd 12 Y20 dmax | Typical shapes are shown below:
e o L | ‘ ,

_

HIH, vs x/L

: // o d
J(?‘Jf t? 22.3 Oma

//K’ 2 °

[SAN

] CD
' oo
Ly
]

i\
\

H/H,

(o]

R

kN

©
No

v}

x/L
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*3, 56

*3 56 Air ﬂows through a honzontal pipe of varlable di-

- ameter, D = D(x), at a rate of 1.5 ft*/s. The static pressure
distribution obtained from a set of 12 static pressure taps along
the pipe wall is as shown below. Plot the pipe shape, D(x), if
the diameter at x = 0 is 1, 2, or 3 in. Neglect viscous and
compressibility effects.
—M

x (ltn) p ‘(m HZO) X (in.) _ (m H;O)
0 1.00
1 0.72 7 0.44 —
2 0.16 8 0.51 J "4
3 —0.96 9 0.65
4 —0.31 10 0.78
5 0.27 11 0.90
6 0.39 12 1.00 - I h

water
J;/2."

2
%— +Zo —‘4§+% +Z | where Z,=Z2
T/w:

&£
JV2+_L£LL with %:—g—o.—: ;5061 = gi SJW/)el“eD fi

and
Po=pP=18,(h-h)= 524#3(1!) ~h) = 5.20()- h) with h~in.

, 5
//e/)ce_, with P=2.3gx/0 3%—“% we oHam

| 2 0.4 (1- .65
A et
Also, AV=Q or ZD*V=Q so that

4 1.5 2314
D= [ 7/‘%’\(/2] = [ 47£“V£§) = lv-?iz, or when combined with Eq.(l)
JCy

y, T, where D,~ft, h~in

].382
D [3 .65 (2)

5F teano(l-h)|

Plot D=Dtx) with D,=7% , 4, and - #, wmy the valves of h=h(x)
from the fable. Note : h is the same a “p (in. H,0)" in the fable.
An EXCEL program was ysed t0 obtain the 7"#/”/@%@{2/2’%

(con'{)
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(con't)

A3.56

D, ft(Do=1/41) D, ft(Do=16f) D,ft(D=1/12ft) p,in. HO

X, in.
0 0.24996 0.16664 0.08332 1.00
1 0.20277 0.15733 0.08299 0.72
2 0.16776 0.14435 0.08234 0.16
3 0.13999 0.12870 0.08112 -0.96
4 0.15299 0.13667 0.08182 -0.31
5 0.17245 0.14649 0.08247 0.27
6 0.17841 0.14902 0.08260 0.39
7 0.18123 0.15015 0.08266 0.44
8 0.18558 0.15179 0.08274 0.51
9 0.19616 0.15537 0.08291 0.65
10 0.20944 0.15911 0.08306 0.78
11 0.22710 0.16300 0.08320 0.90
12 0.24996 0.16664 0.08332 1.00
D vs x
0.30
0.25 .
0.20 i
& | | |---D=14t
* ap—
a5 015 s — = — —D=1/61
- —D =1/12 ft
0.10
0.05
0.00
0 2 6 8 10 12
X, in.
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: 3.57 [

¥
3.57 If viscous effects are neglected and the tank is large, de- 0
termine the flowrate from the tank shown in Fig. P3.57.
(2)
F==>r <

50-mm
diameter — ’
2 2 FIGURE P3.57
%’Aﬁt-é‘%— + 2, =-§’= +-2Y§- +Z,  where =, +Eh =&k
Z,=07m , 2,=0,and |, =0
Thus
7
1y V?— s —1
%b"*i';—-‘-;;’ or ‘é‘l/zﬁ(%&‘*z,) where %’— =0.8/
and.
_ 2
Q=Ak =74 W
Thus,

) B |
@ = 7(c.050m) 2(28/fg2".)(0'8’ (zm) +0'7") =0.0132.2

—_——
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- 3.58

3.58 Water flows steadily through the large tanks shown in Fig.
P3 58. Deteumne the water depth, hy.

For steady flw, ®,= Gy where

e

N o  FIGURE P3.58

0.03 —m diameter

. & V:‘
04?/94%, ~k///ﬁ 2;;3,4-75;4. 3-—...£_+ ;

where S = f =0 and =0
____/2;(23_3%)' = 1/2(%8’/-'@.)(207) =626 42

Thus,

ar
2 3
§, =7 (0.05m)(6.26 &) = 0. 0/23 %

Also, 42
#4, V’ tz =-ﬁ+~'§ +Z2  where £ °1=0 and V=0
S0 /‘/mf
Vo "'1/;?/7/9
Thos,

‘ 3
Ay =6 or —E(o,osm)’]/z (7‘9/%‘)/7/9 = 0.0/23%
or
/;ﬂ = /$,¥m




3.59
@ 0.5 in. Hg vacuum
. 0.6-in. ,
3.59 Air at 80 °F and 14.7 psia flows into the tank shown diameter
in Fig. P3.59. Determine the flowrate in ft*/s, Ib/s, and slugs/s. (1) @ ! 2)
Assume incompressible flow. ¢ 1

2 V
&0}{‘ o+ -ﬁ- 22 ?
Téus,

W-F

+Z,

w/;ere Z =Z2 £

) (/‘/‘f Hz)

V P(imp
ey

FIGURE P3.5¢

=0/ V,:a

nr
-3 slvgs

where e= -—-— (/4 7

Hence, with £ =

%=%2

Thys,
Q-A Vi = £ (%

m = (’Q = (2.28x/07 5,;—’;?‘)(0.34‘4.‘5

4/7
gm (32 2-3;3_)(7087)1/0

/) = -(6’4‘7

(c35.33 ’) %, /78 &£
2, LBX/os%‘ﬁ- i s

% sly
Ki

(// oz )(1/60-!»80)"/\’

1) (/7,; #) = 03%—3‘—

= 2.28X/0 73

w) (%

) —3%.3 H"

= 7,89Xx/0 W

= Ib
= 0.0254 %
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[ 3-60_

3.60 Water flows from a large tank as shown in Fig. P3.60. At-
mospheric pressure is 14.5 psia and the vapor pressure is 1.60
psia. If viscous effects are neglected, at what height, A, will cav-
itation begin? To avoid cavitation, should the value of D, be in-
creased or decreased? To avoid cavitation, should the value of
D, be increased or decreased? Explain.

FIGURE P3. 60

vt ‘;}"*Za =T+—2}_+Z’ Where [, =/4%.5psia,f7~ e,
Za’h 5 2 80, 4/7d.%==’0

Thu‘s,f p e

=1L =f A
h=t75 + 2} (1)
However, Do 2

AV = Ve or =("5,‘) Va

where 2

Thus,

Yy

24 ‘

Y 7‘/)47‘( Dz.')"‘ ) .

Ve (/)% _(Da

Zé - Q.l.y " (D;)h | (2)

Combine Eqs.(!) and (z) 4o obtain
£i= fo D, \¥

h = b"f +( D, )h

Or‘.

h = Pe "f/ _ (s ’~/°60)'l%?‘ (/"“f?;?"g)
D -~ b T i Y o
*|(2)-1] 62#;@3[(7'—;;'-"‘) _/]

From Ey. (3) it /s seen that h increases in increasing D,
and. decreasing Dy, Thus, to aveid cavitation (i.s.40 have
h small enovgh) D, shovld be increased and D), decreased.

[N




367 ]

3.6t Water flows into the sink shown in Fig. P3.61 at arate
of 2 gal/min. If the drain is closed, the water will eventually
flow through the overflow drain holes rather than over the edge
of the sink. How many 0.4-in.-diameter drain holes are needed

to ensure that the water does not overflow the sink? Neglect
viscous effects.

1in.

0.4-in. diameter
holes

Y2 S S ]
%*;;*Z:—%- ;h?z, Wbereﬂ 0 V=0, and 2. a’g =0
Thus, y
Z = -,:;; or Vo= VZ}Z [2(32 Zﬂ)(”o'zﬁ‘:} *=2.54% f
Also,

Q=nhY,=nC ”d V, , where n=nvmber of holes required,
d,=0.4in., and C = contraction coef.
—0 6! (see Flg 3.14)

Thus, wifll
- } mn [ 23] mu M3 -3 H’
Q= mm 60S )( 194/’ ,729 in:”) % eéxio
n= —*%% o (4462107 {H¥/s) _
e dit Va 708D (2EP{* (2.54Ffc) .30
Thos, 4 holes are peeded.




' 3.62

3.62 What pressure, p,, is needed to produce a flowrate of
0.09 ft3/s from the tank shown in an P3.62?

FIGURE P3.52

0.06-ft diameter—-¥av<—

HE . |

2, Vo, o B o here +a"h =0

i lin B £x=fi i, f e
Z _35;‘}1 23

Thus, and lé:o

£rtoh "

y T2t
T N2\,
Wbefe Q=M Vo =0, Vs

or 3

Vo= %49 _ ¢(0.098) _ 3.4
3 7bE 7 (0.06f)* s

Thus
£ = 3”(2‘{;2 -zz) Hh = (//(524’6 [—g_%f-;,_)) ——3.5%]
— 42, SH" (2.011)
't;g/-.: 746?’—%_ 5,18 psi
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3.63

3.63 Water flows from the tank shown in Fig. P3.63. If viscous
effects are negligible determine the value of h in terms of H and H
the specific gravity, SG, of the manometer fluid.

FIGURE P3.63

By Vg e Vg, where =0,V = Vom0

Thus,
0, _ 0
£ =l
But, p=pu+¥l = gy =p +0(H+L~h) +S6Th
or
po = X(H-h+S6h) (2
Combine Egns. (1) and (2) 1o give':
H =(H+(s6-1)h)
or
(S6-1)h =0

Thus, if S6#1, then h =0 for any $6

3-¢3




3. 6% :

3.64 Water is siphoned from the tank shown in Fig. P3.64. De- ]
termine the flowrate from the tank and the pressures at points ‘
(1), (2), and (3) if viscous effects are negligible.

BFIGURE P3.64

From the Bernoylli equation,

PrEeN 82, = Pt doVi+ 82, where p=pu=0, V=0, 2, = 51
| zZ =0
Thus, and %

£z, .—,f"o[/qu or M, = z/zar'zo /(o =,V252,, = ‘/z(yz.zfc/“,.)(sff)j—: /2%3&/

He:ﬂce, | .
Q = AyVy = (014 (17.94 ) = 0,141 5

For 2 prizeV+02 = p, 47 00> +82y  which with 20, 2,0 2 =84
and V=V (since A=Ay ) becomes
p = -YZ = -(62.4l/H3)(84]) = - #4995,

For i patdols +82;= Pu tE oVl + V2, which with py=0, 2420, 2,251
and Vs = l/‘; (Since Ay =Hy) becomes
py =~V == (62.404) (s H) = — 312 Ib/H*

For f¢ Since Z,=Zs and Vo=Vs if follows that
Y 703 =-3/2 b/ *

3-6%




'3.65

3.65 Water is siphoned from a large open tank through a 2-in.-
diameter hose and discharged into the atmosphere (at standard
atmospheric pressure) through a nozzle with a tip diameter of
1 in. as shown in Fig. P3.65. Determine the height h so that the
pressure at point (1) is equal to 8.0 psi (abs). Assume that vis-
cous effects are negligible.

—»!: la—2-in. diameter

20 ft

X —J,L—lm diameter
(2)

From the Bernovlli equation, BFIGURE P3.65

fotzoVitz, = po+ bV 82, where p=pp | Y=0,2,=9
Tﬁyg a”d 22 ”'ZO'F.}
=2 (JV +P3Z2, ,or 14::]/?2_;2: = ‘/-—2(32,2-_591,_)(—20{1/)' =:35,9§i[
ﬁ/sg since AV, <A Vi it follows that
\/,’=—,%- V; =(—§-;‘)2V —( /’”) (35.98) = 8978
Therefore, with
43V 40z = p+doVe 82, and 2,<h, 2,720t g =/%7psia
h cd/) be a/efe/'/ﬂ/hed from fr = 8psia
//‘M‘ ) 4 (194 2 )(5.978) + 6244 h
—/47 o (/'7“7‘ ) 42 (1.9% 7/?i) (359 8)* + 42 4‘{; (-20f4)
777[7{
h= 142

Note : This resulf covld be obtained by using the Bernovll quation
between points () and (1) rather than (1) and (2).
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3. 66

3.66 Determine the manometer reading, A, for the flow shown
in Fig, P3.66.

[ A—
o— x "

- Free
jet

0.05m d‘ameter
FIGURE P3.66

2‘; 7;1 23 V;+Zz W/""”"B 3-‘;/ Z2 , V O Ma,,
Thus, 277
£, =pz
However, £, =0h and p,= 4 (0-37m)
so that '
h=037m

3..
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| & —P & ooom
X ; 0 Og m diameter
3.67  The specific gravity of the manometer fluitl shown in

Fig. P3.67 is 1.07. Determine the volume flowrate, Q, if the
flow is inviscid and incompressible and the flowing fluid is
(a) water, (b) gasoline, or (c) air at standard conditions.

20 mm=h

FIGURE P3.67 =

2, 2
%"'%*Zl -é+-7+2’2 where Z, =2, and %‘0 |
T/WS

g Gﬁ& f%) (N
Buf

£+ 3L 48,0 = o +¥(L+h)
O;OZ"fol ( X’)h So -lhm‘ Eq (/) becomgs

'\4 1/29 -—L—h =: \/Z (%’/‘?)( 107 (9;;(/0 ) _ l)(OOZm)
Thys, 3 _
Q AV, = D, - Z (0.04m)" zma/)(—’%‘-’—’-‘—’—‘?-»/)(o.oz)
Q 3.99x/0°° o 1552 | L here § 2l

For the given flvids #his gives:

KN m3
f/l/ld J'J "_m"§ (Q, <
@ water 9.80 /.06 X)0°
(b) gaso/me 6.67 3.02 x/073
© air J2%x)063 0.118
3-67



3.68 |

3.68 JP-4 fuel (SG = 0.77) flows through the Venturi meter
shown in Fig. P3.68 with a velocity of 15 ft/s in the 6-in. pipe. If
viscous effects are negligible, determine the elevation, h, of the
fuel in the open tube connected to the throat of the Venturi meter.

V = 15 ft/s

EFIGURE P3.68

V’g +Z, = 702 y Z, where z,=07/ 22=7*8ff‘{’ (1)
/9/50 /9,14"/91‘1/:. and V= 15 {4
V _/93- v = (2 ;)V Z’/’;) (158) =33.75 4
Thus, wn‘/) ﬁ- =6ff Eq()) b“oﬁ&i
(33':'54&)z _ (15 &) 8
X"” 2(32 .2%) = éft+ 2(32.24) " 12 ft
or
g{_ = —7.53 f}

But %/.:./7 S0 711747_71 h=753ff

3.69

3.69 Repeat Problem 3.68 if the flowing fluid is water rather
than JP-4 fuel.

Note from the solution to Problem 3.68 that ihe
valve of & is not needed. Thys, h=753ft for
e/{her Wafer or JP-4 f//e/
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"3.70 ~ — i
B , | |
3.70 Air at standard conditions flows through the cylindrical
drying stack shown in Fig. P3.70. If viscous effects are negligi-
ble and the inclined water-filled manometer reading is 20 mm as
indicated, determine the flowrate.
FIGURE P3.70.
| ]
: Q :
f..-;- +z, --—£—+ 5422 Wﬁere Z,«O Z;,*/ and i
i -3 -GV
Thus | 4y
/.,__VLZ 702-4..(‘/'/’).1-/[ -
~ 2 ~ & 29
or L
Y A :
1SVi- _ e _y o
29 J
However, p, +8y+¥p,h = g, = ¥(L=h-b) where h =taonm)sinis
or - ;
e (i) 2 2
- By combining Egs.(1) and (2)
5 V
57 = (% ")h -
29(-&” h 2008825 -
. /5 | -
= 2135-%1
Thus, |
7 1y yia 2 m®
@=AV, =D {/ =z (2m) (2.35%2) = 7.38
|
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3.7/

- 371 Water, considered an inviscid, incompressible fluid,

flows steadily as shown in Fig. P3.71. Determine h. 0=t

0.5 ft diameter ft di&meter

n

m FIGURE P3.71

£z +7pl? = p, +¥Z 4P i
W/Iel‘e Z/ 0 Z,z,—’:)’f{ VZ C7 dl’ld %:.__‘3:___:509#

7 Z (147

s,

p A s B = g sz u 2 (3f)
or , B
/7 /2 = /62 < ﬁ" (/)

But from the manomefter,
p -8 (L3fl) +5(h+L) = g,

or

/f/ol - 62,4 = H" (3#) +62.4 ,0;3 h = f2

ence,

g =pt 187 - 62.4h which when combined with £g. 4/ ‘7/2/9-*

f7_+}/87—52,¢é —f, =/62
or

h= 0.4001
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3.72 -

3.72  Determine the flowrate through the submerged orifice
shown in Fig. P3.72 if the contraction coefficient is C, = 0.63.

FIGURE P3,72

Gadprz=fatin where 0,10, 2,45
Thus, 2 270, ond B2 =2
. = 1/2-
0‘7‘79‘ 2+ (32021})
Vo =/134 1
S0 7‘/m+ ‘

2 3
Q=AaVs = G As Vi =(0.65)F (5 11 3w f) = 0.351 £
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3.73 Determine the flowrate through the Venturi meter shown

in Fig. P3.73 if ideal conditions exist.

ci-»}) 311mm‘(l) e(2) [19 mm k

FIGURE P3.73

L X +;, =224 Y;+zz whers z, 2, and AV, <AV
;, — ( D2
Thos, %, V (o,)Vz
Ly (22, B, N
Gy e =B 5
or :
(P,~F2) (735 - sso)kPa
V= |2 .._I&": = | 2(98/5%) (9 % = 2.51
- () | - __/iﬂ’_)"
3/ mm
o that

i , - 3
=F 0V, =Fo.onm) (21.58)= 6.)0%/07° &
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:‘\ . ; ) . ’ \
3.74 For what flowrate through the Venturi meter of Prob. CIP @//_
3.73 will cavitation begin if p, = 275 kPa gage, atmospheric N 8
pressure is 101 kPa (abs), and the vapor pressure is 3.6 kPa  ——p»
(abs)? RN
o v = 9.1 kN/m3
2 :
(1) -§—+-2—l§+z "%* 5‘*2’2 where 252 , 4= 36&/94«&)'
and A =@75+/01) kPa(abs)
Thus, with /4,% =4 = 376 kfalabs)
or D ‘
Y = (=2 1) v, Ep ) bcaomes Yy
o f s (376=36)kPa
V = 29( ) _ | 2(08/8) 97 ki
DI ’I 3a/imm
or ‘
. - m
Y, = 30.6 2
T hvs,

Q=AY :;,717 A .—_--,;‘7-’-‘(0.0/71:7) (30.6 Z) = 8.48x10 ",é”" .
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3.75

to be 30 gal/min of seawater with p, — p, = 2.37 Ib/in.?? The
contraction coefficient is assumed to be 0.63.

*2)

L , 7 ’ @pl Py

3.75 What diameter orifice hole, d, is needed if under ideal y ~ — I
~ conditions the flowrate through the orifice meter of Fig. P3.75 is Q k%) ""“‘\i: Q /—q&
g di

%%f\

2-in.
iameter -

i

-

FIGURE P3.75

-é** +Z: = ﬂ + v} where Z,=2, ,,C 063
With and /9, ~f =2.37psi
Q =(30 mm)( ééﬂ;ﬁ)(igéin )6’728m3 0‘06683_ | and J.—.— 6%0—{375
it fo//c:é/s that . £43
V) =5 = =259= = 3,04
A (AW .
Thus, £qll) gives - |
; —
o 2 Z ‘H 2,37 X]#4 112
R o R e )
o H
V,=18.8 &

Thus, since

Q=AV, =G T A%, if follows that
Yo

4 :
4 Y 0. £
d:}: Q 1 ;:l: % X 0.0668 3 3 = 008‘/’7{]"/0/6 n.

e Vo | 7 (0.63)(I188E

.—.—_,——.—.._

‘(l)i
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74

‘ 376  An ancient device for méasuring time is
- shown in Fig. P3.7. The axisymmetric vessel ii
shaped so that the water level falls at a constan

‘R(z), if the water level is to decrease at a rate of
10.10 m/hr and the drain hole is 5.0 mm in di-
-ameter. The device is to operate for 12 hr withouf
needing refilling. Make a scale drawing of the L ’Z
shape of the vessel. ~ {

rate. Determine the shape of the vessel, R =‘

- 2)
5.0-mm diameter

|

Loz c B Yo i e

g Tt low is assumed {o
be 7aas/~s/eaa/y,
Also, p,=0, p =0, Z = Z, and 2,=0

Thus,
B Vs

w———— Sm semauen,

27 =25 wﬁicﬁ,, if M <V, ({ e. R>s. 0mm) becomes

Vo =y/2g2 |

Since AV, <Al and V] =| %= 0. (5Lke )

36008}
we obfain =2, 79"/0-5*3&

TR (2.78 x16°2) =4 (0.005m)*\/2 (9.9 2) 7 )
where R and 2 are ~m

Thus,

1
0.02 0.375 0.8
005 0472
012 0.587
022 0683 06 |
032  0.751 '
042 0803 £
052 0847 N
062  0.886 04
072 0919
082 0950
092 0977

S 102 1.003 02 /

112 1.027
122 1.049 /

0

0 0.2 04 0.6 0.8 1
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3.77 | -

3.77 A long water trough of triangular cross
section is formed from two planks as is shown in
Fig. P3.77. A gap of 0.1 in. remains at the junc-
tion of the two planks. If the water depth initially
was 2 ft, how long a time does it take for the
water depth to reduce to 1 ft.?

Ly M ‘;’ » \? 2, 0

w/)er‘e o= Q, 5% =0, 2,h,and £,=0

Also VA =W A, or since £>ur i# (Q][._—'J
dh “

follows that Z << Vz P where b =T dt

Thus, E40) gives

lé_ =]/2‘9 so that

A G- Al29h  with A= 62-2bh and A= b
| where b is the fank length.

Thos,
-2b/ %‘ =bwy2gh

-fh dh = - WF‘H which can be integrated 1o give

h=1 ‘

Z
ﬁf’%dh = —wr %ﬁf
hs 2 =0
[ 2 T 3%
_3WF[h34 /’t%] 3(0/)ﬂ 322.&[ -1 ]H

=36.53

—_—
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3.78% A spherical tank of diameter D has a
drain hole of diameter d at its bottom. A vent at
the top of the tank maintains atmospheric pres-
sure within the tank. The flow is quasisteady and
inviscid and the tank is full of water initially. De-
termine the water depth as a function of time,
h = h(t), and plot graphs of A(f) for tank diam-
~etersof 1,5, 10, and 20 ftif d = 1 in.

.;.z ._._f% |

z; I 3 dh o
w/7ere £ =0, /Z 0,2 = /7 2,20 and V] =- g <<V, ifr>d
Thus, . T
V, ]/ 2 j’/) which when combined with A=Azl grves

—-//7{1 =A, 2;6 or =T /‘2-%’— = ”a{"Z/Zg/; ()

ri
where R*. p24(h -R)? g '
wi th R- ..Q. =radivs of fank h-R D R

P
—

Thos, r,_.]/ R*-(h-RV* so that Eg.(1) becomes

-—[R" ~(h-R)*] b - 42255

3 d d d*2g yi which can be //J/eg/"a/ed 7%/77
(/7 25% Jah = the initial time and depth (¢4,
h=2R) foan arbitrary time a/id

h £ deplh (L4) as
((h-?/z__zﬁbl/z)d/? =.df¢l/£7:fdé

o

" (5% -0Rf%) - LRI GRE) = LBy

Use d = ft qpd g=32.2 fi and plot 5'6(7‘) for

valves of R = 0.5, 2.5,5, and /0#

WNote: It is easier 4o solye Eg.(2) as t=£t(h) rather
than h=h(t)

Note: The time taken 1o emply 1he tank, €, )5 obtained from
Eg(l) with h=0 as o
64 R™2
Zl = Z
6 ".I5d V? (con't)
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3.78% | (con't)

Results of an EXCEL Program to calculate h(t) from Eqn. (2):

D=11t

t's h, ft
0.00 1.000
0.09 0.950
0.35 0.900
0.77 0.850
1.34 0.800
2.05 0.750
2.89 0.700
3.84 0.650
4.91 0.600
6.06 0.550
7.30 0.500
8.60 0.450
9.94 0.400
11.31 0.350
12.69 0.300
14.06 0.250
16.37 0.200
16.61 0.150
17.72 0.100
18.62 0.050
19.14 0.000

D=51t

t, s
0
5
19
43
75
114
161
215
274
339
408
481
556
632
710
786
859
929
990
1041
1070

h, ft
5.000
4.750
4.500
4.250
4.000
3.750
3.500
3.250
3.000
2.750
2.500
2.250
2.000
1.750
1.500
1.250
1.000
0.750
0.500
0.250
0.000

D=10ft
ts
0
28
110
242
422
647
913
1216
1652
1917
2308
2718
3143
3577
4014
4445
4862
5253
5603
5889
6053

h, ft
10.00
9.50
9.00
8.50
8.00
7.50
7.00
6.50
6.00
5.50
5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

See next page for graphs of abovs resvlfs.

D=20ft

t, s h, ft

0 20
158 19
620 18
1370 17
2390 16
3661 15
5163 14
6876 13
8778 12
10846 11
13055 10
16376 9
17782 8
20237 7
22706 6
25144 5
27502 4
29714 3
31695 2
33311 1
34239 0
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| 3.78* | Ccon'l)

t.s

Water Depth vs Time Water Depth vs Time
D=1t D=5ft
1.0 5
0.9 \\ 5\
0.7 4 -} \ :
N\,
0.6 3 \
=4 b=
0.4 2 <
0.3 2 \
0.2 \ 1 \\
0.1 \ 1 \
0.0 il 0 V—
0 5 10 15 20 0 200 400 600 800 1000 1200
t,s t,s
Water Depth vs Time Water Depth vs Time
D=10ft D =20 ft
10 20
9 \ 18 \
8 \ 16 \
7 \ 14
6 12 \
N N
-t‘i 5 AN a:. 10 \
£ \ £ \
4 8 N
3 6 \\
2 4
\\A AN
1 \ 2 \\
0 0 )
0 2000 4000 6000 0 10000 20000 30000 40000

t.s
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- 3.79

D——
3.79 A round, thin-walled tank of diameter D and height H i
floats as shown in Fig. P3.79a when empty. Suddenly a small
hole of diameter d appears in the bottom of the tank, and the
tank slowly fills with water as shown in Fig. P3.79b. Determine
the time it takes for the tank to sink. List any assumptions.

(@ (b)
BFIGURE P3.79

When the fank is at rest, floating with no hale in the bottom, the
weight of the fank equals the weight of the displaced flvid. Thus,
W = tfank wejght = ¢ ¥ = a*«%"o‘l(—‘{%), or W =7% ¥HD |

If the tank sinks slowly, then the drag of the surromnding water and
the acceleration of the tank are negligible. Hence,

SIh=maz or 3, =0 a
or b !

B £ R |
Fo = W-Wy =0 h |1 lwu,:v_/eigbf of water
This, ¥ FD°h = Z &0’ -rZ0*L=0 4 T | intank
which gives h-1 = 7,4 y e, the water VIW‘ weight of fank
level in the tank is always a distance L F = buovant force
below the free surface outside the tank, 5 Y
As the tank sinks, ﬂa} + Z}Ll,tz, = Jgﬂlwt .}._'g t2,, Where p,=0, g, <8/
e,y /<0, %0, erd 2=
] 0= -7‘ "";}; ~h

"V, = kg (h-2) = [29(8 = a2
Bui @, =A. Vo = %{ ng{l , where % is the rafe that the fank sinks.

/Jeﬂce)
2
FLL =505, o $-(4)1F
52 i};ff b,
f dh =(%)ZV%F fdf Hence, t,=time osink = ;?;ZV_E ( g-)zvg.’r
h=H/M £=0 ’ ,
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*3.80

%380 The surface area, A, of the pond shown
in Fig. P3.80 varies with the water depth, h, as
shown in the table. At time ¢ = 0 a valve is opened

- and the pond is allowed to drain through a pipe
- of diameter D. If viscous effects are negligible
. and quasisteady conditions are assumed, plot the
 water depth as a function of time from when the
- valve is opened (¢ = 0) until the pond is drained ‘ o
for pipe diameters of D = 0.5, 1.0, 1.5, 2.0, 2.5, FIGURE P3.80
and 3.0 ft. Assume h = 18 ftat¢ = 0. -

N h (fY) A [acres (1 acre = 43,560 ft?)]
| | 0 0 o
2 0.3
4 0.5
6 0.8
8 0.9
10 1.1
12 1.5
14 1.8
16 2.4
18 2.8

ﬁ—-; 7y +z, =.-—l4';i+——\{—2
and V) =-3 <<l
Thus, V= ]/29(/7 +3)  which w/:'le/? combined with AV

9/1/9-3

- /4 2?‘: lgzl'/zy(b +3) where A=A h) as grven.

This can be /‘ea/‘r'cmged . and in fegraz‘ed fo give

A,V%—“_Fljfa/f“'zﬁ]/—ﬂf -——‘20 V2x3.22i
I8 4 s 0

or

{= o:sq A’VFE , where t~s A~ and h~ 1

Note: It is easier o determine £ aca fomcton of b rather

7‘/50/7 Y 4 a fum‘/oﬂ of t

/Vm‘e 1~ sz g

(Ca{?'f) |

29 *E2  where g£=0, ,=0,2-h, 2,=-3¢

W
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380 (con)

An EXCEL Program using a trapezoidal integration approzimation was used to calculate the results

shown below.
D=05ft D=10ff D=15ft D=20ft D=25ft D=3.0ft

h ft A acres A, ft? t,s ts ts t,s ts ts
18 2.8 121968 0 0 0 0 0 0
16 24 104544 32181 8045 3576 2011 1287 894
14 1.8 78408 59530 14882 6614 3721 2381 1654
12 1.5 65340 82354 20589 9150 5147 3294 2288
10 1.1 47916 101536 25384 11282 6346 4061 2820
8 09 39204 117506 29377 13056 7344 4700 3264
6 0.8 34848 132412 33103 14712 8276 5296 3678
4 0.5 21780 145035 36259 16115 9065 5801 4029
2 0.3 13068 153988 38497 17110 9624 6160 4277
0 0 0 157704 39426 17523 9857 6308 4381

The graph for D = 1 ft is shown below. The shape of the curve is the same for any D.

Water Depth vs Time
‘ forD=1ft
20
18 ,
16 \
14
12
£ 10
8
6
4
2
0
0 10000 20000 30000 40000
ts

. 3-82




3.8

f '

Az = 0.07 m?

3.81 Water flows through a horizontal branching pipe as shown

in Fig. P3.81. Determine the pressure at section (3). (2)_"2 — 350 kPa
Ay = 0.02 m2
p A
Vi=4mis  RIGURE P3.8)
Py = 400 kPa '
Al = 0.1 |'n2
_ - @ ~Qa b /4 v 2.(9( /n)
Q-@2+6)3 or 5= A where §,=A, V,=0.Im
PR s
Also @)= /) Vo where %"’""’"’zl"’ + 2g 122
with Z = Zz
Thus, 2
//ookPa #%) _ 350kPa . V.*
?80-%’ 2(0.81%) 980l T 20081%)
or
- y M
Vo=10.784
Thos,
0.4% —o. ozm*(m 76%) ”
= =8 = 2.3 %
“/9 0.07 m* S
Then from z?._+ +z,~-f-+ +23 with 2=
we obtain 4 ”
: _ SNV IRV 7.80 m3 2 2
fs..ﬂalﬂkz?(v, ~V,") = 400kR + NPT ) (#%-2.43 )
or

s =(400 +4,5%) % = 404.5 kFu
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3.82

3.82 Water flows through the horizontal branching pipe shown
in Fig. P3.82 at a rate of 10 ft¥s. If viscous effects are negligi-

ble, determine the water speed at section (2), the pressure at sec-
tion (3), and the flowrate at section (4).

From (1) 4o (2): &L +

2 2
,-!_-}Zl:ﬂ%«}-vz'

Ay = 0.07 ft2
p2= 5.0 psi

/(2)

Az =0.2it2
V3= 20ft/s |

Al = lﬂz
0, = 101t¥s
py =10 psi

m FIGURE P3.82

¥ * g ry 'zg 2 where Z =2, , 1 =10ps,
P2 =5 psi,and V= % or
V,=(105) /1187 = 108
T/IUSJ with (): = P4 . , * y
I in. H2 1b in. 2
(o)) | (1o _ (s ,,ﬁ)(;’t_‘;:_yr) Yoo =290t
(/.94 %lgs) 2 (1.9% 1;;‘%4)- 2
2 2
From (1) to (3): J%L *’iﬁ tZ, = % + a‘{% +2, where 2, =25 ) =/0psi,
7 hus v ‘*'/0# and |, = 20;7?-{
J .2
(102 (1) , _(108)* /- o f)*
£2.4 f%, 203228 62.% 7,%’-5,’3 2 (32.2 %)
or

\!

or

3
@, = /0—’:11-3—- 0.07#*(29.08) — 02 20 #) = 3,97{%

Ql"@z Q5 = Q; "/42\/2'/43\{?

?03 -..-_-/150{’75’;,_ = 7'95&.2'
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3.83
3.83  Water flows from a large tank through
a large pipe that splits into two smaller pipes as

shown in Fig. P3,83. If viscous effects are negli-
gible, determine the flowrate from the tank and

the pressure at point (1).

£_+_§+20=ﬁ4,\_@

+Z Wﬁe/'e 1550, £ =0

FIGURE P3 83

Tbﬁs and 2, = 4m
Vo = \/2;(2" -Z,) = -/2(?8/ L) (7-49m =7.672
S//)?//d/‘/y |
V, =V29 (2,-2;) = Y298/ %) (7m) = 1172
T/;us, Q=Q+8, =ZD W +ZHMV*
Q"‘g‘[fawm) (7672 +(o. ozm)* (Il. 7.,—)] B Q/ox/o-{zs/{z,
}/leo
2
£— +~j’f" + 2, é’w—zy;— +.2) where Z,=0 and
0” | V _% S./0x/0 " L- 3 m’ 4‘63—-*-—
Z (o. Osm)z

2
= J'[Zo”'z%] - 9.000° . 17
or
£ =579 /fpa.

(463!&1] B W
209185 ] TS79X10 53
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3,84

3.84 Water flows through the horizontal Y-fitting shown in

Fig. P384 If the flowrate and pressure in pipe (1) are Q, = &Q—> R
2.3 f13/s and p; = 50 Ib/in.%, determine the pressures, p, and w0
D3, in pipes (2) and (3) under the assumption that the flowrate
divides evenly between pipes (2) and (3). i
FIGURE P3.8¢ |7
)
2.
.ﬁ.-]— SUE_gE -——’; + 25 w/;e/‘e Z/ =Z2 a”d M = —Q;’ (1
BiL £ V = ,Q51&
77;,,3 = 25 gy o ff 27 A" A
s T T (o.3p)* 32.8 5
and
(0.5)(2.3 &)

LS Jovem 2341 H so that Eg.(l) becomes

‘ 2
fo= g+ oY= Vi) = 50 psi 4 4, "‘%[( e -]

= 50psi #(493 1% )( [ —.) =53.#pai
S/m/’/a/‘/y )

-Z%Jr—g_% +2,= 703 ;
5) 2.3 %
Thus, V= (0.5)( £ Sé.a.éi

+z'?3 where Z,=25 and Vs =7, ="

-

z (0.20F4)*
so that
_ I
-4 +4 P(Vl’:-\é’-) =50ps; +§_L(/.9#§;c/—;’§é[(32 s)'(36.6) ]S"(l‘%‘/ﬂ )
:i‘éi/ S/
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3.85

3.85  Water flows from the pipe shown in Fig.
P3.85as a free jet and strikes a circular flat plate.
The flow geometry shown is axisymmetrical. De-

termine the flowrate and the manometer reading,
H.

FIGURE P3.85

2
2 .,2\; +z,¢£— Y;%Z’z, where £,=0, £,=0, 2, =0, and 2, = 0.2m

Thus,
Vv _ v
2% = ?*Zz where AV, =A Vi =9 )

or 7 _ 4D Im)(4xi
V=22V, = Zhb y, - ———&1’-\/, 200 (':’)’g,;)f ™\ <11,

(4

/7’8/768, Eq. (1) gives

(160V,)" = Vi* + 2(9.81%)(0.2) oy V, = 159 22
so that
Q= A Vo = T (01m)(#x10 “p) (1.592) = 2.00x/0 “ 2
Also, ” |
1z |
‘e‘ +—" tZ = {— t2gt2 , where V,=0,2,=02m, ||=160V,
Ths, or V=16001592) = 2542 dm{ﬂ=0

o=t - V/ -z = (2548

Y — —0.2m =
9’ ° 2(9.8/3) O2Zm = 0129 m
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3.86

[——Dp =015 m—r|

3.86 Air flows from a hole of diameter 0.03 m in a flat plate as @ | Y
shown in Fig. P3.86. A circular disk of diameter D is placed a o 77 777 T,
distance i from the lower plate. The pressure in the tank is . ameter — ; Plate

maintained at 1 kPa. Determine the flowrate as a function of & if
viscous effects and elevation changes are assumed negligible
and the flow exits radially from the circumference of the circu-
lar disk with uniform velocity.

p = 1.0 kPa

2 FIGURE P3.8¢4
5 ) 14
%Q-l--?—_?ﬁ"zo =#+-i\é-;+ Y2 W/)ere foz/-zﬁ_,ﬁzza,zazzz,

W2

and V, =0

Thes, ——
so that "

Qr= AV =m0, bl =7 (0.15m)h (40.312)
o

Q=/9.0h 2 where h~m

oy
=T
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3.87

3.87 A conical plug is used to regulate the air
flow from the pipe shown in Fig. P3.87 . The air
leaves the edge of the cone with a uniform thick-
ness of 0.02 m. If viscous effects are negligible Q = 0.50 m¥s \
and the flowrate is 0.50 m*/s, determine the pres-
sure within the pipe.

FIGURE P3,87

where Z =% and p,=0

¥ 24 Y
Also,
= =—0£:‘~ , m
Vi -% Z (0.23m)" /2.0
and s
v = = Q - 0.5 I _ /q 7-—”2‘
2° R, 2mRh ~ 2m(o.2m)(0.02m) /77
Thus, | k ) )
7 =z P(VZZ" V%) =+ (/'23%)(/7.9 -—/2.0")%”5_ = /55',;,/’1{1
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3.88 ]

3.88 An automatic boat bailer is shown in Fig. P3.88. The
“bump” on the bottom of the hull is designed to increase the ve-
locity at point (1) to approximately 1.2V,, where Vo is the ve-
locity of the boat through the water. If the pressures at (1) and
(2) are essentially equal, what minimum velocity is needed to
initiate the bailing action?

Goffon-frn e poh, e,

Thos, Vi=r2k
2 2 )
‘Xﬁxé' 2;! "ho= ? {/251,/0 +7 or g =4V (1-12%)-rz, «
To initiate bailing o=, where f,=8h = (tiz L) (0.24)
| =/2.5 12
T/m;, with 2, =-0.87f £g() becomes 7

2.5 1 {, =4 (1.9¢ _gﬁ)( 0.44) V2 - (62.# ﬁ)(~a.37#)

or
Vo=9.89 £
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3.89 |

-~

'3.89 A small card is placed on top of a spool as shown in
Fig. P3.89 . It is not possible to blow the card off the spool by
blowing air through the hole in the center of the spool. The
harder one blows, the harder the card *‘sticks’’ to the spool. In
fact, by blowing hard enough it is possible to keep the card
against the spool with the spool turned upside down. (Note: It
may be necessary to use a thumb tack to prevent the card from
sliding from the spool.) Explain this phenomenon.

® FIGURE P3.89
As the air flows radially ovtward in #he gap befween the card and

the spool it slows down since the flow area increases with r, the

radial distance from the cenler. That is, |

§=2mrhV or V= —7_—7;%——,:— (see the figure),

If viscous effects are not jmportant,
then 2
v* _Lexit, Vexit
-@—,t;:}- = constant = %’,’f + ?‘;
or since fexit =0 (a free D;'ei,) it

follows that , ) o el

p = _ZLP(%’W =V?) , where from Eq. (1) Vo -V '=(527) [—‘z g

réxif

BU* lexif = <o that < D. There is a vacoum withip the 9ap.

The card is sucked against the spool. The harder one blows Hhrovgh

the spool( [arger &), the larger the vacwm, and the harder the card is
held against the spool. |

3-9/



3.90

3.90 Water flows over a weir plate (see Video V 10.7) which 2
has a parabolic opening as shown in Fig. P3.90. That is, the
opening in the weir plate has a width CH'?2, where Cis a con- *~
stant. Determine the functional dependence of the flowrate on
the head, Q@ = Q(H).

Q= fa dA where u is a fonction of h.
y * - fr, Vo Y4 é‘=/{-?, h=u
That is, from 4%7*;; ‘2, = 4—+;;+zz wi )
% =20 (“free jet')

and 2, =H-h
or 2 u

A _ ut, .,
(H-2) +,—_; +2,20 135 + (H-4)
Thos,
U= VZ}hi-V," = Vﬂ-}h itV is “small’
Also,
dﬁ;%]f;gf? (éce. dA=0dz for 20, dA=CVH for 224) so that

sz@ﬁcﬁdf where h=H-2.

Z2=0 H
Thes, @ = Cl/gqq f VzH-2> A2 where
H 0 z=f
(Vrwde= $llz-£)hz2T + (£) i [(z-4)/ (H/z-)]]
0
which redvces to: 0

= ZEVg H° That is @~#*

Alternatively, @ = VA where the average velociy is proportions
to Vi (ie. VoVzgh ) and the total Flow area is proportional
to H% (i.e. A~ Hx (CHE) = CH%), Thys

Q~ V¥ (cH™) = cifzg H*
That s, @~ 4" as obtained above.

3- 92



3.9

pected when H = €7

391 A weir (see Video V10.7) of trapezoidal cross section
is used to measure the flowrate in a channel as shown in Fig.
P3.91. If the flowrate is @y when H = €/2, what flowrate is ex-

CIL ISP /7 777 LTI /7777777777777

FIGURE P3.9/

QR=AV where it is expected that Vis a function of the head, #.

That is, V~ VZ;;//

Also, from the eamefry A=gH(Lth) where b=L+2H tar30

7%1/3 A= //(1 + //f4/730> so that

@=C F(/* H Jf.an30 )h’ w/)ere G is a constant

Let Qo f/owrafe when /7/
and 8y = flowrate when H<{
Thys,

Q _ cfig (2+ £tans0)B)% (14 tHanse)

Qz Cy“‘(fJ, / tan 30)([)3’2 (1+ Fan30) (2°%) - 0289

or

@)= 3-% Gy
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3.92  Water flows down the sloping ramp i
shown in Fig. P3.92 with negligible viscous ef-
fects. The flow is uniform at sections (1) and (2).
For the conditions given show that three solutions
for the downstream depth, h,, are obtained by
use of the Bernoulli and continuity equations.
However, show that only two of these solutions
are realistic. Determine these values.

'FIGURE P3.92

)]
£ V2 +z,-ﬂ' +2, where £,=0, =0 =3,
& 29 9 =
and 2, =h,
/4/50 A/M :Az VZ

(m)(m-i) 10

V = V hy = a2

Thus, Eq, (1) becomes X
(%) oy (&) )

2 (32.2 jfsiz) 2(32.2 —ﬁ—’i) 2

or

644 by — 293 h% +100 =0

By vsing a rodt finding program the three roots tothis cubic
eql/af/'ﬂn are found to be:

h, = 0.630 ff
h,= ##8ff
or

h2 = a negative root C /ea/'/y if is not Ioo;rsib/e ( /bes/cq//y)
to have h,<0  Thus, h,=0.630H or
hz =448 {1
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3.93 Water flows under the sluice gate shown in Fig. P3.93.
Determine the flowrate if the gate is 4.6 ft wide.

FIGURE P3.93

%* ?*‘Z.z where p,=0,£=0 , Z=6f
d = /?
Alse, A V- A’Vz ana. 2=/
A 6f
Vz. 77,';14“ [f;l:évl

Thus, E@[Wtwcwnes
[6*=1]v* = =2(32285)(6-Dff or V= 3,034

Hence, .
Q=AV,=(6f1)(#6#)(3.03 &) = 8.5 ] £

(h
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3.94 | B

3.94 Water flows in a rectangular channel that is 2.0 m wide as
shcwn in Fig. P3.94. The upstream depth is 70 mm. The water
surface rises 40 mm as it passes over a portion where the chan-

nel bottom rises 10 mm. If viscous effects are negligible, what is
the tlowrate?

" FIGURE P3.44

2.1

+2,=—§,— -—;—4—2 Wﬁerie /),-0 ,01—0 Z,=0.07m, (1)

29 and Z, =(0.01 +0.100m = 0.1/ m

/4150} /4/%5/421/2
or

4 d hl 0'07/)7 . -— |
Vo=, Vi = odom Vi = 07V

Thus, Eg.(1) becomes
[I-0.72]\/,2=2(‘7.813’%)(0.//—0.07),7, or V= /242
//enc'e,»’

3
Q=AV, = (0.07m)(2.0m) (1-248) = 0. 1 74 &~
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3.95

Water flows under the inclined sluice gate shown in

Fig. P3.95. Determine the flowrate if the gate is 8 ft wide.

a-g =7
[5‘—/]1/2 -2(32 288 ) (6-1)#

"2 ¢ zz
Thos,

v =

4 +4F ; +IH

Buvt AV, = A ’/ or

) 1
o=2:vi = L8y, -4y,
//eﬂce Eg. () becomes

- (62

i/ -h{H + 111

Hence,

Q=AY = 4t (81)(3.03 ) =

where g, =0, fbo=0, % = 61,

and Z. = |ft

- ff
%—3.03?

r#5 L i

(n




3.9¢

3.96  Water flows in a vertical pipe of 0.15-m
diameter at a rate of 0.2 m*/s and a pressure of
200 kPa at an elevation of 25 m. Determine the
velocity head and pressure head at elevations of

20and55m.
Q 0.2 m* |
= — : "/,3‘!27‘: =
V="7- -7-’(015m)2 s=h=k
At pomf(o)
Vi (1.3 2)* 5/
————-—-—-——-——~ , m
nd 2,9 2(78/ =£
.f_.z- +zo—--§i+2\; +Z, or ﬁ;,—"-
or kN
( 200 %3
= ?eoé_”f_; +(25-20)m =25.4m
m
S /'m//a/'// at point (2):
o . W’
ﬁ“ﬁ’“m
and f
2 +Z ::-£—+ 4'? 2 _
g 2= fp b gg 2 or e -
kv
‘fz_ 200 53
—2= +(25-55)p = -49.5
T qp0kd (25-85)m = _9.59m

1 Q=u0.23"!-

D=0.15m~" [©

Z=25m| | ()
A= 200kPa

Z,=20m | * | (0)

—§{ +ZI "ZZ

3-
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A
fel=
=

3.97 Draw the energy line and the hydraulic grade line for the
flow shown in Problem 3.64.

3t |

(3o

1.0.06 b

s

N e
()
MFIGURE P3.64

For inviscid flow with no pomps or fyurpines, the energy line s horszontsl
at the elevation of the free surface of the tank. The hydravlic grade
line is one velocity head, V72g, below the engrgy line. Since
Vi = I/;; (Z,-2;) 1f follows that the hydraviic grade line is
W’/z‘g = (Z,- Z4) = 5 Hbelow the free surface af the exid of
the pipe. Also, since the pipe is a constant djameter, the velocry
Is constant thravght fhe pipe. Hepce, the hydravlic grade line is
horizontal, St below the froe syrtace. Mote that since fhe
pipe is above the hydravlic grade line, Hhe precsore throyhat
the pipe is Jess Hhan almes pheric.

Eﬂel‘qy line }‘ \
v |
§ J J
Hydraylic e
grade line I )
Ve
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3.98 Draw the energy line and the hydraulic grade line for the
flow of Problem 3.60,

FIGURE P3.60

For inviscid flow with no pomps or Turbines, the enery y line |
is horizontal a distance h above the ouvtlet . From FProblem 3.60
we obtain h=1.79 #. ,
The hydravlic grade line is -é%' below the energy line, starting

at the free surface where V,=0 and ending at the pjpe exit
where f,=0 and -;%dh. At point (1) the pressvre head

/ b
is pL/Y = (2.88—/4.5)7{,%(-—%?—4@)/52# £ = — 268 f
and Z, =0. e
In the #ir pipe Vy = AuVosBs =(3) Vo so that

Vi -_—(-9—2 )4-‘{2—2 =(—9%)4/;. =(——§—?)"l{/.77ff) =0./12 #f

29 O3/ 29 0,
The corresponding EL and H6L are drawn 1y scale below.
% 2 f}
. ©@ ——[2_'?—0'“ Y Energy Line (EL)

—— e bt | :’ —————————— S 2
= ; o f S:’_a),“ _ 20
!
€

2
pipe centerline” | '7'.%' =h=179H#

! |
[}
| Lo _p48H
Hydravlic Grade —~ 1 °¢&
Line (H6L) v
|
] i
L1
3-100




3.99

3.99 Draw the energy line and hydraulic grade line for the flow
shown in Problem 3.65. o
—1-Ja—2-in. diameter

206t |

— —J.L——l-in. diameter

For mviscid flow with no pumps or Ill//‘A/.I/B.:' the energy line (EL)js @
horizantal, at an elevation of the free surface. The hydr W//b. rads
line (HGL) is one velooily head , V/2q lower. Since V, = 2g (20 f})
or sz./7 =20707l( ,f{ {OI/UWS' -wa,)/ fbc /7/62 g')l 7%8 /7025'/6 (3)7/71'/6'47[
the same elevation as the exit. Ao, within the constant diameter
hose /Zl/ﬁﬂz.l/z_/ or

=V, ()Y = (Y Y =
Thus withn fhe hose (

Vi%g =(5) W' fog = (#)*(204) =t.25
so{z‘ff u{/l;éfil fﬁ?‘/?ﬂ\re the H6L is 1.25 ¥ bolow the EL all along fhe hose.

The £L and H6L are shown w the f/’gﬂ/‘d below, with the exit
nozzle rotated horizontally for ease of showing the HEL.

)
: .25 &
2@ L ! EL
) s bt N
h ’, ‘\ ZO'H
y
\
\
\
\
\
\
—3®
.—_.._/

3-/9/
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3.!00* Water flows up the ramp shown in Fig.
P3.100 with negligible viscous losses. The up-
stream depth and velocity are maintained at A,
= 0.3 mand V, = 6 m/s. Plot a graph of the
downstream depth, 4., as a function of the ramp
height, H, for 0 < H < 2 m. Note that for each
value of H there are three solutions, not all of

which are realistic. FIGURE P3.100

2 2
-/%h% + 2 =1;é+—2‘%+z,. where p£,20, p,=0

/9/30, 4% '“'/42 A So that

V, = -%i Y = . 3”;')2(63-) = —5'8- where h,~m

TﬁUs E (1) becomes

2-'9—‘1-03”1‘( )+(//*/l) or with V= Ts”"’

(62 +2(98152)(0.3-H-h,)m (/' )”—’a
which can be written as’

/; —(2.135-H) by +0.145] =0
For 0<//<2m so/ue Eg (z) for'/)

ﬂ”/ 22_ = ”*62_

Rather 1han solving a cubic equation for /)2 ( 7/1/6’ #),

;. can a/ireml/)r solve for /9/Ve/1 ) From Ey (2):
He2sss -y - 255

< cond)

}Z/

n
= 0.3,

2)

one

A gravh of Eg.(2)ar(3) js ?'f"é'?,,o" the fo/f/%”_(”f page.

(3
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h,, m
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

H m
0.001
0.703
0.975
1.076
1.098
1.077
1.031
0.970
0.899
0.820
0.737
0.651
0.562
0.471
0.378
0.284
0.189
0.094
-0.002

The resuits of an EXCEL Program to calculaté H for given values of h, are shdwn below.

h,, m

2.2

Water Depth vs Elevation Change

20

18

1.6

1.4

1.2

1.0

0.8

/

0.6

\

N

0.4

0.2

0.0

Qo= v o o -

0.0

0.2 04 0.6 0.8 1.0+

H, m

—
-

<
S0

-
N

Fbr\ H=1.098 m there are no real , positive roots of Eq.(2),
Thatis, for the given ypstream conditions (V<62 and b= 0.3m)

we must have H< [.098m. It would pot be possible o have
the flow 90 up a ramp of greater height than this wilhoot

increasing erfher V and/for by, The two possible waler depths
for a given H are plotted aboye.
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3.101 Pressure Distribution between TWo Circular Plates

Objective: According to the Bernoulli equation, a change in velocity can cause a change
in pressure. Also, for an incompressible flow, a change in flow area causes a change in ve-
locity. The purpose of this experiment is to determine the pressure distribution caused by air
flowing radially outward in the gap between two closely spaced flat plates as shown in
Fig. P3.101.

Equipment: Air supply with a flow meter; two circular flat plates with static pressure
taps at various radial locations from the center of the plates; spacers to maintain a gap of
height b between the plates; manometer; barometer; thermometer.

Experimental Procedure: Measure the radius, R, of the plates and the gap width, b,
between them. Adjust the air supply to provide the desired, constant flowrate, Q, through the
inlet pipe and the gap between the flat plates. Attach the manometer to the static pressure
tap located a radial distance r from the center of the plates and record the manometer read-
ing, h. Repeat the pressure measurements (for the same Q) at different radial locations. Record
the barometer reading, H,,, in inches of mercury and the air temperature, T, so that the air
density can be calculated by use of the perfect gas law. ‘

Calculations:  Use the manometer readings to obtain the experimentally determined pres-
sure distribution, p = p(r), within the gap. That is, p = —vy,h, where v, is the specific
weight of the manometer fluid. Also use the Bernoulli equation (p/y + V¥/2g = constant)
and the continuity equation (AV = constant, where A = 27rb) to determine the theoretical
pressure distribution within the gap between the plates. Note that the flow at the edge of the
plates (r = R) is a free jet (p = 0). Also note that an increase in r causes an increase in A,
a decrease in V, and an increase in p.

Graph:  Plot the experimentally measured pressure head, p/7, in feet of air as ordinates
and radial location, r, as abscissas.

Results:  On the same graph, plot the theoretical pressure head distribution as a function
of radial location.

Data:  To proceed, print this page for reference when you work the problem and click here

- to bring up an EXCEL page with the data for this problem.

?Q ® FIGURE P3.101

(con't)
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| Ccon’t)

Solution for Problem 3.101: Pressure Distribuition between Two Circular Plates

Q, ft"3/s
0.879

r,in.

0.7
1.0
1.5
2.0
25
3.0
3.5
4.0
4.5
5.0

R, in.
5.0

h, in.
-9.05
-6.02
-2.02
-0.96
-0.48
-0.24
-0.13
-0.03
-0.01
0.00

P = Pa/RT wWhere
Patm = YHgHatm = 847 Ib/ft"3*(29.09/12ft) = 2053 Ib/ftr2

R = 1716 ft Ib/slug deg R
T =83 + 460 = 543 deg R

b, in.
0.125

Hatm: in. Hg T; deg F

29.09 83

Experiment
phy, ft
-663.75
-441.52
-148.15
-70.41
-35.20
-17.60
-9.53
-2.20
-0.73
0.00

Yhzo, ID/FA3
62.4
Theory
V, ft/s ply, ft
220.8 -740.7
161.2 -387.2
107.4 -163.1
80.6 -84.7
64.5 -48.4
53.7 -28.7
46.0 -16.8
40.3 -9.1
35.8 -3.8
322 0.0

Thus, p = 0.00220 slug/ft"3 and y = p*g = 0.00220*32.2 = 0.0709 Ib/ft*3

P/ = Yuao™hly

V = Q/(2nrb) = 0.879 ft*s/(2*3.1415*(0.125/12)ft*r)

ply, ft

-200

-400

-600

-800

Problem 3.101

-

 J

L ]

0.0

2.0 4.0

r,in.

6.0

Pressure Head, p/y, vs Radial Position, r

¢ Experimental
—— Theoretical
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3.102  Calibration of a Nozzle Flow Meter

Objective: As shown in Section 3.6.3 of the text, the volumetric flowrate, Q, of a given
fluid through a nozzle flow meter is proportional to the square root of the pressure drop
across the meter. Thus, Q = Kh'?, where K is the meter calibration constant and % is the
manometer reading that measures the pressure drop across the meter (see Fig. P3.102). The
purpose of this experiment is to determine the value of K for a given nozzle flow meter.

Equipment: Pipe with a nozzle flow meter; variable speed fan; exit nozzle to produce a
uniform jet of air; Pitot static tube; manometers; barometer; thermometer.

Experimental Procedure: Adjust the fan speed control to give the desired flowrate, Q.
Record the flow meter manometer reading, A, and the Pitot tube manometer reading, H. Re-
peat the measurements for various fan settings (i.e., flowrates). Record the nozzle exit di-
ameter, d. Record the barometer reading, H,,,, in inches of mercury and the air temperature,
T, so that the air density can be calculated from the perfect gal law.

Calculations: For each fan setting determine the flowrate, Q = VA, where V and A are
the air velocity at the exit and the nozzle exit area, respectively. The velocity, V, can be de-
termined by using the Bernoulli equation and the Pitot tube manometer data, H (see Equa-
tion 3.16).

Graph: Plot flowrate, Q, as ordinates and flow meter manometer reading, h, as abscissas
on a log-log graph. Draw the best-fit straight line with a slope of % through the data.

Results:  Use your data to determine the calibration constant, K, in the flow meter equa-
tion Q = Kh'/2.

Data: To proceed, print this page for reference when you work the problem and click hiere
to bring up an EXCEL page with the data for this problem.

Pitot tube
manometer

Flow meter
maometer

- Water

Pitot static
tube

4 Exit area=A

Nozzle flow

meter Exit nozzie ® FIGURE P3.102

(con’t)

3-/0¢




_3:192 | (con’t)

Solution for Problem 3.102: Calibration of a Nozzle Flow Meter

d,in.  Hgm in.Hg T,degF

1.169 29.01 75
h, in. H, in. Ap, Ib/fth2 Vs Q, ft*3/s
11.6 5.6 291 162 1.20
1.1 54 281 159 1.18
10.7 52 27.0 156 1.16
10.1 4.9 255 151 1.13
9.6 4.7 ‘ 24.4 148 1.10
8.8 4.3 22.4 142 1.06
7.9 3.9 20.3 135 1.00
7.2 3.6 18.7 . 130 0.97
6.1 3.1 16.1 120 0.90
54 27 14.0 112 0.84
4.5 2.3 12.0 104 0.77
3.8 2.0 10.4 97 0.72
2.9 1.5 7.8 84 0.62
2.1 1.1 ; 57 72 0.53
1.0 0.6 3.1 53 0.39

p = Pam/RT wWhere
Patm = YHg Hatm = 847 Ib/ft*3%(29.01/12 ft) = 2048 Ib/ft"2

R = 1716 ft Ib/slug deg R
T =75+ 460 = 535 deg R
Thus, p = 0.00223 slug/ft*3
V = (z*Ap/p)1/2
Q = AV where
A = nd%/4 = 1*(1.169/12 f)*2/4 = 7.45E-3 ftr2

From the graph, Q = K h"? = 0.358 h"? where Q is in ft*/s and h is in in.

Thus, K = 0.358 ft*/(s*in."?)

(con’t)
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Problem 3.102
Flow Rate, Q, vs Manometer Reading, h
10.0
|_* Experimental |
Py L~
&
£ 10
g ‘
T The best fit equation
\ o | with a slope of 0.5 is
Q = 0.358h%%°
0.1
1 10 100
h, in.
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3.103  Pressure Distribution in a Two-Dimensional Channel

Objective:  According to the Bernoulli equation, a change in velocity can cause a change
in pressure. Also, for an incompressible flow, a change in flow area causes a change in ve-
locity. The purpose of this experiment is to determine the pressure distribution caused by air
flowing within a two-dimensional, variable area channel as shown in Fig. P3.103.

Equipment: Air supply with a flow meter; two-dimensional channel with one curved side
and one flat side; static pressure taps at various locations along both walls of the channel;
ruler; manometer; barometer; thermometer.

Experimental Procedure: Measure the constant width, b, of the channel and the chan-
nel height, y, as a function of distance, x, along the channel. Adjust the air supply to provide
the desired, constant flowrate, Q, through the channel. Attach the manometer to the static
pressure tap located a distance, x, from the origin and record the manometer reading, k. Re-
peat the pressure measurements (for the same Q) at various locations on both the flat and
the curved sides of the channel. Record the barometer reading, H,y,, in inches of mercury
and the air temperature, T, so that the air density can be calculated by use of the perfect gas
law.

Calculations:  Use the manometer readings, 4, to calculate the pressure within the channel,
P = Ymh, where vy, is the specific weight of the manometer fluid. Convert this pressure into
the pressure head, p/7y, where y = gp is the specific weight of air, Also use the Bernoulli
equation (p/y + V?/2g = constant) and the continuity equation (AV = Q, where A = yb)
to determine the theoretical pressure distribution within the channel. Note that the air leaves
the end of the channel (x = L) as a free jet (p = 0).

Graph:  Plot the experimentally determined pressure head, p/y, as ordinates and the dis-
tance along the channel, x, as abscissas. There will be two curves—one for the curved side
of the channel and another for the flat side.

Results: On the same graph, plot the theoretical pressure distribution within the channel.

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Static pressure taps
4 L

W FIGURE P3.103

(con’t)
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Solution for Problem 3.103: Pressure Distribution in a Two-Dimensional Channel

b, in. Q, ft"3/s  Ham, in. Hg T, deg F L, in.

2.0 1.32 28.96 71 21.75

Experimental Theory

X, in. y, in. h, in. h, in. ply, ft ply, ft ply, ft
flat side  curved side flat side curved side

0.75 2.00 0.28 0.31 20.2 22.3 0.0
2.50 2.00 0.21 0.37 15.1 26.6 0.0
4.00 1.28 -0.42 0.03 -30.2 2.3 -50.5
463 1.05 -0.77 -1.63 -55.5 -117.4 -92.2
5.38 1.05 -1.01 -1.05 -72.7 -75.6 -92.2
8.14 1.29 -0.63 -0.62 -45.4 -44.7 -49.2
10.75 1.54 -0.32 -0.31 -23.0 -22.3 -24 1
13.25 1.77 -0.15 -0.15 -10.8 -10.8 -9.7
15.78 2.00 -0.05 0.00 -3.6 0.0 0.0
21.75 2.00 0.00 0.00 , 0.0 0.0 0.0

P = Pam/RT where
Patm = Yug:Haim = 847 Ib/ft"3*(28.96/12 ft) = 2044 Ib/ftr2
R = 1716 ft Ib/slug deg R
T=71+460=531degR

Thus, p = 0.00224 slug/ft*3 and y = p*g = 0.00224 slug/ft3*(32.2 f/s*2) = 0.0722 Ib/ftr3
PlY = Yroo*hly

Theoretical:
‘ Ply = Veyi’12g - VA12g where
V = Q/A = Q/(b*y) and
Vext = QA = (1.32 ftA3/s/)*(2 *2 /144 ft'2) = 47 5 ft/s

Problem 3.103
Pressure Head, ply, vs Distance, x

40 ‘
20 | w2 ™. N

TN | .
MERW T

& -40 \\
= i
ol W
-80 k' /
e ' l' I —&— Experimental, flat side
120 H |— W — Experimental, curved side
) — wmmen Theoretical
-140 z —
0 5 10 15 20 25
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3.104  Sluice Gate Flowrate

Objective: The flowrate of water under a sluice gate as shown in Fig. P3.104 is a func-
tion of the water depths upstream and downstream of the gate. The purpose of this experi-
ment is to compare the theoretical flowrate with the experimentally determined flowrate.

Equipment: Flow channel with pump and control valve to provide the desired flowrate
in the channel; sluice gate; point gage to measure water depth; float; stop watch.

Experimental Procedure: Adjust the vertical position of the sluice gate so that the
bottom of the gate is the desired distance, g, above the channel bottom, Measure the width,
b, of the channel (which is equal to the width of the gate). Turn on the pump and adjust the
control valve to produce the desired water depth upstream of the sluice gate. Insert a float
into the water upstream of the gate and measure the water velocity, V;, by recording the time,
, it takes the float to travel a distance L. That is, V;, = L/t. Use a point gage to measure the
water depth, z;, upstream of the gate. Adjust the control valve to produce various water depths
upstream of the gate and repeat the measurements.

Calculations:  For each water depth used, determine the flowrate, Q, under the sluice gate
by using the continuity equation Q = A,V; = b z;V;. Use the Bernoulli and continuity equa-
tions to determine the theoretical flowrate under the sluice gate (see Equation 3.21). For these
calculations assume that the water depth downstream of the gate, z,, remains at 61% of the
distance between the channel bottom and the bottom of the gate. That is, z, = 0.61a.

Graph:  Plot the experimentally determined flowrate, Q, as ordinates and the water depth,
z;, upstream of the gate as abscissas.

Results:  On the same graph, plot the theoretical flowrate as a function of water depth up-
stream of the gate.

Data:  To proceed, print this page for reference when you work the problem and click Jere
to bring up an EXCEL page with the data for this problem.

Sluice gate

# FIGURE P3.104

(con’t)
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Solution for problem 3.104: Sluice Gate Flowrate

a, in. b, in. L, ft z,, ft
1.2 6.0 4.0 0.061
Experimental Theoretical
zy, ft t, s Vi, fils  Q, ftr3/s Q, ftr3/s
0.183 4.2 0.952 0.087 0.091
0.267 5.0 0.800 0.107 0.114
0.343 52 0.769 0.132 0.132
0.453 6.2 0.645 0.146 0.155
0.569 6.4 0.625 0.178 0.175
0.725 7.0 0.571 0.207 0.200
0.877 8.6 0.465 0.204 0.222
Experimental:
V=L
Q = V1 bZ1
Theoreticai: ‘
Q = b*z,”*(2*9)"*"[((z4/2,) - /(1 - (zalz))]"
where
Z,=0.61*a
Problem 3.104
Flow Rate, Q, vs Depth, z,
1.00
=
A
3 —] Experimental
* erimente
& 0.10 / xP . @
£ — — Theoretical
G ;
0.01
0.1 1
z,, ft
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3.105 (See “Incorrect raindrop shape,” Section 3.2.) The 30
speed, V, at which a raindrop falls is a function of its diameter,
D, as shown in Fig. P3.105. For what sized raindrop will the 25
stagnation pressure be equal to half the internal pressure caused 20
by surface tension. Recall from Section 1.9 that the pressure in- "
side a drop is Ap = 4a/D greater than the surrounding pres- £ 15
sure, where o is the surface tension. >
10
5
ok ‘
0 0.05 0.1 0.15 0.2

D, in.
MFIGURE P3.105

Determine diameter D for which
TeVi=4[40/D] , or

| _32 b
%(0.002385%‘13‘—) Vi 3 [4( 5 03x10 3;’;—)/01

D= 8.45/V* where Dft and Vi~ e
orD =101/V* | where D~in. and V~ fi/s Q)
Thos, there are Zonknowns, Dand V, and 2 equations, Eq.0) and Fig. P3.125.

The solvtion is given by the infersection of thase fwo D'nglpﬁ.r 4s
shown below.

i /o(\
// \,
o0l _ 4

20 E?‘ (L) ﬂf g = ﬂu/-f. ren.
Vv, ft/s 15

" ~ Fig- P3.105 ¢ Fall speed vs digmeter

: /

0

0 0.05 0.1 0.15 0.2

T/NVS/ D = 00/6&/”4: = 3'6mm
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3.106 (See “Armed with a water Jjet for hunting,” Section .( 2)
3.4.) Determine the pressure needed in the gills of an archerfish V\%

if it can shoot a jet of water 1 m vertically upward, Assume 0
steady, inviscid flow.

L Ui movith
Fram Me Bernvlli 87'1/4{1 on, a% / Y .

/4&370078 V>0 ( /arye ;//:) 22m (small fish), ,01'0( free jet)
and Vo =0 (Hop of Ver‘//cal Wafrr Jet),

T/W&
£r=22 or p=(2-7) = 0803102, (1m) = 00x10°s = .00 k8

3.107 |

3.107 (See “Pressurized eyes,” Section 3.5.) Determine the
air velocity needed to produce a stagnation pressure equal to 10
mm of mercury.

3
+pV*= Prtag = 10 0m of mercory = J;,y h | where (};,,] < /33)</0,,£§
Thes

4

(.23 54)V* = lomm (550 ) (133%/0° 1)
or

V:: 4615 m/é

3-11%
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3.108 (See “Bugged and plugged Pitot tubes,” Section 3.5.)
A airplane’s Pitot tube used to indicated airspeed is partially
plugged by an insect nest so that it measures 60% of the stagna-
tion pressure rather than the actual stagnation pressure. If the
airspeed indicator indicates that the plane is flying 150 mph,
what is the actual airspeed? ‘

When unplvgged the air speed indicator would regicfer a proscore
ifference of

ap=fp V= £p(150mh)*

a‘/ ] 50 mpb .

However, when pligged and the reading indicates 1Somph, the acfval

speed wovld be

A z—‘:@ (1Somph = 0.40 I,_i(o Vz]

or
V= / ?9‘/7@/7

3-/l5




